七年级上册数学配套问题

合集下载

5.3 实际问题与一元一次方程—配套问题 课件2024-2025学年人教版(2024)数学七年级上册

5.3 实际问题与一元一次方程—配套问题 课件2024-2025学年人教版(2024)数学七年级上册

根据题意,列方程:3×40x = (6-x)×240.
解得
x = 4.
则 பைடு நூலகம்-x = 2.
共配成仪器:4×40=160 (套).
答:应用 4 立方米钢材做 A 部件, 2 立方米钢材做 B 部件, 共配成仪器 160 套.
小结 解决此类问题有如下规律:
如果 a件甲产品和 b件乙产品配成一套,那么
甲:乙=a:b
试一试
制作一张桌子要用一个桌面和4条桌腿,1木材可以做20个桌面,或制作400条桌 腿,现有12 木材,应怎样用料才能制作尽可能多的桌子?
.某纺织厂有纺织工人300人,为增产创收,纺织厂又增设了制衣车间,准备将这300 名纺织工人合理分配到纺织车间和制衣车间。现在知道工人每人每天平均能织布30 米或制4件成衣,每件成衣用布1.5米若使生产出的布刚好制成成衣,问应有多少人 去生产成衣?
小结
用一元一次方程解决实际问题的基本过程:
一审(用列表法理解问题中的基本关系) 二设(设适当的未知数) 三列(列出方程方程) 四解(解一元一次方程) 五验(数学方程的解,实际问题有意义) 六答(实际问题的答案)


若某个工厂的工人每人每天可以生产1000个口罩面或 1200根耳绳,1个口罩面配2根耳绳:
则3个工人生产口罩面,6个工人生产耳绳,则生产出来的 口罩和 耳绳可以刚好配套吗?为什么
例1 某车间有40名工人,每人每天可以生产1000个口罩面或1200
根耳绳.1个口罩面配2根耳绳,为使每天生产的口罩面和耳绳 刚好配套,应安排生产口罩面和耳绳的工人各多少名?
生产口罩面人数 生产耳绳人数
口罩面 耳绳
每人每天的工作 效率
人数
40名工人

人教版七年级数学上册5.3第1课时配套问题与工程问题课件

人教版七年级数学上册5.3第1课时配套问题与工程问题课件

解析 设甲工程队每天掘进x米,则乙工程队每天掘进(x-2)米,
由题意,得2x+(x+x-2)=26,
解得x=7,则x-2=5,
所以甲工程队每天掘进7米,乙工程队每天掘进5米,
146=1206(天).
75
答:甲、乙两个工程队还需联合工作10天.
9.(2023山东潍坊昌邑期末,24,★★☆)一项工程,甲队单独完 成需30天,乙队单独完成需45天. (1)现甲队先单独做20天,之后两队合作,甲、乙两队合作多 少天才能把该工程完成? (2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工 程款2万元,则由甲、乙两队全程合作完成该工程,需付多少 工程款?
们一起做4小时,正好完成这项工作的 3,假设每人的工作效率
4
相同,那么应该安排多少人先工作?
解析 解法一(根据总工作量列方程):
设安排x人先工作,
由题意,得4× 1 x+ 1 (x+3)×4= 3,
80 80
4
整理,得 x + x =3 3,
20 20 4
解方程,得x=6.
答:应该安排6人先工作.
2.(易错题)(2024四川绵阳游仙期中)某工厂中秋节前要制作 一批盒装月饼,每盒装4块大月饼和6块小月饼,制作1块大月 饼要用0.05 kg面粉,1块小月饼要用0.02 kg面粉.若制作若干 盒月饼共用了640 kg面粉,请问制作大、小两种月饼各用了 多少面粉?
解析 易错点:易用错配套比.
设用x kg面粉制作大月饼,则用(640-x)kg面粉制作小月饼,由
解析 设A工程队整治河道x米,
由题意得 x +280=2x5,
12 10
解方程,得x=180.

5.3实际问题与一元一次方程(配套问题)课件++2024-2025学年人教版数学七年级上册

5.3实际问题与一元一次方程(配套问题)课件++2024-2025学年人教版数学七年级上册
解法二:设应安排 x 名工人生产螺母,(22-x)名工人生产螺柱. 根据螺母数量是螺柱数量的 2倍,列出方程 2 000x=2×1 200(22-x), 解得 x=12, 则: 22-x=22-12=10. 答:应安排 12 名工人生产螺母,10 名工人生产螺柱.
新 课探 究 例2 一张方桌由 1 个桌面、4 条桌腿组成,如果 1 m3 木料可以做方桌的桌面
解:设用 x 立方米的木材做桌面,则用 (10-x) 立 方米的木材做桌腿. 根据题意,得 4×50x = 300(10-x),
解得 x =6,所以 10-x = 4,
可做方桌为50×6=300(张).
答:用6立方米的木材做桌面,4立方米的木材
做桌腿,可做300张方桌.
3.一套仪器由一个 A 部件和三个 B 部件构成. 用 1 立方米钢材可做 40 个 A 部件或 240 个 B 部件. 现要用 6 立方米钢材制作这种仪器,应用多少钢 材做 A 部件,多少钢材做B部件,才能恰好配成 这种仪器?共配成多少套?
布置作业 必做: 服装厂要生产一批某种型号的学生运动服,已知每 3 m 长的布料可做上衣 2 件或裤
子 3 条,一件上衣和一条裤子为一套. 计划用 600 m 长的这种布料生产运动服,应分 别用多少布料生产上衣和裤子,才能配套?共能生产多少套运动服?
布置作业
选做:某车间有 85 名工人加工齿轮,平均每人每天加工大齿轮 16 个或小齿轮 10 个.2 个大齿轮和 3大、小齿轮, 才能使每天加工的齿轮刚好配套?
2. 某家具厂生产一种方桌,1立方米的木材可做50个 桌面或300条桌腿,现有10立方米的木材,怎样分 配生产桌面和桌腿使用的木材,才能使桌面、桌
腿刚好配套,共可生产多少张方桌?(一张方桌有 1个桌面,4条桌腿)

人教版七年级数学上册实际问题与一元一次方程-配套问题课件

人教版七年级数学上册实际问题与一元一次方程-配套问题课件

.
1200x 2 000(22 - x)
=
1 2
视察:第三个方 程与前两个方程 有什么不同?
小结:
列方程解决应用问题,其大致步骤有哪些? 1.审:审题,分析题目中的数量关系; 2.设:设未知数,并表示相关的数量关系;
3.列:根据题目中的等量关系列方程; 4.解:解这个方程;
5.答:检验方程的解是否符合题意并作答.
提出问题
玩 过 拉 力 器 吗
?提出问题AB此拉力器由两个拉手A和五个弹簧B
构成.
生产拉力器的厂家,会根据这里的 配比关系安排工人生产拉手A和弹簧B的。 同时厂家也会根据市场的需要调整弹簧 的个数来满足更多群体的需要,这就会 涉及比较多的配套问题。
小组讨论
内容拓展
1、2个A和1个B配成一套,则A:B= 2:1 ,
七年级上册
3.4实际问题与一元一次方程 ——配套问题
从前面学习解方程的过程中可以看 出,方程是分析和解决问题的一种很有用 的数学工具。本节课我们就重点讨论如何 用一元一次方程解决实际问题。
典型探究
问题:尝试解决下面问题. 例 某车间有24名工人,每人每天可以生
产1 200个螺钉,或2 000个螺母. 1个螺钉需
3.用一元一次方程解决实际问题的基本过 程是什么?
实际问题 设未知数,列方程 一元一次方 程
实际问题的 答案
一元一次方程的解 (x = a)
(只设未知数,列出方程)
练习: 《课本》106页复习巩固第2题。
2、制作一张桌子要用一个桌面和4条桌 腿,1m³木材可制作20个桌面,或者制作 400条桌腿,现有12m³木材,应怎样计划用 料才能制作尽可能多的桌子?
(只设未知数,列出方程)

七年级上数学配套问题

七年级上数学配套问题

七年级上数学配套问题应用题练习1、包装厂有人42,每个人平均每小时生产圆片120片,或长方形片80片,将两张圆片与一张长方形片配成一套,问如何安排工人?2、用铝片做听装饮料瓶,每张铝片可制瓶身16个或制瓶底43个,一个瓶身和两个瓶底可配成一套,有150张铝片,用多少张制瓶身和多少张制瓶底?3、某工厂计划生产一种新型豆浆机,每台豆浆机需3个A种零件和5个B种零件正好配套已知车间每天能生产A种零件450个或B种零件300个,现在要使在21天中所生产的零件全部配套,那么应安排多少天生产甲种零件,多少天生产乙种零件?4、车间有26名工人生产零件甲和零件乙,每人每天平均生产零件甲120个或零件乙180个,为使零件甲和零件乙按3:2配套,则需分配多少工人生产零件甲和零件乙?5、某车间每天能生产甲种零件450个或乙种零件300个,已知3个甲种零件与5个乙种零件刚好配套,现要在21天中使所生产的零件全部配套,那么该如何安排生产?6、敌我两军相距25km/h,敌军以5km/h的速度逃跑,我军同时以8km/h的速度追击,并在相距1km处发生战斗,战斗是在开始追击后几小时发生的?7、小王在静水中的划船速度为12km/h,今往返于某河,逆流时用了10h,顺流时用了6h,求此河的水流速度。

8、姐姐步行速度是75米/分,妹妹步行速度是45米/分。

在妹妹出发20分钟后,姐姐出发去追妹妹。

问:多少分钟后能追上?9、小张和小王,分别从甲乙两地出发步行,1小时30分后,小张走了甲乙两地距离的一半多1.5千米,此时与小王相遇。

小王的速率是3.7千米/小时,那么小张的速率是多少?10、甲乙两车从同一地点出发,沿着同一公路追赶前面的一个骑车人。

甲乙两车分别用10分钟、6分钟追上骑车人。

甲车速率是24千米/小时,乙车速率是30千米/小时,问两车出发时相距多少千米?11、一支军队排成1.2千米队行军,在队尾的张明要与在最前面的营长接洽,他用6分钟时间追上了营长。

“配套”问题-人教版七年级数学上册教案

“配套”问题-人教版七年级数学上册教案

配套问题-人教版七年级数学上册教案一、学情分析本次教案的教学对象为七年级学生,他们已经学习了初中数学基础知识,并逐渐掌握了基础的数学运算和方程、函数等的基础概念。

在这个过程中,对于他们来说理解和掌握数学配套问题非常重要,因为这种问题在实际生活和数学运用中都很常见。

二、教学目标1.理解配套的概念和基本特点;2.掌握解决简单配套问题的方法;3.能够将配套问题应用到实际生活中。

三、教学重点难点1.理解配套问题的基本概念和特点;2.通过实例掌握简单配套问题的解法;3.将配套问题应用到实际情境中。

四、教学内容与方法内容1.配套问题的概念和特点;2.配套问题的解决方法;3.实际问题的应用。

方法1.教师讲解:通过简单的配套问题,引导学生理解配套的基本概念和特点;2.组内讨论:让学生在小组内互相讨论配套问题的解法,并提出问题;3.组间答辩:各组展示自己的解法,并进行讨论;4.实际应用:通过实际情境的应用问题,让学生将所学习的知识运用到实践中。

五、教学过程1. 铺垫通过教师提问,引导学生回忆和复习比例和百分数的相关知识,从而引出配套问题。

2. 讲解教师简单介绍配套的概念和特点,并通过图表和实例的方式引导学生理解和掌握。

3. 组内讨论让学生在小组内讨论配套问题的解法,并提出自己的疑问和问题。

4. 组间答辩各组进行答辩,展示自己的解法,并进行讨论和解答。

5. 实际应用通过实际情境的应用问题,让学生运用所学的知识解决实际问题。

六、教学反思本次教学中,教师通过引入实际问题,让学生理解配套问题的基本概念和特点,并通过组内讨论和组间答辩,让学生更好的理解、掌握了解决配套问题的方法。

同时,通过实际应用问题的提问,让学生将所学知识运用到实际生活中,并加深了对知识的理解和掌握。

人教版(2024版)七年级数学上册第五章考点例析4:一元一次方程的应用-积分问题、盈亏问题、配套问题

人教版(2024版)七年级数学上册第五章考点例析4:一元一次方程的应用-积分问题、盈亏问题、配套问题

一元一次方程的应用
积分问题
不败:胜利和平手. 胜利赢得的积分+平手赢得的积分=总积分.
盈亏问题
利润=售价-成本 利润=成本×利润率
配套问题: a个甲与b个乙为一套
甲的总数量 a
=
乙的总数量 b
b×甲的总数量=a×乙的总数量
考点三 一元一次方程的应用
例2.一商店在某一时间以每件a元的价格卖出两件衣服,其中一件盈利20%,另一件
亏损20%,在这次买卖中,这家商店( D )
A.不盈不亏
B.盈利20%a元
C.亏损20%a元
D.亏损112 a元
售价 - 成本 = 利润
第一件衣服 第二件衣服
a - x = 20%x 总利润>0 盈利
a - 总y利润=<0-20%亏y 损
a-x=20%x
x=
5 6
a
a-y=-20%y
y=
5 4
a
× 利润率 = 利润 成本
20%
-20%
20%x+(-20%y)
=20%×
5 6
a+(-20%× 45
a)
=-112 a <0
考点三 一元一次方程的应用
例3.某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或
典型考题
一元一次方程的应用
——积分问题、盈亏问题、配套问题
考点三 一元一次方程的应用
胜利 平手
例1.在一场足球联赛中,甲队在联赛前30场比赛中只输了4场,其它场次全部保持不败,
共取得了74个积分,暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,
设甲队一共胜了x场,则可列方程为( C )

人教版七年级数学上册配套问题省名师优质课赛课获奖课件市赛课一等奖课件

人教版七年级数学上册配套问题省名师优质课赛课获奖课件市赛课一等奖课件
解:设 x 张白铁皮做盒身,依题意,得: 2×16x=45×(100-x)
解得:x=60 则做盒底旳铁皮为:100-x=40(张)
答:用60张白铁皮做盒身,40张白铁皮做盒底.
措施规律:
生产调配问题一般从调配后 各量之间旳倍、分关系寻找相等 关系,建立方程。
归纳小结:
用一元一次方程处理实际问题旳基本过程如下:
解:设生产甲种零件 x 天,依题意,得:
2×100x=3×100(30-x) 解得:x=18 则生产乙种零件旳天数为:30-x=12(天) 答:应安排生产甲种零件18天,乙种零件12天.
(3)、一套仪器由一种A部件和三个B部件构成。用1立 方米钢材可做40个A部件或240个B部件。现要用6立 方米钢材制作这种仪器,应用多少钢材做A部件,多 少钢材做B部件,恰好配成这种仪器多少套?
钢材(m3) 个数(个/m3) 数量(个)
A部件
X
40
40x
B部件
6-X
240 240(6-x)
A 1 3 A 1 B
B3 3×A部件旳数量 = B零件旳数量
3×40X= 240(6-X)
(3)、一套仪器由一种A部件和三个B部件构成。用1立 方米钢材可做40个A部件或240个B部件。现要用6立 方米钢材制作这种仪器,应用多少钢材做A部件,多 少钢材做B部件,恰好配成这种仪器多少套?
合并同类项,得 3x=180
系数化为1,得 x=60.
所以做裤子旳人数为: 90-x=30(人).
答:做衣服旳人数为60人,做裤子旳人数为30人.
(2)某车间每天能生产甲种零件100个,或者 乙种零件100个.甲、乙两种零件分别取3个、2个才 干配成一套.要在30天内生产最多旳成套产品,问怎 样安排生产甲、乙两种零件旳天数?

2024年新沪科大版七年级上册数学教学课件 3.5 第3课时 调配与配套问题

2024年新沪科大版七年级上册数学教学课件 3.5 第3课时 调配与配套问题

根据题意,得
5x 4y 18, 15x 10y 50.
解方程组,得
x 2,
y
2.
故,承包田地的面积为 x + y = 4 hm2 人员安排为:
5x = 5×2 = 10 (人),4y = 4×2 = 8 (人).
答:这 18 位农民应承包 4 hm2 田地,种植蔬菜和 荞麦各 2 hm2,并安排 10 人种植蔬菜,8 人种植荞 麦,这样能使所有人都有工作,且资金正好够用.
解:设生产螺钉的 x 人,生产螺母的 y 人.
依题意,可列方程组
x y 22, 21200x 2000
y.
解方程组,得
x 10,
y
12.
答:设生产螺钉的 10 人,生产螺母的 12 人.
归纳总结
生产调配问题通常从调配后各量之间的倍、分关系 寻找相等关系,建立方程. 解决配套问题的思路: 1. 利用配套问题中物品之间具有的数量关系作为列 方程的依据; 2. 利用配套问题中的套数不变作为列方程的依据.
立方米钢材制作这种仪器,应用多少钢材做 A 部件,
多少钢材做 B 部件,恰好配成这种仪器多少套?
解:设 x 立方米钢材制作 A 部件,y 立方米钢材
制作 B 部件, 根据题意列出方程组得
x y 6, 3 40x 240y.
x 4,
解得
y
2.
则 40x = 160(套).
答:用 4 立方米钢材制作 A 部件,2 立方米钢材
练一练 解:设第一、第二两车间的人数分别是 x 人和 y 人, 答:两车间的人数分别为 170 人,250 人.
2. 机械厂加工车间有 85 名工人,平均每人每天加 工大齿轮 16 个或小齿轮 10 个,2 个大齿轮和 3 个小齿 轮配成一套,问:需分别安排多少名工人加工大、小齿 轮,才能使每天加工的大小齿轮刚好配套?若设需安排 x 名工人加工大齿轮,y 名工人加工小齿轮,则根据题 意可得方程组

人教版2024-2025学年七年级数学上册第1课时 配套问题与工程问题(习题课件)

人教版2024-2025学年七年级数学上册第1课时 配套问题与工程问题(习题课件)
123456789
当选择②③④时,设师父每小时检修 x m,则徒弟每小时 检修( x -10)m, 由题意,得2 x +2( x -10)+70=3 x +3( x -10),解得 x =40,所以 x -10=30, 答:师父每小时检修40 m,徒弟每小时检修30 m.
123456789
Байду номын сангаас
5. [2024·福州鼓楼区期末]某车间有技工85人,平均每人每天 能生产甲种零件16个或乙种零件10个,已知每2个甲种零 件和3个乙种零件配成一套,通过合理安排,分配恰当的 人数生产甲种或乙种零件,可以使得每天生产的两种零件
8. [2024·徐州鼓楼区月考]用长方形硬纸板做长方体盒子 (如图①),底面为正方形.长方形硬纸板以如图②所示 的两种方法裁剪.A方法:剪3个侧面;B方法:剪2个 侧面和2个底面.现有35张硬纸板,裁剪时 x 张用A方 法,其余用B方法.
123456789
(1)用含 x 的代数式分别表示裁剪出的侧面和底面的个数; 【解】A方法剪3 x 个侧面,则B方法剪2(35- x )个侧面 和2(35- x )个底面, 所以共有侧面3 x +2(35- x )= x +70(个),底面2(35- x )=70-2 x (个).
123456789
【解】答案不唯一,写一种即可.当选择①②③时, 设师父每小时检修 x m,则徒弟每小时检修( x -10)m, 由题意,得3 x +3( x -10)=270,解得 x =50,所以 x - 10=40. 答:师父每小时检修50 m,徒弟每小时检修40 m.
123456789
当选择①②④时,设师父每小时检修 x m,则徒弟每小时 检修( x -10)m, 由题意,得70+2 x +2( x -10)=270,解得 x =55,所以 x -10=45. 答:师父每小时检修55 m,徒弟每小时检修45 m.

人教版七年级数学上册第1课时产品配套问题和工程问题

人教版七年级数学上册第1课时产品配套问题和工程问题
用列表或画图来帮助理解题意
例 (教材P100例1变式)某车间有工人660名,生产 一种由1个螺栓和两个螺母组成的配套产品,每 人每天平均生产螺栓14个或螺母20个.如果你是 这个车间的车间主任,你应分配多少人生产螺栓, 多少人生产螺母,才能使生产出的螺栓和螺母刚 好配套?
分析:本题找出等量关系为:生产的螺栓数×2 =生产的螺母数,把相关的代数式代入即可列方 程. 解:设分配x人生产螺栓,(660-x)人生产螺母, 依题意得14x×2=(660-x)×20,解得x=275. 所以660-x=385. 答:应分配275人生产螺栓,385人生产螺母.
方法点拨:此题考查了一元一次方程的应用, 得到螺栓数量和螺母数量的等量关系是解决本 题的关键.
快速对答案
提示:点击 进入习题
14
2 13
3
详细答案 点击题序
1.一件工作,甲单独做需 6 天完成,乙单独做需 12 天完成,若甲、乙一起做,则需 4 天完成. 2.一个道路工程,甲队单独施工 9 天完成,乙队单 独施工 24 天完成.现在甲乙两队共同施工 3 天,因 甲另有任务,剩下的工程由乙队完成,则乙队还需
知识要点 列方程解决实际问题
意义或步骤 在配套问题中,相关
示例
联的几个量之间具有 如1个螺钉配2个螺母;
面配4条桌腿;
这个数量关系就是列 劳动力调配等.
方程的主要根据.
工程问题的基本量:工作量、_工__作_
_效__率__、工作时间. 工程问题的基本数量关系为:工作 如两队 工程 总量= 工作效率 ×工作时间;合作 共同修 问题 的效率=各自单独做的效率的和. 筑一条 当工作总量未给出具体数量时,常 公路等 设总工作量为“ 1 ”,分析时可采
13 天才能完成.

5.3.1配套问题和工程问题课件 2024-2025学年人教版数学七年级上册

5.3.1配套问题和工程问题课件 2024-2025学年人教版数学七年级上册
设:设未知数,用未知数表示未知量.
列:根据题中的相等关系,列出一元一次方程
解:解列出的一元一次方程
验:检验所得的解是否符合题意
答:写出答案(包括单位)
知识讲解
2.注意:(1)设未知数时,如果有单位,要加上单位
(2)列方程时,等号两边量的单位要一致
(3)检验有两层含义:一是要检验所得结果是不是方程的解,二是检做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒
底配成一套.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正
好配套?
解:设用x张制盒身,则(36-x)张制盒底,
根据题意,得到方程:2×25x=40(36-x),
解得:x=16,
36-x=36-16=20.
3
3
∴15-12=3m3,
答:用12m3木料制作桌面,用3m3木料制作桌腿能制作尽可能多的桌子.
随堂练习
练习3 某建筑工地计划租用甲、乙两辆车清理建筑垃圾,已知甲车单独运完需要15天,
乙车单独运完需要30天.甲车先运了3天,然后甲、乙两车合作运完剩下的垃圾.
(1)甲、乙两车合作还需要多少天运完垃圾?
5.工程问题基本数量关系:
工作总量=工作效率×工作时间
合作的效率=各单独做的效率和
总工作量=各部分工作量之和
知识讲解
例1 制作一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面或者400条桌
腿.现有12立方米的木材,则下列方案能制作尽可能多的桌子的是( A )
A.2立方米木材制作桌腿,10立方米制作桌面 解:设x立方米木材制作桌面,(12-x)
合作的效率=各单独做的效率和
总工作量=各部分工作量之和

人教版七年级上册数学一元一次方程应用题(配套问题)专题训练

人教版七年级上册数学一元一次方程应用题(配套问题)专题训练

人教版七年级上册数学一元一次方程应用题(配套问题)专题训练1.某瓷器厂共有工人120人,每个工人一天能做200只茶杯或50只茶壶.如果8只茶杯和一只茶壶为一套.(1)应安排多少人生产茶杯,可使每天生产的瓷器配套.(2)按(1)中的安排,每天可以生产多少套茶具?2.列方程解应用题:某车间有15个工人,生产水桶、扁担两种商品;已知每人每天平均能生产水桶80个或扁担110个,则应分配多少人生产水桶、多少人生产扁担,才能使每天生产的水桶和扁担刚好配套?(每2个水桶和1个扁担配成一套)3.一个车间加工轴杆和轴承,每人每天平均可以加工轴杆6根或者轴承8个,1根轴杆与2个轴承为一套,该车间共有40人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?4.某服装厂加工一批西服,每1米布料能裁上衣1件或裁裤子2件.现有布料15米,为了使上衣和裤子配套,裁上衣和裤子的布料各几米?5.某校七年级(2)班共有42名学生,在一节科技活动课上作长方体纸盒,已知每名同学一节课可制作盒身20个或盒盖30个,一个盒身和两个盒盖配成一个长方体纸盒.为使一节课制作的盒身、盒盖刚好配套,应安排制作盒身和盒盖的同学各多少名?6.3月12日是植树节,七年级170名学生参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女生各多少人?7.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?8.某车间有94个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每1个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?每天能生产成多少套?(列一元一次方程求解)9.某工厂生产茶具,每套茶具有1个茶壶和4只茶杯组成,生产这套茶具的主要材料是紫砂泥,用1千克紫砂泥可做2个茶壶或8只茶杯.现要用6千克紫砂泥制作这些茶具,应用多少千克紫砂泥做茶壶,多少个千克紫砂泥做茶杯,恰好配成这种茶具多少套?10.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库存有布料300m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料227m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)11.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾,为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?12.某车间有技术工人50人,平均每天每人可加工甲种部件18个或乙种部件14个,1个甲种部件和2个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套13.某玩具生产厂家A车间原来有30名工人,B车间原来有20名工人,现将新增25名工人分配到两车间,使A A车间工人总数是B车间工人总数的2倍.(1)新分配到A、B车间各是多少人?(2)A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现要制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人和生产线后比原来提前几天完成任务?14.某校新进了一批课桌椅,七年(2)班的学生利用活动课时间帮助学校搬运部分课桌椅,已知七年(2)班共有学生45人,其中男生的人数比女生人数的2倍少24人,要求每个学生搬运60张桌子或者搬运150张椅子.请解答下列问题:(1)七年(2)班有男生、女生各多少人?(2)一张桌子配两把椅子,为了使搬运的桌子和椅子刚好配套,应该分配多少个学生搬运桌子,多少个学生搬运椅子?15.某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在18天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?16.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库内存有布料180m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料202m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)17.某丝巾厂家70名工人义务承接了2020年上海进博会上志愿者佩戴的手环、丝巾的制作任务.已知每人每天平均生产手环180个或者丝巾120条,一条丝巾要配两个手环.(1)为了使每天生产的丝巾和手环刚好配套,应分配多少名工人生产手环,多少名工人生产丝巾?(2)在(1)的方案中,能配成套.18.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?19.糕点厂中秋节前要制作一批盒装月饼,每盒装2块大月饼和4块小月饼,制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.(1)若制作若干盒月饼共用了450kg面粉,请问制作大小两种月饼各用了多少面粉?(列方程解应用题)(2)在(1)的条件下,该糕点厂将销售价定为每盒108元,测算发现每盒月饼可盈利80%,若该厂按此售价销售完这批月饼,共可盈利多少元?20.在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级2班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗如果不配套,那么如何进行人员调配,才能使每小时剪出的筒身与筒底刚好配套?参考答案:1.(1)80人(2)2000(套)2.分配11人生产水桶,4人生产扁担,才能使每天生产的水桶和扁担刚好配套3.安排16人加工轴杆,24人加工轴承4.裁上衣的布料为10米,裁裤子的布料为5米5.18名同学制作盒身,24名同学制作盒盖6.该年级的男生有119人,那么女生有51人7.18个工人生产塑料棒,16个工人生产金属球8.46人生产甲种零件,48人生产乙种零件,每天生产552套9.应用3千克紫砂泥做茶壶,3千克紫砂泥做茶杯,恰好配成这种茶具6套10.(1)做上衣用布料180m,则做裤子用布料120m,可以生成120套衣服(2)最多可以生产90套衣服,余料可以做2条裤子11.应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.12.安排14人加工甲部件,安排36人加工乙部件才能使每天加工的两种部件刚好配套,一共加工了252套13.(1)新分配到A车间20人,分配到B车间5人(2)A车间新增工人和生产线后比原来提前2天完成任务14.(1)七年(2)班有男生22人、女生23人(2)应该分配25名学生搬运桌子,20名学生搬运椅子15.甲种零件生产10天,乙种零件生产8天.16.(1)做上衣用布料108m,则做裤子用布料72m;72套;(2)最多可以生产80套衣服,余料可以做1件上衣或2条裤子.17.(1)应分配40名工人生产手环,30名工人生产丝巾;(2)360018.(1)调入6名工人;(2)10名工人生产螺柱,12名工人生产螺母.19.(1)用了250kg面粉制作大月饼,200kg制作小月饼;(2)120000元.20.(1)七年级2班有男生有24人,女生有26人;(2)男生应向女生支援4人时,才能使每小时剪出的筒身与筒底刚好配套.。

《“配套”问题(1)》PPT课件1-七年级上册数学人教版

《“配套”问题(1)》PPT课件1-七年级上册数学人教版

二、典型例题,探索配套:
变:金晨圆珠笔厂的一个生产车间,每天能 制作笔芯900个,或者笔杆450个,三个笔芯 和一个笔杆配成一支圆珠笔,现要在30天内 制作最多的圆珠笔,则笔芯、笔杆各应制作 多少天?
解:设笔芯应制作x天.
900x 345030 x
x 18
30 x 12 答:笔芯应制作18天,笔杆应制作12天.
二、典型例题,探索配套:
例:金晨圆珠笔厂的一个生产车间,每天能 制作笔芯900个,或者笔杆450个,笔芯、笔 杆各一个配成一支圆珠笔,现要在30天内制 作最多的圆珠笔,则笔芯、笔杆各应制作多 少天?
解:设笔芯应制作x天.
900x 45030 x
x 10
30 x 20 答:笔芯应制作10天,笔杆应制作20天.
2、光明眼镜厂的一个生产车间,有60名工人 生产太阳镜,1名工人每天可生产镜片200片 或镜架50个,为使生产的镜片和镜架配套, 应如何分配工人生产镜片和镜架?
解:设x名工人生产镜片.
200x 25060 x
x 20
60 x 40
答: 20名工人生产镜片,40名工人生产镜架.
四、小结归纳,完善结构:
五、布置作业,延伸学习:
2、一张方桌由1个桌面、4条桌腿组成,1m3 木料可做20个桌面或者做400条桌腿,现有 12m3木料.你能提出哪些问题?
人教版义务教育教科书《数学》七年级上册
实际问题与一元一次方程 ——配套问题
一、热身练习,复习旧知:
列方程解决问题: 七(1)班有46名学生,男生人数是女生人 数的1.3倍,求男生和女生各多少?
解:设女生人数x名.
x 1.3x 46
x 20
46 x 26
答:男生人的基本过程如下:

5.3 实际问题与一元一次方程(配套问题)同步训练 2024—2025学年人教版数学七年级上册

5.3 实际问题与一元一次方程(配套问题)同步训练 2024—2025学年人教版数学七年级上册

七年级上册数学5.3 实际问题与一元一次方程(配套问题)同步训练一、单选题1.用100张白铁皮做罐头盒,每张白铁皮可做盒身15个,或者做盒底45个,一个盒身与两个盒底配成一套罐头盒.设用x 张白铁皮做盒身,则可列方程为( ).A .15245(100)x x =⨯-B .21545(100)x x ⨯=-C .24515(100)x x ⨯=-D .45215(100)x x =⨯-2.某土建工程共动用15台挖运机械,每台机械每小时能挖土3 m 3或运土2 m3.为了使挖土的工作和运土的工作同时结束,若设安排了x 台机械挖土,则x 应满足的方程是( )A .2x =3(15-x)B .3x =2(15-x)C .15-2x =3xD .3x -2x =153.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x ,则可列方程为( )A .10(x ﹣1)=8x ﹣6B .10(x ﹣1)=8x +6C .10(x +1)=8x ﹣6D .10(x +1)=8x +64.一套仪器由一个A 部件和三个B 部件构成,用31m 钢材可做40个A 部件或240个B 部件.现要用36m 钢材制作这种仪器,为了使制作的A 、B 部件恰好配套,设应用3m x 钢材制作A 部件,则可列方程为( )A .()3402406x x ⨯=-B .()4032406x x =⨯-C .()3406240x x ⨯-=D .()4063240x x -=⨯5.某车间56名工人生产螺栓和螺母,螺栓与螺母个数比为1:2刚好配套,每人每天平均生产螺栓24个或螺母36个,求多少人生产螺栓?设:有x 名工人生产螺栓,其余人生产螺母.依题意列方程应为( )A .24x =36(56﹣x )B .2×24x =36(56﹣x )C .24×36x =36(56﹣x )D .24x =2×36(56﹣x )6.20名学生在进行一次科学实践活动时,需要组装一种实验仪器,仪器是由三个A 部件和两个B 部件组成.在规定时间内,每人可以组装好10个A 部件或20个B 部件.那么,在规定时间内,最多可以组装出实验仪器的套数为()A.50 B.60 C.100 D.150二、填空题1.有两桶水,甲桶装有180千克,乙桶装有150千克,要使两桶水的重量相同,则甲桶应向乙桶倒水_________千克.2.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿,若每间住8人,则最后有一间宿舍不满也不空,则学生人数为______人.3.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排________名工人生产螺钉.4.某工艺品车间有20名工人,平均每人每天可制作12个大花瓶或10个小饰品,已知2个大花瓶与5个小饰品配成一套,设安排x名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.请列出方程_____.5.现用110立方米木料制作桌子和椅子,已知1张桌子配6把椅子,1立方米木料可做5把椅子或1张桌子.设用x立方米的木料做桌子,则依题意可列方程为_______________.6.服装厂生产一批学生校服,已知生产1件上衣需要布料1.5米,生产1条裤子需要布料1米.因为裤子旧得快,要求1件上衣和2条裤子配一套.生产这批校服共用了2016米布料,共生产了套校服.三、解答题1.用白铁皮做罐头盒,每张铁皮可制盒身15个,或盒底40个,一个盒身与两个盒底配成一套罐头盒.现有280张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?2.某眼镜厂有60名工人,每个工人每天可生产镜片200片或生产镜架50个.应如何分配工人生产镜片和镜架,才能使每天生产的产品成套?(2片镜片和1个镜架成一套)3.制作一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面,或者制作400条桌腿,现在有30立方米木材,应怎样计划用料才能制作尽可能多的桌子?4.星光服装厂接受生产一些某种型号的学生服的订单,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750m长的这种布料生产学生服,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?5.螺蛳粉是柳州的城市新名片.某包装螺蛳粉厂有80名工人生产包装螺蛳粉料包,已知每袋包装螺蛳粉里有1个汤料包和4个配料包,每名工人每小时可以加工110个汤料包或者200个配料包,为使每天加工生产出的汤料包和配料包刚好配套,请问安排多少名工人去加工汤料包?6.某中学七年级(一)班共有学生52人,其中女生比男生多4人,在社会实践课上用硬纸板制作茶盒子的盒身和盒底,在规定的时间内每个同学剪盒身40个或剪盒底50个.(1)该班分别有男生、女生各多少人.(2)如果一个盒身配2个盒底,要使在规定的时间中制作的盒身和盒底刚好配套,应该怎样分配学生.。

人教版(2024)数学七年级上册 第五章 一元一次方程 第1课时 配套问题与工程问题

人教版(2024)数学七年级上册 第五章 一元一次方程 第1课时 配套问题与工程问题
解:设应先安排 x 个工程队单独修 6 天.
(+)
根据题意,得 +


=1,解得 x=3.
答:应先安排 3 个工程队单独修 6 天.
6.有一项城市绿化整治任务交给甲、乙两个工程队完成.已知甲单独做
10 天完成,乙单独做 8 天完成,若甲先做 1 天,然后甲、乙合作 x 天后,共
同完成任务,则可列方程为( B )
由题意,可得
30x=20(50-x),解得x=20,
答:应安排20名工人加工甲种零件.
(2)若一辆轿车需要甲种零件7个和乙种零件 2个使每天能配套生产轿
车,若加工一件甲种零件加工费为10元,加工一件乙种零件加工费为12
元,若50名工人正好使得每天加工零件能配套生产轿车,则这50名工人
一天所得加工费一共多少元?
人均效率×人数×时间 ”的关系考虑问题.
3.用一元一次方程分析和解决实际问题的基本步骤
(1)审:审题,分析题中已知什么,求什么,明确各数量之间的关系;
(2)找:找出能够表示实际问题全部含义的相等关系;
(3)设:设未知数(一般求什么,就设什么);
(4)列:根据这个相等关系列出方程;
(5)解:解所列出的方程,求出未知数的值;
(6)答:检验所求解的正确性与合理性,写出答案(包括单位名称).
分层精练
知识点1
配套问题
1.骑自行车作为一种健康自然的运动方式,越来越受到人们的青睐.某
变速自行车厂有408名工人,每人每天能生产车架15个或车圈21个.已
知2个车圈配1个车架,则应分配
240 名工人生产车圈, 168
人生产车架,才能使每天生产的车架和车圈配套.
A.
C.

3.4配套问题与工程问题(教案)-2023-2024学年七年级上册数学(人教版)

3.4配套问题与工程问题(教案)-2023-2024学年七年级上册数学(人教版)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了配套问题和工程问题的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对这些问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在教学过程中,教师应当针对这些难点和重点,采用不同的教学策略和方法,如使用图表、实物操作、小组讨论等,以确保学生能够透彻理解和掌握本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《配套问题与工程问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配或搭配资源的情况?”比如,你们如何决定用多少钱买多少文具?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索如何用数学解决配套和工程问题。
二、核心素养目标
1.培养学生的逻辑推理能力,使其能够通过分析问题,发现数量关系,建立方程或比例关系,解决实际问题。
2.提升学生的数学建模素养,学会将实生活中的问题抽象为数学模型,并用数学方法进行求解。
3.增强学生的数据分析能力,通过解决配套问题和工程问题,培养学生对数据的敏感性和处理能力。
4.培养学生的应用意识,使学生能够将所学知识应用于解决实际生活中的数学问题,体会数学在生活中的重要性。
-例题:一辆汽车以60km/h的速度行驶,行驶了3小时,计算行驶的距离。
-习题:设计有关速度、浓度等比例问题的练习,巩固所学知识。
4.学会分析问题,找出数量关系,建立方程或比例关系解决问题。

最新2024人教版七年级数学上册5.3 第1课时 产品配套问题和工程问题

最新2024人教版七年级数学上册5.3 第1课时 产品配套问题和工程问题

5.3 实际问题与一元一次方程第1课时产品配套问题和工程问题师生活动:学生先独立思考,再由学生代表发言,教师给予适当的评价与引导,并整理板书(如下):典例精析例1 某车间有22名工人,每人每天可以生产1 200 个螺柱或2 000个螺母.1个螺柱需要配2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?师生活动:教师提问这题的配套关系和等量关系是什么?先小组讨论,由小组代表发言,教师适时引导得出正确答案:配套关系:1个螺柱需要配2个螺母等量关系:螺母数量=2×螺柱数量教师给时间让学生独立完成题目,然后由学生代表上台板书,教师和其余同学给予适当的评价与鼓励,共同整理修改板书:教师引导学生根据这两题,思考解题思路,师生共同归纳出:知识点2:工程问题例2 整理一批图书,由一个人做要40 h完成。

现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作。

假设这些人的工作效率相同,具体应先安排多少人工作?师生活动:学生独立思考,教师引导学生分析题目的类型,寻找等量关系:教师提示解决工程问题常把工作总量看作“1”,并引导学生列表分析:教师给时间让学生独立完成题目,由学生代表上台板书,教师和其余同学共同评价与修改,得到正确完整的解答过程:方法总结:工程问题:师生活动:教师引导学生思考工程问题的公式和解题思路,然后师生共同归纳与填空.三、当堂练习,巩固所学1.(黄陂区期末)一套仪器由一个A部件和三个B 部件构成。

用1 m3钢材可做40 A部件或者240个B部件。

现要用6 m3钢材制作这种仪器,设x m3钢材做A部件,剩余钢材做B部分恰好配成这种仪器。

(1) 共能做______个A部件,_________个B部件(用含有x的式子表示);(2) 求出x的值;(3) 用6 m3钢材配成这种仪器_____套(直接写出结果)。

教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图。

七年级上册数学配套问题

七年级上册数学配套问题

七年级上册数学配套问题
以下是七年级上册数学配套问题的示例:
1. 某班学生计划做100件衣服,实际上交的作品中,男生做的衣服占60%,女生做的衣服占40%,结果总数少于计划的10件,那么男生做的衣服最多比女生少多少件?
2. 甲、乙两地相距30千米,A、B、C、D四人同时从甲地出发前往乙地,每人所带物品数相等,共计90件,他们带物品不带物品的速度是带物品速
度的一半,不带物品走15千米,带物品走30千米,问这四个人各带了物
品多少件?
若您想要了解更加详细的信息,建议前往教育资源类网站获取答案。

数学人教版(2024)七年级上册 5.3.1配套问题与工程问题课件(共20张PPT)

数学人教版(2024)七年级上册 5.3.1配套问题与工程问题课件(共20张PPT)

3
2
解得y=13.
所以15+6-y=15+6-13=8(人).
答:应安排13名工人生产A型配件,8名工人生产B型配件.
课堂练习
1.制作一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面 或者400条桌腿.现有12立方米的木材,则下列方案能制作尽可能多的 桌子的是( A )
A.2立方米木材制作桌腿,10立方米制作桌面 B.3立方米木材制作桌腿,9立方米制作桌面 C.4立方米木材制作桌腿,8立方米制作桌面 D.5立方米木材制作桌腿,7立方米制作桌面
工人各多少名?
解:(1)设前3天应先安排x名工人生产,每名工人的工作效率为a. 由题意得:150a=3ax+5a(x+6), 即3x+5(x+6)=150, 解得x=15.
答:前3天应先安排15名工人生产. (2)设应安排y名工人生产A型配件,则安排(15+6-y)名工人生产B型配件.
由题意得:600y 650(15 6 y) ,
新课引入
生活中,有很多需要进行配套的问题,如课桌和凳子、螺钉 和螺母、电扇叶片和电机等等,大家能举出生活中配套问题的例 子吗?
获取新知
探究点1 配套问题
配套问题通常从各个量之间的倍、分关系入手寻找相等关 系,建立方程.
解决配套问题的思路: 1.利用配套问题中物品之间具有的数量关系作为列方程的依据; 2.利用配套问题中的套数不变作为列方程的依据.
然后增加6名工人与他们一起再生产5天就能完成这批订单的生产任务.假
设每名工人的工作效率相同.
(1)前3天应先安排多少名工人生产?
(2)增加6名工人一起工作后,若每人每天使用机器可以生产600个A型配
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据题意,得
4x+7=5(x-1)+3 或4x+7=5x-2 解这个方程,得x=9 4x+7=4×9+7=43
答;这个车队有9辆车,这批货物共有43吨.
41-x X+ =Biblioteka 0 2解这个方程,得x=19
41-x=41-19=22 答:安排22人抬,19人挑,可使扁担和人数 相配不多不少。
练习2:汽车队运送一批货物,每辆装4吨还 有7吨未装;每辆装5吨,最后一辆车余下2 吨未装满。这个车队有多少辆车?这批货物 共有多少吨? 解;这个车队有x辆车, 则这批货物共有(4x+7)吨
义务教育教科书
第三章 一元一次方程
数学
七年级
上册
3.4 实际问题与一元一次方程(1)
四、课堂练习
练习1:一套仪器由一个A部件和三个B部件构 成. 用1 m3钢材可以做40个A部件或240个B部件. 现要用6 m3钢材制作这种仪器,应用多少钢材做 A部件,多少钢材做B部件,恰好配成这种仪器 多少套?
解:设应用 x m3钢材做A部件,(6-x) m3 钢材 做B部件. 依题意得: 3×40 x=240 (6-x) . 解方程,得: x=4.
答:应用4 m3钢材做A部件,2 m3 钢材做B部件, 配成这种仪器160套.
练习3:41人参加运土劳动,有30根扁担,安排多 少人抬,多少人挑,可使扁担和人数相配不多不少? 解:设有x人挑土,根据题意,得
相关文档
最新文档