244弧长和扇形面积

合集下载

弧长与扇形面积公式

弧长与扇形面积公式

弧长与扇形面积公式一、弧长公式1.弧长的定义弧长是指一个圆弧所对应的圆心角所对应的圆的一部分的长度。

在圆形轨迹上,圆心角的度数与弧长成一定的比例关系。

2.弧长公式的推导首先,我们知道,在一个完整的圆中,圆心角为360度或2π弧度。

因此,一个占满整个圆周四分之一的圆弧所对应的圆心角为90度或π/2弧度。

假设一个圆的半径为r,其中一个圆弧所对应的圆心角为θ度或θ弧度,由此可得圆弧的长度为圆周的四分之一长度:长度=θ/360×2πr或长度=θ/2π×2πr通过简化上述公式,我们可以得到弧长的常用公式:长度=θ×πr/180或长度=θ×r其中,θ以度数表示时,圆弧长度使用第一个公式。

θ以弧度表示时,圆弧长度使用第二个公式。

这是弧长与圆心角的常用关系公式。

3.弧长公式的应用弧长公式是在解决圆弧上的问题时常用到的。

例如,在射击运动中,构成射击靶心边界的圆可能会被划分成不同的区域,每个区域都具有不同的分值。

当子弹击中圆的其中一点时,子弹沿弧线的走过弧长可以换算成对应的分数。

另一个应用实例是在机械制造过程中。

当需要切割或加工一个圆弧时,工人可以使用弧长公式确定刀具运动的距离。

这样,他们就能够更准确地进行切割和加工。

1.扇形面积的定义扇形是圆周上两个半径所夹的圆弧以及这两个半径所对应的圆心角组成的图形。

扇形面积是指由圆心、半径、圆弧组成的图形所围成的面积。

2.扇形面积公式的推导事实上,一个扇形可以想象成是一个半径为r的圆被一个圆心角为θ度或θ弧度的扇形切割下来而得到的。

那么,这个扇形的面积就可以看作是底边长为r,高为r的一个三角形(底边就是圆弧的长度)与这个扇形之间的差值。

通过计算底边长为r,高为r的三角形的面积,我们可以得到扇形的面积。

三角形的面积= 1/2 × r × r × sin(θ) = (r^2 × sin(θ))/2所以,扇形的面积= (r^2 × θ × sin(θ))/2其中,θ以度数表示时,扇形面积使用第一个公式。

湖南省益阳市资阳区迎丰桥镇九年级数学上册第二十四章圆24.4弧长和扇形面积(1)教案新人教版(20

湖南省益阳市资阳区迎丰桥镇九年级数学上册第二十四章圆24.4弧长和扇形面积(1)教案新人教版(20

湖南省益阳市资阳区迎丰桥镇九年级数学上册第二十四章圆24.4 弧长和扇形面积(1)教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖南省益阳市资阳区迎丰桥镇九年级数学上册第二十四章圆24.4 弧长和扇形面积(1)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖南省益阳市资阳区迎丰桥镇九年级数学上册第二十四章圆24.4 弧长和扇形面积(1)教案(新版)新人教版的全部内容。

弧长和扇形面积课题: 24.4弧长和扇形面积(1)课时 1 课时教学设计课标要求会计算圆的弧长、扇形的面积教材及学情分析 1、教材分析:学生在学习本章之前,已通过折叠、对称、平移、旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.学情分析:2、九年级学生已具备一定知识储备和认知能力。

但学生的基础较差,中等、差等生较多,优等生较少。

课堂上,多数学生表现欲不强,发言不积极,怕回答错问题;学生应用知识灵活解决问题的能力较差,在几何证明题中,不会抓住已知条件进行论证推理。

因此,在教学中,注重学生学习方法的培养,通过学生实践、探究、合作交流来完成本节课的教学.引入新课一、复习:二、由弧形材料的截取导入新课一、复习:1、什么是正多边形?怎么证明一个多边形是正多边形?2、多边形的内角和怎么计算?正多边形的每一个内角怎么计算?3、复习正多边形的相关概念;正多边形的中心角怎么计算?二、导入新课在小学我们已经学习过有关圆的周长和面积公式,弧是巩固上节课所学的知识导提出的的问题周长、圆的面积之间有怎样的关系呢?本1.弧长的计算公式.少?n°的圆心角呢?3602Rπ180Rπ.于是n°的圆心角所对的弧长为180l=.新课,激发学4、扇形面积公式圆面积S=πR,所以1°的扇形面积是360Rπ,于是圆心角为n°的扇形面积是S=360Rnπ.我们探讨了弧长和扇形面积的公式,=180nπR=360nπR=180nπR=360nπR∴360nπR=12R·180nπR.∴S扇形=12lR.=120°,求的长(结果精确到0.1cm)分析:要求弧长和扇形面积,根据公探究扇形面积的计算。

弧长和扇形面积的计算

弧长和扇形面积的计算

弧长和扇形面积的计算弧长和扇形面积是圆的基本性质,在几何学和数学运算中经常使用。

本文将介绍如何计算弧长和扇形面积,并提供示例以便更好地理解。

一、弧长的计算弧长是圆上一段弧的长度。

要计算弧长,需要知道弧所对应的圆的半径(r)和弧的夹角(θ)。

公式:L = 2πr × (θ/360°)其中,L表示弧长,r表示半径,θ表示夹角。

示例1:如果半径为5 cm的圆的夹角为60°,则弧长可以通过以下计算得到:L = 2π × 5 cm × (60°/360°) = 10π/3 cm ≈ 10.47 cm示例2:如果半径为8 m的圆的夹角为120°,则弧长计算如下:L = 2π × 8 m × (120°/360°) = 16π/3 m ≈ 16.76 m二、扇形面积的计算扇形面积是圆的一部分,由弧与两个半径所围成。

要计算扇形面积,需要知道扇形所对应的圆的半径(r)和扇形的夹角(θ)。

公式:A = πr² × (θ/360°)其中,A表示扇形面积,r表示半径,θ表示夹角。

示例3:如果半径为10 cm的圆的夹角为90°,则扇形面积计算如下:A = π × (10 cm)² × (90°/360°) = 25π cm² ≈ 78.54 cm²示例4:如果半径为6 m的圆的夹角为150°,则扇形面积可以通过以下计算得到:A = π × (6 m)² × (150°/360°) = 9π m² ≈ 28.27 m²通过上述示例,我们可以看到如何计算弧长和扇形面积。

这两个计算都使用了圆周率(π),在具体计算时,可以使用3.14或根据需要的精度使用更多位小数。

第二十四章圆244_弧长和扇形面积-说课稿

第二十四章圆244_弧长和扇形面积-说课稿

第二十四章圆24.4 弧长和扇形面积说课稿一、教材分析:(一)、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书,内容是新人教版九年级上册新课标实验教材《第24章圆》中的“弧长和扇形的面积”,这个课题学生在前阶段学完了“圆的认识”、“与圆有关的位置关系”、“正多边形和圆”的基础上进行的。

本课由特殊到一般探索弧长及扇形面积公式,并运用公式解决一些具体问题,为学生今后的学习及生活更好地运用数学作准备。

(二)、教学目标和重点、难点根据新课标要求,数学的教学不仅要传授知识,更要注重学生在学习中所表现出来的情感态度,帮助学生认识自我、建立信心。

教学目标:(1) 了解弧长和扇形面积的计算方法。

(2) 通过等分圆周的方法,体验弧长和扇形面积公式的推导过程。

(3) 体会数学与实际生活的密切联系,充分认识学好数学的重要性,树立正确的价值观。

重点:弧长和扇形面积公式的推导和有关的计算。

难点:弧长和扇形面积公式的应用。

教学方法:一讲一练法(三)教学过程活动1 设置问题情境引入课题从2008年北京奥运会在美丽壮观的焰火中开幕到欣赏奥运会的主会场鸟巢的外观和内部,引入课题。

教师演示课件,提出问题,激发学生学习新知识的热情.将学生的注意力牢牢吸引至课堂。

从生活中的实际问题入手,使学生认淘教案网得出扇形定义,并能准确判断出什么样的图形是扇形。

由观察图片和图形得出概念,记忆较深刻,对熟练判断是否为扇形铺平道路。

只有明确定义才能更好的学习更深一层次的知识。

活动1探索弧长公式1.圆的周长可以看作______度的圆心角所对的弧.2.1°的圆心角所对的弧长是_______.3.2°的圆心角所对的弧长是_______.4.4°的圆心角所对的弧长是_______.……5.n °的圆心角所对的弧长是_______.(老师点评)根据同学们的解题过程,我们可得到:n °的圆心角所对的弧长为180R n l π= 学生在探索出弧长公式的基础上,自己尝试寻找探索方法,练习题(小黑板)活动2 探索扇形面积公式1、圆的面积可以看作是_______度的圆心角所对的扇形的面积.2.设圆的半径为R ,1°的圆心角所对的扇形面积S 扇形=_______.3.设圆的半径为R ,2°的圆心角所对的扇形面积S 扇形=_______.4.设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______.……5.设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______.将扇形面积和圆的面积结合起来,分析得出. n°的圆心角所对的扇形面积公式。

弧长与扇形面积

弧长与扇形面积
扇形是圆的一部分,由两条半径和一条弧围成 扇形面积的计算公式为:S = (θ/360) × π × r^2,其中θ为扇形的圆心角,r为半径 当θ=90°时,扇形面积=1/4×π×r^2 扇形面积也可以通过底边长度和高的乘积的一半来计算
扇形面积的计算公式
解释:S表示扇形面积,r 表示半径,θ表示圆心角 (弧度制)
YOUR LOGO
20XX.XX.XX
弧长与扇形面积
XX,a click to unlimited possibilities
汇报人:XX
目 录
01 弧 长 的 计 算
02 扇 形 面 积 的 计ቤተ መጻሕፍቲ ባይዱ算
03 弧 长 与 扇 形 面 积 的 关 系
04 弧 长 与 扇 形 面 积 在 几 何 图 形 中的应用
扇形面积在几何图 形中的应用:计算 圆锥的侧面积、计 算圆台的侧面积、 计算曲线的长度等
扇形面积在几何图 形中的重要性:解 决实际问题,如计 算桥梁的跨度、计 算管道的长度等
扇形面积在几何图 形中的拓展应用: 计算不规则图形的 面积、计算曲线的 长度等
弧长与扇形面积的综合应用
弧长公式:L=θ/2π*r,其中θ为圆心角,r为半径 扇形面积公式:A=θ/360*π*r^2,其中θ为圆心角,r为半径 综合应用:弧长与扇形面积在几何图形中的应用,例如计算圆环的面积、计算曲线的长度等 实例展示:通过具体实例展示弧长与扇形面积的综合应用,如制作几何图形动画等
弧长与扇形面积的关系:弧长越 大,扇形面积越大
扇形面积与半径的关系:扇形面 积与半径的平方成正比
添加标题
添加标题
添加标题
添加标题
弧长与半径的关系:弧长与半径 成正比
弧长与角度的关系:弧长与角度 成正比

弧长与扇形面积的计算

弧长与扇形面积的计算

弧长与扇形面积的计算扇形是在平面上由圆心和圆上两点之间的弧所围成的图形。

而弧长和扇形面积的计算是在几何学中常见的计算问题,并且在日常生活中也有广泛的应用。

本文将分别介绍弧长和扇形面积的计算方法。

一、弧长的计算方法对于给定圆的半径 r 和圆心角θ(单位为弧度),我们可以通过以下公式来计算弧长:l = r * θ其中,l 表示弧长。

半径和圆心角是计算弧长的基本要素,通过将半径与圆心角相乘,即可得到弧长。

例如,如果给定圆的半径 r = 5 cm,圆心角θ = π/3(60度),代入公式可得:l = 5 * π/3 ≈ 5.24 cm所以,这个圆的弧长约为 5.24 cm。

二、扇形面积的计算方法扇形是由圆心、圆上两点和与圆心连线所围成的图形。

我们可以通过以下公式来计算扇形的面积:A = (1/2) * r^2 * θ其中,A 表示扇形面积。

半径和圆心角也是计算扇形面积的基本要素,通过将半径的平方乘以圆心角的一半,即可得到扇形的面积。

例如,如果给定圆的半径 r = 5 cm,圆心角θ = π/3(60度),代入公式可得:A = (1/2) * 5^2 * π/3 ≈ 8.64 cm^2所以,这个圆的扇形面积约为 8.64 平方厘米。

三、应用举例1. 一个钟表的秒针长 6 cm,求秒针划过的弧长和所扫过的扇形面积。

根据题意可知,这是一个半径为 6 cm 的圆。

由于钟表秒针划过的角度为 360 度(2π 弧度),所以:弧长l = 6 * 2π ≈ 37.68 cm扇形面积A = (1/2) * 6^2 * 2π = 36π ≈ 113.1 平方厘米所以,秒针划过的弧长约为 37.68 cm,扫过的扇形面积约为 113.1平方厘米。

2. 一个花坛的半径为 8 m,其中一只喷泉将水喷进半径为 5 m 的圆形区域内,求喷泉围成的扇形面积。

根据题意可知,花坛的半径为 8 m,喷泉喷入的区域为半径为 5 m的圆形区域。

六年级扇形面积和弧长公式

六年级扇形面积和弧长公式

六年级扇形面积和弧长公式
扇形的面积公式
(1)扇形面积S=l×r/2,其中l为扇形的弧长,r为扇形的半径。

(2)扇形面积S=圆心角的角度×π×r²/360°。

(3)扇形面积S=圆心弧度绝对值|a|×r²/2。

扇形的弧长公式
(1)弧长l=(n÷180)×π×r,其中l是弧长,n是扇形圆心角,π是圆周率,r是扇形半径。

(2)弧长l=|α|×r,l是弧长,其中|α|是弧l所对的圆心角的弧度数的绝对值,r是半径。

扇形的周长公式
周长C=2r+(n÷360)πd,其中n为扇形所对的圆心角的度数,d为扇形的直径。

周长C=2r+(n÷180)πr,其中n为扇形所对的圆心角的度数,r为扇形的半径。

扇形简介
一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫扇形。

显然,它是由圆周的一部分与它所对应的圆心角围成。

圆上A、B两点之间的的部分叫做“圆弧”简称“弧”,读作“圆弧AB”或“弧AB”。

以圆心为中心点的角叫做“圆心角”。

最新人教版初中九年级数学上册知识点笔记总结

最新人教版初中九年级数学上册知识点笔记总结

21.1 一元二次方程知识点一一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

注意一下几点:1.只含有一个未知数;②未知数的最高次数是2;③是整式方程。

知识点二一元二次方程的一般形式一般形式:2 + + c = 0(a ≠ 0).其中,2是二次项,a是二次项系数;是一次项,b是一次项系数;c是常数项。

知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。

方程的解的定义是解方程过程中验根的依据。

21.2 降次——解一元二次方程22.2.1 配方法知识点一直接开平方法解一元二次方程(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。

一般地,对于形如x2(a≥0)的方程,根据平方根的定义可解得x12=.(2)直接开平方法适用于解形如x2或()2(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。

(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。

(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。

知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。

配方法的一般步骤可以总结为:一移、二除、三配、四开。

(1)把常数项移到等号的右边;(2)方程两边都除以二次项系数;(3)方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4)若等号右边为非负数,直接开平方求出方程的解。

22.2.2 公式法知识点一公式法解一元二次方程(1)一般地,对于一元二次方程20(a≠0),如果b2-4≥0,那么方程的两个根为,这个公式叫做一元二次方程的求根公式,利用求根公式,我们可以由一元二方程的系数的值直接求得方程的解,这种解方程的方法叫做公式法。

专题24.4 弧长和扇形面积讲练-2021年初中数学九年级上册同步讲练(教师版含解析)

专题24.4 弧长和扇形面积讲练-2021年初中数学九年级上册同步讲练(教师版含解析)

专题24.4弧长和扇形面积典例体系(本专题共91题57页)一、知识点1.弧长和扇形面积的计算扇形的弧长l =180n r π;扇形的面积S =2360n r π=12lr 2.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)计算公式:S 侧=πrl ,S=πr(l+r)二、考点点拨与训练考点1:计算弧长典例:(2020·吉林长春·初三一模)如图,BC为⊙O直径,点A是⊙O上任意一点(不与点B、C重合),以BC、AB为邻边的平行四边形ABCD的顶点D在⊙O外.(1)当AD与⊙O相切时,求∠B的大小.(2)若⊙O的半径为2,BC=2AB,直接写出AC的长.【答案】(1)∠B=45°;(2)4 3【解析】解:(1)连接OA,如图1所示:∵AD与⊙O相切,∴AD⊥OA,∵四边形ABCD是平行四边形,∴AD∥BC,∴OA⊥BC,∵OA=OB,∴△OAB是等腰直角三角形,∴∠B=45°;(2)连接AC,如图2所示:∵BC 为⊙O 直径,∴∠BAC =90°,∵BC =2AB ,∴∠ACB =30°,∴∠B =60°,∴∠AOC =2∠B =120°,∴AC 的长为1202180π⋅⨯=43π.方法或规律点拨本题是与圆有关的综合题,涉及圆的基本性质、平行四边形的性质、切线性质、平行线的性质、等腰直角三角形的判定与性质、圆周角定理、弧长公式等知识,综合性强,难易适中,认真分析,寻找这些知识的关联点并灵活运用是解答的关键.巩固练习1.(2020·黄山市徽州区第二中学一模)如图,在Rt △ABC 中,以BC 的中点O 为圆心的⊙O 分别与AB ,AC 相切于D ,E 两点,DE 的长为()A .4πB .2πC .πD .2π【答案】B【解析】连接OE 、OD ,设半径为r ,∵⊙O 分别与AB ,AC 相切于D ,E 两点,∴OE ⊥AC ,OD ⊥AB ,∵O 是BC 的中点,∴OD 是中位线,∴OD=AE=12AC ,∴AC=2r ,同理可知:AB=2r ,∴AB=AC ,∴∠B=45°,∵∴由勾股定理可知AB=2,∴r=1,∴DE =901180π⨯=2π故选B2.(2020·辽宁龙城·一模)如图,菱形OABC 的边长为4,且点A 、B 、C 在⊙O 上,则劣弧BC 的长度为()A .3πB .23πC .83πD .43π【答案】D【解析】连接OB ,∵四边形OABC 是菱形,∴OC =BC =AB =OA =4,∴OC =OB =BC ,∴△OBC 是等边三角形,∴∠COB =60°,∴劣弧BC 的长为60441801803n r ππ⨯==π,故选:D .3.(2020·江苏镇江市索普初级中学月考)如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD 长为半径画弧,两弧交于点F,则BF的长为_____.【答案】8 15π【解析】连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴BF的长=4828 18015ππ⨯⨯=,故答案为815π.4.(2020·江苏南京·月考)如图,在66⨯的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作ABC的外接圆,则BC的长等于_____.【答案】5 2【解析】∵每个小方格都是边长为1的正方形,∴AB =2,AC ,BC ,∴AC 2+BC 2=AB 2,∴△ACB 为等腰直角三角形,∴∠A =∠B =45°,∴连接OC ,则∠COB =90°,∵OB =∴BC 的长为:90180π⋅=2故答案为:2.5.(2020·山西太原五中一模)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为_____cm .【答案】6π【解析】利用弧长公式计算:该莱洛三角形的周长6063=6180⨯⨯=⨯ππ(cm)故答案为6π6.(2020·广东其他)如图,90MON ︒∠=,动线段AB 的端点A ,B 分别在射线,OM ON 上,点C 线段AB 的中点,点B 由点O 开始沿ON 方向运动,此时点A 向点O 运动,当点A 到达O 时,运动停止,若20AB cm =,则中点C 所经过的路径长是_______________.【答案】5πcm【解析】解:连接OC ,∵90MON ︒∠=,C 为AB 中点,∴OC=1102AB cm =,∴点C 所经过的路径为以O 为圆心,以OC 为半径的弧,且弧所对的圆心角为90°,∴中点C 所经过的路径长为90105180ππ=cm .故答案为:5πcm7.(2018·华中师范大学第一附属中学光谷分校月考)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上.(1)画出△ABC 向上平移4个单位后的△A 1B 1C 1;(2)画出△ABC 绕点O 顺时旋转90°后的△A 2B 2C 2,并求出点A 旋转到A 2所经过的路线长.【答案】(1)见解析;(2)图见解析,π【解析】(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求;点A 旋转到A 2所经过的路线长为:2124ππ⨯=.8.(2020·山东滨州·月考)在正方形网格中,每个小正方形的边长都是1个单位长度,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 向右平移2个单位长度后得到的△A 1B 1C 1;则A 1坐标为______.(2)将△ABC 绕点O 顺时针旋转90°后得到的△A 2B 2C 2;则C 2坐标为______.(3)求在(2)的旋转变换中,点C 到达C 2的路径长(结果保留π).【答案】(1)详见解析,(2,5);(2)详见解析,(2,3);(3)132π【解析】解:(1)如图,△A 1B 1C 1即为所求.A 1(2,5).故答案为(2,5).(2)△A 2B 2C 2即为所求.则C 2(2,3).故答案为(2,3).(3)点C 的运动路径为9013131802ππ=.9.(2020·山东滨州·月考)如图,已知Rt △ABC ,∠ACB =90°,∠B =30°,AB =2,将Rt △ABC 绕点C 顺时针旋转,得到Rt △DEC ,使点A 的对应点D 恰好落在AB 边上.(1)求点A 旋转到点D 所经过的路线的长;(2)若点F 为AD 的中点,作射线CF ,将射线CF 绕点C 顺时针方向旋转90°,交DE 于点G ,求CG 的长.【答案】(1)点A 旋转到点D 所经过的路线的长为3π;(2)CG =1.【解析】(1)∵∠ACB =90°,∠B =30°,AB =2,∴AC =12AB =1,∠A =60°,∵CA =CD ,∴△ACD 是等边三角形,∴∠ACD =60°,∴点A 旋转到点D 所经过的路线的长=160180π⋅⋅=3π.(2)∵△ACD 是等边三角形,AF =FD ,∴∠ACF =∠FCD =∠DCB =30°,∵∠FCG =90°,∴∠DCG =60°,∵∠CDG =∠A =60°,∴△DCG 是等边三角形,∴CG =CD =AC =1.10.(2020·广西其他)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABC 的三个顶点坐标分别为(1,4)A ,(1,1)B ,(3,1)C .(1)画出ABC 关于x 轴对称的111A B C △;(2)画出ABC 绕点O 逆时针旋转90°后的222A B C △;(3)在(2)的条件下,点C 运动的路径对应的弧长为______(结果保留π).【答案】(1)△ABC 关于x 轴对称的△A 1B 1C 1如图所示;见解析;(2)△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2如图所示;见解析;(3)2.【解析】解:(1)△ABC 关于x 轴对称的△A 1B 1C 1如图所示:(2)△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2,如图所示:(3)∵OC 221+3=10,∴点C 经过路径长901010=1802π⋅.考点2:由弧长求扇形半径(圆心角)典例:(2020·扬州中学教育集团树人学校初三二模)如图,将等边△ABC 的边AC 逐渐变成以B 为圆心、BA 为半径的AC ,长度不变,AB 、BC 的长度也不变,则∠ABC 的度数大小由60°变为()A .(60π)°B .(90π)°C .(120π)°D .(180π)°【答案】D【解析】解:设∠ABC 的度数大小由60变为n ,则AC=180n AB π´,由AC=AB ,解得n=180π故选D .方法或规律点拨本题考查的是弧长的计算和等边三角形的性质,掌握弧长的计算公式l=180n r π是解题的关键.巩固练习1.(2019·乐清市英华学校月考)在⊙O 中,∠AOB=120°,弧AB 的长为8π,则⊙O 的半径是()A .6B .8C .12D .24【答案】C 【解析】解:由题意得:1208180180n r r l πππ===,解得:12r =;故选C .2.(2019·河北涿鹿·期末)起重机的滑轮装置如图所示,已知滑轮半径是10cm ,当物体向上提升3πcm 时,滑轮的一条半径OA 绕轴心旋转的角度为()A .54︒B .27︒C .60︒D .108︒【答案】A 【解析】解:设半径OA 绕轴心旋转的角度为n°根据题意可得103180n ππ⨯=解得n=54即半径OA 绕轴心旋转的角度为54°故选A .3.(2020·辽宁双台子·初三一模)一个扇形的弧长是π,半径是2,则此扇形的圆心角的度数是()A .80°B .90°C .100°D .120°【答案】B【解析】解:∵弧长是π,半径是2,∴2180n ππ=,解得:90n =︒故选:B .4.(2020·扬州市江都区国际学校初三三模)已知一个扇形的半径为6,弧长为2π,则这个扇形的圆心角为()A .60°B .30°C .90°D .120°【答案】A 【解析】解:∵180n rl π=∴1801802606l n r πππ⋅===°故选:A 5.(2020·浙江泰顺·初三二模)一段圆弧的半径是12,弧长是4π,则这段圆弧所对的圆心角是()A .60︒B .90︒C .120︒D .150︒【答案】A【解析】解:根据弧长公式有:4π=12180n π,解得:n =60.故选:A .6.(2020·安定区中华路中学三模)一个扇形的弧长是20cm π,面积是2240cm π,则这个扇形的圆心角是___度.【答案】150【解析】根据扇形的面积公式12S lr =可得:1240202r ππ=⨯,解得r =24cm ,再根据弧长公式20180n r l cm ππ==,解得150n =︒.故答案为:150.7.(2020·甘肃肃州·初三二模)已知一个扇形的弧长为2π,扇形的面积是4π,则它的半径为________.【答案】4【解析】解:由扇形的面积公式1=2S lr 可得:1422ππ=⨯⨯r ,解得4r =,故答案为4.8.(2020·哈尔滨市第四十七中学初三三模)已知扇形的半径为5,弧长为103π,那么这个扇形的圆心角为__________度.【答案】120【解析】解:扇形的半径为5,弧长为103π,设扇形的圆心角为n ,可得5101803n ππ⨯=,解得n=120.故答案为:120.9.(2020·黑龙江哈尔滨·初三二模)一个扇形的弧长为6π,面积为27π,则此扇形的圆心角为_______度.【答案】120【解析】解:设扇形圆心角度数为n ,半径为r ,∵弧长为6π,面积为27π,∴62360n r ππ=⨯,227360n r ππ=⨯,解得n=120,r=9,故答案为:12010.(2020·黑龙江哈尔滨·一模)已知扇形半径是9cm ,弧长为4cm π,则扇形的圆心角为__________度.【答案】80【解析】根据94180180n r n l πππ⨯===解得n=80故答案为:8011.(2020·全国单元测试)已知圆弧的半径为15厘米,圆弧的长度为10π,求圆心角的度数.【答案】120︒【解析】解:圆心角的度数1801801012015l n r πππ⨯===︒.考点3:图形中扇形和不规则图形面积计算典例:(2020·江苏东台·初三月考)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作⊙O 的切线DF ,交AC 于点F .(1)求证:DF ⊥AC ;(2)若⊙O 的半径为4,∠C=67.5°,求阴影部分的面积.【答案】(1)详见解析;(2)S 阴影=4π﹣8.(1)证明:如图1,连接OD ,OB OD =,ABC ODB∴∠=∠AB AC∴=ABC ACB∴∠=∠ODB ACB∴∠=∠//OD AC∴DF 是O 的切线,DF OD∴⊥DF AC∴⊥(2)如图2,连接OE ,DF AC AB AC⊥=,67.5ABC C ∴∠=∠=︒45BAC ∴∠=︒OA OB=90AOE ∠=︒O 的半径为4,29041=44483602S ππ⨯∴-⨯⨯=-阴影方法或规律点拨本题考查切线的性质、等腰三角形的性质、扇形的面积等知识,是重要考点,难度较易,掌握相关知识是解题关键.1.(2019·阳江市江城区教育教学研究室二模)如图,AB 是O 的直径,弦CD AB ⊥,30CDB ∠=︒,CD =,则阴影部分图形的面积为()A .4πB .2πC .πD .23π【答案】D【解析】连接OD .∵CD ⊥AB ,∴12CE DE CD ===(垂径定理),∴S △OCE =S △ODE ,∴阴影部分的面积等于扇形OBD 的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,∴260223603OBD S ππ⨯==扇形,∴阴影部分的面积为23π.故选:D .2.(2020·山东初三一模)如图,菱形ABCD 的边长为4,且AE BC ⊥,E 、F 、G 、H 分别为BC 、CD 、DA 、AB 的中点,以A 、B 、C 、D 四点为圆心,半径为2作圆,则图中阴影部分的面积是()A .34-πB .32πC .832-πD .34-π【答案】D 【解析】∵点E 为BC 的中点,且AE ⊥BC ,∴AB=AC ,∴AB=BC=AC ,∴∠B=60°,BE=EC=12BC=2,∴22224223AB BE -=-=,∴ABCD BC •AE 3S ==菱形,2AGH BEH CEF DGF S S 24S S ππ+++==扇形扇形扇形扇形,∴图中阴影部分的面积是:34π-.故选:D .3.(2020·厦门市翔安区教师进修学校(厦门市翔安区教育研究中心)其他)如图,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,则阴影部分的面积为()A .2π﹣4B .4π﹣8C .2π﹣8D .4π﹣4【答案】A【解析】如图,连接OC .∵C 是弧AB 的中点,∠AOB =90°,∴∠COB =45°,∵四边形CDEF 是正方形,且其边长为∴∠ODC =∴在Rt △ODC 中,,OC==4∴S 阴影=S 扇形OBC -S △ODC =2454360π⨯-12-4,故选A.4.(2020·广西西乡塘·期末)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S 1+S 2=12,且AC +BC =10,则AB 的长为()A .B .C .D .【答案】A 【解析】解:由勾股定理得,AC 2+BC 2=AB 2,∵S 1+S 2=12,∴12×π×22AC ⎛⎫ ⎪⎝⎭+12π×22BC ⎛⎫ ⎪⎝⎭+12AC ×BC ﹣12π×22AB ⎛⎫ ⎪⎝⎭=12,∴AC ×BC =24,AB ==故选:A .5.(2020·福建宁化·期中)如图,点A 、B 、C 是⊙O 上的点,且∠ACB=40°,阴影部分的面积为8π,则此扇形的半径为()A .3B .4C .5D .6【答案】D 【解析】由题意可知:∠AOB =2∠ACB =2×40°=80°,设扇形半径为r ,故阴影部分的面积为2808360r ππ=,故解得:16r =,26r =-(不合题意,舍去),故选D .6.(2020·湖北江岸·月考)如图,平行四边形ABCD 中8AB cm =,14BC cm =,以点B 为圆心AB 长为半径画弧交BC 于点E ,以点C 为圆心CD 长为半径画弧交BC 于点F ,三角形CDE 的面积为212cm ,阴影部分的面积为_____2cm .(π取3进行运算)【答案】40【解析】∵四边形ABCD 是平行四边形,∴AB=CD=8cm ,∠B+∠C=180°,∵三角形CDE 的面积为212cm ,∴平行四边形的面积为122146⨯⨯=562cm ,∵以点B 为圆心AB 长为半径画弧交BC 于点E ,以点C 为圆心CD 长为半径画弧交BC 于点F ,∴28360ABE B S π∠⋅⋅=扇形2cm ,28360CDF C S π∠⋅⋅=扇形2cm ,∴=()ABCD CDF ABE S S S S --阴影扇形扇形=ABCDABE CDF S S S +-扇形扇形=28360C π∠⋅⋅+28360B π∠⋅⋅﹣56=218038360⨯⨯﹣56=96-56=40(2cm ),故答案为:40.7.(2019·乐清市英华学校期中)如图,在扇形AOB 中,120AOB ︒∠=,半径OC 交弦AB 于点D ,且OC OA ⊥.若=OA _____.π+【解析】解:作OE AB ⊥于点F ,在扇形AOB 中,120AOB ︒∠=,半径OC 交弦AB 于点D ,且OC OA ⊥.=OA 90AOD ︒∴∠=,90BOC ︒∠=,OA OB =,30OAB OBA ︒∴∠=∠=,tan 3023OD OA ︒∴=⋅=⨯=,4=AD ,2262AB AF ==⨯=,OF =,2BD ∴=,∴阴影部分的面积是:2230223602AOD BDOOBC S S S ππ∆∆⨯⨯-++-==+扇形,π+.8.(2020·河南二模)如图,在Rt △ABC 中,∠B =90°,∠C =30°,BC B 为圆心,AB 为半径作弧交AC 于点E ,则图中阴影部分面积是______________.【答案】64π-【解析】连接BE ,∵在Rt ABC ∆中,90B ∠=︒,30C ∠=︒,3BC =;∴1AB =,60BAE ∠=︒;∵BA BE =;∴ABE ∆是等边三角形;∴图中阴影部分面积是:22601313360464ππ⨯⨯-=-.故答案为:364π-.9.(2020·高邮市外国语学校初中部月考)已知扇形的圆心角为150°,它的面积为240πcm 2,那么扇形的半径为__________.【答案】24cm .【解析】解:∵扇形的圆心角为150°,它的面积为240πcm2,∴设扇形的半径为:r ,则:240π=2150360r π⨯⨯解得:r=24cm .故答案为:24cm .10.(2020·丹阳市横塘初级中学月考)如图,三圆同心于O ,AB =6cm ,CD ⊥AB 于O ,则图中阴影部分的面积为________cm 2.【答案】94π【解析】解:阴影部分的面积2211694424r πππ⎛⎫=== ⎪⎝⎭故答案为:94π.11.(2020·山东济南·中考真题)如图,在正六边形ABCDEF 中,分别以C ,F 为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.【答案】6【解析】解:∵正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r ,∴2120224360r ππ⨯⨯=,2224,3r ππ∴=236,r ∴=解得r =6.(负根舍去)则正六边形的边长为6.故答案为:6.12.(2020·福建省福州屏东中学二模)如图,在ABC 中,CA CB =,90ACB ∠=︒,2AB =,点D 为AB 的中点,以点D 为圆心作圆心角为90︒的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为______【答案】142π-【解析】解:连接CD ,∵CA=CB ,∠ACB=90°,∴∠B=45°,∵点D 为AB 的中点,∴DC=12AB=BD=1,CD ⊥AB ,∠DCA=45°,∴∠CDH=∠BDG ,∠DCH=∠B ,在△DCH 和△DBG 中,CDH BDG CD BD DCH B ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DCH ≌△DBG(ASA),∴S 四边形DGCH =S △BDC =12S △ABC =12×12AB•CD=14×2×1=12.∴S 阴影=S 扇形DEF -S △BDC =2901360π⨯-12=4π-12.故答案为4π-12.13.(2020·广东二模)如图,四边形ABCD 是菱形,∠A =60°,AB =2,扇形EBF 的半径为2,圆心角为60°,则图中阴影部分的面积是_____.【答案】233π【解析】解:如图,连接BD.∵四边形ABCD 是菱形,∠A =60°,∴∠ADC =120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB =2,∴△ABD∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,234A AB BD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABG ≌△DBH(ASA),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF ﹣S △ABD=260212236023ππ⨯-⨯⨯=-.故答案是:23π-14.(2020·全国月考)如图,在扇形ABO 中,∠AOB =90°,C 是弧AB 的中点,若OD :OB =1:3,OA =3,则图中阴影部分的面积为_____.【答案】98π﹣4.【解析】解:连接OC ,过C 作CE OB ⊥于E ,90AOB ∠=︒Q ,C 是弧AB 的中点,45AOC BOC ∴∠=∠=︒,OCE ∴∆是等腰直角三角形,:1:3OD OB =,3OA =,232322CE ∴==,1OD =,∴图中阴影部分的面积245319136028CODCOB S S ππ∆⋅⨯=-=-⨯=-扇形,故答案为:984π-.15.(2020·广东其他)如图,四边形ABCD 和AEFG 都是正方形,点,E G 分别在,AB AD 上,点F 在扇形ADB 的DB 上,已知正方形ABCD 的边长为1,则图中阴影部分的面积为________________.【答案】3π24-【解析】解:如图,连接AF ,正方形ABCD 的边长为1,点F 在扇形ADB 的DB 上1,90AF AD A ︒∴==∠=四边形AEFG 为正方形,AE EF ∴=且2221AE EF AF +==,即221AE =,解得22AE =∴正方形ABCD 的面积为1,正方形AEFG 的面积为2221(22AE ==,扇形的面积为29013604ππ︒︒⋅⋅=∴阴影部分的面积=1314224ππ-+=-.16.(2020·江苏泰州·初三月考)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠BCD =30°,CD =,则阴影部分面积S 阴影=_____.【答案】23π【解析】解:连接OC .∵AB ⊥CD ,∴BC BD =,CE =DE ∴∠COD =∠BOD ,∵∠BOD =2∠BCD =60°,∴∠COB =60°,∵OC =OB =OD ,∴△OBC ,△OBD 都是等边三角形,∴OC =BC =BD =OD ,∴四边形OCBD 是菱形,∴OC//BD ,∴S △BDC =S △BOD ,∴S 阴=S 扇形OBD ,∵OD =sin 60ED ︒=2,∴S 阴=2602360π∙∙=23π,17.(2018·开江县中小学教学研究室一模)如图,小明自制一块乒乓球拍,正面是半径为8cm 的O ,AB 所对的圆心角的度数为90︒,弓形ACB (阴影部分)粘贴胶皮,则胶皮面积为_____________.(结果保留π)【答案】23248()cm π+【解析】连接OA 、OB ,∵∴∠AOB=90°,∴AOB S =188322⨯⨯=(2cm ),()236090848π360ACB S π-⨯==扇形(2cm ),则弓形ACB 胶皮面积为(3248π+)2cm .故答案为:(3248π+)2cm .18.(2020·西藏日喀则·一模)如图,折扇完全打开后,OA ,OB 的夹角为120°,OA 的长为18cm ,AC 的长为9cm ,求图中阴影部分的面积S .【答案】81πcm 2【解析】解:∵OA=18,AC=9,∴OC=OA-AC=9∴22120181209=1082781360360S πππππ⨯⨯-=-=阴影(cm 2)答:阴影部分的面积S 为81πcm 2.考点4:图形变换过程中形成的图象面积计算典例:(2020·江苏新沂·初三三模)(1)如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =2.将ABC 绕顶点A 顺时针方向旋转至AB C ''△的位置,点B ,A ,C '在同一条直线上,则线段BC 扫过的区域面积为.(2)①在ABC ,∠ACB=45°,∠ABC=30°,AB=4cm ,则BC=;②将ABC 绕点A 顺时针旋转120°得到AB C ''△,在旋转过程中求线段BC 所扫过的面积.【答案】(1)512π;(2)①(2cm +;②163π【解析】解:(1)Rt ABC △中,90C ∠=︒,30A ∠=︒,2AB =,112122BC AB ∴==⨯=,322AC =⨯=,150BAB ∴∠'=︒,()AC B ACB BAB CAB BAB CAB S S S S S S S ''''''∴=+-+=-△△阴影扇形扇形扇形扇形21502536012ππ⨯⨯=-.故答案为:512π.(2)①过点A 作AD BC ⊥,在Rt △ABD 中,30ABC ∠=︒,4cm AB =,∴3cm BD =,2cm AD =,在Rt ACD △中,45ACD ∠=︒,∴2cm CD AD ==,∴(23cm BC BD CD =+=+,故答案为:(23cm +;②(22221202212041202120216=3603603603603S πππππ⨯⨯⨯⨯-+-=阴.方法或规律点拨本题考查了旋转的性质,以及弧长的计算,扇形的面积的计算,(1)中推出扫过的面积等于两个扇形的面积的差是解题的关键.巩固练习1.(2020·广东宝安·初三三模)如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC 绕点B 顺时针旋转120到11A BC V 的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为()A .77π338B .47π338C .πD .4π33+【答案】C【解析】∵O 、H 分别为边AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°到△A 1BC 1的位置,∴△OBH ≌△O 1BH 1,利用勾股定理可求得BH=437+=,所以利用扇形面积公式可得()()2212012074360360BH BC πππ-⨯-==.故选C .2.(2020·全国课时练习)如图,在AOC ∆中,31OA cm OC cm =,=,将△AOC 绕点O 顺时针旋转90后得到BOD ∆,则AC 边在旋转过程中所扫过的图形的面积为()2cm .A .2πB .2πC .178πD .198π【答案】B【解析】解:AOC BOD ∆∆≌,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积229039012360360πππ⋅⨯⋅⨯=-=故选B .3.(2020·北京海淀区101中学温泉校区初三三模)如图,将ABC 绕点C 按顺时针旋转60︒得到A B C ''V ,已知6AC =,4BC =,则线段AB 扫过的图形的面积为()A .23πB .83πC .6πD .103π【答案】D【解析】解:ABC ∆绕点C 旋转60︒得到△A B C '',ABC \D @△A B C '',ABC A B C S S D ⅱ\=V ,60BCB ACA ∠'=∠'=︒.AB Q 扫过的图形的面积ABC A B C ACA BCB S S S S D ⅱⅱ=+--V 扇形扇形,AB ∴扫过的图形的面积ACA BCB S S ⅱ=-扇形扇形,AB ∴扫过的图形的面积11103616663p p p =-=.故选:D .4.(2020·恩施市白果乡初级中学其他)有一张矩形纸片ABCD ,其中4=AD ,以AD 为直径的半圆,正好与对边BC 相切,如图(甲),将它沿DE 折叠,使A 点落在BC 上,如图(乙),这时,半圆还露在外面的部分(阴影部分)的面积是_______.【答案】433π【解析】如图,点O 为半圆的圆心,过点O 作作OH ⊥DK 于H ,∵以AD 为直径的半圆,正好与对边BC 相切,∴AD=2CD ,∵∠C=90º,∴∠DAC=30º,∴∠ODK=30º,∵OD=OK ,∴∠DOK=120º,∠ODK=∠OKD=30º∴扇形ODK 的面积为120443603ππ⨯=,∵∠ODK=∠OKD=30º,OD=2,∴OH=1,DH=KH==,∴DK=∴△ODK 的面积为112⨯⨯=∴半圆还露在外面的部分(阴影部分)的面积是4(3π,故答案为:4(3π.5.(2020·福建省福州延安中学初三期中)如图,在ABC 中90C ∠=︒,2AC BC ==,将ABC 以点A 为旋转中心,顺时针旋转30°,得到ADE ,点B 经过的路径为BD 点C 经过的路径为CE ,则图中阴影部分的面积为__________.【答案】π3【解析】由题意可得AB AD ===则阴影部分的面积为222230π(22)30π222π236036023ABC ADEABD ACE S S S S ∆∆⨯⨯⨯⨯+--=+--=扇形扇形6.(2019·广东潮州·其他)如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm,60,90BOC BCO ︒︒∠=∠=,将BOC 绕圆心O 逆时针旋转至B OC ''△,点C '在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_______2cm .(结果保留π).【答案】4π【解析】解:60BOC ∠=︒,△B OC ''是BOC ∆绕圆心O 逆时针旋转得到的,60B OC ∴∠''=︒,BCO ∆≅△B C O '',60B OC ∴∠'=︒,30C B O ∠''=︒,120B OB ∴∠'=︒,2AB cm =,1OB cm ∴=,12OC '=,32B C ∴''=,2120113603B OB S ππ'⨯∴==扇形,1120436012C OC S ππ'⨯==扇形,∴阴影部分面积113124B C O BCO B OB C OC B OB C OC S SS S S S πππ''∆''''=+--=-=-=扇形扇形扇形扇形;故答案为:14π.7.(2020·沭阳县怀文中学初三月考)如图,将四边形ABCD 绕点A 逆时针旋转30后得到四边形,AEFG 点D 经过的路径为弧DG .若6,AD =则图中阴影部分的面积为________________________.【答案】3π【解析】∵将四边形ABCD 绕点A 逆时针旋转30°后得到四边形AEFG ,∴S 四边形ABCD =S 四边形AGFE ,AG=AD=6,∴图中阴影部分的面积=S 扇形DAG =23063360ππ⨯=.故答案为:3π.8.(2020·广西兴业·初三其他)如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.【答案】4π【解析】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=12OB=1则边BC 扫过区域的面积为:22112012012=3603604πππ⎛⎫⨯ ⎪⨯⎝⎭-故答案为4π.9.(2020·山东中区·初三二模)如图,在△ABC 中,∠ABC =45°,∠ACB =30°,AB =2,将△ABC 绕点C 顺时针旋转60°得△CDE ,则图中线段AB 扫过的阴影部分的面积为_____.【答案】233【解析】作AF ⊥BC 于F ,∵∠ABC =45°,∴AF =BF =22AB在Rt △AFC 中,∠ACB =30°,∴AC =2AF =2,FC =tan ∠AF ACF =,由旋转的性质可知,S △ABC =S △EDC ,∴图中线段AB 扫过的阴影部分的面积=扇形DCB 的面积+△EDC 的面积﹣△ABC 的面积﹣扇形ACE 的面积=扇形DCB 的面积﹣扇形ACE 的面积=260360π⨯﹣260(22)360π⨯=3π,故答案为:3π.10.(2020·洛阳市第二外国语学校初三二模)如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为_____.(答案用根号表示)【答案】6π﹣2【解析】连接OD ,∵扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,∴AC =OC ,OD =2OC =6,∴CD ==∴∠CDO =30°,∠COD =60°,∴由弧AD 、线段AC 和CD 所围成的图形的面积=S 扇形AOD ﹣S △COD =2606133602π⨯-⨯362π=-∴阴影部分的面积为6π﹣2,故答案为6π﹣2.11.(2020·江苏宿豫·初三期中)如图,在平面直角坐标系xOy 中,边长为4的正方形ABCD 的中心在原点O 处,且AB ∥x 轴,点P 在正方形ABCD 的边上,点P 从点A 处沿A→B→C→D→A→B→…匀速运动,以点P 为圆心,以1为半径长画圆,在运动过程中:(1)当⊙P 第1次与x 轴相切时,则圆心P 的坐标为;(直接写出结果)(2)当圆心P 的运动路程为2019时,判断⊙P 与y 轴的位置关系,并说明理由;(3)当⊙P 第一次回到出发的位置时,即⊙P 运动一周,求⊙P 运动一周覆盖平面的区域的面积.【答案】(1)(﹣2,1);(2)相切;理由见解析;(3)28+π.【解析】(1)∵边长为4的正方形ABCD 的中心在原点O 处,且AB ∥x 轴,∴A(2,2),B(-2,2),C(-2,-2),D(2,-2),∵当⊙P 第1次与x 轴相切时,圆心P 在正方形的BC 边上,且点P 到x 轴的距离为1,∴圆心P 的坐标为(﹣2,1),故答案为:(﹣2,1)(2)⊙P 与y 轴相切,理由:∵正方形ABCD 的边长为4,∴⊙P 运动一周时,圆心P 的运动路程为4×4=16,∵2019÷16=126……3,∴⊙P 运动了126周多,且AP =3,∴圆心P 在AB 上,∴圆心P 的坐标为(﹣1,2),∴圆心P 到y 轴的距离d =3-2=1,∵⊙P 的半径r =1,∴d =r ,∴⊙P 与y 轴相切;(3)如图,阴影部分面积S =4×6+1×4×2﹣2×2+29014360π⋅⨯=28+π,∴⊙P 运动一周覆盖平面的区域的面积为28+π.12.(2020·武汉市黄陂区第六中学初三其他)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上.(1)画出△ABC 向上平移4个单位后的△A 1B 1C 1;(2)将△ABC 绕点O 顺时针旋转90°,则点A 所经过的路径长;线段AC 扫过的面积;(3)直接写出△ABC 的外接圆的半径.【答案】(1)见解析;(2)52π;254π;.【解析】解:如图:(1)△A 1B 1C 1即为所求;(2)将△ABC 绕点O 顺时针旋转90°,则点A 所经过的路径长为:905180π⨯=52π;线段AC 扫过的面积为:2905360π⨯=254π;故答案为:52π,254π;(3)△ABC 的外接圆的半径为:OC 2212+5513.(2020·黑龙江初三月考)如图,在边长为1的正方形组成的网格中,AOB ∆的顶点均在格点上,其中点()4,3A ,()1,3B ,将AOB ∆绕点O 逆时针旋转90︒后得到11A OB ∆.(1)画出11A OB ∆;(2)在旋转过程中点B 所经过的路径长为________;(3)求在旋转过程中线段AB 、BO 扫过的图形面积之和.【答案】(1)见解析;(2)52;(3)254π【解析】解:(1)11A OB ∆如图所示:(2)由勾股定理得,22125BO =+=,所以,点B 所经过的路程长90551802ππ⋅==;由勾股定理得:2243255OA =+==,∵AB 所扫过的面积11A OA B OB S S =-扇形扇形,BO 扫过的面积1=B OB S 扇形,∴线段AB 、BO 扫过的图形面积之和11112905253604A OA B OB B OB A OA ππS S S S ⋅⋅+====-扇形扇形扇形扇形.考点5:圆锥侧面积计算典例:(2020·西藏日喀则·一模)如图,已知用一块圆心角为270°的扇形铁皮做一个圆锥形的烟囱帽(接缝忽略不计),做成的烟囱帽底面圆直径是60cm ,则这个烟囱帽的侧面积是_________cm 2.【答案】1200π【解析】解:∵圆锥的底面直径为60cm ,∴圆锥的底面周长为60πcm ,∴扇形的弧长为60πcm ,设扇形的半径为r ,则270180r π=60π,解得:r=40cm ,∴这个烟囱帽的侧面积是12×60π×40=1200πcm 2故答案为:1200π.方法或规律点拨本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.巩固练习1.(2020·黄山市徽州区第二中学一模)已知圆锥的底面积为9πcm 2,母线长为6cm ,则圆锥的侧面积是()A .18πcm 2B .27πcm 2C .18cm 2D .27cm 2【答案】A【解析】∵圆锥的底面积为9πcm 2,∴圆锥的底面半径为3,∵母线长为6cm ,∴侧面积为3×6π=18πcm 2,故选A ;2.(2020·江苏宿迁·二模)一个圆锥的主视图是边长为4cm 的正三角形,则这个圆锥的侧面积等于()A .216cm πB .212cm πC .28cm πD .24cm π【答案】C【解析】∵圆锥的主视图是边长为4cm 的正三角形,∴圆锥的母线长为4cm ,底面圆的半径为2cm ,故圆锥底面圆的周长为4πcm ,故圆锥侧面展开图的面积为S =12×4×4π=8π(cm 2).故选C.3.(2020·长沙麓山国际实验学校初三期末)在Rt △ABC 中,∠C=90°,AC=12,BC=5,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是A .25πB .65πC .90πD .130π【答案】B【解析】解:由已知得,母线长l=13,半径r 为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B .4.(2019·江苏金坛·初三期中)若将半径为12cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A .2cmB .3cmC .4cmD .6cm 【答案】D【解析】解:圆锥的侧面展开图的弧长为2π×12÷2=12π(cm ),∴圆锥的底面半径为12π÷2π=6(cm ),故选D .5.(2020·福建福州十八中三模)一个圆锥的底面半径4r =,高3h =,则这个圆锥的侧面积是__________________(结果取整数).【答案】63【解析】解:圆锥的母线长5=,所以这个圆锥的侧面积=12×2π×4×5=20π≈63.故答案为63.6.(2020·广西玉林·一模)已知某圆锥的底面半径为3cm,母线长6cm,则它的侧面展开图的面积为________.【答案】18πcm2【解析】底面半径为3cm,则底面周长=6πcm,侧面面积=12×6π×6=18πcm2.7.(2020·江苏南京·月考)一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为_____.【答案】15π【解析】解:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故答案为:15π8.(2020·江苏镇江·其他)已知圆锥的母线长为3,底面圆半径为2,则该圆锥的侧面积为_____.(结果保留π)【答案】6π【解析】解:圆锥的侧面积=12×3×2π×2=6π.故答案为:6π.9.(2020·江苏省泰兴市黄桥初级中学初三月考)圆锥的底面半径为1,母线长为3,则该圆锥侧面积为_________(结果保留π).【答案】3π【解析】解:圆锥的底面周长=2π×1=2π,即圆锥的侧面展开图扇形的弧长为2π,则圆锥侧面积=12×2π×3=3π,故答案为:3π.10.(2020·江苏泰州·初三月考)圆锥底面圆半径为5,母线长为6,则圆锥侧面积等于_____.【答案】30π【解析】解:圆锥侧面积=12×2π×5×6=30π.故答案为30π.11.(2020·浙江长兴·初三一模)如图是一个圆锥形雪糕冰激凌外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm.则这个冰激凌外壳的侧面积等于_______2cm.(结果保留 )【答案】36π【解析】这个冰激凌外壳的侧面积为()231236cmππ⨯⨯=,故答案为36π.考点6:有圆锥的侧面积求圆锥的母线等元素典例:(2019·广东郁南·初三月考)若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是()A .90°B .100°C .120°D .60°【答案】C【解析】设圆心角的度数是n 度.则6180n π⨯=4π,解得:n =120.故选C.方法或规律点拨本题考查扇形弧长公式.利用转化思想将圆锥的底面圆周长转化为圆锥侧面展开图扇形的弧长是解题的关键.巩固练习1.(2020·江苏泰州·初三月考)如图,正方形ABCD 的边长为4,以点A 为圆心,AD 为半径画圆弧DE 得到扇形DAE (阴影部分,点E 在对角线AC 上).若扇形DAE 正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A 2B .1C .22D .12【答案】D 【解析】∵正方形ABCD 的边长为4∴4AD AE ==∵AC 是正方形ABCD 的对角线∴45EAD ∠=︒∴454=180DE l ππ︒⨯⨯=︒∴圆锥底面周长为2C r ππ==,解得12r =∴该圆锥的底面圆的半径是12,故选:D .2.(2020·全国课时练习)若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为()A .120°B .180°C .240°D .300°【答案】B【解析】设母线长为R ,底面半径为r ,∴底面周长=2πr ,底面面积=πr 2,侧面面积=πrR ,∵侧面积是底面积的2倍,∴2πr 2=πrR ,∴R=2r ,设圆心角为n ,有180n R π=2πr=πR ,∴n=180°.故选B .3.(2020·山东岚山·初三期末)圆锥形纸帽的底面直径是18cm ,母线长为27cm ,则它的侧面展开图的圆心角为()A .60°B .90°C .120°D .150°【答案】C【解析】解:根据圆锥侧面展开图的面公式为:πrl=π×9×27=243π,∵展开图是扇形,扇形半径等于圆锥母线长度,∴扇形面积为:227243360n ππ⨯=解得:n=120.故选:C .考点7:圆锥的母线、底面半径等计算典例:(2020·绍兴市越城区成章中学期中)如图,在正方形网格图中建立平面直角坐标系,一条圆弧经过格点(0,4)A 、(4,4)B -、(6,2)C -,若该圆弧所在圆的圆心为D 点,请你利用网格图回答下列问题:。

扇形面积和弧长的计算

扇形面积和弧长的计算

扇形面积和弧长的计算
扇形是一个由圆心和两个半径所构成的区域。

在进行扇形面积和弧长的计算时,我们需要知道扇形的半径和夹角。

1.扇形面积的计算:
扇形面积可以通过圆的面积和夹角来计算。

圆的面积公式为:
S=π*r^2
扇形面积可以根据圆的面积和夹角的比例来计算。

假设扇形的夹角为θ,那么扇形面积S'与圆的面积S的比例为θ/360°。

因此,扇形面积的计算公式为:
S'=(θ/360°)*S
=(θ/360°)*π*r^2
其中,S'为扇形的面积。

2.弧长的计算:
扇形的弧长是指扇形内圆弧的长度。

弧长的计算需要知道扇形的半径和夹角。

圆的周长公式为:
C=2*π*r
扇形的弧长可以根据圆的周长和夹角的比例来计算。

假设扇形的夹角为θ,那么扇形的弧长L与圆的周长C的比例为θ/360°。

因此,扇形弧长的计算公式为:
L=(θ/360°)*C
=(θ/360°)*2*π*r
其中,L为扇形的弧长。

需要注意的是,角度应该以弧度制来进行计算。

弧度制与角度制之间的换算关系为2π rad = 360°,即1 rad ≈ 57.3°。

如果给定的夹角是以角度制表示,则需要将其转化为弧度制进行计算。

弧长及扇形的面积公式

弧长及扇形的面积公式

弧长及扇形的面积公式弧长公式:在圆的周长上取一段弧,所对应的弧长可以通过以下公式计算:弧长=θ/360°×2πr其中,θ为圆心角(以度为单位),r为圆的半径。

弧长可以通过圆的弧度制表示,弧度制是一种角度度量方式,1弧度等于夹在圆心上的圆弧长正好等于半径的长度。

扇形的面积公式:扇形是圆的一部分,其面积可以通过以下公式计算:扇形的面积=θ/360°×πr²其中,θ为扇形所对应的圆心角(以度为单位),r为圆的半径。

这两个公式都基于圆的性质推导得到,下面将对这两个公式进行详细解释。

弧长公式的推导:对于一个圆而言,它的周长是一个完整的圆形线段,即2πr(其中π为圆周率,r为圆的半径)。

假设我们需要计算一段圆周上的弧对应的弧长,可以将圆周等分为360个小部分,每个小部分夹角为1°。

如果所求弧所对应的圆心角恰好为θ度,那么这段弧所对应的弧长就是θ/360°乘以圆周,即θ/360°×2πr。

扇形面积公式的推导:扇形是圆的一部分,其形状可以被看作是一块扇叶。

首先我们可以根据扇形的定义将其分为两个部分:一个是扇形所对应的圆弧,另一个是扇形的半径所包围的扇形三角形。

由于扇形的面积等于圆弧的面积加上扇形三角形的面积,因此我们需要分别计算这两个部分。

-圆弧的面积可以通过弧长和半径相乘得到,即弧长/圆周×圆的面积。

由于弧长/圆周等于圆心角/360°,因此圆弧的面积可以表示为θ/360°×πr²。

- 扇形三角形的面积等于扇形的半径和扇形所对应圆心角的正弦值乘积的一半。

这个结论可以通过充分利用三角函数、相似三角形及三角形面积公式推导得到。

所以扇形三角形的面积等于(r² × sinθ)/2将上述两个部分的面积相加,就可以得到扇形的面积:扇形的面积=圆弧面积+扇形三角形面积= θ/360° × πr² + (r² × sinθ)/2=θ/360°×πr²+θ/2×r²=θ/360°×πr²+θ/2×(πr²/180°)(由弧度制定义)=θ/360°×πr²+θ/2×(πr²/π)(由π的性质化简)=θ/360°×πr²+θ/2×r²=θ/360°×πr²(通分、化简)通过上述推导可以看出,扇形的面积公式与圆心角以及圆的半径有关。

24.4.1弧长和扇形的面积(复习版)

24.4.1弧长和扇形的面积(复习版)

180
180
10 20
3
(厘ቤተ መጻሕፍቲ ባይዱ)。
扇形的面积为
图 2 3 .3 .5
Snr2 60102 5 0
360 360
3
巩固
1、已知扇形的圆心角是120°,半径 是4cm,那么这个扇形的面积为 16 。
3
2、已知扇形的半径是6,弧长是 20πcm,那么这个扇形的面积 为 60π 。 3、已知扇形的圆心角是120°,弧 长是20πcm,那么这个扇形的面积 为 300π 。
问题:扇形的面积公式与弧长公式有联系吗?
L nR
180
RO
S扇形
n 36
R2
0
A
所以扇形面积公式:
B
S扇形
1 lR 2
想一想:扇形的面积公式与什么公式类似?
例题
例1 如图圆心角为60°的扇形的半径为 10厘米,求这个扇形的周长和面积
解:因为n=60°,r=10厘米,所以扇形周长为
lnr2r601020
4
D FO
C
A
E
11.已知菱形ABCD的对角线BD与它的边长相 等,以BC为直径的半圆交DC于E,BD=2cm,求 阴影面积
DD
E
AA
CC
3
34
BB
巩固
9、如图,大半圆和小半圆相切于点C, 大半圆的弦AB与小半圆相切于点F, 且AB∥CD,AB=4cm,求阴影部分的 面积。
AF
B
C O1 O
D
B
B
18
O
A
2550
o1 5
r
O
C
5-r
o2
A
2.正方形的边长为2,求阴影的面积。

弧长与扇形面积的计算

弧长与扇形面积的计算

弧长与扇形面积的计算在几何学中,弧长和扇形面积的计算是非常重要的基本知识。

本文将介绍如何计算弧长和扇形面积,并提供相关的计算公式和示例。

一、弧长的计算在圆内任取一段弧,该弧所对应的圆心角为θ(弧度制)。

弧长(s)可以通过以下公式进行计算:s = rθ其中,r表示弧所在圆的半径。

例如,若半径为6cm的圆上的圆心角为2π/3弧度,则弧长为:s = 6 * (2π/3) ≈ 12.57cm二、扇形面积的计算扇形是指圆内任取一段弧及其所对应的弦所围成的图形。

扇形面积可以通过以下公式进行计算:A = (1/2) * r^2 * θ其中,r表示扇形所在圆的半径,θ表示扇形所对应的圆心角(弧度制)。

例如,若半径为8cm的圆上的圆心角为π/4弧度,则扇形的面积为:A = (1/2) * 8^2 * (π/4) = 8π ≈ 25.13cm^2三、示例分析为了更好地理解弧长和扇形面积的计算,我们来看一个具体的示例。

假设有一个半径为10cm的圆,我们要计算该圆上圆心角为π/6弧度的弧长和对应的扇形面积。

1. 弧长计算:s = 10 * (π/6) ≈ 5.24cm因此,所给条件下弧长为5.24cm。

2. 扇形面积计算:A = (1/2) * 10^2 * (π/6) ≈ 8.72cm^2因此,所给条件下扇形的面积为8.72cm^2。

通过以上示例,我们可以看到如何根据给定的圆心角和半径来计算弧长和扇形面积。

四、扩展应用弧长和扇形面积的计算在实际生活中有广泛的应用,例如:1. 建筑设计中,弧形门窗的制作和装饰。

2. 机械设计中,齿轮的制造和传动。

3. 地理测量中,测量地球上两个经度之间的弧长。

4. 饮食行业中,制作蛋糕的扇形面积计算等。

总结:本文介绍了弧长和扇形面积的计算方法,弧长通过rθ的计算公式得出,扇形面积通过(1/2) * r^2 * θ的计算公式得出。

并通过示例演示了如何应用这些公式进行计算。

以上知识在几何学和生活中具有重要意义,希望读者能够掌握和灵活运用。

最新初中数学24.4 弧长和扇形面积6 第1课时 弧长和扇形面积

最新初中数学24.4 弧长和扇形面积6 第1课时 弧长和扇形面积

最新初中数学24.4 弧长和扇形面积6 第1课时弧长和扇形面积 24.4 弧长和扇形面积第1课时弧长和扇形面积1.了解扇形的概念,复习圆的周长、圆的面积公式.nπRnπR212.探索n°的圆心角所对的弧长l=、扇形面积S=和S=lR的计算公式,并应用这些公式解决相关1803602问题.阅读教材第111至113页,完成下列知识探究.知识探究1.在半径为R的圆中,1°的圆心角所对的弧长是________,n°的圆心角所对的弧长是________. 2.在半径为R的圆中,1°的圆心角所对应的扇形面积是________,n°的圆心角所对应的扇形面积是________. 3.半径为R,弧长为l的扇形面积S=________. 自学反馈��1.已知⊙O的半径OA=6,∠AOB=90°,则∠AOB所对的弧长AB的长是________. 2.一个扇形所在圆的半径为3 cm,扇形的圆心角为120°,则扇形的面积为________. 3.在一个圆中,如果60°的圆心角所对的弧长是6π cm,那么这个圆的半径r=________. 4.已知扇形的半径为3,圆心角为60°,那么这个扇形的面积等于________.活动1 小组讨论例1 在一个周长为180 cm的圆中,长度为60 cm的弧所对的圆心角为120度.例2 已知扇形的弧长是4π cm,面积为12π cm2,那么它的圆心角为120度.��例3 如图,⊙O的半径是⊙M的直径,C是⊙O上一点,OC交⊙M于B,若⊙O的半径等于5 cm,AC的长��1等于⊙O的周长的,求AB的长.10解:π cm.�唳唳�1利用AC的长等于⊙O的周长的求出AC所对的圆心角,从而得出AB所对的圆心角.10活动2 跟踪训练41.已知扇形的圆心角为120°,半径为2,则这个扇形的面积S扇=________;已知扇形面积为π,圆心角为3120°,则这个扇形的半径R=________.442.已知半径为2的扇形,面积为π,则它的圆心角的度数=________;已知半径为2 cm的扇形,其弧长为334π,则这个扇形的面积S扇=________;已知半径为2的扇形,面积为π,则这个扇形的弧长=________.33.已知扇形的半径为5 cm,面积为20 cm2,则扇形弧长为______cm.4.已知扇形的圆心角为210°,弧长是28π,则扇形的面积为________.5.已知弓形的弧所对的圆心角∠AOB为120°,弓形的弦AB长为12,求这个弓形的面积.弓形的面积等于扇形面积减去三角形的面积.6.如图,水平放置的圆柱形排水管道的截面半径是0.6 cm,其中水面高0.9 cm,求截面上有水部分的面积.(精确到0.01 cm)有水部分的面积等于扇形面积加三角形面积.7.如图,在同心圆中,两圆半径分别为2、1,∠AOB=120°,求阴影部分的面积.8.已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积.本题的结论可作为公式记忆运用.9.已知P、Q分别是半径为1的半圆圆周上的两个三等分点,AB是直径,求阴影部分的面积.连接OP、OQ,利用同底等高将△BPQ的面积转化成△OPQ的面积.活动3 课堂小结nπR1.n°的圆心角所对的弧长公式l=.180nπR22.n°的圆心角所对的扇形面积公式S=. 3603.圆环的面积求法.【预习导学】知识探究πRnπRπR2nπR211. 2. 3.lR 1801803603602自学反馈31.3π 2.3π cm2 3.18 cm 4.π2【合作探究】活动2 跟踪训练44424π+93240221.π 2 2.120° π cm π 3.8 4.336π 5.16π-123.6.≈0.91(cm).7.S=333100*********π2222(π×2-π×1)=2π. 8.由直角三角形的三边关系,得(a)=R-r,S环=πR-πr =πa. 9..246感谢您的阅读,祝您生活愉快。

湖南省益阳市资阳区迎丰桥镇九年级数学上册 第二十四章 圆 24.4 弧长和扇形面积(2)教案 (新版)新人教版

湖南省益阳市资阳区迎丰桥镇九年级数学上册 第二十四章 圆 24.4 弧长和扇形面积(2)教案 (新版)新人教版
师:圆锥的曲面展开图是什么形状 呢?应怎样计算它的面 积呢?本节课我们将解决这些问题.
3、新课教学:
1.圆锥的母线.
圆锥是由一个底面和一个侧面围成的几何体,如图,我们把连接圆锥顶点和底面圆周 上 任意一点的线段叫做圆锥的母线.
2.探索圆锥的侧面公式.
思考:圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?
弧长和扇形面积
课题:24.4弧长和扇形面积(2)
课时
1课时
教学设计
课标
要求
会计算圆的弧长、扇形的面积







1、教材分析:
学生在学习本章之前,已通过折叠、对称、平移、旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.
学情分析:
2、九年级学生已具备一定知识储备和认知能力。但学生的基础较差,中等、差等生较多,优等生较少。课堂上,多数学生表现欲不强,发言不积极,怕回答错问题;学生应用知识灵活解决问题的能力较差,在几何证明题中,不会抓住已知条件进行论证推理。因此,在教学中,注 重学生学习方法的培养,通过学生实践、探究、合作交流来完成本节课的教学。
考查圆锥侧面积公式的应用




四、巩固ห้องสมุดไป่ตู้习:
圆锥的母线长l= ≈2.404(m),侧面展开扇形的弧长为2π×1.945≈12.28(m),圆锥的侧面积为 ×2.404×12.28≈14.76(m2).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2441 弧长和扇形面积
教学任务分析
板书设计
24.4弧长和扇形面积公式
弧长公式:例题分析
扇形面积公式:
课后反思
教学过程设计
问题与情境师生行为设计意图
教师提出问题后,学生认真思考,说明解题的关键
是求中心线“展直长度”,但如何求呢?从而引出今
天的课题:弧长和扇形面积.
教师根据学生已有的知识结构,强调弧、扇形的有关概念.
由实际问题引出课题,可激发学生的学习兴趣.
教师引导学生由圆周长入
手,推导弧长公式.
活动二:思考:试一试
问题1:你还记得圆周长的计算公式
吗?圆的周长可以看作多少度的圆心
角所对的弧长?由此出发,1 °的圆心
角所对的弧长是多少?n的圆心角
呢?
设:圆的半径为R,求n的圆心角所对的弧长.
教师提出问题后,学生认真思考,由中等学生回答:圆周长为2二R,可看作是360°的圆心角所对的弧长;1°的圆心角所
问题2:你还记得圆面积的计算公式吗?圆面积可以看作多少度的圆心角所对的扇形的面积?1 ° 的圆心角所对的扇形面积是多少?n的圆心角呢?
A 、.
设:已知半径为R,求n的圆心角所对的扇形面积对的弧长为
2 R = R;圆心角
360 180
为n°的弧长是圆心角为1°的弧长
的n倍;二n;的圆心角所对的
弧长为*R.
180
二弧长公式为:|= ~R
180
注:不写度,n和180表示的是
倍、分关系.
教师关注学生对公式的理解程
度.
教师引导学生类比弧长公式的
推导过程,推导出扇形面积公
式:
(1)圆面积S=n R2,可以看
作是360°的圆心角所对的扇形面
积;
在教师的引
导下,推出弧长
公式,使学生明
确公式的推导过
程,知道公式的
来龙去脉,更要
学会学习新知识
的方法.
教会学生用
类比的方法研
究问题.
活动一:创设情境,引入课题
制造弯形管道时,经常要先按中心线计算“展直长度”(图1中虚线的长度),再下料,这就涉及
3
图1
教学过程设计
教学过程设计
问题与情境师生行为设计意图
教学过程设计
活动六:理一理
学生小结
教师归纳
布置作业:
A组:
P l22页练习:1, 2,
P i24页习题24.4 : 1.(1)、
(2),2, 6, 7.
B组:
P 122页练习:1 , 2 ,
P i24页习题24.4 : 2, 3, 5, 6.
经过分析,学生知道了水面高即弧
AB的中点到弦AB的距离.
因此想到做辅助线的方法:连接
OA、AB,过O作0C丄AB于点D,
交AB于点C.
教师关注学生对题目的理解,师生
共同分析题目条件后,由学生独立写
出解题过程,用实物投影展示学生的
解题过程,再由学生对解题过程给予
评价.
由学生谈谈本节课学习的体会和收
获,各抒己见.教师对学生的回答给予
帮助,让语言表达更准确.
知识:弧长公式丨=n R;
180
扇形面积公式:
2 / _ _ m R 1
S扇形二一IR .
360 2
能力:灵活运用公式解决实际问
题.
数学思想:数形结合思想.
学生课下独立完成.
教师对学生的作业在批改后及时
反馈.
B组补充作业:
已知:如图,矩形ABCD中,
AB= 1cm, BC = 2cm,以B 为圆心,
1
BC为半径作-圆弧交AD于F,交
4
BA延长线于E,求扇形BCE被矩形所
截剩余部分的面积.
学生在学习新知
识的同时要想到学过
的知识,在这里就运
用了垂径定理.
巩固所学知识,
达到复习的目的,教师
及时了解学生对本节知
识的掌握情况,对教学
进度和方法进行适当调
整,并对有困难的学生
给予指导。

发展学生的解决
实际问题的能力和应用
意识•初步探索建立数
学模型.让学生畅所欲
言,教师了解学生的学
习情况,并让学生逐渐
的学会总结。

检查知识的落实
性,以便发现问题和及
时解决问题。

继续培养学生的探
究意识和学习上持之以
恒的精神•
教学过程设计
问题与情境师生行为设计意图。

相关文档
最新文档