线性代数与几何(上)全套课件(新)
合集下载
线性代数课本课件
最小二乘法的计算实例
直线拟合的计算实例
通过最小二乘法拟合一组数据点,得到最佳 直线方程。
多项式拟合的计算实例
通过最小二乘法拟合一组数据点,得到最佳 多项式方程。
非线性拟合的计算实例
通过最小二乘法结合适当的变换,拟合非线 性模型。
THANKS FOR WATCHING
感谢您的观看
04 特征值与特征向量
特征值与特征向量的概念
特征值
设A是n阶方阵,如果存在数λ和 非零n维列向量x,使得Ax=λx成
立,则称λ是A的特征值。
特征向量
对应于特征值λ的满足Ax=λx的非 零向量x称为A的对应于特征值λ的 特征向量。
特征空间
对应于同一特征值的所有特征向量 (包括零向量)的集合,加上零向 量后构成的线性子空间称为特征空 间。
线性方程组的应用举例
线性规划问题
图像处理
线性方程组可用于描述和解决线性规划问 题,如资源分配、生产计划等。
在计算机图像处理中,线性方程组可用于 图像滤波、图像恢复等任务。
机器学习
电路分析
在机器学习领域,线性方程组常用于线性 回归、逻辑回归等模型的参数求解。
在电路分析中,线性方程组可用于描述电路 中的电流、电压等物理量之间的关系,从而 进行电路分析和设计。
向量的线性组合关系不变。
线性变换的性质
02
线性变换具有保持线性组合、保持线性相关等性质,同时线性
变换的核与像也是重要的概念。
线性变换的运算
03
线性变换之间可以进行加法和数量乘法运算,同时线性变换的
逆变换和复合变换也是常见的运算。
线性空间的基与维数
基的概念
线性空间中的一组线性无关的向量,可以表示该空间中的任意向 量,称为该线性空间的基。
线性代数课件 第一章
0 0 0 0 0 0 ≠ ( 0 0 0 0) . 0 0 0
1 0 (5)单位矩阵 单位矩阵 0 1 E = En = L L O 0 0
称为单位矩阵( 单位阵) 称为单位矩阵(或单位阵). 单位矩阵
L 0 O L 0 L L L 1
a11 a 21 A= L a m1
简记为
a12 a 22 L am1
L a1 n L a2n L L L a mn
矩阵A的 (m, n)元
A = Am×n = (aij )m×n = (aij ).
这m × n个数称为 A的元素 ,简称为元 . 简称为元
a11 x1 + a12 x2 + L + a1n xn = b1 a x + a x +L + a x = b 21 1 22 2 2n n 2 LLLLLLLLLLLL am1 x1 + am 2 x2 + L + amn xn = bm
, , 系数 aij ( i =1,2,L m, j =1,2,L n) , 常数项 bi (i = 1,2,L,n)
全为1 全为
(6)方阵 方阵 主对角线
a11 a12 a21 a22 A= L L 副对角线 an1 an1
简记为
L a1n L a2 n L L L ann
n× n
矩 A 阵 的
( n, n) 元
A = An× n = ( aij )
.
矩阵的转置
a11 a 21 A= L a m1
定义3 如果矩阵A经过有限次的初等变换变成B 定义3 如果矩阵A经过有限次的初等变换变成B, 就称矩阵A与矩阵B等价, 就称矩阵A与矩阵B等价,记作 A ~ B . 矩阵之间的等价具有自反性、对称性和传递性. 矩阵之间的等价具有自反性、对称性和传递性. 例如 用矩阵的初等行变换 解线性方程组
1 0 (5)单位矩阵 单位矩阵 0 1 E = En = L L O 0 0
称为单位矩阵( 单位阵) 称为单位矩阵(或单位阵). 单位矩阵
L 0 O L 0 L L L 1
a11 a 21 A= L a m1
简记为
a12 a 22 L am1
L a1 n L a2n L L L a mn
矩阵A的 (m, n)元
A = Am×n = (aij )m×n = (aij ).
这m × n个数称为 A的元素 ,简称为元 . 简称为元
a11 x1 + a12 x2 + L + a1n xn = b1 a x + a x +L + a x = b 21 1 22 2 2n n 2 LLLLLLLLLLLL am1 x1 + am 2 x2 + L + amn xn = bm
, , 系数 aij ( i =1,2,L m, j =1,2,L n) , 常数项 bi (i = 1,2,L,n)
全为1 全为
(6)方阵 方阵 主对角线
a11 a12 a21 a22 A= L L 副对角线 an1 an1
简记为
L a1n L a2 n L L L ann
n× n
矩 A 阵 的
( n, n) 元
A = An× n = ( aij )
.
矩阵的转置
a11 a 21 A= L a m1
定义3 如果矩阵A经过有限次的初等变换变成B 定义3 如果矩阵A经过有限次的初等变换变成B, 就称矩阵A与矩阵B等价, 就称矩阵A与矩阵B等价,记作 A ~ B . 矩阵之间的等价具有自反性、对称性和传递性. 矩阵之间的等价具有自反性、对称性和传递性. 例如 用矩阵的初等行变换 解线性方程组
线性代数课件PPT
线性代数课件
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。
《线性代数讲义》课件
在工程学中,性变换也得到了广泛的应用。例如,在图像处理中,可
以通过线性变换对图像进行缩放、旋转等操作;在线性控制系统分析中
,可以通过线性变换对系统进行建模和分析。
THANKS
感谢观看
特征向量的性质
特征向量与特征值一一对应,不同的 特征值对应的特征向量线性无关。
特征值与特征向量的计算方法
01
定义法
根据特征值的定义,通过解方程 组Av=λv来计算特征值和特征向 量。
02
03
公式法
幂法
对于某些特殊的矩阵,可以利用 公式直接计算特征值和特征向量 。
通过迭代的方式,不断计算矩阵 的幂,最终得到特征值和特征向 量。
矩阵表示线性变换的方法
矩阵的定义与性质
矩阵是线性代数中一个基本概念,它可以表示线性变 换。矩阵具有一些重要的性质,如矩阵的加法、标量 乘法、乘法等都是封闭的。
矩阵表示线性变换的方法
通过将线性变换表示为矩阵,可以更方便地研究线性 变换的性质和计算。具体来说,如果一个矩阵A表示 一个线性变换L,那么对于任意向量x,有L(x)=Ax。
特征值与特征向量的应用
数值分析
在求解微分方程、积分方程等数值问题时, 可以利用特征值和特征向量的性质进行求解 。
信号处理
在信号处理中,可以利用特征值和特征向量的性质 进行信号的滤波、降噪等处理。
图像处理
在图像处理中,可以利用特征值和特征向量 的性质进行图像的压缩、识别等处理。
05
二次型与矩阵的相似性
矩阵的定义与性质
数学工具
矩阵是一个由数字组成的矩形阵列,表示为二维数组。矩阵具有行数和列数。矩阵可以进行加法、数 乘、乘法等运算,并具有相应的性质和定理。矩阵是线性代数中重要的数学工具,用于表示线性变换 、线性方程组等。
(完整版)自考线性代数全套课件
f x12 2 x22 5 x32 2 x1 x2 2 x1 x3 6 x2 x3 为标 准形, 并求 所用的 变换矩 阵.
解
含有平方项
含有 x1的项配方
f x12 2x22 5x32 2x1 x2 2x1 x3 6x2 x3
x12 2x1 x2 2x1 x3 2x22 5x32 6x2 x3
15
4.将正交向量组单位化,得正交矩阵 P
令
i
i i
,
i 1,2,3,
1 3
2 5
2 45
得 1 2 3, 2 1 5 , 3 4 45 .
2 3
0
5
45
所以
1 3
P 2 3
2
3
2 5 15
0
2 45
4 45 .
5
45
16
于是所求正交变换为
解 1.写出对应的二次型矩阵,并求其特征值
17 2 2 A 2 14 4
2 4 14
17 2 A E 2 14
2 4
182
9
2 4 14
14
从而得特征值 1 9, 2 3 18.
2.求特征向量
将1 9代入A E x 0,得基础解系
1 (1 2,1,1)T .
x Cy
9
将其代入 f xT Ax,有
f xT Ax CyT ACy yT CT AC y.
定理1 任给可逆矩阵C ,令B C T AC ,如果A为对称
矩阵,则B也为对称矩阵,且RB RA.
证明 A为对称矩阵,即有A AT ,于是
BT C T AC T C T AT C C T AC B,
将2 3 18代入A E x 0,得基础解系
解
含有平方项
含有 x1的项配方
f x12 2x22 5x32 2x1 x2 2x1 x3 6x2 x3
x12 2x1 x2 2x1 x3 2x22 5x32 6x2 x3
15
4.将正交向量组单位化,得正交矩阵 P
令
i
i i
,
i 1,2,3,
1 3
2 5
2 45
得 1 2 3, 2 1 5 , 3 4 45 .
2 3
0
5
45
所以
1 3
P 2 3
2
3
2 5 15
0
2 45
4 45 .
5
45
16
于是所求正交变换为
解 1.写出对应的二次型矩阵,并求其特征值
17 2 2 A 2 14 4
2 4 14
17 2 A E 2 14
2 4
182
9
2 4 14
14
从而得特征值 1 9, 2 3 18.
2.求特征向量
将1 9代入A E x 0,得基础解系
1 (1 2,1,1)T .
x Cy
9
将其代入 f xT Ax,有
f xT Ax CyT ACy yT CT AC y.
定理1 任给可逆矩阵C ,令B C T AC ,如果A为对称
矩阵,则B也为对称矩阵,且RB RA.
证明 A为对称矩阵,即有A AT ,于是
BT C T AC T C T AT C C T AC B,
将2 3 18代入A E x 0,得基础解系
线性代数第一章ppt
线性代数第一章
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。
线性代数完整版ppt课件
a11x1 a12x2 b1 a21x1 a22x2 b2
求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22
a12b2 a12a 21 b1a 21 a12a 21
请观察,此公式有何特点? Ø分母相同,由方程组的四个系数确定. Ø分子、分母都是四个数分成两对相乘再
主对角线 a 1 1 a 1 2 a 1 3
a 2 1 a 2 2 a 2 3
a11a22a33a12a23a31a13a21a32
副对角线 a 3 1 a 3 2 a 3 3
a13a22a31a12a21a33a11a23a32
称为三阶行列式.
二阶行列式的对角线法则
并不适用!
.
12
三阶行列式的计算 ——对角线法则
( a a a a ) x a b b a 12 12 12 21 2 12 11 21
当 a 1a 1 2 2a 1a 时2 2,1 该0 方程组有唯一解
x b1a22a12b2
1 a a a a
11 22
12 21
x2
a11b2 b1a21 a11a22a12a21
.
6
二元线性方程组
为列标,表明元素位于第j
列. 8
二阶行列式的计算 ——对角线法则
主对角线 a 1 1 副对角线 a 2 1
a 12 a 22
a11a22a12a21
即:主对角线上两元素之积-副对角线上两元素之积
.
9
二元线性方程组
a11x1 a12x2 a21x1 a22x2
b1 b2
若令
D a11 a12 a21 a22
显然 P n n ( n 1 ) ( n 2 )3 2 1 n !
求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22
a12b2 a12a 21 b1a 21 a12a 21
请观察,此公式有何特点? Ø分母相同,由方程组的四个系数确定. Ø分子、分母都是四个数分成两对相乘再
主对角线 a 1 1 a 1 2 a 1 3
a 2 1 a 2 2 a 2 3
a11a22a33a12a23a31a13a21a32
副对角线 a 3 1 a 3 2 a 3 3
a13a22a31a12a21a33a11a23a32
称为三阶行列式.
二阶行列式的对角线法则
并不适用!
.
12
三阶行列式的计算 ——对角线法则
( a a a a ) x a b b a 12 12 12 21 2 12 11 21
当 a 1a 1 2 2a 1a 时2 2,1 该0 方程组有唯一解
x b1a22a12b2
1 a a a a
11 22
12 21
x2
a11b2 b1a21 a11a22a12a21
.
6
二元线性方程组
为列标,表明元素位于第j
列. 8
二阶行列式的计算 ——对角线法则
主对角线 a 1 1 副对角线 a 2 1
a 12 a 22
a11a22a12a21
即:主对角线上两元素之积-副对角线上两元素之积
.
9
二元线性方程组
a11x1 a12x2 a21x1 a22x2
b1 b2
若令
D a11 a12 a21 a22
显然 P n n ( n 1 ) ( n 2 )3 2 1 n !
《线性代数》课件
《线性代数》PPT课件
通过本PPT课件,帮助您深入了解线性代数的原理和应用,从基本概念到实例 讲解,全面提升您的线性代数知识。
课程介绍
了解线性代数的重要性和应用领域,介绍课程内容和学习目标。
基本概念和定义
1 向量
2 矩阵
介绍向量的定义和性质, 包括向量的运算和几何 表示。
解释矩阵的概念、矩阵 的运算和特殊类型的矩 阵。
对角化
探索对角化矩阵的定义和性质,以及 如何对角化一个矩阵。
应用物理学等领域中的应用实例,激发学习者对线性代数的兴趣和学习 动力。
介绍高斯消元法解线性方程组 的步骤和应用。
矩阵表示
讲解线性方程组的矩阵表示和 矩阵方程的求解。
向量空间
深入研究向量空间的定义和性质,探讨基、维数和子空间的相关概念。
特征值和特征向量
1
特征向量
2
解释特征向量的概念和性质,以及特
征向量与特征值之间的关系。
3
特征值
介绍特征值的定义和求解,以及特征 值的几何意义和应用。
3 行列式
探讨行列式的计算和性 质,以及行列式在线性 代数中的应用。
矩阵运算
加法与减法
介绍矩阵的加法和减法运算, 以及相关的性质和规则。
数乘
详细讲解数乘运算的定义和 性质,以及数乘对矩阵的影 响。
乘法
解释矩阵的乘法运算,包括 矩阵乘法的定义和运算法则。
线性方程组
什么是线性方程组?
高斯消元法
解释线性方程组的概念和解法, 包括矩阵法和消元法。
通过本PPT课件,帮助您深入了解线性代数的原理和应用,从基本概念到实例 讲解,全面提升您的线性代数知识。
课程介绍
了解线性代数的重要性和应用领域,介绍课程内容和学习目标。
基本概念和定义
1 向量
2 矩阵
介绍向量的定义和性质, 包括向量的运算和几何 表示。
解释矩阵的概念、矩阵 的运算和特殊类型的矩 阵。
对角化
探索对角化矩阵的定义和性质,以及 如何对角化一个矩阵。
应用物理学等领域中的应用实例,激发学习者对线性代数的兴趣和学习 动力。
介绍高斯消元法解线性方程组 的步骤和应用。
矩阵表示
讲解线性方程组的矩阵表示和 矩阵方程的求解。
向量空间
深入研究向量空间的定义和性质,探讨基、维数和子空间的相关概念。
特征值和特征向量
1
特征向量
2
解释特征向量的概念和性质,以及特
征向量与特征值之间的关系。
3
特征值
介绍特征值的定义和求解,以及特征 值的几何意义和应用。
3 行列式
探讨行列式的计算和性 质,以及行列式在线性 代数中的应用。
矩阵运算
加法与减法
介绍矩阵的加法和减法运算, 以及相关的性质和规则。
数乘
详细讲解数乘运算的定义和 性质,以及数乘对矩阵的影 响。
乘法
解释矩阵的乘法运算,包括 矩阵乘法的定义和运算法则。
线性方程组
什么是线性方程组?
高斯消元法
解释线性方程组的概念和解法, 包括矩阵法和消元法。
线性代数第-章1.4PPT课件
向量空间的性质
总结词
向量空间具有一些重要的性质,如加法的结合律、交换律和分配律,数乘的结合律和分配律等。
详细描述
向量空间的加法满足结合律和交换律,即对任意向量u、v、w∈V,有u+(v+w)=(u+v)+w和u+v=v+u;数乘也 满足结合律和分配律,即对任意标量k、l∈F和任意向量u∈V,有k(l(u))=(kl)(u)和k(u+v)=ku+kv。
线性组合的应用
向量表示
线性组合可以用来表示向量,使得向量的运算更加简洁明了。
线性方程组
线性组合可以用来求解线性方程组,通过将方程组中的未知数表示 为已知向量的线性组合,简化方程组的求解过程。
向量空间
线性组合是向量空间中向量运算的基本形式之一,可以用来研究向 量空间的性质和结构。
04
向量的线性相关性
中任意向量可以由这组基线性表示。
基的个数
02 一个向量空间的一组基的个数是有限的,且等于该向
量空间的维数。
基的特性
03
基中的向量是线性无关的,且可以作为该向量空间的
坐标系。
基的性质
唯一性
一个向量空间的一组基是唯一的,即如果存在另一组基也可 以表示向量空间中的任意向量,则这两组基之间存在一一对 应的关系。
05
向量组的秩
秩的定义
01
秩的定义
向量组的秩是指该向量组构成的 矩阵的秩,即该矩阵的最高阶非 零子式的阶数。
02
03
秩的符号表示
秩的性质
用符号“秩”表示,常用大写英 文字母表示,如A的秩记作r(A) 。
向量组的秩是该向量组线性无关 的向量的个数,与向量组的维数 有关。
线性代数ppt课件
VS
线性代数的特点
线性代数具有抽象性、实用性、广泛性等 特点,是数学中重要的分支之一。
线性代数的历史背景
线性代数的起源
线性代数起源于17世纪,主要目的 是为了解决线性方程组的问题。
线性代数的发展
随着数学的发展,线性代数逐渐成为 一门独立的数学分支,并在20世纪得 到了广泛的应用和发展。
线性代数的应用领域
转置矩阵
一个矩阵A的转置矩阵是满足$A^T_{ij}=A_{ ji}$的矩阵
行列式与高斯消元
03
法
行列式的定义及性质
总结词
行列式是线性代数中重要的工具之一,它具有特殊的性质和计算规则。
详细描述
行列式是由一组方阵中的元素按照一定规则组成的,它是一个方阵是否可逆的判断标准,同时也有一 些重要的性质和计算规则,如交换两行或两列、对角线上的元素相乘等。了解行列式的定义和性质是 学习线性代数的基础。
矩阵的运算规则
加法
两个相同大小的矩阵,对应位置的元素相加
数乘
用一个数乘以矩阵的每一个元素
减法
两个相同大小的矩阵,对应位置的元素相减
乘法
要求两个矩阵满足乘法运算的规则,即第一 个矩阵的列数等于第二个矩阵的行数
矩阵的逆与转置
逆矩阵
一个矩阵A的逆矩阵是满足$AA^{-1}=I$的矩阵,其中$I$是单位矩阵
高斯消元法的原理
总结词
高斯消元法是一种解线性方程组的直接方法 ,其原理是将方程组转化为阶梯形矩阵。
详细描述
高斯消元法的基本思想是通过一系列的行变 换将线性方程组转化为阶梯形矩阵,这样就 可以直接求解方程组。高斯消元法包括三种 基本的行变换:将两行互换、将一行乘以非 零常数、将一行加上另一行的若干倍。通过 这些行变换,我们可以将矩阵转化为阶梯形 矩阵,从而求解方程组。
线性代数课件
a11 a21 a31 a12 a22 a32 a13 a23 a33
偶排列
奇排列
1
N ( j1 j2 j3 )
a1 j1 a2 j2 a3 j3
线性代数 第一章 行列式
11
定义 设有 n 2 个数,排成 n 行 n 列的数表
a11 a12 n 称为n 阶行列式. 简记为 a ij
it 这种变换称为对换,记作( i s ,)
定理1.1 任一 排列经过一次对换后奇偶性发生改变。
定理1.2
n! n级排列共有 n! 个,其中奇、偶排列相等,各为 2
线性代数 第一章 行列式
10
2
a11 a21 a31
n 阶行列式的定义
a12 a22 a32 a13 a23 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 a33
主讲
田立芳
统计与数学学院
目录 线性代数 第一章 行列式 退出
1
目
录
行列式 矩阵 线性空间 线性方程组 矩阵的特征值 二次型
线性代数 第一章 主页 行列式 线性代数
退出
2
第一章 行列式
§1 n 阶行列式的定义
§2 行列式的性质 §3 行列式的计算 §4 克莱姆法则
线性代数 第一章 行列式
3
§1.1
线性代数 第一章 行列式
18
性质1 对任何行列式D,有D=DT(行列式与其转置行列式相等) 证
D
T
将DT记为
于是有 bij a ji ( i , j 1,2, , n) 按行列式的定义
j1 j2 jn
偶排列
奇排列
1
N ( j1 j2 j3 )
a1 j1 a2 j2 a3 j3
线性代数 第一章 行列式
11
定义 设有 n 2 个数,排成 n 行 n 列的数表
a11 a12 n 称为n 阶行列式. 简记为 a ij
it 这种变换称为对换,记作( i s ,)
定理1.1 任一 排列经过一次对换后奇偶性发生改变。
定理1.2
n! n级排列共有 n! 个,其中奇、偶排列相等,各为 2
线性代数 第一章 行列式
10
2
a11 a21 a31
n 阶行列式的定义
a12 a22 a32 a13 a23 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 a33
主讲
田立芳
统计与数学学院
目录 线性代数 第一章 行列式 退出
1
目
录
行列式 矩阵 线性空间 线性方程组 矩阵的特征值 二次型
线性代数 第一章 主页 行列式 线性代数
退出
2
第一章 行列式
§1 n 阶行列式的定义
§2 行列式的性质 §3 行列式的计算 §4 克莱姆法则
线性代数 第一章 行列式
3
§1.1
线性代数 第一章 行列式
18
性质1 对任何行列式D,有D=DT(行列式与其转置行列式相等) 证
D
T
将DT记为
于是有 bij a ji ( i , j 1,2, , n) 按行列式的定义
j1 j2 jn
线性代数第一章第一节PPT课件
01递Biblioteka 公式法02递推公式法是根据行列式的性质和结构特点,利用递推公式来
计算行列式的方法。
递推公式法可以大大简化高阶行列式的计算过程,提高计算效
03
率。
行列式的计算方法
分块法
1
2
分块法是将高阶行列式分成若干个小块,然后利 用小块来计算整个行列式的方法。
3
分块法可以简化高阶行列式的计算过程,特别是 当行列式具有特定的结构特点时,分块法可以大 大提高计算效率。
01
向量空间
02
向量空间是线性代数中的一个重要概念,而行列式在向量 空间的定义和性质中也有着重要的应用。例如,通过行列 式可以判断一个向量集合是否构成向量空间,以及向量空 间的一些基本性质。
03
行列式在向量空间中的应用可以帮助我们更好地理解线性 代数的本质和结构特点。
05
特征值与特征向量
特征值与特征向量的定义
转置等特殊运算。
向量与矩阵的关系
关联性
04
向量可以用矩阵来表示,矩 阵中的每一行可以看作是一 个向量。
01 03
•·
02
向量和矩阵在数学中是密切 相关的概念,矩阵可以看作 是向量的扩展。
04
行列式
行列式的定义与性质
基本概念
行列式是由数字组成的方阵,按照一定的规则计 算出的一个数。
行列式具有一些基本的性质,如交换律、结合律、 分配律等。
向量可以用有向线段、坐 标系中的点或有序数对来 表示。
向量有大小和方向两个基 本属性,大小表示向量的 长度,方向表示向量的指 向。
矩阵的定义与运算
•·
02
基础运算
01
03
矩阵是一个由数字组成的矩 形阵列,表示二维数组。
线性代数相关知识培训教程PPT课件( 93页)
那末 A称为对称阵.
例如A162
6 8
1 0
为对称. 阵
1 0 6
说明 对称阵的元素以主对角线为对称轴对应相
等.
同型矩阵与矩阵相等
1)两个矩阵的行数相等,列数相等时,称为同型矩阵.
例如
1 5
2 6
与
14 8
3 4
为同型矩阵.
3 7 3 9
Aij (1)i j Mij, Aij叫做元素 aij的代数余子.式
A a i1 A i1 a i2 A i2 a iA n in ( i 1 ,2 , ,n ) A a i1 A j1 a i2 A j2 a iA n jn ( i j)
例1 3 1 1 2 5 1 3 4
p1p2pn
列取 . 和
N阶行列式是一个数,该数是n!项的代数和, 每项为取自表中不同行不同列n个元素的乘 积,符号由这n个元素列标排列的逆序数决定 (行标按自然顺序排列),奇排列带负号,偶排 列带正号.
2. 行列式的性质
1)行列式与它的转置行式列相等,即D DT. 2)互换行列式的两行 (列),行列式变号. 3)如果行列式有两行 (列)完全相同,则此行列式 等于零. 4)行列式的某一行(列)中所有的元素都乘以同 一数k,等于用数k 乘此行列式.
6)逆矩阵
伴随矩阵定义
行列式 A 的各个元素的代数余子式A ij 所
构成的如下矩阵
A11
A
A12
A1n
A21 An1 A22 An2 A2n Ann
称为矩阵 A 的伴随矩阵.
伴随矩阵性质
AA A AA E .
逆矩阵定义
例如A162
6 8
1 0
为对称. 阵
1 0 6
说明 对称阵的元素以主对角线为对称轴对应相
等.
同型矩阵与矩阵相等
1)两个矩阵的行数相等,列数相等时,称为同型矩阵.
例如
1 5
2 6
与
14 8
3 4
为同型矩阵.
3 7 3 9
Aij (1)i j Mij, Aij叫做元素 aij的代数余子.式
A a i1 A i1 a i2 A i2 a iA n in ( i 1 ,2 , ,n ) A a i1 A j1 a i2 A j2 a iA n jn ( i j)
例1 3 1 1 2 5 1 3 4
p1p2pn
列取 . 和
N阶行列式是一个数,该数是n!项的代数和, 每项为取自表中不同行不同列n个元素的乘 积,符号由这n个元素列标排列的逆序数决定 (行标按自然顺序排列),奇排列带负号,偶排 列带正号.
2. 行列式的性质
1)行列式与它的转置行式列相等,即D DT. 2)互换行列式的两行 (列),行列式变号. 3)如果行列式有两行 (列)完全相同,则此行列式 等于零. 4)行列式的某一行(列)中所有的元素都乘以同 一数k,等于用数k 乘此行列式.
6)逆矩阵
伴随矩阵定义
行列式 A 的各个元素的代数余子式A ij 所
构成的如下矩阵
A11
A
A12
A1n
A21 An1 A22 An2 A2n Ann
称为矩阵 A 的伴随矩阵.
伴随矩阵性质
AA A AA E .
逆矩阵定义
2、线性代数PPT全集-291页
a31 a32 a33
a11a23a32 a12a21a33 a13a22a31,
求一个二次多项式 f x,使 f 1 0, f 2 3, f 3 28.
解 设所求的二次多项式为
f x ax2 bx c, 由题意得 f 1 a b c 0, f 2 4a 2b c 3, f 3 9a 3b c 28,
a12 x2 a22 x2
b1 , b2 .
D a11 a12 , a21 a22
a11 x1 a21 x1
a12 x2 a22 x2
b1 , b2 .
D1
b1 b2
a12 , a22
a11 x1 a21 x1
a12 x2 a22 x2
b1 , b2 .
D2
a11 a21
b1 . b2
4 6 32 4 8 24 14.
求解方程
11 23 49
1 x 0. x2
方程左端
D 3 x2 4 x 18 9 x 2 x2 12
x2 5x 6,
由 x2 5 x 0 解得
x 2 或 x 3.
例4 解线性方程组
2xx112xx22
x3 3x3
2, 1,
a31 a32 a33
a11a23a32 a12a21a33 a13a22a31,
(6)式称为数表(5)所确定的
.
a11 a12 a13 D a21 a22 a23 .列标
a31 a32 a33 行标
三阶行列式的计算
a11 a12 a13 a11 a12 (1)沙路法 D a21 a22 a23 a 21 a 22
1 2 2
D3 2 1 1 1
1 5, 0
故方程组的解为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中 aij ( i , j =1, 2, 3 ) 表示第 i 行第 j 列上的元素. 三阶行列式的计算可如下图:
a11 a12 a13
a21 a 22 a 23 a31 a32 a33
+
+
+
第一章 行列式
上一页
8
0 4
1 1 . 1
求三阶行列式
2
3 2
解
原式=32 + 4 + 0 12 (16) 0 =32 + 4 12 +16 = 40.
以后我们将证明三元一次方程组
a11 x1 a12 x2 a13 x3 b1,
a21 x1 a22 x2 a23 x3 b2 ,
a31x1 a32 x2 a33x3 b3
的解将与它的系数行列式
a11 D a21 a31 a12 a22 a32 a13 a23 a33
得
(1.2)
将它代入第一个方程并化简,
x2
a1 2a2 1
(1.3)
式 (1.2) 和 (1.3) 给出了两个变量两个方程的方程组 (1.1) 的求解公式 ( 当 a11 a22 a12 a21 0时). 下面介绍一种更简单的记法表示求解公 式 ( 1.2 ) , ( 1.3 ) .
VII
x VIII V
1 2 1 0 3 1 . y VI 6 0 3
( 2)=a12 1+ a22 ( n)=a1n 1+ a2n
课 件
2+ 2+
… a n1 n ,
… an2n ,
……………
2+
… annn ,
(1, 2, …, n ) = (1, 2, …, n )A
目 录
第 一 章 行 列 式 第 二 章 矩 阵 理 论
第 三 章 向 量 空 间
第 四 章 线 性 方 程 组
自 我 测 试 题 及 解 答
综 合 试 卷
退出
真 的 要 退 出 吗?
是
否
第一节 二元一次方程组与二阶行列式 第二节 n 阶行列式 第三节 行列式的性质与行列式的展开 第四节 克莱姆法则
a11 a12 a21 a22 a31 a32
(- ) (- ) (- )
线 性 代 数 x =b 1 2 a1x+a x +…+a多 2 1 1 a 媒 a x + a x +…+ a x =b 体 a 3 0 1 0 3 1 (+) ………… 解 析 几 何 教 a 学 (+) a x +a x +…+a x =b 2 1 4 电 1(+) 2 4 z 子
一、二元一次方程组的求解公式
二、二阶行列式的概念
一、三阶行列式 二、排列与逆序数 三、n阶行列式的定义
一、行列式的性质
二、行列式按行(列)展开
D 1 , 1x D
D 2 , 2x D
,
nD
D
nx
§1.二元一次方程组与二阶行列式
一、二元一次方程组的求解公式
设关于 x1, x2 的二元一次方程组为
中, 往往要解多个变量的一次方程组 (称为线性方程组), 其中最简单、最重要的是未知
量的个数与方程的个数相同的线性方程组. 因此有必要引入高阶行列式的概念.
第一章 行列式
§2. n 阶行列式
一、三阶行列式
定义1 三阶行列式
a11 a 21 a31
a12 a 22 a32
a13 a 23 a33
a1 1a2 2a3 3 a2 1a3 2a1 3 a3 1a2 3a1 2 a1 3a2 2a3 1 a2 3a3 2a1 1 a3 3a2 1a1 2,
13
11 1 12 2 1n n 1 21 1 22 2 2n n 2
23
33
m1 1
m2 2
mn n
m
III IV I 0
湖 南 大 学 数 1 1 学 L 0与 1 计 0 0 量 经 0 0 济 学 院
II
( 1)=a11 1+ a21
1 1 1 2 0 4 上4 册 0 0 3 0 1
第一章 行列式
§1.二元一次方程组与二阶行列式
二、二阶行列式的概念
定义1 二阶行列式 主对角线
a11 a 21
a12 a 22
a1 1a2 2 a1 2a2 1,
副对角线
其中横排称为行, 竖排称为列. 数 aij ( i, j =1, 2) 表示第 i 行第 j 列的元素. 在方程组
a1 1x1 a1 2x2 b1 , a2 1x1 a2 2x2 b2 ,
例1
设
2x1 + 3x2 = 5 ,
3x1 + x2 = 3 ,
2 3 3 1
解此方程组.
解
D
= 2 + 9 = 11 0 , D1
x2 D2 21 . 11 D
5 3 3 1
= 4, D2
2
5
3 3
21,
x1
D1 4 , 11 D
在 §1 中我们利用二阶行列式已得到了二元一次方程组的求解公式. 但实际问题
中, 若令
D
a11 a 21
a12 a 22
,
D1
b1 b2
a12 a 22
,
D2
a11
b1
a 21 b2
,
第一章 行列式
上一页
其中 D 称为系数行列式, 则当系数行列式 D 0 时, 上述方程组的解可简记为
x1
D1 , D
x2
D2 D
( 1.4 )
公式 (1.4 ) 与公式 (1.2 ) 及 (1.3 ) 表示的是同一式子, 但显然公式 (1.4 ) 简单易记得多. 公式 (1.4 ) 称为解两个方程两个未知量的二元一次方程组的克莱姆(Cramer)法则.
a1 1x1 a1 2x2 b1 , a2 1x1 a2 2x2 b2 ,
当 a11a22 a12 a21 0 时,得
(1.1)
其中 a11, a12, a21, a22, b1, b2 均为已知参数. 用中学的消元法解此方程组.
x1
a2 2b1 a1 2b2 , a1 1a2 2 a1 2a2 1
密切相关.
第一章 行列式
§2. n 阶行列式
二、排列与逆序数
为了得到 n 阶行列式的定义和讨论其性质, 先引 入排列和逆序数的概念. 定义2 将前 n 个自然数 1, 2, …, n 按照某一顺序排成一行, 就称为一个 n 级排列. 其 中若某两数之间大数在前而小数在后, 则称它们构成一个逆序. 一个排列中所有逆 序数的总数称为该排列的逆序数. n 级排列 (i1 i2…in ) 的逆序数记为τ(i1i2…in), 简记为τ . 例如, 四级排列 2314 中, 2与1, 3 与 1 构成逆序, 故 τ(2314) = 2; 再如六级排列 243516 中, 2 与 1, 4 与 1, 3 与 1, 5与 1, 4