标准二阶系统的阶跃响应及性能分析

合集下载

实验二 二阶系统阶跃响应_2

实验二  二阶系统阶跃响应_2

实验二二阶系统阶跃响应一、实验目的(1)了解典型二阶系统模拟电路的构成方法及二级闭环系统的传递函数标准式。

(2)研究二阶闭环系统的结构参数--无阻尼振荡频率ωn、阻尼比ζ对过渡过程的影响。

(3)掌握欠阻尼二阶闭环系统在阶跃信号输入时的动态性能指标Mp、tp、ts的计算。

观察和分析二阶闭环系统的欠阻尼, 临界阻尼, 过阻尼的瞬态响应曲线, 及在阶跃信号输入时的动态性能指标Mp、tp、ts值, 并与理论计算值对比。

二、实验设备(1)XMN-2型学习机;(2)CAE-USE辅助实验系统(3)万用表(4)计算机三、实验内容本实验用于观察和分析二阶系统瞬态响应的稳定性。

二阶闭环系统模拟电路如图2-1所示, 它由两个积分环节(OP1和OP2)及其反馈回路构成。

图2-1 二阶闭环系统模拟电路图OP1和OP2为两个积分环节, 传递函数为(时间常数)。

二阶闭环系统等效结构图如图2-2所示。

图2-2 二阶闭环系统等效结构图四、该二阶系统的自然振荡角频率为, 阻尼为。

五、实验步骤(1)调整Rf=40K, 使K=0.4(即ζ=0.2);取R=1M, C=0.47μ, 使T=0.47秒(ωn=1/0.47), 加入阶跃输入信号x(t)=1V, 记录阶跃响应曲线①;(2)保持ζ=0.2不变, 阶跃信号不变, 取R=1M, C=1.47μ, 使T=1.47秒(ωn=1/1.47), 记录阶跃响应曲线②;(3)保持ζ=0.2不变, 阶跃信号不变, 取R=1M, C=1μ, 使T=1秒(ωn=1/1), 记录阶跃响应曲线③;保持ωn=1/0.1不变、阶跃扰动不变, 调整Rf=200K, 使K=2(即ζ=1), 记录阶跃响应曲线④;保持ωn=1/0.1不变、阶跃扰动不变, 调整Rf=300K, 使K=3(即ζ=1.5), 记录阶跃响应曲线⑤。

六、数据采集及处理七、实验报告1、推导模拟电路的闭环传递函数Y(s)/X(s)?确定R、C.Rf、Ri与自然振荡角频率和阻尼比之间的关系。

二阶系统阶跃响应实验报告

二阶系统阶跃响应实验报告

实验一 二阶系统阶跃响应一、实验目的(1)研究二阶系统的两个重要参数:阻尼比ξ和无阻尼自振角频率ωn 对系统动 态性能的影响。

(2)学会根据模拟电路,确定系统传递函数。

二、实验内容二阶系统模拟电路图如图2-1 所示。

系统特征方程为T 2s 2+KTs+1=0,其中T=RC ,K=R0/R1。

根据二阶系统的标准 形式可知,ξ=K/2,通过调整K 可使ξ获得期望值。

三、预习要求(1) 分别计算出T=,ξ= ,, 时,系统阶跃响应的超调量σP 和过渡过程时间tS 。

)1(p 2e ζζπσ--=, ζT3t s ≈代入公式得:T=,ξ= ,σp =% , t s =6s ; T=,ξ= ,σp =% , t s =3s ; T=,ξ= ,σp =% , t s =2s ;(2) 分别计算出ξ= ,T=,, 时,系统阶跃响应的超调量σP 和过渡过程时间tS。

ξ= ,T=,σp=% , t s=;ξ= ,T=,σp=% , t s=6s;ξ= ,T=,σp=% , t s=12s;四、实验步骤(1)通过改变K,使ξ获得0,,,,等值,在输入端加同样幅值的阶跃信号,观察过渡过程曲线,记下超调量σP 和过渡过程时间tS,将实验值和理论值进行比较。

(2)当ξ= 时,令T= 秒,秒,秒(T=RC,改变两个C),分别测出超调量σP 和过渡过程tS,比较三条阶跃响应曲线的异同。

五、实验数据记录与处理:阶跃响应曲线图见后面附图。

原始数据记录:(1)T=,通过改变R0的大小改变K值(2)ξ=,改变C的大小改变T值理论值与实际值比较:(1)T=(2)ξ=对比理论值和测量值,可以看出测量值基本和理论值相符,绝对误差较小,但是有的数据绝对误差比较大,比如T=,ξ=时,超调量的相对误差为30%左右。

造成误差的原因主要有以下几个方面:(1)由于R0是认为调整的阻值,存在测量和调整误差,且不能精确地保证ξ的大小等于要求的数值;(2)在预习计算中我们使用了简化的公式,例如过渡时间大约为3~4T/ξ,这并不是一个精确的数值,且为了计算方便取3T/ξ作统一计算;(3)实际采样点的个数也可能造成一定误差,如果采样点过少,误差相对会大。

二阶系统的阶跃响应

二阶系统的阶跃响应

线性定常系统的重要特性
1、对于零初始条件下的线性定常系统,若输入为 r(t)
其对应的输出为 c(t) ,拉氏变换为 C(s) R(s)G(s)
2、若输入变为
dr(t)
r1 (t )

dr(t) t
R1(s) L[ t ] sR(s)
,其拉氏变换为
这时系统输出为 C1(S) G(s)R1(s) G(s)sR(s) sC(s)
二、二阶系统的动态过程分析
4、最大超调量 %的计算
在 c(t) 1
1 1
2
e nt
sin( dt
)
中,将t t p 代入得
c(t p ) 1
1 e / 1 2 sin( ) 1 2
因为 cos 则 sin( ) 1 2
1 2
解之得 t s

1
n
ln( 0.05
1 2 )
4.5
,近似为
ts

3.5
n

3.5

4.5
若误差带为0.02,则
ts

n


二、二阶系统的动态过程分析
由此可见, n 越大,ts 越小,若 n一定,则调节
时间 ts 与
不一样的。
成反比。这与 td
,t p ,tr
一、二阶系统的阶跃响应
当 0
系统有一对纯虚根
s1,2 jn
单位阶跃响应时
C(s)

R(s)G(s)

1 s

n2 s2 n2
可以算出 系统的阶跃响应为等幅振荡,振荡频率为 自然频率,此时为无阻尼情况。

实验2二阶系统的阶跃响应及稳定性分析实验

实验2二阶系统的阶跃响应及稳定性分析实验

实验室二二阶系统的阶跃响应及稳定性分析实验一.实验目的1.熟悉二阶模拟系统的组成。

2.研究二阶系统分别工作在等几种状态下的阶跃响应。

3.学习掌握动态性能指标的测试方法,研究典型系统参数对系统动态性能和稳定性的影响。

二,实验内容1.ZY17AutoC12BB自动控制原理实验箱。

2.双踪低频慢扫示波器。

四.实验原理典型二阶系统的方法块结构图如图2.1所示:图2.1其开环传递函数为,为开环增益。

其闭环传递函数为,其中取二阶系统的模拟电路如图2.2所示:该电路中该二阶系统的阶跃响应如图所示:图2.3.1,2.3.2,2.3.3,2.3.4和2.3.5分别对应二阶系统在过阻尼,临界阻尼,欠阻尼,不等幅阻尼振荡(接近于0)和零阻尼(=0)几种状态下的阶跃响应曲线。

改变元件参数Rx大小,可研究不同参数特征下的时域响应。

当Rx为50k时,二阶系统工作在临界阻尼状态;当Rx<50K时,二阶系统工作在过阻尼状态;当Rx>50K时,二阶系统工作在欠阻尼状态;当Rx继续增大时,趋近于零,二阶系统输出表现为不等幅阻尼振荡;当=0时,二阶系统的阻尼为零,输出表现为等幅振荡(因导线均有电阻值,各种损耗总是存在的,实际系统的阻尼比不可能为零)。

五. 实验步骤1.利用实验仪器,按照实验原理设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路。

此实验可使用运放单元(一),(二),(三),(五)及元器件单元中的可调电阻。

(1)同时按下电源单元中的按键开关S001,S002,再按下S003,调节可调电位器W001,使T006(-12V—+12V)输出电压为+1V,形成单位阶跃信号电路,然后将S001,S002再次按下关闭电源。

(2)按照图2.2连接好电路,按下电路中所用到运放单元的按键开关。

(3)用导线将连接好的模拟电路的输入端于T006相连接,电路的输出端与示波器相连接。

(4)同时按下按键开关S001,S002时,利用示波器观测该二阶系统模拟电路的阶跃特性曲线,并由实验测出响应的超调量和调节时间,将结果记录下来。

二阶系统的阶跃响应实验报告

二阶系统的阶跃响应实验报告

二阶系统的阶跃响应实验报告实验报告:二阶系统的阶跃响应实验目的:本次实验的目的是研究二阶系统的阶跃响应,并对实验结果进行分析与讨论,以理解二阶系统在控制工程领域中的应用。

实验原理:二阶系统是指具有二阶特性的系统,即在系统受到激励信号后,系统的响应随时间的变化呈现出一定的规律。

在此实验中,我们将研究二阶系统的阶跃响应,其中阶跃信号指输入信号由零值跳变到一个恒定的值(或者说幅度无限大),通常用单位阶跃函数u(t)表示,即u(t)=1(t≥0),而二阶系统响应的公式可表示为:y(t) = K(1- e^(-ξωnt)cos(ωdt+φ))其中,K为系统的增益,ξ为阻尼比,ωn为自然频率,ωd为阻尼振荡频率,φ为相位角。

实验步骤:1. 确定实验装置的参数,并将之记录下来,包括:二阶系统的增益K、阻尼比ξ、自然频率ωn,以及阶跃信号的幅值u0等。

2. 将二阶系统的输入信号设置为阶跃信号u(t),并将输出信号y(t)记录下来,同时进行数据采集和记录。

3. 根据数据得出实验结果,并利用软件对实验数据进行处理和分析,包括波形比较、响应曲线分析和幅值与相位移测量等。

实验结果:在此次实验中,我们得到了如下的实验参数:增益K = 1.5V阻尼比ξ = 0.1自然频率ωn = 2π x 10Hz阶跃信号幅值u0 = 2V根据实验数据,我们得到了如下的响应曲线:图1 二阶系统的阶跃响应曲线通过对响应曲线的分析和处理,我们发现:1. 二阶系统的阶跃响应具有一定的超调和振荡特性,表明系统的稳定性较差,需要进行进一步的优化和调整。

2. 阻尼比ξ的大小与系统的响应有着密切的关系,通常应根据系统的具体情况进行合理的选择和调整,以达到最佳的控制效果。

3. 自然频率ωn的大小与系统的响应速度有关,通常应根据实际控制要求进行选择和调整,以达到最佳的控制效果。

结论:本次实验研究了二阶系统的阶跃响应,并对实验结果进行分析和讨论。

通过对实验数据的处理和比较,我们发现阻尼比ξ和自然频率ωn是影响系统响应特性的关键因素,应根据实际控制要求进行合理的选择和调整。

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。

二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。

特征根的实部决定了系统的稳定性,实部小于零时系统稳定。

2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。

三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。

2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。

四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。

根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。

2.连接模拟输入信号。

在搭建的二阶系统的输入端接入一个阶跃信号发生器。

3.连接模拟输出信号。

在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。

4.调整增益和特征根。

通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。

记录实际调整参数的数值。

5.使用MATLAB进行仿真绘制。

根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。

6.对比分析实际曲线与仿真曲线。

通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。

五、实验结果与分析1.实际曲线的绘制结果。

根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。

2.仿真曲线的绘制结果。

利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。

3.实际曲线与仿真曲线的对比分析。

通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。

六、实验讨论与结论1.实验过程中遇到的问题。

二阶阶跃响应动态性能指标求取

二阶阶跃响应动态性能指标求取

二阶阶跃响应动态性能指标求取二阶系统是控制系统中常见的一种模型,其阶跃响应动态性能指标是评估系统的性能好坏的重要指标。

本文将从二阶系统的阶跃响应的定义、特点和性能指标的求取方法等方面进行阐述。

首先,二阶系统的阶跃响应是指系统在输入为单位阶跃信号时的响应。

假设二阶系统的传递函数为:G(s)=K/(s^2+2ξω_ns+ω_n^2)其中,K为增益,ξ为阻尼比,ω_n为自然频率。

二阶系统的阶跃响应具有以下特点:1.超调量:超调量是指阶跃响应中峰值与系统最终稳定值之间的差值,用百分数表示。

超调量越小,表示系统对阶跃输入的响应越快速、平稳。

2.响应时间:响应时间是指系统从单位阶跃响应开始到稳定的时间。

响应时间越短,表示系统对阶跃输入的响应越迅速。

3.调整时间:调整时间是指系统从初始状态到达超调量指定范围内的时间,一般取超调量为5%。

调整时间越短,表示系统对阶跃输入的响应越快速、平稳。

4.峰值时间:峰值时间是指系统对阶跃输入的响应达到其最大值的时间。

5.匀稳态误差:系统在稳态下的输出与输入的差值,反映系统的控制准确性。

若单位阶跃输入的稳态输出为1,则对于系统的阶跃响应不应有静态误差。

有了以上的定义和特点之后,下面将介绍二阶系统阶跃响应动态性能指标的求取方法。

首先,根据传递函数可求得系统的特征方程:s^2+2ξω_ns+ω_n^2=0然后,通过特征方程可以求得系统的根:s_1=-ξω_n+ω_n√(ξ^2-1)s_2=-ξω_n-ω_n√(ξ^2-1)根据系统根的位置可以对系统的动态性能进行评估。

1.超调量的计算:超调量的计算公式为:MP=e^(-πξ/√(1-ξ^2))其中,MP为超调量,ξ为阻尼比。

2.响应时间的计算:响应时间的计算公式为:t_r=π/ω_d其中,t_r为响应时间,ω_d为峰值时的角频率,可通过特征方程得到:ω_d=ω_n√(1-ξ^2)3.调整时间的计算:调整时间的计算公式为:t_s=4/(ξω_n)其中,t_s为调整时间。

二阶系统的阶跃响应

二阶系统的阶跃响应

一、二阶系统的阶跃响应

当 1系统有两个正实根 单位阶跃响应为
e
( 2 1 )n t
h(t ) 1
2 2 1( 2 1)

e
( 2 1 )n t
2 2 1( 2 1)
式中看出,指数因子具有正幂指数,因此系统的动 态过程为发散的形式
二阶系统的阶跃响应

经过实验知,
过阻尼和临界阻尼响应曲线中,临界阻尼响应速度最 快;
欠阻尼响应曲线中,阻尼比越小,超调量越大,上升 时间越小,通常取阻尼比在0.4-0.8之间,此时超调量 合适,调节时间短; 若系统有相同的阻尼比,而振荡频率不同,则振荡特 性相同,但响应速度不同,振荡频率大的,响应速度 快.


二、二阶系统的动态过程分析
控制工程中,一般选取适度的阻尼比,较快的响应速 度和较短的调节时间。 1、延迟时间td的计算 1 c ( t ) 1 e sin( t ) 中,令 c(t ) 0.5 ,得 在 d 1

n t 2 d
n t d
1

ln
2 sin( 1 2 nt d arcsin ) 1 2
一、二阶系统的阶跃响应
上式中
T1 T2
1
n ( 2 1)
1
n ( 2 1)
由此可见 阻尼比的值决定了系统的阻尼程度。
一、二阶系统的阶跃响应

具体讨论 欠阻尼情况下的阶跃响应 当 0 1 系统有一对具有负实部的共轭复数根
s1, 2 n jn 1
一、二阶系统的阶跃响应


系统有一对纯虚根 0 s1, 2 jn

自控原理二阶系统阶跃响应及性能分析实验报告

自控原理二阶系统阶跃响应及性能分析实验报告

广州大学学生实验报告开课学院及实验室:工程北531 2014年 11 月 30日学院机械与电气工程学院年级、专业、班电气123 姓名陈海兵学号1207300045实验课程名称自动控制原理实验成绩实验项目名称实验二二阶系统阶跃响应及性能分析指导老师姚菁一、实验目的1、掌握控制系统时域响应曲线的绘制方法;2、研究二阶系统特征参数对系统动态性能的影响,系统开环增益与时间常数对稳定性的影响。

3、能够计算阶跃响应的瞬态性能指标,对系统性能进行分析。

二、实验内容实验1、典型二阶系统闭环传递函数(1) 试编写程序,绘制出当ωn=6, ζ分别为0、1,0、4,0、7,1,1、3 时的单位阶跃响应;(2)试编写程序,绘制出当ζ=0、7, ωn 分别为2,4,6,8,10 时的单位阶跃响应;(3) 对上述各种单位阶跃响应情况加以讨论、实验2、设单位反馈系统的开环传递函数为若要求系统的阶跃响应的瞬态性能指标为σp=10%,t s (5%) = 2s、试确定参数K 与a 的值, 并画出阶跃响应曲线,在曲线上标出σp、t s(5%)的数值。

实验3、设控制系统如图2-1所示。

其中(a)为无速度反馈系统,(b)为带速度反馈系统,试(1)确定系统阻尼比为0、5 时的K1值;(2) 计算并比较系统(a)与(b)的阶跃响应的瞬态性能指标;(3)画出系统(a)与(b)阶跃响应曲线,在曲线上标出σp、t s(5%)的数值,以验证计算结果。

图2-1三、使用仪器、材料计算机、MATLAB 软件四、实验过程原始记录(程序、数据、图表、计算等) 1、运行Matlab 软件;2、在其命令窗口中输入有关函数命令或程序。

涉及的主要命令有:step()实验1:为便于比较,可用hold on 指令将多条曲线放在一个图中。

进一步,为清楚起见,用legend 指令在图中加注释。

部分结果如图2-2所示。

图2-2实验2:首先与二阶系统闭环传递函数的标准形式比较,求出参数K1、a与阻尼系数、自然频率的关系,再由对系统的阶跃响应的瞬态性能指标要求,求出参数K1、a,再用step()画出即可。

第九次课 二阶系统响应及性能指标

第九次课 二阶系统响应及性能指标
h (t ) 1
e


nt
(1

e
n
t)
(3)过阻尼单位阶跃响应
t T1 t T2
h (t ) 1
e T2
T1 1
T1
T1 2 1
(4)无阻尼单位阶跃响应
h ( t ) 1 cos

n
t
动态性能指标
1.延迟时间
t
2.上升时间 3.峰值时间 4.超调量
d
二阶系统跟踪单位速度响应其稳态误差为单位速度响应2欠阻尼单位速度响应4过阻尼单位速度响应1无阻尼单位速度响应ss无法跟踪无法跟踪五二阶系统性能的改善不变结论
控制工程基础
主 讲 陈 青 林




1. 二阶系统阶跃响应 2. 动态性能指标的求取。 3. 二阶系统斜坡响应与脉 冲响应
二、二阶系统单位阶跃响应

1 0 .7

n
t
r




d
t
%
p


d
2
e
t

1
100 %
5.调节时间
s

3 .5

n
三、二阶系统的单位速度响应
C (s)
n
2 2
s 2 n s n
2

1 s
2
1、欠阻尼情况( <1):
c (t ) t 2
n

td 1 . 68
tr
nt
e
nt
4 .4
n
n
ts
4 . 75

二阶系统的阶跃响应的解析解

二阶系统的阶跃响应的解析解

二阶系统的阶跃响应的解析解二阶系统的阶跃响应是指当输入信号为阶跃函数时,系统的输出信号随时间的变化情况。

阶跃响应是研究系统动态特性的重要指标之一,可以反映系统的稳定性、动态特性以及对输入信号的响应能力。

本文将从二阶系统的定义、阶跃响应的解析解推导以及实际应用等方面进行论述。

我们先来了解二阶系统的定义。

二阶系统是指系统的传递函数为二次多项式的系统,一般形式为:H(s) = K/(s^2 + 2ζωns + ωn^2)其中,K为系统的增益,ζ为阻尼比,ωn为系统的自然频率,s为复变量。

阶跃响应的解析解是指通过对传递函数进行解析运算,得到的系统输出与时间的函数关系。

对于二阶系统的阶跃响应,可以通过拉普拉斯变换和反变换的方法进行求解。

具体求解过程如下:1. 将传递函数H(s)进行拉普拉斯变换,得到系统的传递函数表达式:H(s) = K/(s^2 + 2ζωns + ωn^2)2. 将输入信号的拉普拉斯变换表达式为1/s,代入传递函数表达式中,得到系统的输出信号的拉普拉斯变换表达式:Y(s) = K/(s(s^2 + 2ζωns + ωn^2))3. 对上述表达式进行部分分式分解,将其分解为多个简单分式的和的形式:Y(s) = A/s + (Bs + C)/(s^2 + 2ζωns + ωn^2)4. 对上述分式进行反变换,得到系统的输出与时间的函数关系:y(t) = A + (Bcos(ωdt) + Csin(ωdt))e^(-ζωnt)其中,A、B、C为待定常数,ωd为系统的阻尼角频率。

通过上述推导过程,我们得到了二阶系统的阶跃响应的解析解。

根据解析解的形式,我们可以看出阶跃响应的特点:随着时间的增加,系统的输出会逐渐趋向于稳定状态,同时存在振荡和衰减的现象。

其中,振荡的频率和衰减的速度受到系统的阻尼比和自然频率的影响。

二阶系统的阶跃响应在实际应用中具有重要的意义。

例如,在控制系统中,阶跃响应可以用来评估系统的性能指标,如超调量、调节时间等。

实验三——二阶系统的时域响应及性能分析

实验三——二阶系统的时域响应及性能分析

实验三——二阶系统的时域响应及性能分析实验三主要研究了二阶系统的时域响应及其性能分析,通过实验得到不同二阶系统的单位阶跃响应和单位脉冲响应,并对其进行分析和性能评估。

首先,实验中使用的二阶系统是由两个一阶系统串联而成,可以通过两个一阶系统的参数来确定二阶系统的性能。

实验中设置了不同的参数组合来得到不同的二阶系统,并测量了这些系统的单位阶跃响应和单位脉冲响应。

实验中,单位阶跃响应是通过给系统输入一个单位阶跃信号,观察系统的输出得到的。

单位脉冲响应是通过给系统输入一个单位脉冲信号,观察系统的输出得到的。

通过测量这两个响应,可以了解二阶系统在时域的性能。

对于单位阶跃响应,实验中测量了系统的超调量、调整时间和稳态误差。

超调量是指单位阶跃响应中最高峰值与稳态值之差与稳态值的比值,可用来评估系统的动态性能。

调整时间是指从单位阶跃信号开始输入到响应达到其稳态值所需要的时间,反映了系统调整过程的快慢。

稳态误差是指系统最终的输出值与期望值之差,用来评估系统的稳态准确性。

对于单位脉冲响应,实验中测量了系统的峰值和时间常数,用来评估系统的动态特性。

峰值是指单位脉冲响应中的最高值,与系统的阻尼比有关。

时间常数是指单位脉冲响应中曲线从0到达其最大值所需要的时间,与系统的阻尼比和自然频率有关。

通过实验数据的测量和分析,可以得到不同参数组合下的二阶系统的性能指标,进而对系统进行评估。

如果超调量小、调整时间短、稳态误差小,表示系统的动态特性优秀,能够快速、准确地响应输入信号;如果峰值小、时间常数短,表示系统的动态特性好,有较快的响应速度和较小的振荡现象。

综上所述,实验三通过对二阶系统的时域响应进行测量和分析,并对性能指标进行评估,可以得到不同二阶系统的动态特性和稳态准确性信息。

这些信息对于系统设计和参数调整具有重要的参考价值。

通过实验的学习,可以更深入地理解掌握二阶系统的性能分析方法,为系统控制和优化提供理论和实践基础。

二阶系统阶跃响应实验报告

二阶系统阶跃响应实验报告

二阶系统阶跃响应实验报告实验报告:二阶系统阶跃响应一、实验目的1.了解二阶系统的阶跃响应特点;2.掌握二阶系统阶跃响应的测量方法;3.理解参数对二阶系统阶跃响应的影响。

二、实验原理二阶系统是指一个包含两个能量存储元件(电容、电感)的系统。

其传递函数可以表示为:Ts(s)G(s)=--------------(s^2 + 2ζωns + ωn^2)其中,Ts(s)为控制信号输入,G(s)为系统传递函数,ζ为阻尼比,ωn为自然频率。

当输入为单位阶跃信号时,输出的响应称为系统的阶跃响应,其数学表达式为:y(t)=-----------τ^2[1-e^(-t/τ)-t/τ*e^(-t/τ)]其中,τ为系统的时间常数,τ=1/ωn式中ωn为自然频率。

实验步骤1.搭建二阶电路系统,并接入信号发生器和示波器。

2.调节信号发生器产生单位阶跃信号,并将信号接入二阶电路系统中。

3.调节示波器进行观测,并记录输出信号的波形。

4.根据记录的波形数据,计算系统的时间常数τ、阻尼比ζ和自然频率ωn。

5.改变二阶电路系统中的参数(如电感或电容值),重新进行实验并记录数据。

6.分析不同参数对二阶系统阶跃响应的影响。

四、实验结果实验数据如下表所示:电感值(L),电容值(C),时间常数τ,斜率(t/τ),阻尼比ζ,自然频率ωn------,-------,------,-------,-----,-------L1,C1,τ1,t1/τ1,ζ1,ωn1L2,C2,τ2,t2/τ2,ζ2,ωn2L3,C3,τ3,t3/τ3,ζ3,ωn3(插入阶跃响应图像)五、实验分析根据实验结果的波形数据,计算得到不同参数下的时间常数τ、阻尼比ζ和自然频率ωn,并填入上表。

通过对比不同参数下阶跃响应的图像,可以得出以下结论:1.时间常数τ:时间常数τ代表系统响应到达稳态所需的时间。

一般来说,时间常数越小,系统的响应速度越快。

根据实验数据的对比可以发现,当电感或电容值增加时,时间常数τ也相应增大,表示系统的响应速度减慢。

二阶系统阶跃响应实验报告

二阶系统阶跃响应实验报告

实验二、二阶系统阶跃响应一、实验目的1.研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响。

定量分析ζ和ωn与最大超调量Mp和调节时间t S之间的关系。

2.进一步学习实验系统的使用方法3.学会根据系统阶跃响应曲线确定传递函数。

二、实验设备1.EL-AT-II型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2. 域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2) 检查USB线是否连接好,在实验项目下拉框中选中任实验,点击按钮,出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。

3)连接被测量典型环节的模拟电路。

电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将两个积分电容连在模拟开关上。

检查无误后接通电源。

4)在实验项目的下拉列表中选择实验二[二阶系统阶跃响应] 。

5)鼠标单击按钮,弹出实验课题参数设置对话框。

在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果6)利用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:Y MAX - Y∞Ó%=——————×100%Y∞T P与T P:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T P。

二阶电路阶跃响应

二阶电路阶跃响应

二阶电路是指由两个电感和两个电容构成的电路,常用于滤波、放大和振荡等应用。

在二阶电路中,阶跃响应是指当电路输入为阶跃信号时,电路输出的响应情况。

对于一个二阶系统,其阶跃响应可以分为三种情况:
1.无阻尼振荡:当系统存在无阻尼时,即无阻尼系数ζ=0时,系统会出现无阻尼振荡。

此时,系统的输出将会产生一系列周期性的波形,幅值振荡并逐渐趋向于稳定状态。

2.欠阻尼:当系统存在欠阻尼时,即0<ζ<1时,系统的输出将会发生震荡,并逐渐衰
减至稳定状态。

此时,系统的输出将会出现多次衰减的振荡,振荡的频率取决于系统的固有频率ωn和阻尼系数ζ。

3.过阻尼:当系统存在过阻尼时,即ζ>1时,系统的输出将不会发生震荡,而会快速
衰减至稳定状态。

此时,系统的响应将会非常迅速地趋向于稳定状态,但是衰减的速度取决于系统的阻尼系数ζ和固有频率ωn。

总之,二阶电路的阶跃响应会受到阻尼系数ζ、固有频率ωn等多个因素的影响,而不同的参数组合将会导致不同的响应情况。

因此,在实际应用中,需要根据具体的应用需求选择合适的参数组合以及相应的响应方式。

自动控制 二阶系统性能分析

自动控制 二阶系统性能分析

c(t1p)-1100% = e-ζπ
1-ζ
2
100%
整理ppt
第三节 二阶系统性能分析
4. 调节时间ts
c(t)=1-
e-ζ
ωnt
2
sin(ω
d
t+β
)
1-ζ
c(t)
1
误差带
可用近似公式: 0
ts =3T=ζω3n
ts
=4T=ζ
4 ωn
ζ<0.68 ζ<0.76
ts t
±5%误差带 ±2%误差带
整理ppt
第三节 二阶系统性能分析
四、带零点二阶系统单位阶跃响应
c(cФ=t=1τ)d(c=(1tsdc(s)系1(t21)=t)s+-(==2Lt统ω2ζe+)1cRC-ω=ω-ζ-12ζ1ζn结2(ω(([e1s(nsωtnns22s)t-ζ))-ζ(构s++=ωnsz+τ1n2ωsz2t11s为+[+(ζ[2ωd2nz)ω+ζ2ωω-ζdcω2nζ+ω21tn2nn(2ω)sz(τntni)=(sn)nsRs+zs2sω(+ω((i++sns1ωn)τ222ωdζ设(ω)+s)ωstωn++]2n2ζ2dβ=1n2n(ωt1+ssR)β+-+n-ωω(zse1)s+-)-ζ+n-)ω2ζdωω=c)时nnso22tds(1)sss间c+ωi(ωon闭2ζns20常(ωωd(ω<环nt数ζ+d)dβ<tC零t++1(β)βs]点)))] 设=C11-(se1)-ζ-ζ=ωn2ts2z+lω2[ζ2nzωR-ζlωn(ssn)+ωsinn2(ω则d t+βC()s+)ω=lCd c1o(ss)(ω+ dzstC+β1(s))]

二阶系统的阶跃响应与线性系统的稳定性和稳态误差分析.

二阶系统的阶跃响应与线性系统的稳定性和稳态误差分析.

二阶系统的阶跃响应一:实验目的1. 学习二阶系统阶跃响应曲线的实验测试方法2. 研究二阶系统的两个重要的参数对阶跃瞬态响应指标的影响 二:实验设备带有自动控制仿真软件matlab 软件的计算机 三:实验原理典型二阶系统的结构图如图所示。

不难求得其闭环传递函数为2222)()()(n n n B s s R s Y s G ωζωω++==其特征根方程为222n n s ωζω++=0 方程的特征根: 222nn s ωζω++=0))(()1)(1(2121=--=++s s s s T s T s 式中,ζ称为阻尼比;n ω称为无阻尼自然振荡角频率(一般为固有的)。

当ζ为不同值时,所对应的单位阶跃响应有不同的形式。

四:实验内容研究特征参量ζ和n ω对二阶系统性能的影响标准二阶系统的闭环传递函数为:2222)()(nn n s s s R s C ωζωω++=二阶系统的单位阶跃响应在不同的特征参量下有不同的响应曲线。

我们研究ζ对二阶系统性能的影响,设定无阻尼自然振荡频率)/(1s rad n =ω,考虑3种不同的ζ值:ζ=0.2,0.4,1,利用MATLAB 对每一种ζ求取单位阶跃响应曲线,分析参数ζ对系统的影响。

五:仿真程序和结果图1、二阶系统阶跃响应曲线 程序 for j=1:1:3kais=[0.2,0.4,1]; w=[1/0.47,1/1,1/1.47]; subplot(3,1,j) hold on for i=1:3 num=w(j)^2;den=[1,2*kais(i)*w(j),w(j)^2]step(num,den);grid on end hold off end 结果图σ%n ω0.2 0.4 11/0.47 1/1 1/1.47ζζ2、变换ζ和ω的值:nfor j=1:1:3kais=[0.2,0.4,1];w=[1/0.47,1/1,1/1.47];subplot(3,1,j)hold onfor i=1:3num=w(i)^2;den=[1,2*kais(j)*w(i),w(i)^2]step(num,den);grid onendhold offend3、增加一组ζ值:for j=1:1:3kais=[0,0.2,0.4,1];w=[1/0.47,1/1,1/1.47];subplot(3,1,j)hold onfor i=1:4num=w(j)^2;den=[1,2*kais(i)*w(j),w(j)^2]step(num,den);grid onendhold offend结果图:分析: σ%n ω0.2 0.4 11/0.47 1/1 1/1.47六:结论与收获 结论: (1) 当0=ζ时,输出响应为等幅振荡。

二阶系统的性能指标分析(DOC)

二阶系统的性能指标分析(DOC)

邢台学院物理系《自动控制理论》课程设计报告书设计题目:二阶系统的性能指标分析专业:自动化班级:学生姓名:学号:指导教师:2013年3 月24 日邢台学院物理系课程设计任务书专业:自动化班级:2013年3 月24 日摘要二阶系统是指由二阶微分方程描述的自动控制系统。

例如,他励直流电动机﹑RLC电路等都是二阶系统的实例。

二阶系统的性能指标分析在自动控制原理中具有普遍的意义。

控制系统的性能指标分为动态性能指标和稳态性能指标,动态性能指标又可分为随动性能指标和抗扰性能指标。

稳态过程性能稳态误差是系统稳定后实际输出与期望输出之间的差值本次课程设计以二阶系统为例,研究控制系统的性能指标。

关键词:二阶系统性能指标稳态性能指标动态性能指标稳态误差调节时间目录1.二阶系统性能指标概述 (1)2. 应用模拟电路来模拟典型二阶系统。

(1)3.二阶系统的时间响应及动态性能 (4)3.3.1 二阶系统传递函数标准形式及分类 (4)3.3.2 过阻尼二阶系统动态性能指标计算 (5)3.3.3 欠阻尼二阶系统动态性能指标计算 (7)3.3.4 改善二阶系统动态性能的措施 (14)4. 二阶系统性能的MATLAB 仿真 (18)5 总结及体会 (19)参考文献 (19)1.二阶系统性能指标概述二阶系统是指由二阶微分方程描述的自动控制系统。

例如,他励直流电动机﹑RLC 电路等都是二阶系统的实例。

二阶系统的性能指标分析在自动控制原理中具有普遍的意义。

控制系统的性能指标分为动态性能指标和稳态性能指标,动态性能指标又可分为随动性能指标和抗扰性能指标。

稳态过程性能稳态误差是系统稳定后实际输出与期望输出之间的差值2. 应用模拟电路来模拟典型二阶系统。

1.2—l 是典型二阶系统原理方块图,其中T0=1秒;T1=0.1秒;K1分别为10;5;2.5;1。

开环传递函数为:)1()1()(11101+=+=S T S K S T S T K S G (2-1)其中,==1T K K 开环增益。

第二章二阶系统阶跃响应第二部分

第二章二阶系统阶跃响应第二部分

一、 二阶系统的单位阶跃响应分析
1、什么是二阶系统单位阶跃响应?
二阶系统输入单位阶跃信号的响应,称为二阶系统单位阶跃响应。
标准二阶系统传递函数:
Y(s )
=
s(s 2
+
n2 2ns
+
n2 )
(式1)
典型的二阶系统阶跃响应曲线为: 其中: tr-- 为上升时间 tp-- 为峰值时间
y(t) ymax
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
2、仿真实现 (1)不同阻尼比阶跃响应仿真曲线
对应闭环系统传递函数:
(s) =
s2
+
1
2s + 1
(式16)
当ωn=1, 取ζ=0, 0.25 , 0.5, 1.0 , 2.0
时,如图:
结论:
➢ 无阻尼阶跃响应曲线为等幅振荡,此时超调量=100%,稳态时间是无穷大。 ➢ 欠阻尼阶跃响应曲线随值减小超调量增大,稳态时间变长。 ➢ 临界阻尼和过阻尼阶跃响应曲线超调量为零。
Experimental Course Of Automatic Control Theory
**大学 **学院
** University
实验二:二阶系统阶跃响应实验
第二部分:二阶系统阶跃响应的计算方法
主讲内容
1
二阶系统单位阶跃响应的分析
2 欠阻尼二阶系统单位阶跃响应性能指标
3
二阶系统阶跃响应的实现
1.02 y(∞) y(∞)
0.98 y(∞) 0.9 y(∞)
ess y(∞)
ts-- 为稳态时间或过渡过程时间
0.1 y(∞)
y(∞) --为稳态值 ess--为稳态误差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11级自动控制原理实验二姓名:陈泉学号:1104130103班级:楼宇自动化01班2013年11月26日星期二1、标准二阶系统的阶跃响应及性能分析考虑图2.2所示的标准二阶系统,假设ωn=1(这等价于ωn t为自变量),利用程序lab.3_1.m观察ζ=0.1,0.2,0.4,0.7,1.0,2.0时的系统单位阶跃响应,估计各自对应的性能水平,并将其与理论值进行比较。

解:Lab.3_1.m程序如下t=[0:0.1:12]; num=[1];zeta1=0.1; den1=[1 2*zeta1 1]; sys1=tf(num,den1);zeta2=0.2; den2=[1 2*zeta2 1]; sys2=tf(num,den2);zeta3=0.4; den3=[1 2*zeta3 1]; sys3=tf(num,den3);zeta4=0.7; den4=[1 2*zeta4 1]; sys4=tf(num,den4);zeta5=1.0; den5=[1 2*zeta5 1]; sys5=tf(num,den5);zeta6=2.0; den6=[1 2*zeta6 1]; sys6=tf(num,den6);[y1,T1]=step(sys1,t); [y2,T2]=step(sys2,t);[y3,T3]=step(sys3,t); [y4,T4]=step(sys4,t);[y5,T5]=step(sys5,t); [y6,T6]=step(sys6,t);plot(T1,y1,T2,y2,T3,y3,T4,y4,T5,y5,T6,y6)xlabel('\omega_n t'), ylabel('y(t)')title('\zeta = 0.1, 0.2, 0.4, 0.7, 1.0, 2.0'), grid 运行结果为:分析:由运行的结果可以看出,ζ=0.1,0.2,0.4,0.7,1.0,2.0分别对应图中的蓝线,绿线,红线,浅蓝线,紫线和黄线。

从图中可以看出,当ωn =1恒定时,ζ越大时,对应系统的超调量会越小,上升时间会越大,响应速度也会越大,而系统的稳定性会增强。

在欠阻尼的情况下,超调量的理论值为21ξζπσ-=e p ,当ζ增大时,超调量确实减小。

调节时间ns t ζω3≈,ωn =1恒定时,ζ增大时,调节时间ζ=0.1 ζ=0.7ζ=2.0ζ=1.0ζ=0.4ζ=0.2会增加。

上升时间dr t ωθπ-=(21ξωω-=n d ),当ζ增大时,调节时间增大。

当系统为临界阻尼状态时,系统的单位阶跃响应为()()t e t y n t n ωξω+-=-11,无超调量,上升时间与调节时间相对于欠阻尼状态更大。

当系统为过阻尼状态时,系统也无超调量,上升时间与调节时间比临界阻尼状态更大。

所得结果与理论值符合。

2、 标准二阶系统的脉冲响应仍然考虑图2.2所示系统和假设ωn =1,运行程序lab3_2.m.观察当ζ=0.1,0.25,0.5,1.0时的系统单位脉冲响应解:lab3_2.m 的程序如下 >> t=[0:0.1:10]; num=[1];zeta1=0.1; den1=[1 2*zeta1 1]; sys1=tf(num,den1); zeta2=0.25; den2=[1 2*zeta2 1]; sys2=tf(num,den2); zeta3=0.5; den3=[1 2*zeta3 1]; sys3=tf(num,den3); zeta4=1.0; den4=[1 2*zeta4 1]; sys4=tf(num,den4); [y1,T1]=impulse(sys1,t); [y2,T2]=impulse(sys2,t); [y3,T3]=impulse(sys3,t); [y4,T4]=impulse(sys4,t); plot(t,y1,t,y2,t,y3,t,y4)xlabel('\omega_n t'), ylabel('y(t)/\omega_n') title('\zeta = 0.1, 0.25, 0.5,1.0'), grid 运行结果为:分析:当ζ=0.1,0.25,0.5,1.0时,分别对应图中蓝线,绿线,红线,浅蓝线。

由结果图可以看出,当ωn =1恒定时,ζ越大,系统的超调量越小,上升时间也越小,调节时间也越小,系统更加稳定。

3、 移动机器人驾驶控制系统关于三角波输入的响应移动机器人驾驶控制系统图如图 2.3所示。

其中()s K K s G /211+=运行程序lab3_3.m 。

观察当系统输入如图2.4所示时的系统响应,估计其稳态误差,并将其与理论值进行比较。

利用函数lsim 可对闭环系统关于斜坡输入的响应进行仿真,其使用方法如图2.5所示。

ζ=0.1ζ=0.25 ζ=1.0ζ=0.5解:程序lab3_3.m如下numg=[10 20]; deng=[1 10 0]; sysg=tf(numg,deng); sys=feedback(sysg,[1]);t1=[0:0.1:2]';t2=[2.1:0.1:6]';t3=[6.1:0.1:8]';t=[0:0.1:8];v1=[0:0.1:2]';v2=[1.9:-0.1:-2]';v3=[-1.9:0.1:0]';% v1=[0:0.1:2]';v2=[2:-0.1:-2]';v3=[-2:0.1:0]';u=[v1;v2;v3];[y,T]=lsim(sys,u,t);plot(t1,v1,'b--',t2,v2,'b--',t3,v3,'b--',T,y,'k-'),%figure(1);%plot(t1,v1)%hold on; ishold;%plot(t2,v2)%hold on; ishold;%plot(t3,v3)%hold on; ishold;xlabel('Time (seconds)'), ylabel('\theta (radians)'), grid %hold off; ishold运行结果:分析:由程序lab3_3.m 可以看出,系统的开环传递函数为()()()()()11.015.02102101020102++=++=++=s s s s s s ss s s G k ,可以看出该系统为Ⅰ型系统,且开环增益为2=K .当输入信号为单位斜坡响应时,其稳态误差5.01==Ke ss 。

4、 高阶模型的低阶近似 三阶系统 ()6116623+++=s s s s H (1) 的二阶近似模型为 ()6.1584.26.12++=s s s L (2) 运行程序lab3_4.m 观察系统(1)和(2)的单位阶跃响应,并就其各个性能能指标水平进行比较。

解:程序lab3_4.m如下num1=[6]; den1=[1 6 11 6]; sys1=tf(num1,den1);num2=[1.6]; den2=[1 2.584 1.6]; sys2=tf(num2,den2);t=[0:0.1:8];[y1,T1]=step(sys1,t);[y2,T2]=step(sys2,t);plot(T1,y1,T2,y2,'--'), gridxlabel('Time (seconds)'), ylabel('Step Response')运行结果为:L(s)H(s)分析:图中实现为三阶系统H(s),虚线为近似的二阶系统L(s)。

由图像可以看出三阶系统的上升时间为约2.7S ,调节时间为约5S ,而近似二阶系统约为2.7S ,调节时间约为4.8S 。

两系统近似相似。

运用matlab 对函数()6116623+++=s s s s H 求极点,即: den1=[1 6 11 6]; roots(den1) 运行结果为 ans = -3.0000 -2.0000 -1.0000可知三阶系统的极点有-1,-2,-3 运用matlab 对函数()6.1584.26.12++=s s s L 求极点,程序为:den2=[1 2.584 1.6]; roots(den2) 运行结果为: ans = -1.5552 -1.0288可以看出这两个系统的极点比较接近,都有一个为-1的极点,响应近似相等。

5、Rounth-Hurwitz稳定性检验Rounth-Hurwitz稳定判断依据是一个关于系统稳定性的充要判据。

如果系统的特征方程的系数已经确定,则其在左半s平面上、右半s平面的虚轴上根的数目可以Rounth-Hurwitz稳定判据来确定。

调用Matlab函数pole和roots,可通过直接求解系统特征根(即闭环传递函数的极点)来验证利用Rounth-Hurwitz稳定判据得到的结果。

例如,对于图2.6所示函数,由Rounth-Hurwitz稳定判据可以确定,该系统有两个闭环极点位于右半s平面。

这一结果经调用函数pole(如图2.7所示)得到了证明本项实验内容为:首先对下述系统或者系统的特征方程运用Rounth-Hurwitz 稳定判据判断其特征根在s 平面的分布情况,然后编写Matlab 仿真程序加以验证。

1)010*********=+++++s s s s s2)01222345=+++++s s s s s 3)某闭环系统如图2.8所示:其中,()()5035102423+++=s s s s s G1)解:运用Rounth-Hurwitz可以得到特征方程()10114222345+++++=s s s s s s q 的Rounth 表为:5s 1 2 11 4s 2 4 10 3s ε 6 02s ε124- 10 01s1241062--εε 0 00s 10 0 0由Rounth 表可以看出在首列中有两次变号,分别在3s 的首列到2s 由0变为负,2s 的首列到s 由负变为正。

在此方程有两个根在s 平面的右面。

用Matlab 进行仿真求特征方程的根程序如下: roots([1,2,2,4,11,10]) 运行结果为:ans =0.8950 + 1.4561i 0.8950 - 1.4561i-1.2407 + 1.0375i -1.2407 - 1.0375i -1.3087 结果与分析的相符。

2)解:运用Rounth-Hurwitz可以得到特征方程()1222345+++++=s s s s s s q 的Rounth 表为;5s 1 2 1 4s 1 2 1 3s ε ε 0 2s 1 1 0 1s ε 0 0 0s 1 0 0由于Rounth 表中出现全零行,因此在全零行上一行去辅助方程为:01224=++s s 012=+s解得方程有4个重根,分别为:ωj s ±=2,1 ωj s ±=4,3说明系统有4个在虚轴上的根,另外一个在s 平面左边 运用Matlab 仿真求特征方程的根程序如下: roots([1,1,2,2,1,1])运行结果为:ans =-1.0000 0.0000 + 1.0000i 0.0000 - 1.0000i -0.0000 + 1.0000i -0.0000 - 1.0000i 与分析的结果相同。

相关文档
最新文档