《力学》第9章
哈工大理论力学教案 第9章
解:1, AB作平面运动 作平面运动
基点: 基点: A
2,
vB = vA + vBA ? √ √
大 ? vA 小 方 √ 向
vB = vA cot
vA vBA = sin
vBA vA ωAB = = l l sin
如图所示平面机构中, 例9-2 如图所示平面机构中,AB=BD= DE= l=300mm.在图示位置时,BD‖AE,杆AB的角速度为 .在图示位置时, , 的角速度为 ω=5rad/s. . 此瞬时杆DE的角速度和杆 中点C的速度 的角速度和杆BD中点 的速度. 求:此瞬时杆 的角速度和杆 中点 的速度.
解:1, AB作平面运动 作平面运动 2, vB = vA + vBA
大 ? ωr ? 小 方 √ 向
= 60
基点: 基点:A
√
√
vB = vA cos 30 = 2 3ωr 3
= 0
vB = 0
= 90
vB = vA = ωr, vBA = 0
如图所示的行星轮系中,大齿轮Ⅰ固定, 例9-4 如图所示的行星轮系中,大齿轮Ⅰ固定,半 径为r 行星齿轮Ⅱ沿轮Ⅰ只滚而不滑动,半径为r 径为 1 ,行星齿轮Ⅱ沿轮Ⅰ只滚而不滑动,半径为 2. 系杆OA角速度为 系杆 角速度为 ωO . 的角速度ω 及其上B, 两点的速度. 求:轮Ⅱ的角速度 Ⅱ及其上 ,C 两点的速度.
解:1 , BD作平面运动 作平面运动
2, vD = vB + vDB 大 ? ωl 小 方 √ 向 √ ? √
基点: 基点:B
vD = vDB = vB =ωl
vD vB ωDE = = = ω = 5rad s DE l vDB vB ωBD = = = ω = 5rad s BD l
《理论力学》第九章质点动力学
目
CONTENCT
录
• 质点动力学的基本概念 • 质点的运动分析 • 质点的动力学方程 • 刚体的动力学 • 相对论力学简介
01
质点动力学的基本概念
质点和质点系
质点
具有质量的点,没有大小和形状 ,是理论力学中最基本的理想化 模型。
质点系
由两个或多个质点组成的系统, 可以是一个物体或多个物体。
质点运动的基本参数
位移
质点在空间中的位置变化。
速度
质点在单位时间内通过的位移,表示质点的运动快 慢和方向。
加速度
质点速度的变化率,表示质点速度变化的快慢和方 向。
质点动力学的基本定律
牛顿第一定律(惯性定律)
一个不受外力作用的质点将保持静止状态或匀速直线运动状态。
牛顿第二定律
质点的加速度与作用力成正比,与质量成反比,即F=ma。
自然坐标系中的运动分析
总结词
自然坐标系是一种以质点所在位置的切线方向为基准的描述方法,常用于分析曲线运动。在自然坐标系中,质点 的运动分析需要考虑切向和法向的运动。
详细描述
在自然坐标系中,质点的位置由曲线上的弧长$s$和对应的角度$alpha$确定。切向的运动由切向速度$v_t$描述, 而法向的运动由法向加速度$a_n$描述。在自然坐标系中,质点的运动分析需要考虑切向和法向的物理量,以便 更准确地描述质点的运动状态。
描述质点角动量和角动量矩随时间变化的物理定理
详细描述
质点的角动量定理指出,质点所受合外力矩的冲量等于其角动量的变化量。公式表示为 Mt=L,其中M为合外力矩,t为时间,L为质点的角动量。角动量矩定理则描述了质点 绕定轴转动的动量矩变化规律,公式表示为L=Iω,其中L为动量矩,I为转动惯量,ω
理论力学课后习题答案-第9章--动量矩定理及其应用)
习题9-2图习题20-3图习题20-3解图OxF Oy F gm Ddα第9章 动量矩定理及其应用9-1 计算下列情形下系统的动量矩。
1. 圆盘以ω的角速度绕O 轴转动,质量为m 的小球M 可沿圆盘的径向凹槽运动,图示瞬时小球以相对于圆盘的速度v r 运动到OM = s 处(图a );求小球对O 点的动量矩。
2. 图示质量为m 的偏心轮在水平面上作平面运动。
轮心为A ,质心为C ,且AC = e ;轮子半径为R ,对轮心A 的转动惯量为J A ;C 、A 、B 三点在同一铅垂线上(图b )。
(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对B 点的动量矩;(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对B 点的动量矩。
解:1、2s m L O ω=(逆)2、(1))1()(Remv e v m mv p A A C +=+==ωRv me J R e R mv J e R mv L A A A C C B)()()(22-++=++=ω(2))(e v m mv p A C ω+==ωωωω)()()())(()(2meR J v e R m me J e R e v m J e R mv L A A A A C C B +++=-+++=++=9-2 图示系统中,已知鼓轮以ω的角速度绕O 轴转动,其大、小半径分别为R 、r ,对O 轴的转动惯量为J O ;物块A 、B 的质量分别为m A 和m B ;试求系统对O 轴的动量矩。
解:ω)(22r m R m J L B A O O ++=9-3 图示匀质细杆OA 和EC 的质量分别为50kg 和100kg ,并在点A 焊成一体。
若此结构在图示位置由静止状态释放,计算刚释放时,杆的角加速度及铰链O 处的约束力。
不计铰链摩擦。
解:令m = m OA = 50 kg ,则m EC = 2m 质心D 位置:(设l = 1 m) m 6565===l OD d 刚体作定轴转动,初瞬时ω=0l mg lmg J O ⋅+⋅=22α222232)2(212131ml ml l m ml J O =+⋅⋅+=即mgl ml 2532=α2rad/s 17.865==g l α gl a D 362565t =⋅=α 由质心运动定理: Oy D F mg a m -=⋅33t4491211362533==-=mg g mmg F Oy N (↑) 0=ω,0n=D a , 0=Ox F习题9-1图(a)v (b)(b ) 习题9-5解图习题9-5图J 9-4 卷扬机机构如图所示。
理论力学第九章刚体的平面运动
O 基点
转角
基点的选取是任意的,平面图形的位置可由O’点 坐标及直线O’M与x’的夹角φ 完全确定。 基点的选择不同,其运动方程9-1a不同,平面图形随基 点平移的速度和加速度也不同。但平面图形绕不同基 点转动的角速度和角加速度却完全相同。证明如下
f (t ) f (t ) 3 3
结 论
刚体的平面运动可以简化为平面图形S 在其自身平面L上的运动。
6
2、运动分析
思考
刚体平面运动是复杂运动,考虑是否可以用 简单运动合成来分析?
Oxy 平移坐标系(动系) 平面运动=随 Oxy 的平移+绕 O 点的转动
=
+
7
3 运动方程
xO f1 t 9-1a yO f 2 t f3 t 9-1b
vB AB = vA
OA
vD
vB
vB
cos30 2 CD作定轴转动(C)
0.2309 m s
vE
vA
vB vD CD 3vB 0.6928 m s CB
vD vE DE = vD ,vE cos 30 vD , vE cos 30 0.8 m s
第九章 刚体的平面运动
本章重点:刚体平面运动的基本概念,求平面图形上各 点的速度与加速度的基点法,以及求速度的 速度投影法和瞬心法,运动学的综合应用。
1
刚体平面运动举例:行星齿轮中小齿轮运动情况
2
车轮运动情况
3
观察曲柄滑块机构中连杆AB的运动情况
4
§ 9-1
1、概念
刚体平面运动的概述和运动分解
30
理论力学 第5版 第九章 动能定理
MC
W12
C2 C1
FR
drC
2 1
MC d
Theoretical Mechanics
第九章 动能定理
5、质点系内力的功
由于
δW FA drA FB drB
FA d(rA rB )
rA rB rBA
FA FB
所以
δW FA.d(rBA )
当质系内质点间的距离可变化时,内力的元功之和不为零。 因此刚体内力的功之和恒等于零。
vi ri
于是绕定轴转动刚体的动能为
T
12mivi2
1 2
mi ri 2
2
1 2
2
mi ri 2
T
1 2
J z 2
Theoretical Mechanics
第九章 动能定理
5、平面运动刚体的动能
刚体作平面运动时,可视为绕通过速 度瞬心,并与运动平面垂直的轴的转动
T
1 2
J I 2
平面运动刚体的动能等于跟随质心平移 的动能与绕通过质心的转轴转动的动能之和。
T
1 2
mi
v
2 i
T
1 2mi
v
i
2
动能是描述质点系运动强度的一个物理量
3、平移刚体的动能
当刚体平移时,刚体上各点速度相同,于是平移刚体的动能为
Theoretical Mechanics
T
1 2mi
v
2
1 2
v2
mi
1 2
mvC2
第九章 动能定理
4、定轴转动刚体的动能
当刚体绕固定轴转动时,其上任一点的速度为
由于
Ft R M z (F ) M z
建筑力学 第九章(最终)
图9-7
② 求各杆杆端的内力。 考虑结点 D 的平衡: 由
求得
由 求得
由
求得 考虑结点 E 的平衡: 由
求得
由 求得
由 求得
M D 0, M DE 18 0
M DE 18 kN m
Fx 0, FNDE 3 0
FNDE 3 kN
Fy 0, FQDE 4.5 0
FQDE 4.5 kN
截取横梁 CF 为研究对象,根据 FN 图、FQ 图 和 M 图,画出其受力图如图9-6e 所示。
MC 24 20 20 2 12 5 36 4 0 Fx 10 10 0
Fy 36 4 20 12 0
可见横梁 CF 满足平衡条件,表明所求作的内 力图正确。
图9-6
【例9-4】试作出图9-7a 所示三铰刚架的内力图。 解:① 计算支座反力。
图9-3
由本例可见,求作多跨静定梁内力图的关键是 要分清梁的组成层次,作出层次图,以及如何将梁 拆开来计算其支座反力。梁的支座反力一旦求出, 求作多跨静定梁内力图的问题就归结为求作各单跨 静定梁内力图的问题,而单跨静定梁的内力图绘制 已是熟悉的求作问题。所以,求作多跨静定梁内力 图只不过是在单跨静定梁的内力图绘制基础上所做 的一种引伸,而并非新的计算问题。
12 110
2
4
kN
由
Fy 0, FBy FAy 20 12 0
求得
FBy 20 12 FAy 20 12 4 36 kN
② 求各杆的杆端弯矩,作 M 图。
杆AC: M AC 0, MCA 22 4 8 4 2 24kN m
用区段叠加法绘出杆 AC 段弯矩图。应用虚线连接杆端弯 矩 MAC 和 MCA,再叠加该杆段为简支梁在均布荷载作用下的弯 矩图。
材料力学:第九章 应力状态分析
τx
C
F
Me
d
C
(a)
·
σx
(b)
C
T
F
解:C点所在横截面上的正应力和切应力的分布规律如图 所示, 点所在横截面上的正应力和切应力的分布规律如图b所示 点所在横截面上的正应力和切应力的分布规律如图 所示, 其值为
FN 500 × 103 N σx = = = 63.7 × 106 Pa=63.7MPa π 2 A 0.1m ) ( 4
经整理后得到 )、(2) )、( (1) 由(1)、( )式,可以求出单 ) 元体各个截面上的应力。( 。(即 点 元体各个截面上的应力。(即a点 (2) 处各个方向上的应力) ) 处各个方向上的应力)
∑F = 0
t
τ =τ′
σ α = −τ sin 2α
τ α = τ cos 2α
定义:构件内一点处各个方向上的应力集合, 定义:构件内一点处各个方向上的应力集合,称为该点处的 应力状态。 应力状态。
F F
横截面上只有正应力,且 横截面上只有正应力, 均匀分布 计算公式: 计算公式:
m
σ
F
FN
FN σ= A
等直圆杆扭转时横截面上的应力: 等直圆杆扭转时横截面上的应力:
Me m Me
m
横截面上只有切应力,呈 横截面上只有切应力, 线性分布
T
o
τρ
τmax
T⋅ρ 计算公式: 计算公式: τρ = Ip
R
τ
T 16 M e τ= = WP πd3
为了研究a点处各个方向的应力,围绕a点取一个各边长均为无 为了研究 点处各个方向的应力,围绕 点取一个各边长均为无 点处各个方向的应力 限小的六面体(称为单元体)。 限小的六面体(称为单元体)。 径向截面
名师讲义【赵堔】工程力学第9章扭转强度与刚度
d MTn x dx
GI p
AB 截面相对扭转角为:
l
d
l
MTn x dx
GI p
# 图示为变截面圆杆,A、B 两端直径分别为 d1、d2 。
从中取 dx 段,该段相邻两截 面的扭转角为:
d T dx
GI P (x)
AB 截面相对扭转角为:
d
T dx
L
L GI P ( x)
三、 扭转杆的刚度计算
圆管强度。
解:1. 计算扭矩作扭矩图
2. 强度校核
危险截面:截面 A 与 B
A
TA
2πR02d1
ml
2πR02d1
44.6
MPa [
]
ml
B
TB
2π 2
27.9
MPa [
]
圆管强度足够
例 图示阶梯状圆轴,AB段直径 d1=120mm,BC段直径
d2=100mm 。扭转力偶矩 MA=22 kN•m, MB=36 kN•m,
d
5、切应力的计算公式:
dA 对圆心的矩 → dAr0
T
AdA.r0
2 0
r0
2td
r02t2
T
2r0 2t
薄壁圆筒扭转时 横截面上的切应力计算式
二、关于切应力的若干重要性质
1、剪切虎克定律
为扭转角 r0 l
l
r0 即
l
做薄壁圆筒的扭转试验可得 T
纵轴 T——
T
2r02t
核轴的刚度 解:1. 内力、变形分析
T1 MA 180 N m
AB
T1l GIp
1.5010-2
rad
T2 MC 140 N m
理论力学 第9章 动能定理
φ
v
S
W=F·S=FScosφ
9.2.2 几种特殊力的功
z M1
M
2. 重力的功
设质点由M1运动到M2,重力的在坐标轴上的投影:
z1 P
M2
Fx=0,Fy=0,Fz=-P
o
z2
y
x
对于质点系,有
特点:重力的功只与重心的起止位置的高度差有关,而与路径无关。
9.2.2 几种特殊力的功
3. 弹性力的功 设弹簧原长为l,刚度系数为k,
求: 轮心C 走过路程s 时的速度和加速度
解: 轮C与轮O共同作为一个质点系
W 12 M m 2 g s s in T1 0
T2
1 2
(
m1
R12
)
2 1
1 2
m2v22
1 2
1 ( 2
m
2
R
2
2
)
2 2
1
vC R1
,2
vC R2
W 12 T2 T1
M
m2 gs sin
vC 2 4
质点系在某一段运动过程中,起点和终点的动能改变量,等于作 用于质点系的全部力在这段过程中所作功的和.
3、理想约束
为什么?
光滑固定面、固定铰支座、光滑铰链、不可伸长的柔索等 约束的约束力作功等于零.
称约束力作功等于零的约束为理想约束. 对理想约束,在动能定理中只计入主动力的功即可. 质点系内力作功之和不一定等于零.
( 2 m1
3m2 )
(a)
s
R1
vC 2
(M m2 gR1 sin )s
R1 (2m1 3m2 )
式(a)是函数关系式,两端对t 求导,得
力学第二版习题答案第九章
第九章基本知识小结⒈物体在线性回复力F = - kx ,或线性回复力矩τ= - c φ作用下的运动就是简谐振动,其动力学方程为 ,02022=+x dt x d ω(x 表示线位移或角位移);弹簧振子:ω02=k/m ,单摆:ω02=g/l ,扭摆:ω02=C/I.⒉简谐振动的运动学方程为 x = Acos(ω0t+α);圆频率、频率、周期是由振动系统本身决定的,ω0=2π/T=2πv ;振幅A 和初相α由初始条件决定。
⒊在简谐振动中,动能和势能互相转换,总机械能保持不变;对于弹簧振子,22021221A m kA E E p k ω==+。
⒋两个简谐振动的合成⒌阻尼振动的动力学方程为 022022=++x dt dx dtx d ωβ。
其运动学方程分三种情况:⑴在弱阻尼状态(β<ω0),振动的方向变化有周期性,220'),'cos(βωωαωβ-=+=-t Ae x t ,对数减缩 = βT ’.⑵在过阻尼状态(β>ω0),无周期性,振子单调、缓慢地回到平衡位置。
⑶临界阻尼状态(β=ω0),无周期性,振子单调、迅速地回到平衡位置⒍受迫振动动力学方程 t f x dt dx dt x d ωωβcos202022=++; 其稳定解为 )cos(0ϕω+=t A x ,ω是驱动力的频率,A 0和φ也不是由初始条件决定,222220004)(/ωβωω+-=f A 2202ωωβωϕ--=tg 当2202βωω-=时,发生位移共振。
9.2.1 一刚体可绕水平轴摆动。
已知刚体质量为m ,其重心C 和轴O 间的距离为h ,刚体对转动轴线的转动惯量为I 。
问刚体围绕平衡位置的微小摆动是否是简谐振动?如果是,求固有频率,不计一切阻力。
解:规定转轴正方向垂直纸面向外,忽略一切阻力,则刚体所受力矩τ= - mghsin φ因为是微小摆动,sin φ≈φ,∴τ= - mgh φ,即刚体是在一线性回复力矩作用下在平衡位置附近运动,因而是简谐振动。
《理论力学》课件 第九章
第九章刚体的平面运动刚体的平面运动是工程机械中较为常见的一种刚体运动,它可以看作为平移与转动的合成,也可以看作为绕不断运动的轴的转动。
在运动中,刚体上的任意一点与某一固定平面始终保持相等的距离。
平面运动刚体上的各点都在平行于某一固定平面的平面内运动。
注意与平移区别()Oϕ'--基点,转角,Oxy--定系用一个平面图形代表作平面运动的刚体;用平面内的任意线段的位置来确定平面图形的位置;用线段上任意点0′的坐标和一个夹角来确定该线段的位置。
平面图形的运动方程对于任意的平面运动,可在平面图形上任取一点O′,称为基点。
在这一点假想地安上一个平移参考系O’x’y’,平面图形运动时,动坐标轴方向始终保持不变,可令其分别平行于定坐标轴Ox和Oy,平面的平面运动可看成为随同基点的平移和绕基点转动这两部分运动的合成。
平移坐标系-'''y x O平移-----牵连运动转动-----相对运动四、重要结论:平面运动可取任意基点而分解为平移和转动。
其中平移的速度和加速度与基点的选择有关,而平面图形绕基点转动的角速度和角加速度与基点的选择无关.任何平面图形的运动可分解为两个运动(1)牵连运动,即随同基点O′的平移;(2)相对运动,即绕基点O′的转动。
平面图形内任一点M的运动也是两个运动的合成,因此可用速度合成定理来求它的速度,这种方法称为基点法。
注意:此处动点、动系、基点在同一个刚体上。
但属于刚体上的不同点。
点M 的牵连速度v v点M的相对速度v vω'M O v v v v 'ωv v AB v v ω结论:平面图形内任一点的速度等于基点的速度与该点随图形绕基点转动速度的矢量和。
平面图形内任意两点A 和B 的速度确定基点A ,一般应使V A 为已知条件。
O’M 上速度分布图角速度与相对速度有关AABAABBAvlABvωϕ=v v v应使V B位于平行四边形的对角线上V BA=AB·ω,此处ω是尺AB的角速度3、角速度分析例9-2图所示平面机构中,AB=BD=DE=l=300mm。
理论力学:第9章 动能定理
δ。小球运动时所受的力有重力 FP 和弹性力 F。当小球由 O 运
动到 B 时,重力 FP 所做的功等于 FPδ;至于弹性力 F 所做的
功,在式(9-9)中令
δ1=0,δ2=δ,即知为
速不变。已知绞车 І 的半径为 r1,其对轴的转动惯量为 I1;滑轮Ⅱ、Ⅲ的半径各
为 r2 、r3,对轴的转动惯量各为 I2、I3;链带的单位长度重量为 q,全长为 l。试
求在变速和匀速两个阶段,电动机的输出功率。忽略各处摩擦。
FP 2 FP1
例 9-5 图
·9·
解:用功率方程求解,设链带速度为 v,系统总动能、有用功率、无用功率为
如果用微分形式的动能定理求解此题,则要注意到
δ WF
FPdy
k
y 2
d
y 2
δ WF
FP
k 4
y dy
将式(d)和式(h)代入式(9-21),得
d
8FP 3Q 16g
v
2 A
FP
k 4
y
dy
此式两边被 dt 除,同样得到物块 A 的微分方程(g)。
k 2
2
。由质点动能
定理得 即
0
1 2
FP g
v02
FP
k 2
2
k
2
2FP
FP g
v02
0
解得
1 k
工程力学第9章圆轴的扭转
τ ′d x d z
d
τ
c
τ d yd z
x
∑F = 0 ∑F = 0 ∑M = 0
y x z
自动满足 存在τ'
(τ d y d z ) d x = (τ ′ d x d z ) d y
得
τ′ =τ
y
τ'
a dy b z
切应力互等定理 d
在相互垂直的两个面上, 在相互垂直的两个面上,切 应力总是成对出现,并且大小相 应力总是成对出现,并且大小相 等,方向同时指向或同时背离两 个面的交线。 个面的交线。
一、圆轴扭转时横截面上的应力 1、几何关系:由实验找出变形规律 应变的变化规律 几何关系 由实验找出变形规律→应变的变化规律 1)实验: 实验:
2)观察变形规律: 观察变形规律:
圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动 形状、大小、间距不变, 圆周线 形状 了一个不同的角度。 了一个不同的角度。 纵向线——倾斜了同一个角度,小方格变成了平行四边形。 倾斜了同一个角度,小方格变成了平行四边形。 纵向线 倾斜了同一个角度 扭转平面假设:变形前的横截面,变形后仍为平面, 扭转平面假设 变形前的横截面,变形后仍为平面,且形状 、大 小 以及间距不变,半径仍为直线。 以及间距不变,半径仍为直线。
3
) 16T 3 16(1.5×103N⋅m = = 0.0535 m d ≥ 6 π(50×10 Pa) π[τ ]
m 取: d = 54 m
2. 确定空心圆轴内、外径 确定空心圆轴内、
Wp =
3
πD3 16
(1−α )
4
16T π 3 D (1−α 4) 16
结论: 结论:
横截面上
工程力学 第九章 梁的强度刚度计算
由结果知,梁的强度不满足要求。
返回 下一张 上一张
y2
z
例9-6 试为图示钢轨枕木选择矩形截面。已知矩形截面尺寸的比 例为b:h=3:4,枕木的弯曲许用正应力[]=15.6MPa,许用剪应力 P P 0 0 .2 m 1 .6 m []=1.7MPa,钢轨传给枕木的压力P=49KN。 .2 m
a
M D ya Iz
返回 下一张 上一张
10.7
第二节 梁横截面上的剪应力
一、矩形截面梁:
矩形截面剪应力计算公式: τ沿截面高度按抛物线规律变化:
2Iz 4
3
QS
* z
I zb
bh
4
τ m ax
2 3
y
h 2
, 0 ; y 0 , max
6 Qh 4 bh
校核梁的正应力强度。
解:(1) 内力及抗弯截面模量计算: MC=3.0KN.m; MD=-4.8KN.m
W1 W2
P1
A
a C a
P2
D
a B
y1
z
763 5 .2
146 . 7 cm
3
y1
z
763 8 .8
86 . 7 cm
3
4 .8 k N m
y2
(2)C截面的正应力强度校核:
4 Q 3 A1
max 2
Q A2
返回 下一张 上一张
例9-3 矩形截面简支梁如图,已知:l=2m,h=15cm,b=10cm, h1=3cm,q=3kN/m。试求A支座截面上K点的剪应力及该截面的最 b q 大剪应力。 解:1.求剪力:QA=3kN
理论力学 第09章 动量定理
d(mv) = Fdt
t2 t1
— 动量定理微分形式 — 动量定理积分形式
mv2 − mv1 = ∫ Fdt = I
9.1 动量定理与动量守恒
2. 质点系的动量定理 对于质点 对于质点系
dp
d (mivi ) = Fi dt dpi d(mi vi ) ∑ dt = ∑ dt = ∑Fi i i i i e Fi = Fi + Fi
m- 刚体系统的总质量; vC- 系统质心的速度;
aCi- 第i个刚体质心的加速度; aC - 系统质心的加速度
9.2 质心运动定理
质心运动定理在直角坐标轴上投影为: 质心运动定理在直角坐标轴上投影为: 在直角坐标轴上投影为
maCx = F , maCy = F , maCz = F
e Rx e Ry
p x = m1v1 + m2 (v1 − vr sin θ ) = 0
m2 vr sin θ v板 = v1 = m1 + m2
9.1 动量定理与动量守恒
【解】 矩形板的加速度:
m2 vr sin θ v板 = v1 = m1 + m2
& dv1 m2 vrθ cos θ a1 = = dt m1 + m2
i
i
i
m
vC =
∑m v
i i
i
m
p = mvC
个刚体的质心 i 的i C
若质点系是由多个刚体组成,设第 速度为
v,则整个刚体系统的动量 Ci
p = ∑mvCi i
9.1 动量定理与动量守恒
9.1.2 冲量
作用力与作用时间的乘积称为常力的冲量,用 I 表示。 常力的冲量, 常力的冲量 即
材料力学第九章-压杆稳定
按照 Iy计算临界压力。
工程力学
例 按照 Iy计算临界压力。
F b z
h l
π 2 EI π 2 200 10 3 48 10 4 Fcr N 2 2 ( l ) (2 2500 )
37860N 37.86kN
若
y
h b 60mm
bh3 60 4 Iy Iz mm 108 10 4 mm 12 12
工程力学
三、其它支承情况下细长压杆的临界力 不同约束形式 压杆的临界力,可 以用类似的方法求 解微分方程导出。 但在已经导出 两端铰支压杆的临 界压力公式之后, 便可以用比较简单 的方法,得到其他 约束条件下的临界 力。
l
F
F
一端固定,一端自由, 长为l 的的压杆的挠曲线 和两端铰支,长为2l的 压杆的挠曲线的上半部 分相同。则临界压力:
工程力学
二、稳定性问题的分类 1.压杆的稳定性。2.板壳的稳定性。 本课程只讨论压杆的稳定性。
三、压杆的稳定与失稳 1.压杆的稳定性: 压杆维持其原有直线平衡状态的能力
2.压杆的失稳: 压杆丧失其原有直线平衡状态,不能稳定地工作。
工程力学
四、压杆失稳的原因 1)杆轴线本身不直(有初曲率); 2)加载偏心; 3)压杆的材质不均匀;
4)外界干扰力。 五、失稳现象的特点 1.多样性。(如扭转、弯曲失稳,板、壳、柱) 2.整体性。构件失稳引起受力重新分配。整体失效、 整体分析。 3.破坏的突然性。应力在弹性范围,类似脆性破坏。
工程力学
• 1907年加拿大
魁北克大桥在 剪彩前突然坍 塌,600米长, 19000吨重的大
桥和86名建桥
3、中柔度杆的经验公式 对于 < p的压杆,其临界应力大于材料的比例极限,欧拉 公式已经不适用。
材料力学课件 第9章 强度理论
18
第九章 强度理论
首页
上一页
下一页
例题 一铸铁构件 bL= 400MPa, by= 1200MPa,一平面应力状
态点按莫尔强度理论屈服时,最大剪应力为450MPa,试求该点
的主应力值。 M
[ y]
P
O2 3
解:做莫尔理论分析图
KL
sinO2M O1L
oN
O3 O1 1 [ L]
O1O2
by
首页
上一页
下一页
例题 某铸铁构件危险点的应力如图所示,若许用拉应力
[ ] 30MPa ,试校核其强度。
y 20MPa
解 由图可知,x与y截面的应力为
10MPa x
15MPa
x 10MPa, x 15MPa, y 20MPa
计算最大正应力与最小正应力,得到
max m in
26.2MPa 16.2MPa
密度值,材料即发生屈服。
ud max uds
ud
1
6E
1 2 2 2 3 2 3 1 2
1)破坏判据: 2)强度准则
1
2
1
2 2
2
3 2
3
1 2
s
1
2
1
2 2
2
3 2
3
1 2
3)实用范围:实用于破坏形式为屈服的构件。
10
第九章 强度理论
即主应力为: 1 26.2MPa, 2 0, 3 16.2MPa
上式中主应力 3 虽为压应力,但其绝对值小于主应力 1 所以,宜采用
最大拉应力理论校核强度,显然有1
[
]
说明该构件满足强度要求。
11
第九章 强度理论
理论力学第九章刚体的平面运动
v CA
v MA
C
vA
vA vA
v M = v A + v MA
v M = v A − ω ⋅ AM
v 当M在VA垂线上时: MA = ω ⋅ AM 垂线上时:
必可找到一点C: v C = 0 (v A = v CA ) v AC v A ⇒ AC = =
ω
ω
15
2、平面图形内各点的速度分布
小 A 大 ? ω ⋅O = ω r2 0 Ⅱ 方 ? 向 √ √
2 2 vB = vA +vBA
vB
vA
v CA v A
vC
v BA v A
= 2ω (r +r2 ) O 1
vB与 A夹 为 o, 向 图 v 角 45 指 如
4 vC =vA +vCA vC =vA +vCA = 2 O(r +r ) ω 1 2
向 方 √
√ √
8
ω DE
[例9-3]曲柄连杆机构如图所示,OA =r,AB= 3 。如 3]曲柄连杆机构如图所示, 曲柄连杆机构如图所示 r 转动。 曲柄OA以匀角速度ω转动。 0o 90 点 的 度 求 当 =60o,, o时 B 速 。 : ϕ
vA
vA
解:1 AB作平面 运动, 基点: 运动, 基点:A
6
2、例题分析
轴的负向运动, [例9-1] 椭圆规尺的A端以速度vA沿x 轴的负向运动, 如图所示, 如图所示,AB=l。求:B端的速度以及尺AB的角速度。 。 的角速度。 解:1、AB作平面运动, 作平面运动, 作平面运动 基点: 基点: A
vB
v BA
2 vB = vA +vBA
(word完整版)理论力学习题解答第九章
9-1在图示系统中,均质杆OA 、AB 与均质轮的质量均为m ,OA 杆的长度为1l ,AB 杆的长度为2l ,轮的半径为R ,轮沿水平面作纯滚动。
在图示瞬时,OA 杆的角速度为ω,求整个系统的动量.ω125ml ,方向水平向左题9-1图 题9-2图9-2 如图所示,均质圆盘半径为R ,质量为m ,不计质量的细杆长l ,绕轴O 转动,角速度为ω,求下列三种情况下圆盘对固定轴的动量矩: (a )圆盘固结于杆;(b )圆盘绕A 轴转动,相对于杆OA 的角速度为ω-; (c )圆盘绕A 轴转动,相对于杆OA 的角速度为ω。
(a )ω)l R (m L O 222+=;(b )ω2ml L O =;(c )ω)l R (m L O 22+= 9-3水平圆盘可绕铅直轴z 转动,如图所示,其对z 轴的转动惯量为z J 。
一质量为m 的质点,在圆盘上作匀速圆周运动,质点的速度为0v ,圆的半径为r ,圆心到盘中心的距离为l 。
开始运动时,质点在位置0M ,圆盘角速度为零。
求圆盘角速度ω与角ϕ间的关系,轴承摩擦不计。
9-4如图所示,质量为m 的滑块A ,可以在水平光滑槽中运动,具有刚性系数为k 的弹簧一端与滑块相连接,另一端固定。
杆AB 长度为l ,质量忽略不计,A 端与滑块A 铰接,B 端装有质量1m ,在铅直平面内可绕点A 旋转.设在力偶M 作用下转动角速度ω为常数.求滑块A 的运动微分方程。
t l m m m x m m kxωωsin 2111+=++9-5质量为m,半径为R的均质圆盘,置于质量为M的平板上,沿平板加一常力F。
设平板与地面间摩擦系数为f,平板与圆盘间的接触是足够粗糙的,求圆盘中心A点的加速度。
9-6均质实心圆柱体A 和薄铁环B 的质量均为m ,半径都等于r ,两者用杆AB 铰接,无滑动地沿斜面滚下,斜面与水平面的夹角为θ,如图所示。
如杆的质量忽略不计,求杆AB 的加速度和杆的内力.θsin 74g a =; 9-7均质圆柱体A 和B 的质量均为m ,半径为r ,一绳缠在绕固定轴O 转动的圆柱A 上,绳的另一端绕在圆柱B 上,如图所示.摩擦不计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 简谐振动的运动学方程
简谐振动的动力学方程d2 dtx22 0
x
0
=0
其解
x(t) Acos(0t )
x
m
Ox
或
x(t) Asin(0t )
A与 由初始条件定.
2. 特征量物理意义 (1)周期、频率和圆频率 周期(T)—— 系统作一次完整振动所需时间.
x( t ) = x( t +T )
2.简谐振动:质点在线性回复力作用下围绕平衡位置的运动。
3.简谐振动的动力学特征:
a.力 fx x
b.势能
EP
x 0
fdx
x
xdx
0
1 x2
2
EPx
EP0
1 2
x2
c.动力学方程
EP
1 2
x2
(1) 弹簧振子的振动
弹簧振子——轻弹簧与物体m组成的系统.
Fx kx
m
d2 x dt 2
[解](1) A=0.04 m fmax kA
k fmax A
E
1 kA2 2
1 2
fmaxA
1 24 0.04J 2
0.48J
(2) 取平衡位置为势能零点,行至振幅一半时相位为60
Ek
1 2
kA2
sin2 ( 0t
)
0.48 (
3 / 2)2 J 0.36J
Ep (0.48 0.36) J 0.12 J
c. Ek与Ep的变化频率都是原频率的两倍.
d.振幅不仅给出简谐振动运动的范围,而且反映了振动系统 总能量的大小及振动的强度.
3.平均动能和平均势能
EK 1 kA2.
2
T 0
sin2 (0t
)dt
1
kA2
T
2
2
0 0
sin
2
(0t
)dt
2 0
一个完整周期,所以初相位具有什么值无关紧要,为简单,令其为零。
t
ab
c
a. 相位不同时,运运状态可能完全不同。 b.比较简谐振动的任务之一,比较相位。
c.相位差:1 2 超前、滞后。
(4)f , x,vx, ax 间的相位关系 a.力与加速度同相位;
b.加速度超前速度 2 。加速度对时间的累积才获得速度。
c. 速度超前位移 2。 即:速度对时间的累积才获得位移。
②合振动的初相
cos A1 cos1 A2 cos2 A sin A1 sin1 A2 sin2 A
或:tg A1 sin1 A2 sin2 A1 cos1 A2 cos2
2.旋转矢量法
x A1 cos(0t 1) A2 cos(0t 2 )
Acos(0t )
A
A12
A2 2
§9.1简谐振动的动力学特征
1.简谐振动基本概念
平衡位置——物体在做往复运动时,在某位置所受的 力(或力矩)等于零,则此位置称平衡位置.
回复力(回复力矩)——作用于物体的力(或力矩)总与 物体相对于平衡位置的位移(线位移或角位移)反向, 指向平衡位置。 线性恢复力(恢复力矩)
Fx x(x是相对原点的位移)
m d2 (l ) mg
dt 2
令
02
g l
d 2
dt 2
02
0
O
W
单摆作简谐振动
(3) 扭摆
z
如图,不计空气阻力,小角扭动
回复扭转力矩 M z c
由刚体定轴转动定律
Iz
d 2
dt 2
c
令
2 0
c Iz
O
B
y
x
d 2
dt 2
02
0
刚体作简谐振动
0由系统本身的性质所决定.
从动力学角度判定简谐振动的方法:
T 2π
单位:rad/s
0 2π
2π T
量纲:[0 ] T 1
运动学方程的几种表示
x(t) Acos(0t ) x(t) Acos(2π t )
T
x(t) Acos(2πt )
T、 和由振动系统本身的性质决定,与两类量有关.
反映系统惯性的量;m; I 反映恢复力特性的量。k, g,c
kx
或
d2x k x 0 dt 2 m
令
02
k m
d2 dt
x
2
2 0
x
0
0 由振动系统本身的性质决定.
简谐振动的动力学定义:
d2 dt
x
2
2 0
x
0
m
=0
Ox
F
A
v
x -A
F
v
F=0 x=0
(2) 单摆
如图,铅直面内不计空气
O
阻力,绳不可伸长.
Ft mg sin
很小时, sin
FT
Ft mg ——称回复力.
1 2
EP
EK
1 4
kA2
总能量不变.弹簧振子在一个周期内动能和 势能的平均值相等,且等于总机械能的一半.
[例题1] 弹簧振子水平放置,克服弹簧拉力将质点自平衡
位置移开 4.0 10 2 m,弹簧拉力为24N,随即释放,形
成简谐振动。计算:(1)弹簧振子的总能;(2)求质点
被释放后,行至振幅一半时,振子的动能和势能.
Ek'
L 0
dEk
L 0
1 2
ms L3
l 2 x 2dl
1 2
( ms 3
)x 2
等效质量
m
1 3
ms
Ek
1 2
mx 2
弹簧振子系统的总质量 mT m m
系统的固有频率
0
k mT
k m ms
3
等效质量法是处理非轻质弹簧振子系统常用方法。
§9.4 简谐振动的合成
一、同方向同频率简谐振动的合成
相轨迹方程:
x Acos(0t ) vx 0 Asin(0t )
x2 A2
vx2
02 A2
1
O
x
三、简谐振动的旋转矢量表示
x Acos(0t )
1. A矢端在x轴投影对应x.
2.矢端圆周运动速率在x投影对应vxv 0 A 0t
3.矢端向心加速度的投影为a x .
0t a 02 A A(t )
x2 A2 cos(0t a2 )
试分别就 1 2 2nπ
(n 0,1,, n)
和 1 2 (2n 1)π (n 0,1,, n) 的情况比较两种振动.
[例题4] 如图右方表示 某简谐振动的 x-t 图,试用作 图方法画出 t1 和 t2 时刻的旋转矢量的位置.
[解]
x A
x
A
P1
O
B
2A1 A2
c os( 2
1 )
1 2
3.相位差对合振动的影响
(1)若相位差 (2 1) 2n ,即同相位,则:A A1 A2,振
幅最大;
(2)若相位差 (2 1) (2n 1) ,即反相位,则:A A1 A2 ,
振幅最小;
(3)一般情况下,振幅 A 介于 A1 A2 与 A1 A2之间。
1.三角函数的方法
设: x1 A1 cos(0t 1)
x2 A2 cos(0t 2 )
x x1 x2 A1 cos0t 1 A2 cos0t 2
A1cos0t cos1 sin0t sin1 A2cos0t cos2 sin0t sin2
A1 cos1 A2 cos2 cos0t A1 sin1 A2 sin2 sin0t
c.振幅由系统性质(固有圆频率)和初始条件决定。
(3) 相位和初相位
相位 =( t + ),--随时间变化的角度。
初相() ,t = 0 时的相位. tan v0 , cos x0
0 x0
A
一定的相位对应一定的运动状态.
如图a、b两点运动状态不同, x
相位亦不同.
c和a运动状态同,相位差2n .
Acos(0 t + ) = Acos[0(t + T )+ ]
0T = 2 n
T 的最小值
T 2π 0
弹簧振子、单摆和扭摆周期分别为
T 2π m k
T 2π l g
T 2π I c
频率()—— 单位时间内物体所作完全振动的次数。
角频率(。)—— 单位时间内的相位变化。也称固有频率。
1 0
(2) 振幅
振幅A—— 物体离开平衡位置最大位移的绝对值。
x Acos(0t )
vx
dx dt
A0
sin(0t
)
设 t = 0, x = x0 ,v = v0
则 x0 Acos
v0 A0 sin
A
x02
v02
2 0
a.若v0x 0. 初始时刻物体位于最大位移处。
b.若物体初速度越大,振幅越大。初位移越大,振幅越大。
,
问在这些瞬
[解]振动状态由x 、v 定
x Acos(0t )
0t 0
0t π
0t
π 2
0t
π 2
vx
dx dt
A0
sin(0t
)
x A, vx 0
x A, vx 0
x 0, vx 0 A
x 0, v x 0 A
[例题2] 二同频率不同振幅的简谐振动表示为
x1 A1 cos(0t a1 )
0
2
2 0 0
sin2 (0t )dt
0 2
2 0 0
(
1 2
1 2