相对渗透率曲线的标准化处理方法
相控数模中油水相对渗透率曲线的处理方法
相控数模中油水相对渗透率曲线的处理方法史毅娜;屈磊;袁振武【摘要】在相控数值模拟中,油水相对渗透率曲线的处理是关键,是模拟预测中影响产油量和产水量的重要参数.针对一些特殊的油藏,如非均质较为严重的油藏,为了减少模拟误差,可采用分区归一化相对渗透率曲线,该方法较全面地考虑了储层岩石内部孔隙结构、迂曲度、渗透率等参数对流体渗流能力的影响,具有较好的应用效果.【期刊名称】《内蒙古石油化工》【年(卷),期】2015(000)010【总页数】2页(P50-51)【关键词】相对渗透率;归一化;相控数模【作者】史毅娜;屈磊;袁振武【作者单位】中原油田分公司勘探开发研究院,河南郑州450000;中原油田分公司勘探开发研究院,河南郑州450000;中原油田分公司勘探开发研究院,河南郑州450000【正文语种】中文【中图分类】TE319+.1大量的研究表明:对于一块给定的岩心,其相对渗透率不是饱和度的唯一函数,它强烈地受岩石润湿性的影响,同时还与流体饱和顺序(饱和历史)、岩石孔隙结构、实验所采用的流体、实验温度以及压差等因素有关,即相对渗透率是一个多因素的函数。
试验所测得的相对渗透率曲线,正是这所有因素综合作用的最后成果。
因为相控数值模拟具有较高的模拟要求,因此我们需要按照沉积微相划分模拟区块,对每一个区块应用一条相对渗透率曲线,然后对每条相对渗透率曲线进行归一化处理。
本文重点剖析了相控数值模拟中相对渗透率曲线的处理方法。
1 收集岩样相对渗透率曲线资料目前主要通过实验室稳态或非稳态驱替岩芯法测定相渗曲线(具体测定方法详见SY/T 5345-1999)。
我们知道,对于一个具体的油藏,由于取心分析的岩样具有不同的渗透率和孔隙度,所以测得的相对渗透率曲线是不同的。
因此,如果随意选择某一岩样的相对渗透率曲线作为整个油藏的代表而用于油藏数值模拟的计算是不合理的。
陈元千提出正确的方法应当是按照油藏的特征,依据不同的渗透率和孔隙度,选择若干条有代表性的相对渗透率曲线。
测试气水相对渗透率曲线的系统及方法与制作流程
图片简介:本技术介绍了一种测试气水相对渗透率曲线的系统及方法,系统包括岩心夹持器,岩心夹持器的围压出口端到围压入口端之间串联第一回压阀、工质瓶、循环泵、加热器,岩心夹持器的入口端设置一号并联管线、二号并联管线、三号并联管线,一号并联管线连接中间容器、恒速恒压泵,二号并联管线连接加湿器、稳压器、减压阀、气瓶;三号并联管线设放空阀;岩心夹持器的出口端设第一并联管线、第二并联管线,第一并联管线连真空泵,第二并联管线连第二回压阀、计量装置。
方法包括:S1、准备;S2、岩心饱和地层水;S3、岩心束缚水状态下气相有效渗透率测定;S4、气水相对渗透率测定;S5、岩心残余气状态下水相有效渗透率测定;S6、气水相对渗透率曲线绘制。
技术要求1.一种非稳态水驱气法测试气水相对渗透率曲线的系统,包括岩心夹持器、核磁共振装置,所述核磁共振装置用于检测岩心夹持器内的岩心,所述岩心夹持器具有入口端、出口端、围压入口端、围压出口端,所述岩心夹持器的入口端、出口端均设有阀门,常态下,所述岩心夹持器入口端、出口端的阀门处于关闭状态,其特征在于:所述岩心夹持器的围压出口端到围压入口端之间依次串联第一回压阀、工质瓶、循环泵、加热器,并形成环路,所述第一回压阀连接用于控制第一回压阀压力的第一回压泵,所述工质瓶内装有用于核磁共振驱替实验中施加围压的液体工质;所述岩心夹持器的入口端设置一号并联管线、二号并联管线、三号并联管线,所述一号并联管线依次连接有中间容器、恒速恒压泵,所述中间容器中装有实验地层水;所述二号并联管线依次连接有加湿器、稳压器、减压阀、气瓶;所述三号并联管线设置放空阀;所述岩心夹持器的出口端设置第一并联管线、第二并联管线,所述第一并联管线连接真空泵,所述第二并联管线依次连接第二回压阀、用于计量液体的计量装置,所述计量装置连接有气体流量计,所述第二回压阀连接用于控制第二回压阀压力的第二回压泵。
2.根据权利要求1所述的一种非稳态水驱气法测试气水相对渗透率曲线的系统,其特征在于,还包括计算机控制终端,所述计算机控制终端与核磁共振装置、恒速恒压泵、循环泵、加热器、第一回压泵、第二回压泵、计量装置连接。
油藏数值模拟中油水相对渗透率曲线处理方法
最大油相相对渗透率 2) / ( ×1 0-3 m μ 0. 6 9 5 0. 6 0 8 0. 6 1 9
最大水相相对渗透率 2) / ( ×1 0-3μ m 0. 2 3 6 0. 1 0 5 0. 1 5 7
两相流动范围 0. 4 2 0 0. 5 3 5 0. 4 1 8
驱油效率 0. 5 5 9 0. 7 1 1 0. 5 1 5
参考文献 :
[ ] 1 d i t o r i a lB o a r do fH a n d b o o ko fG e o l o i c a lL o i n o rD r i l l i n . E g g g gf g [ : M] . B e i i n P e t r o l e H a n d b o o ko fG e o l o i c a l L o i n f o rD r i l l i n j g g g g g g , [ 《 钻探地质录井手册 》 编写组 . 钻探地 1 9 9 1 . u mI n d u s t r r e s s yP 质录井手册 [ 北京 : 石油工业出版社 , ] M] . 1 9 9 1 . ] , [ 2 e a r nCL, E b a n k sW JJ r T eRS, 犲 狋 犪 犾. G e o l o i c a l f a c t o r s H y g , i n f l u e n c i n e s e r v o i rp e r f o r m a n c eo ft h eH a r t z o r af i e l d gr gD [ ] , ( : W o m i n J . J o u r n a l o fP e t r o l e u mT e c h n o l o 1 9 8 4, 3 6 9) y g g y 1 3 3 5 1 3 4 4. [ 3] M uL o n x i n, H u a n h i a n, J i aA i l i n . N e wt e c h n o l o i e so f g gS y g
油水相对渗透率曲线
• 油黏度低,介质均匀,那么只有E和Nca是重要的; 对于黏度高的油,I的重要性增强,对于非均质岩石, H也是重要的。这些参数的临界范围与润湿性息息相 关。
测量相对渗透率曲线的方法
稳态法测定相对渗透率 曲线应注意的问题:
除了饱和度测定要准确外, 主要是 消除末端效应。末端效应是由于 毛细管力突变引起的。出口段饱和度 必须达到平衡饱和度才有润湿相流体 流出。 末端效应随流速加快而减小。
测量相对渗透率曲线的方法
• 减小末端效应的方法 :宾夕凡尼亚法
该方法是把岩芯放在 两段与试验岩样类似的岩 样之间,使毛细管连续而 消除末端效应。 这种装置也有利于两相流 体在进入岩样前充分混合。 其缺点是必须把岩样取下 秤重测定饱和度。
影响非稳态相对渗透率测定的 因素
• 控制最终流体饱和度的关键流动参数是毛细管 数Nca: Nca=μwV/σ
毛细管数是粘滞力与孔隙级别上的毛细管力之比,或 说驱替压力梯度与毛管压力梯度之比。 当Nca〉10-5时,残余油饱和度随Nca增加而减小,随着油 饱和度降低,残余油时的水相渗透率增加。因而,此 时端点水相相对渗透率Krwo是Nca的增函数。 这个参数在相似模拟中就是π2,在三次采油中主要考虑 这个参数。
影响相对渗透率曲线的因素
岩石孔隙结构的影响
由于流体饱和度的分布 及流动渠道直接与岩石 孔隙大小,几何形态及 其组合特征有关,因而 孔隙结构会直接影响相 渗曲线。
1.毛细管; 2.白云岩; 3.未胶结砂岩; 4.胶结砂岩
影响相对渗透率曲线的因素
• 高渗,大孔隙砂岩两相共渗区范围大,共存水饱和度低,端点相 对渗透率高; • 孔隙小,连通性好的岩芯共存水饱和度高,两相流覆盖饱和度范 围较窄,端点相对渗透率也较低; • 孔隙小,连通性又不好的岩芯两相区和端点相对渗透率都低。
微生物驱相对渗透率曲线测定
温产 聚合 物菌 .
学 者进行 过 相关 探 索 与研 究 , 始 终 没有 实 现 直 接 但
激活剂 : A ① B一1菌激 活 剂 为 K O 5 , a 1 H P g N C
1 , S 4 . 5g N 4 O . , a O , 糖 0g MgO 2 , H N 3 7 g N N 3 g 蔗 0 0 1
实验 岩心 为 中一 区 N 3天然 岩 心 , g 岩心 长 度 为
2— m, 径 为 2 5c 6c 直 . m.
数学模型的建立与完善提供理论依据. 微生物驱相 对 渗透 率 曲线 的测 量 过 程 由于受 到 油 藏 润 湿 性 、 温
度、 渗透 率 、 微生 物 种类 和 注入 量 等 影 响 , 有 许 多 虽
1 2 实验 仪器 .
生物后油水相对渗透率曲线.
1 室 内 实验
1 1 实验材 料 .
s L一4型 油水 相 对 渗 透 率 测 定 装 置 , 置 主 要 装
技术 指标 : 力 0~3 a 温 度 为 室温 一 0℃ ; 压 0MP ; 8 油
实 验用 油是 将 中一 区 N 3块 脱 水 、 气 原 油 与 g 脱
A B一1 后岩 心束 缚水 饱 和度 见 图 1注 微 生 物 A 前 , B
一
残 余油 饱 和度是 残余 油体 积 占岩石孔 隙体 积百
分 比 残余油饱和度越小 , 说明提 高采 收率 程度越 高. 中注微生物 A 1 其 B一 前后岩心残余油饱和度见 图 3 注 微 生 物 A 一2前 后 岩 心 残 余 油 饱 和度 见 , B
一
3 %之间 , 5 注微生物后岩心 的束缚水饱 和度主要分 1 之前岩心的残余油饱 和度 主要分布在 2 % ) 0 布在 3% ~ 0 0 4 %之 间. 注微 生物之 前 相 比 , 与 束缚 3 %之间, 0 注微生物后岩心的残余油饱和度主要分
相渗曲线及其应用
2020年7月15日星期三
主要内容
油水两相相对渗透率曲线 相对渗透率曲线的处理(标准化) 相对渗透率曲线的应用
2
一、油水两相相对渗透率曲线
1、概念
油相和水相相对 渗透率与含水饱和度 的关系曲线,称为油 水两相相对渗透率曲 线。随着含水饱和度 的增加,油相相对渗 透率减小,水相相对 渗透率增大。
12
(3)根据以下公式分别对Sw、Kro、Krw进行标准化处 理,以消除各相对渗透率曲线不同的Swi、Sor带来的影 响。
13
(4)根据下列公式求取回归系数a、b。
(5)取Sw*=0,0.1,0.2,…,0.9,1.0。由公式计算出平 均的Krw*、Kro*值,并绘制标准化平均相对渗透率曲线。 (6)根据油藏的平均空气渗透率,利用回归关系式,求 取Swi、Sor、Krwmax。
前缘含水饱和度和两相区平均含水饱和度一般根据分 流量曲线,用图解法求得。
(1)前缘含水饱和度Swf
在分流量曲线上,过(Swi,0)点作分流量曲线的切 线,切点的横坐标即为前缘含水饱和度Swf,切点的纵坐标 为前缘含水fw(Swf)。其计算公式为:
20
(2)两相区平均含水饱和度
在分流量曲线上,过点(Swi,0)作分流量曲线的切 线,切线与直线fw=1相交于一点,该点的横坐标即为两相 区平均含水饱和度。其计算公式为:
10
(5)将平均标准化相对渗透率曲线上各分点的Sw*、Kro*、 Krw*,换算公式如下:
(6)根据上述公式,作出油藏的平均相对渗透率曲线 。
11
2、与束缚水饱和度相关法
此方法是利用各油藏的空气渗透率K来求油水相对渗 透率曲线的特征值。 (1)选择具有代表性的油水相对渗透率曲线。 (2)建立岩心的束缚水饱和度(Swi)、残余油饱和度( Sor)、残余油饱和度下的水相相对渗透率(Kromax)与空 气渗透率(K)的关系,并进行线性回归,以求取回归系 数,建立回归关系式。
油水相对渗透率曲线在油田开发中的应用.ppt
当a、b、Swi、μw、 μo已知时,可求出不同含水下的驱油效率Ed。当含 水fw为极限含水时,可求得最终驱油效率。
4、计算无因次采油采液指数随含水变化曲线 计算无因此采油指数αo的公式
K K (S ) w ro w ) o(fw KK ro max
在不考虑注水开发过程中的绝对渗透率的变化,K=Kw,则上式变为
7、由相渗曲线推导油藏合理递减率`
产油递减率=含水上升率/(1-原含水率) 不同采油速度下的自然递减=采油速度*产油递减率
压力恢复曲线 原理:物质平衡方程 方 压降=目前压降-亏空/弹性产率 法 亏空通过产液规模和注采比进行确定
S wi
( Swi)
i 1
n
i
n
Swmax
i
max) (Sw
i 1 i
nLeabharlann nK rw max i1
(Srw max) n
n
K romax i1
(Sro max)
i
n
n
5、将平均标准化相渗曲线上各分点的Sw*、Kro*、Krw*换算成Sw、Kro、Krw。
* Sw Sw (Swmax Swi ) Swi * * Kro (Sw ) Kro (Sw ) Kromax * * Krw (Sw ) Krw (Sw ) Krw max
油水两相相对渗透率的比值常表示为含水 饱和度的函数 2、计算前缘含水饱和度和前缘后 平均含水饱和度(图解法)
相对渗透率曲线的标准化处理方法
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2
0.1 0 0 0.2 0.4 0.6 0.8 1
图1:均值标准化相对渗透率曲线
含水饱和度
图2:常规的平均值相渗曲线
S or
——残余油饱和度
标准化油相相对渗透率:
* K ro
Ko K( o SW i)
K W ——含水饱ห้องสมุดไป่ตู้度
Ko
SW SW
时的水相渗透率
——含水饱和度
时的油相渗透率
——残余油条件下的水相渗透率 KW (S or) ——束缚水条件下的油相渗透率 K( o S Wi)
显然,每一块标准化曲线的含水饱和度和相对渗透率的变化范围都是从0→100%。
一、标准化方法的介绍
2、将”标准化”曲线平均之后 ,再换算成常规的相对渗透 率曲线(每块岩心的标准化相渗曲线求平均) 。
将求得的
, KW (S or) SWi , Sor , K( o S Wi)
代入前面的标准化公式,
将标准化平均值曲线再换算成常规的平均值相对渗透率曲线。
1
1 0.9 0.8 0.7
相对渗透率曲线
标准化处理
1、把常规的相对渗透率曲线换算成“标准化”的相对渗透 率曲线 (每块岩心一个标准化相渗曲线)
式中
标准化的计算公式为:
标准化含水饱和度:
SW
——含水饱和度
SWD
* rw
SW SW i 1 SWi Sor
SWi
——束缚水饱和度
标准化水相相对渗透率:
K
KW KW (S or)
油水相对渗透率测定
油水相对渗透率测定稳态法【实验目的】(1)加深对相对渗透率概念的理解,掌握测定油水相对渗透率曲线的方法及数据处理方法。
(2)使学生综合运用已掌握的油藏物理实验基本知识,基本原理和实验技能,设计实验具体方案,独立完成实验并能够对实验结果进行分析。
【实验原理】油水以一定的流速同时注入岩心,在岩心两端产生压差,当油水流速恒定以后,岩心中的油水饱和度不再变化,根据达西定律,计算某一饱和度下油水相的渗透率,改变油水流速比,可计算不同饱和度下油水相的渗透率。
稳态法测定油水相对渗透率是将油水按一定流量比例同时恒速注入岩样,当进口、出口压力及油、水流量稳定时,岩样含水饱和度分布也已稳定,此时油、水在岩样孔隙内的分布是平衡的,岩样对油田水的有效渗透率值是常数。
因此,可利用测定岩样进口、出口压力及油、水流量,由达西定律直接计算出岩样的油、水有效渗透率及相对渗透率值,用称重法或物质平衡法计算出岩样相应的平均饱和度值,改变油水注入流量比例,就可得到—系列不同含水饱和度时的油,水相对渗透率值,并可绘制岩样的油、水相对渗透率曲线【实验装置】油水相对渗透率测定仪图5-1 稳定流油水相对渗透率实验流程示意图1—过滤铭;2—储油罐;3—储水罐;4.—油泵;5—水泵;6—环压;7—岩心:8—压力传感器; 9—计量分离器。
【实验步骤】1、实验准备(1)岩样的清洗根据油藏的原始润湿性,选择清洗溶剂。
如果油藏原始润湿性为水湿,则用苯加酒精清洗岩样;如果油藏原始润湿性为油湿,则用四氯化碳、高标号(120号)溶剂汽油清洗岩样。
使用这些溶剂清洗后的岩样不用再恢复润湿性。
(2)实验用油水配制实验用油采用精制油或用新鲜脱气原油加中性煤油配制的模拟油。
对新鲜岩样采用精制油,对非新鲜岩样(恢复润湿性岩样)采用模拟油。
实验用的注入水或地层水(束缚水)均使用实际注入水、地层水或人工配制的注入水,地层水。
(3)岩心称干重,抽空饱和地层水,将饱和模拟地层水后的岩样称重,即可按下式求得有效孔隙体积和孔隙度。
相渗曲线及其应用.
数,建立回归关系式。
S wi a1 b1 lg K
S or a 2 b2 lg K S rw max a3 b3 lg K
(3)根据以下公式分别对Sw、Kro、Krw进行标准化处 理,以消除各相对渗透率曲线不同的Swi、Sor带来的影
响。
* w
S
S w S wi 1 S wi S or
无因次采液指数的计算公式为:
J0 ' fw J l '( f w ) 1 fw
5、确定采出程度与含水的关系
采出程度可表示为驱油效率与体积波及系数的乘积, 即:
R Ed Ev
其中Ed可根据相对渗透率资料,用式(**)求得;Ev 的求取方法有两个,一是由油田的实际资料统计求得;二
非润湿相驱替润湿相过程中测得的相对渗透率称为驱替
相对渗透率
吸入过程的非润湿相相对渗透率低于排驱过程的非润湿 相相对渗透率 润湿相的驱替和吸入过程的相对渗透率曲线总是比较接 近,可以重合
(2)岩石表面润湿性的影响
1 )强亲水岩石油水相渗曲线的等渗点的 Sw 大于 50 %,而
强亲油者小于50%; 2)亲水岩石油水相渗曲线的 Swi 一般大于 20%,亲油者小 于15%; 3)亲水岩石油水相渗曲线在最大含水饱和度(完全水淹)
所以有:
1 1 fw K ro w bs w w 1 1 ae K rw o o
(*)
根据此式绘制的 fw—Sw 关系曲线,称为水相的分流量曲线。 严格地讲,以上求得的水相分流量曲线,应为地层水
的体积分流量曲线,把地层水的体积分流量曲线换算为地
面水的质量分流量曲线,其换算公式为:
fw
相渗曲线及其应用
( 3)在标准化曲线上,将横坐标从 0到1划分为 n等分,
求取各分点处 Sw*、各样品的 Kro*(Sw*) 和 Krw*(Sw*),从 而作出平均的标准化相对渗透率曲线。
K S * * i K ro (S w ) k i 1 n n * * K S rw w k i 1 * * i K rw ( S w ) k n
* * K rw Sw
பைடு நூலகம்
* * K ro Sw
K rw S w K rw S or K ro S w K ro S w K ro S wi
(4)根据下列公式求取回归系数a、b。
K S * * b K ro 1 S w
线,切点的横坐标即为前缘含水饱和度Swf,切点的纵坐标
为前缘含水fw(Swf)。其计算公式为:
S wf
f w S wf
' w
f ( S wf )
S
wi
(2)两相区平均含水饱和度
在分流量曲线上,过点(Swi,0)作分流量曲线的切 线,切线与直线fw=1相交于一点,该点的横坐标即为两相 区平均含水饱和度。其计算公式为:
相渗曲线及其应用
主要内容
油水两相相对渗透率曲线
相对渗透率曲线的处理(标准化)
相对渗透率曲线的应用
一、油水两相相对渗透率曲线
1、概念
油相和水相相对
1 0.8 0.6
Kr
渗透率与含水饱和度
的关系曲线,称为油 水两相相对渗透率曲 线。随着含水饱和度 的增加,油相相对渗 透率减小,水相相对 渗透率增大。
非润湿相驱替润湿相过程中测得的相对渗透率称为驱替
采油测试中的油藏物性参数测量与分析方法
采油测试中的油藏物性参数测量与分析方法摘要:采油测试是石油工程领域中的重要环节,用于评估油藏的物性参数,为油田开发和生产提供依据。
油藏物性参数的准确测量和分析对于合理开发和管理油田资源至关重要。
本文旨在介绍采油测试中常用的油藏物性参数测量与分析方法。
关键词:采油测试;油藏物性参数测量;分析方法引言油田开发中,准确获取和分析油藏的物性参数是评估油藏储量、确定采油方案和优化采油工艺的关键步骤。
油藏物性参数包括孔隙度、渗透率、饱和度、相对渗透率等,它们对于油藏的储量和产能具有重要影响。
因此,在采油测试中,准确测量和分析油藏物性参数是非常重要的。
本文将介绍一些常用的油藏物性参数测量与分析方法。
1论测量孔隙度和渗透率的方法测量孔隙度和渗透率是评估油藏储量和确定采油方案的关键步骤。
本文将介绍一些常用的方法来测量孔隙度和渗透率。
1.1孔隙度测定方法:孔隙度是指油藏中孔隙所占的体积比例,是评估储集岩储量和流体储量的重要参数。
常见的孔隙度测定方法包括:1.1.1饱和度法通过测量岩心在不同饱和度下的体积变化来计算孔隙度。
首先,将干燥的岩心样品浸泡在饱和液体(如水)中,测量其体积;然后,将岩心样品置于真空条件下,测量其体积变化。
通过对比两个体积数据,可以计算出孔隙度。
1.1.2气体渗透法通过测量气体在岩心中的渗透性来计算孔隙度。
将干燥的岩心样品置于恒定的压力下,测量气体通过岩心的速度和压差。
根据达西定律和渗透率公式,可以计算出孔隙度。
1.1.3吸附法利用气体或液体在孔隙中的吸附特性来测量孔隙度。
通过将岩心样品与吸附剂接触,使吸附剂进入孔隙中,并测量吸附剂的质量或体积变化。
根据吸附剂的吸附量和孔隙体积,可以计算出孔隙度。
1.2渗透率测量方法:渗透率是指流体在岩石中流动的能力,是评估油藏导流性和采油能力的重要参数。
常见的渗透率测量方法包括:1.2.1恒压法通过在岩心样品两端施加恒定的压差,并测量流体通过岩心的流量来计算渗透率。
油水相对渗透率曲线
影响相对渗透率曲线的因素
上覆岩压的影响
上覆岩压小于3000psi时对 相对渗透率没甚麽影响。当 达到5000psi时就可以看到 影响。主要是由孔隙结构的 变化引起的。具体多大上覆 岩压发生影响,与岩石性质 有关。在高压地层应模拟 上覆岩压测定相对渗透率曲 线。
影响相对渗透率曲线的因素
初始饱和度的影响
初始含水饱和度增大会使整个曲线向右移动,即 较高的初始含水饱和度可以得到较低的残余油 饱和度。特别对水湿情况影响明显。对于高达 20%初始水饱和度的油湿岩芯,饱和度再增加 就看不出变化了。 所以除特殊研究外,开始测定相对渗透率时,岩 芯中的水量应该是其束缚水饱和度。
前
言
相对渗透率表示成饱和度的函数,但它还受岩 石物性、流体性质、润湿性、流体饱和顺序以 及实验条件的影响。 实际上,相对渗透率很聪明地把所有影响两相 渗流的因素都概括到这条曲线中,使其能把单 相渗流的达西定律应用到两相渗流中。 前面几项是储层的固有属性,而实验条件是我 前面几项是储层的固有属性, 们如何获得有代表性相对渗透率曲线的关键。 们如何获得有代表性相对渗透率曲线的关键 下面,我们首先介绍影响相对渗透率曲线的因 素。
非稳态相对渗透率测定方法
采用Johnson(JBN)方法 采用Johnson(JBN)方法 Johnson(JBN) 该方法以下列假设为基础: 该方法以下列假设为基础: 1. 流动是一维并稳定的; 2. 岩芯为线性均质的; 3. 毛细管力的作用与粘滞力作用相比可以忽略 不计。 通常这些假设得不到满足,岩芯多半是非均质的, 驱动力往往比较小,混合润湿性等等。
相对渗透率特征曲线及其应用
Eigen curve of relative permeabil ity and its application
Zhang J icheng So ng Kaoping
( Key L aboratory f or Enhance d Oi l Recovery of t he M i nist ry of Ed ucation , D aqi n g Pet roleum I nstit ute , D aqi n g 163318 , Chi na)
的油相相对渗透率 。
21 3 系数 ao 、bo 、aw 和 bw 的确定方法 对给定相对渗透率曲线 ,确定了校正系数 Co 、Cw ,
作 lg ( Krw + Cw ) 与 Sw 的关系曲线和 lg ( Kro + Co ) 与
106
石 油 学 报
2007 年 第 28 卷
义为相对渗透率特征曲线 。相对渗透率特征曲线方程 中的系数与空气渗透率并无可靠的相关性 ,而应该和 渗透率 、孔隙度 、润湿性等多种因素有关系[6Ο7 ] 。利用 相对渗透率特征曲线方法可以对每一个网格块进行计 算 ,得到一条相对渗透率曲线 ,这有助于油藏数值模拟 工作 。
1 相对渗透率曲线的 3 种形式
程 、油藏数值模拟和油藏工程等方面的教学与科研工作 。EΟmail :zhangjc2006 @to m. com
第 4 期
张继成等 :相对渗透率特征曲线及其应用
105
第二种是将相对渗透率实测数据作如下处理 : S′w = Sw K′r w = Kr w / Kroc K′ro = Kro / Kroc
=-
Kro1 Kro3 - K2ro2 Kro1 + Kro3 - 2 Kro2
相渗曲线及其应用 PPT课件
fw Sw
Qo
Qw
o
Bo
Qw
1
1
w o o Bo
K ro K rw
1
w
1
o
aebsw
o Bo
2、计算Swf和两相区平均含水饱和度
前缘含水饱和度和两相区平均含水饱和度一般根据分 流量曲线,用图解法求得。
(1)前缘含水饱和度Swf
在分流量曲线上,过(Swi,0)点作分流量曲线的切 线,切点的横坐标即为前缘含水饱和度Swf,切点的纵坐标 为前缘含水fw(Swf)。其计算公式为:
又由于油水两相相对渗透率的比值常表示为含水饱和 度的函数,即:
K ro aebsw K rw
所以有:
1
1
fw
1
K ro
w
1 aebsw w
(*)
Krw o
o
根据此式绘制的fw—Sw关系曲线,称为水相的分流量曲线。 严格地讲,以上求得的水相分流量曲线,应为地层水
的体积分流量曲线,把地层水的体积分流量曲线换算为地 面水的质量分流量曲线,其换算公式为:
n
K
* ro
S
* w
k
K
* ro
(S
* w
)
k
i 1
n
i
n
K
* rw
(
S
* w
)
k
i 1
K
* rw
S
* w
n
k
i
(4)将各样品的Swi、Swmax、Kromax、Krwmax等特征值分别 进行算术平均,并将平均值作为平均相对渗透率曲线的特 征值。计算公式如下:
n
Swi i
(3)岩石孔隙几何形态和大小分布的影响
相对渗透率及相对渗透率曲线应用课件
根据相对渗透率曲线和油藏类型,预测油田的采收率,评估油田的 开发潜力和经济效益。
动态监测
通过实时监测油田的动态数据,如产液量、注水量等,结合相对渗透 率曲线,分析油田的开发效果和存在的问题。
油田开发方案调整
层间调整
根据相对渗透率数据,了解各油层的渗透率和孔隙度,对层间差 异较大的油田进行层间调整,以提高开发效果。
开发方案优化
井网优化
根据相对渗透率曲线和油藏工程 模型,可以优化井网布置方案,
提高开发效果和经济效益。
采收率预测
通过相对渗透率曲线和油藏工程 模型,可以预测不同开发方案下 的采收率,为制定合理的开发方
案提供依据。
开发策略调整
根据相对渗透率曲线的变化趋势 和开发效果,可以及时调整开发 策略和措施,提高开发效益和油
产能预测
单井产能预测
根据相对渗透率曲线和油藏工程 模型,可以预测单井在不同生产 条件下的产能,为制定合理的开
发方案提供依据。
区块产能预测
通过对区块内各单井的产能进行预 测,可以评估区块的整体产能和开 发潜力,为制定区块开发方案提供 参考。
产能变化趋势分析
通过分析相对渗透率曲线在不同开 发阶段的形态变化,可以了解产能 变化趋势和规律,为优化开发方案 提供依据。
意义
相对渗透率是描述多相流体在多 孔介质中流动特性的重要参数, 对于油藏工程、采油工程和渗流 力学等领域具有重要意义。
计算方法
理论计算方法
基于达西定律和渗流力学理论,推导 相对渗透率公式。
实验测定方法
通过实验测定多相流体在多孔介质中 的渗透率,再计算相对渗透率。
影响因素
孔隙结构
孔隙结构直接影响多相流 体的流动特性,从而影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2
0.1 0 0 0.2 0.4 0.6 0.8 1
图1:均值标准化相对渗透率曲线
含水饱和度Leabharlann 图2:常规的平均值相渗曲线
相对渗透率曲线
标准化处理
1、把常规的相对渗透率曲线换算成“标准化”的相对渗透 率曲线 (每块岩心一个标准化相渗曲线)
式中
标准化的计算公式为:
标准化含水饱和度:
SW
——含水饱和度
SWD
* rw
SW SW i 1 SWi Sor
SWi
——束缚水饱和度
标准化水相相对渗透率:
K
KW KW (S or)
S or
——残余油饱和度
标准化油相相对渗透率:
* K ro
Ko K( o SW i)
K W ——含水饱和度
Ko
SW SW
时的水相渗透率
——含水饱和度
时的油相渗透率
——残余油条件下的水相渗透率 KW (S or) ——束缚水条件下的油相渗透率 K( o S Wi)
显然,每一块标准化曲线的含水饱和度和相对渗透率的变化范围都是从0→100%。
一、标准化方法的介绍
2、将”标准化”曲线平均之后 ,再换算成常规的相对渗透 率曲线(每块岩心的标准化相渗曲线求平均) 。
将求得的
, KW (S or) SWi , Sor , K( o S Wi)
代入前面的标准化公式,
将标准化平均值曲线再换算成常规的平均值相对渗透率曲线。
1
1 0.9 0.8 0.7