四川省高考数学一轮复习:60 随机事件的概率

合集下载

随机事件的概率(一轮复习文)

随机事件的概率(一轮复习文)

.
+ 与事件B互斥 ①如果事件A与事件 互斥,则P(A∪B)= P(A)+P(B) . 如果事件 与事件 互斥, ∪ = 若事件B与事件 互为对立事件, 与事件A互为对立事件 ②若事件 与事件 互为对立事件,则P(A)= 1-P(B) . = -
求复杂的互斥事件的概率一般有两种方法: 求复杂的互斥事件的概率一般有两种方法:一是直接 求解法, 求解法,将所求事件的概率分解为一些彼此互斥的事件的 概率的和,运用互斥事件的求和公式计算.二是间接求法, 概率的和,运用互斥事件的求和公式计算.二是间接求法, 先求此事件的对立事件的概率,再用公式 先求此事件的对立事件的概率,再用公式P(A)=1-P( ), = - , 即运用逆向思维(正难则反 ,特别是“至多 至多”、 至少 型题目, 至少”型题目 即运用逆向思维 正难则反),特别是 至多 、“至少 型题目, 正难则反 用间接求法就显得较简便. 用间接求法就显得较简便.
以选择题、 以选择题、填空题的形式考查随机事件的概率 和互斥事件、对立事件概率公式的应用是高考对本讲 和互斥事件、 内容的常规考法, 内容的常规考法,有时也以解答题的形式考查互斥事 件和对立事件概率公式的应用, 件和对立事件概率公式的应用,成为高考的一个新的 考查方向. 考查方向.
[考题印证 考题印证] 考题印证 (2008·山东高考 山东高考)(12分)现有 名奥运会志愿者,其中志愿 现有8名奥运会志愿者 山东高考 分 现有 名奥运会志愿者, 通晓日语, 通晓俄语, 者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩 语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一 从中选出通晓日语、俄语和韩语的志愿者各 名 个小组. 个小组. (1)求A1被选中的概率; 求 被选中的概率; (2)求B1和C1不全被选中的概率. 求 不全被选中的概率.

2023版高考数学一轮总复习11-1随机事件古典概型与几何概型课件

2023版高考数学一轮总复习11-1随机事件古典概型与几何概型课件
域用A表示(A⊆Ω),则P(A)= A的几何度量.
Ω的几何度量
考法一 古典概型概率的求法 1.求解古典概型概率的步骤
2.基本事件个数的确定方法 1)列举法:此法适合于基本事件个数较少的古典概型. 2)列表法:此法适合于从多个元素中选定两个元素的试验,也可看成坐标 法.
3)画树状图法:画树状图法是进行列举的一种常用方法,适用于有顺序的 问题及较复杂问题中基本事件个数的探求. 4)运用排列组合知识计算.
A39 7
答案 D
创新 生活中的概率问题 1.概率问题常与生活实际或数学文化相结合,主要考查学生的逻辑推 理、数据分析、数学抽象等核心素养. 2.解决这类问题的关键:①认真审题,把握信息;②弄清提供的问题情境的 意义;③抽象转化成数学问题,应用熟悉的数学知识解决.
例1 (2021湖南湘潭一模,7)德国心理学家艾宾浩斯研究发现,遗忘在学习 之后立即开始,而且遗忘的进程并不是均匀的.最初遗忘速度很快,以后逐 渐减慢.他认为“保持和遗忘是时间的函数”.他用无意义音节(由若干音 节字母组成,能够读出,但无内容意义,即不是词的音节)作为记忆材料,用 节省法计算保持和遗忘的数量,并根据试验结果绘成描述遗忘进程的曲 线,即著名的艾宾浩斯遗忘曲线(如图所示).若一名学生背了100个英语单 词,一天后,该学生在这100个英语单词中随机听写2个英语单词,以频率代 替概率,不考虑其他因素,则该学生恰有1个单词不会的概率大约为 ( )
m=5+4+3+2+1=15,则取到的整数十位数字比个位数字大的概率P= m =15
n 25
=3.
5
答案 B
考法二 几何概型概率的求法
例2 (2021辽宁辽南协作体联考,9)1876年4月1日,加菲尔德在《新英格兰 教育日志》上发表了勾股定理的一种证明方法,即在如图的直角梯形 ABCD中,利用“两个全等的直角三角形和一个等腰直角三角形的面积之 和等于直角梯形的面积”,可以简洁明了地推证出勾股定理.1881年加菲 尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、易 懂的证明,就把这一证明方法称为“总统证法”.如图,设∠ECB=60°,在梯 形ABCD中随机取一点,则此点取自等腰直角△CDE(阴影部分)中的概率 是() A.2(2- 3 ) B.2- 3 C. 3 -1 D.2( 3-1)

高三数学第一轮复习课时作业(60)随机事件的概率与古典概型B

高三数学第一轮复习课时作业(60)随机事件的概率与古典概型B

课时作业(六十)B 第60讲 随机事件的概率与古典概型时间:35分钟 分值:80分基础热身1.在数学考试中,小明的成绩在90分及以上的概率是0.12,在80~89分的概率为0.55,在70~79分的概率为0.15,在60~69分的概率为0.08.则小明在数学考试中取得80分及以上成绩的概率与考试不及格(低于60分)的概率分别是( )A .0.90,0.10B .0.67,0.33C .0.67,0.10D .0.70,0.102.若以连续抛掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率为( ) A.29 B.736 C.16 D.143.如图K60-1,三行三列的方阵有9个数a ij (i =1,2,3;j =1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )⎝ ⎛⎭⎪⎪⎫a 11 a 12 a 13a 21 a 22 a 23a 31 a 32 a 33 图K60-1A.37B.47C.114D.13144.将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( ) A.1564 B.15128 C.24125 D.48125 能力提升5.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次5点向上的概率是( )A.5216B.25216C.31216D.912166.甲袋中有不可识别的m 个白球,n 个黑球,乙袋中有不可识别的n 个白球,m 个黑球(m ≠n ),现从两袋中各摸一个球.事件A :“两球同色”,事件B :“两球异色”,则P (A )与P (B )的大小为( )A .P (A )<P (B ) B .P (A )=P (B )C .P (A )>P (B )D .视m 、n 大小确定7.在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为( )A.151B.168C.1306D.14088.以平行六面体ABCD -A ′B ′C ′D ′的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率P 为( )A.367385B.376385C.192385D.183859.某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为________.(结果用分数表示)10.从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个数不能被3整除的概率为________.11.甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是________.12.(13分)为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中34是省外游客,其余是省内游客.在省外游客中有13持金卡,在省内游客中有23持银卡.(1)在该团中随机采访2名游客,求恰有1人持银卡的概率;(2)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.难点突破13.(12分)2011·重庆卷某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:(1)恰有2人申请A片区房源的概率;(2)申请的房源所在片区的个数X的分布列与期望.课时作业(六十)B【基础热身】 1.C 解析 取得80分及以上的概率为:0.12+0.55=0.67;不及格的概率为:1-0.67-0.15-0.08=0.10. 2.A 解析 基本事件的总数是36,点P 落在圆内的基本事件是(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个,故所求的概率是836=29.3.D 解析 从中任取三个数共有C 39=84种取法,没有同行、同列的取法有C 13C 12C 11=6,至少有两个数位于同行或同列的概率是1-684=1314,选D.4.A 解析 将5本不同的书全发给4名同学共有45种发法,其中每名同学至少有一本书的发法有C 25A 44,故每名同学至少有一本书的概率是P =C 25A 4445=1564,选A.【能力提升】5.D 解析 抛掷3次,共有6×6×6=216个事件.一次也不出现5,则每次抛掷都有5种可能,故一次也未出现5的事件总数为5×5×5=125.于是没有出现一次5点向上的概率P =125216所求的概率为1-125216=91216.6.A 解析 基本事件总数为(m +n )2,记事件A 为“两球同色”,则A 可分为“两球皆白”与“两球皆黑”两个互斥事件,∴P (A )=mn (m +n )2+mn (m +n )2=2mn(m +n )2.而B 与A 是对立事件,且m ≠n ,所以P (B )=1-P (A )=m 2+n2(m +n )2>P (A ).故选A.7.B 解析 基本事件总数为C 318=17×16×3. 选出火炬手编号为a n =a 1+3(n -1),a 1=1时,由1,4,7,10,13,16可得4种选法; a 1=2时,由2,5,8,11,14,17可得4种选法; a 1=3时,由3,6,9,12,15,18可得4种选法.所以P =4+4+417×16×3=168.8.A 解析 由平行六面体的八个顶点,共能作成的三角形有C 38=56个,从中任意取出两个三角形的方法数为C 256,由于平行六面体共有六个面和六个对角面,且每一个面上有四个顶点,从中任意取出三个点作成的三角形都是共面三角形,从而任取两个三角形共面的情况有12C 24=72个,即任意取出的两个三角形恰好共面的概率是P 1=72C 256=18385.由于事件A :“任意取出两个三角形不共面”与事件B :“任意取出的两个三角形恰好共面”是对立事件,故所求概率P =1-P 1=367385,选A.9.119190解析 方法1:将事件“两人不属于同一个国家”分拆为下列基本事件:A :“一中一法”,B :“一中一美”;C :“一美一法”,则A 、B 、C 互斥,由P (A )=C 14C 15C 220,P (B )=C 111C 15C 220,P (C )=C 111C 14C 220.∴P =P (A )+P (B )+P (C )=119190.方法2:设事件A :“两人不属于同一国家”的对立事件为A :“两人同属一个国家”,∵P (A )=C 211+C 24+C 25C 220=71190, ∴P (A )=1-71190=119190.10.3554解析 从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个数不能被3整除.所有的三位数有A 310-A 29=648个,将10个数字分成三组,即被3除余1的有{1,4,7}、被3除余2的有{2,5,8},被3整除的有{0,3,6,9},若要求所得的三位数被3整除,则可以进行如下分类:①三个数字均取第一组,或均取第二组,有2A 33=12个;②若三个数字均取自第三组,则要考虑取出的数字中有无数字0,共有A 34-A 23=18个;③若三组各取一个数字,第三组中不取0,有C 13·C 13·C 13·A 33=162个;④若三组各取一个数字,第三组中取0,有C 13·C 13·2·A 22=36个.这样能被3整除的数共有228个,不能被3整除的数有420个,所以概率为420648=3554.11.1315解析 方法1:设事件A :甲乙两人中至少有一人抽到选择题.将A 分拆为B :“甲选乙判”,C :“甲选乙选”,D :“甲判乙选”三个互斥事件,则P (A )=P (B )+P (C )+P (D ).而P (B )=C 16C 14C 110C 19,P (C )=C 16C 15C 110C 19,P (D )=C 14·C 16C 110C 19,∴P (A )=2490+3090+2490=7890=1315.方法2:设事件A :甲乙两人中至少有一人抽到选择题,则其对立事件为A :甲乙两人均抽判断题.∴P (A )=C 14C 13C 110C 19=1290,∴P (A )=1-1290=7890=1315. 故甲、乙两人中至少有一人抽到选择题的概率为1315. 12.解答 (1)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡. 设事件A 为“采访该团2人,恰有1人持银卡”,则P (A )=C 16C 130C 236=27,所以采访该团2人,恰有1人持银卡的概率是27.(2)设事件B 为“采访该团2人,持金卡人数与持银卡人数相等”,可以分为: 事件B 1为“采访该团2人,持金卡0人,持银卡0人”,或事件B 2为“采访该团2人,持金卡1人,持银卡1人”两种情况,则P (B )=P (B 1)+P (B 2)=C 221C 36+C 19C 16C 36=44105,所以采访该团2人,持金卡与持银卡人数相等的概率是44105.【难点突破】13.解答 这是等可能性事件的概率计算问题.(1)解法一:所有可能的申请方式有34种,恰有2人申请A 片区房源的申请方式有C 24·22种,从而恰有2人申请A 片区房源的概率为C 24·2234=827.解法二:设对每位申请人的观察为一次试验,这是4次独立重复试验,记“申请A 片区房源”为事件A ,则P (A )=13.从而,由独立重复试验中事件A 恰发生k 次的概率计算公式知,恰有2人申请A 片区房源的概率为P 4(2)=C 24⎝⎛⎭⎫132⎝⎛⎭⎫232=827.(2)X 的所有可能值为1,2,3.又P (X =1)=334=127,P (X =2)=C 23(C 12C 34+C 24C 22)34=1427 ⎝⎛⎭⎫或P (X =2)=C 23(24-2)34=1427, P (X =3)=C 13C 24C 1234=49⎝⎛⎭⎫或P (X =3)=C 24A 3334=49.综上知,X 有分布列从而有E (X )=1×127+2×27+3×9=27.。

2020高考数学(理)一轮复习课时作业60随机事件的概率 含解析

2020高考数学(理)一轮复习课时作业60随机事件的概率 含解析
A. B.
C. D.
解析:将这枚骰子先后抛掷两次的基本事件
总数为6×6=36(个),
这两次出现的点数之和大于点数之积包含的基本事件有
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),共11个,
∴这两次出现的点数之和大于点数之积的概率为P= .故选D.
(2)若某高三学生已选修A门课,则该学生同时选修B、C中哪门课的可能性大?
解析:(1)由频率估计概率得所求概率
P= =0.68.
(2)若某学生已选修A门课,则该学生同时选修B门课的概率为P= = ,
选修C门课的概率为P= = ,
因为 < ,
所以该学生同时选修C门课的可能性大.
[
11.假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:
②A={(a1,b),(a2,b),(b,a1),(b,a2)}.
10.[2019·河南八市重点高中质量监测]某校在高三抽取了500名学生,记录了他们选修A、B、C三门课的情况,如下表:
科目
学生人数
A
B
C120Biblioteka 是否是60



70



50



150



50



(1)试估计该校高三学生在A、B、C三门选修课中同时选修两门课的概率;
解析:(1)这个试验的所有可能结果Ω={(a1,a2),(a1,b),(a2,b),(a2,a1),(b,a1),(b,a2)}.

2021高考数学一轮复习考点规范练:60随机事件的概率(含解析)

2021高考数学一轮复习考点规范练:60随机事件的概率(含解析)

2021高考数学一轮复习考点规范练:60随机事件的概率(含解析)基础巩固1.从正五边形的五个顶点中,随机选择三个顶点连成三角形,记“这个三角形是等腰三角形”为事件A,则下列推断正确的是()A.事件A发生的概率等于B.事件A发生的概率等于C.事件A是不可能事件D.事件A是必然事件答案:D解析:因为从正五边形的五个顶点中随机选三个顶点连成的三角形都是等腰三角形,所以事件A是必然事件.故选D.2.从1,2,…,9中任取两个数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是()A.①B.②④C.③D.①③答案:C解析:从9个数字中取两个数有三种情况:一奇一偶,两奇,两偶,故只有③中两事件是对立事件.3.从一箱产品中随机抽取一件,设事件A为“抽到一等品”,事件B为“抽到二等品”,事件C为“抽到三等品”,且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为()A.0.7B.0.65C.0.35D.0.5答案:C解析:∵“抽到的产品不是一等品”与事件A是对立事件,∴所求概率为1-P(A)=0.35.4.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm的概率为()A.0.2B.0.3C.0.7D.0.8答案:B解析:因为必然事件发生的概率是1,所以该同学的身高超过175cm的概率为1-0.2-0.5=0.3,故选B.5.中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,已知甲夺得冠军的概率为,乙夺得冠军的概率为,则中国队夺得女子乒乓球单打冠军的概率为.答案:解析:因为事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为6.(2019全国Ⅱ,理13)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.答案:0.98解析:由题意,得经停该高铁站的列车的正点数约为10×0.97+20×0.98+10×0.99=39.2,其中车次数为10+20+10=40,所以经停该站高铁列车所有车次的平均正点率的估计值为=0.98.7.下列命题:①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.其中正确命题的序号是.答案:①解析:根据对立事件与互斥事件的关系,得①正确,②不正确.当A,B是互斥事件时,才有P(A∪B)=P(A)+P(B),③不正确.P(A)+P(B)+P(C)不一定等于1,还可能小于1,④不正确.。

2025高考数学一轮复习课件 随机事件的概率

2025高考数学一轮复习课件 随机事件的概率

4. (2024·邢台市第二中学期末)如图所示,A,B,C 表示 3
个开关,若在某段时间内,它们正常工作的概率分别为 0.9,
0.8,0.8,则该系统的可靠性(3 个开关只要一个开关正常工作
即可靠)为( )
A.0.504
B.0.994
C.√0.996
D.0.964
解析 由题意知,所求概率为 1-(1-0.9)(1-0.8)(1-0.8)=1-0.004= 0.996.故选 C.
C√.“恰有 1 个白球”和“恰有 2 个白球”
D.“至多有 1 个白球”和“都是红球”
【解析】 对于 A,“至少有 1 个白球”和“都是红球”是对立事件,不 符合题意;对于 B,“至少有 2 个白球”表示取出的 2 个球都是白色的,而“至 多有 1 个红球”表示取出的球 1 个是红球,1 个是白球,或者 2 个都是白球, 二者不是互斥事件,不符合题意;对于 C,“恰有 1 个白球”表示取出的 2 个 球 1 个是红球,1 个是白球,与“恰有 2 个白球”是互斥而不对立的两个事件, 符合题意;对于 D,“至多有 1 个白球”表示取出的 2 个球 1 个是红球,1 个 是白球,或者 2 个都是红球,与“都是红球”不是互斥事件,不符合题意.故 选 C.
并事件 (和事件)
若某事件发生当且仅当事件 A 发生或事件 B 发
生,称此事件为事件 A 与事件 B 的 __并__事__件__(或__和__事__件__)___
符号表示
___B_⊇__A___
(或 A⊆B)
_A__=__B_
A∪B (或 A+B)
交事件 (积事件) 互斥事件
对立事件
若某事件发生当且仅当 _事__件__A_发__生__ 且___事__件__B_发__生_____,则称此事件为

人教A版高考理科数学一轮总复习课后习题 第12章 概率 课时规范练60 随机事件的概率

人教A版高考理科数学一轮总复习课后习题 第12章 概率 课时规范练60 随机事件的概率

课时规范练60 随机事件的概率基础巩固组1.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率为710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡2.(安徽芜湖期末)抛掷一枚质地均匀的骰子,记事件A 为“向上的点数为1或4”,事件B 为“向上的点数为奇数”,则下列说法正确的是( ) A.A 与B 互斥 B.A 与B 对立 C.P(A+B)=23D.P(A+B)=133.抽查10件产品,设事件A 为“至少有2件次品”,则事件A 的对立事件为( ) A.至多有2件次品 B.至多有1件次品 C.至多有2件正品D.至少有2件正品4.如果事件A 与B 是互斥事件,且事件A ∪B 发生的概率是0.64,事件B 发生的概率是事件A 发生的概率的3倍,则事件A 发生的概率为( )A.0.64B.0.36C.0.16D.0.845.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率为1235.则从中任意取出2粒恰好是同一颜色的概率为( )A.17B.1235C.1735D.16.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是.7.已知随机事件A,B发生的概率满足条件P(A∪B)=34,某人猜测事件A∩B 发生,则此人猜测正确的概率为.8.根据以往统计资料,某地车主购买甲种保险的概率是0.5,购买乙种保险但不购买甲种保险的概率是0.3,设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中一种的概率;(2)求该地1位车主甲、乙两种保险都不购买的概率.9.从A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到火车站的人进行调查,调查结果如下.(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.综合提升组A.事件A发生的概率P(A)等于事件A发生的频率f n(A)B.一枚质地均匀的骰子掷一次得到3点的概率是1,说明这个骰子掷6次一6定会出现一次3点C.掷两枚质地均匀的硬币,事件A为“一枚正面朝上,一枚反面朝上”,事件B为“两枚都是正面朝上”,则P(A)=2P(B)D.对于两个事件A,B,若P(A∪B)=P(A)+P(B),则事件A与事件B互斥11.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中,则这班参加聚会的同学随机挑选一人表演节目.若选到女同学的概率为23的人数为.12.假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命(单位:小时),现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图:甲品牌乙品牌(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.创新应用组13.把一枚骰子投掷两次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,向量m=(a,b),n=(1,2),则向量m与向量n不共线的概率是( )A.16B.1112C.112D.11814.下面是某市2月1日至14日的空气质量指数趋势图及空气质量指数与污染程度对应表.某人随机选择2月1日至2月13日中的某一天到该市出差,第二天返回(往返共两天).(1)由图判断从哪天开始连续三天的空气质量指数方差最大?(只写出结论,不要求证明)(2)求此人到达该市当日空气质量优良的概率;(3)求此人出差期间(两天)空气质量至少有一天为中度或重度污染的概率.答案:课时规范练1.A2.C 解析:事件A与B不互斥,当向上点数为1时,两者同时发生,故事件A与B也不对立.事件A+B表示向上点数为1,3,4,5之一,所以P(A+B)=46=23.故选C.3.B4.C 解析:设P(A)=x,则P(B)=3x,因为事件A与B是互斥事件,所以P(A ∪B)=P(A)+P(B)=x+3x=0.64,解得x=0.16.故选C.5.C 解析:设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A 与B 互斥.所以P(C)=P(A)+P(B)=17+1235=1735,即任意取出2粒恰好是同一颜色的概率为1735.故选C.6.54,43解析:由题意可知{0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,则{0<2-a <1,0<4a -5<1,3a -3≤1,解得{1<a <2,54<a <32,a ≤43,故54<a ≤43. 7.14解析:因为事件A ∩B 与事件A ∪B 是对立事件,所以P(A ∩B )=1-P(A ∪B)=1-34=14.8.解: 记A 表示事件“该车主购买甲种保险”,B 表示事件“该车主购买乙种保险但不购买甲种保险”,C 表示事件“该车主至少购买甲、乙两种保险中的一种”,D 表示事件“该车主甲、乙两种保险都不购买”. (1)由题意得P(A)=0.5,P(B)=0.3,又C=A ∪B, 所以P(C)=P(A ∪B)=P(A)+P(B)=0.5+0.3=0.8.(2)因为D 与C 是对立事件,所以P(D)=1-P(C)=1-0.8=0.2. 9.解: (1)共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),用频率估计概率,可得所求概率为0.44.(2)选择L 1的有60人,选择L 2的有40人,故由调查结果得频率分布如下表: 所用时10~20~30~40~50~(3)记事件A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;记事件B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.用频率估计概率及由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),故甲应选择L1;P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B2)>P(B1),故乙应选择L2.10.C 解析:频率与试验次数有关,总在概率附近摆动,故选项A错误;概率是指这件事发生的可能性,故选项B错误;P(A)=24=12,P(B)=12×12=14,所以P(A)=2P(B),故选项C正确;在几何概型中选项D中的结论不成立.故选C.11.18 解析:设该班到会的女同学有x人,则该班到会的共有(2x-6)人,所以x2x-6=23,解得x=12,故该班参加聚会的同学有18人.12.解: (1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估计概率,可得甲品牌产品寿命小于200小时的概率为14.(2)根据频数分布图可得寿命不低于200小时的两种品牌产品共有75+70=145(个),其中甲品牌产品有75个,所以在样本中,寿命不低于200小时的产品是甲品牌的频率是75145=1529.据此估计已使用了200小时的该产品是甲品牌的概率为1529.13.B 解析:若m与n共线,则2a-b=0,而(a,b)的可能情况有6×6=36(种).符合2a=b的有(1,2),(2,4),(3,6),共3种.故共线的概率是336=112,从而不共线的概率是1-112=1112.14.解: (1)从2月5日开始连续三天的空气质量指数方差最大.(2)设A i表示事件“此人于2月i日到达该市”(i=1,2,…,13).根据题意,P(A i)=113,且A i∩A j=⌀(i≠j,j=1,2,…,13).设B为事件“此人到达当日空气优良”,则B=A1∪A2∪A3∪A7∪A12∪A13.所以P(B)=P(A1∪A2∪A3∪A7∪A12∪A13)=613.(3)设“此人出差期间空气质量至少有一天为中度或重度污染”为事件A,即“此人出差期间空气质量指数至少有一天大于150,且小于300”,由题意可知P(A)=P(A4∪A5∪A6∪A7∪A8∪A9∪A10∪A11)=P(A4)+P(A5)+P(A6)+P(A7)+P(A8)+P(A9)+P(A10)+P(A11)=813.。

2024年高考数学一轮复习课件(新高考版) 第10章 事件的相互独立性与条件概率、全概率公式

2024年高考数学一轮复习课件(新高考版)  第10章 事件的相互独立性与条件概率、全概率公式

§10.5 事件的相互独立性与条件概率、全概率公式第十章 计数原理、概率、随机变量及其分布2024年高考数学一轮复习课件(新高考版)考试要求1.了解两个事件相互独立的含义.2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.相互独立事件(1)概念:对任意两个事件A 与B ,如果P (AB )=__________成立,则称事件A 与事件B 相互独立,简称为独立.P (A )·P (B)B2.条件概率(1)概念:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=______为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.(2)两个公式①利用古典概型:P(B|A)=_______;P(A)P(B|A)②概率的乘法公式:P(AB)=___________.3.全概率公式一般地,设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=______________.常用结论1.如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)…P(A n).2.贝叶斯公式:设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( )(2)若事件A ,B 相互独立,则P (B |A )=P (B ).( )(3)抛掷2枚质地均匀的硬币,设“第一枚正面朝上”为事件A ,“第2枚正面朝上”为事件B ,则A ,B 相互独立.( )(4)若事件A 1与A 2是对立事件,则对任意的事件B ⊆Ω,都有P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2).( )√×√√1.甲、乙两人独立地破解同一个谜题,破解出谜题的概率分别为则谜题没被破解出的概率为√设“甲独立地破解出谜题”为事件A,“乙独立地破解出谜题”为事件B,2.在8件同一型号的产品中,有3件次品,5件合格品,现不放回地从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是√当第一次抽到次品后,还剩余2件次品,5件合格品,由题意得,居民甲第二天去A 食堂用餐的概率P =0.5×0.6+0.5×0.5=0.55.3.智能化的社区食堂悄然出现,某社区有智能食堂A ,人工食堂B,居民甲第一天随机地选择一食堂用餐,如果第一天去A 食堂,那么第二天去A 食堂的概率为0.6;如果第一天去B 食堂,那么第二天去A 食堂的概率为0.5,则居民甲第二天去A 食堂用餐的概率为_____.0.55第二部分例1 (1)(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则√A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立事件甲与事件丙同时发生的概率为0,P(甲丙)≠P(甲)P(丙),故A错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D错误.(2)(2023·临沂模拟)“11分制”乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,若甲先发球,两人又打了2个球后该局比赛结束的概率为______;若乙先发球,两人又打了4个球后该局比赛结束,则甲获胜的概率为 _____.0.50.1记两人又打了X个球后结束比赛,设双方10∶10平后的第k个球甲获胜为事件A k(k=1,2,3…),=0.5×0.4+0.5×0.6=0.5.思维升华求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.跟踪训练1 小王某天乘火车从重庆到上海,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列火车正点到达的概率;由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)这三列火车恰好有一列火车正点到达的概率;恰好有一列火车正点到达的概率为=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.(3)这三列火车至少有一列火车正点到达的概率.三列火车至少有一列火车正点到达的概率为=1-0.2×0.3×0.1=0.994.例2 (1)(2022·哈尔滨模拟)七巧板是中国民间流传的智力玩具.据清代陆以湉《冷庐杂识》记载,七巧板是由宋代黄伯思设计的宴几图演变而来的,原为文人的一种室内游戏,后在民间逐步演变为拼图版玩具.到明代,七巧板已基本定型为由如图所示的七块板组成:五块等腰直角三角形(其中两块小型三角形、一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,可以拼成人物、动物、植物、房亭、楼阁等1 600种以上图案.现从七巧板中取出两块,已知取出的是三角形,则两块板恰好是全等三角形的概率为√设事件A为“从七巧板中取出两块,取出的是三角形”,事件B为“两块板恰好是全等三角形”,(2)逢年过节走亲访友,成年人喝酒是经常的事,但是饮酒过度会影响健康,某调查机构进行了针对性的调查研究.据统计,一次性饮酒4.8两,诱发某种疾病的频率为0.04,一次性饮酒7.2两,诱发这种疾病的频率为0.16.将频率视为概率,已知某人一次性饮酒4.8两未诱发这种疾病,则他还能继续饮酒2.4两,不诱发这种疾病的概率为√记事件A:这人一次性饮酒4.8两未诱发这种疾病,事件B:这人一次性饮酒7.2两未诱发这种疾病,则事件B|A:这人一次性饮酒4.8两未诱发这种疾病,继续饮酒2.4两不诱发这种疾病,则B⊆A,AB=A∩B=B,P(A)=1-0.04=0.96,P(B)=1-0.16=0.84,思维升华求条件概率的常用方法(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.跟踪训练2 (1)(2023·六盘山模拟)已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回.在第1次抽到代数题的条件下,第2次抽到几何题的概率为√设事件A=“第1次抽到代数题”,事件B=“第2次抽到几何题”,由题意知,第一次击中与否对第二次没有影响,②在仅击中一次的条件下,第二次击中的概率是_____.例3 (1)一份新高考数学试卷中有8道单选题,小胡对其中5道题有思路,3道题完全没有思路.有思路的题做对的概率是0.9,没有思路的题只能猜一个答案,猜对答案的概率为0.25,则小胡从这8道题目中随机抽取1道做对的概率为√设事件A表示“小胡答对”,事件B表示“小胡选到有思路的题”.则小胡从这8道题目中随机抽取1道做对的概率(2)在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知当发送信号0时,被接收为0和1的概率分别为0.93和0.07;当发送信号1时,被接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的,则接收的信号为1的概率为√A.0.48B.0.49C.0.52D.0.51设事件A=“发送的信号为0”,事件B=“接收的信号为1”,思维升华利用全概率公式解题的思路(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件A i(i=1,2,…,n).(2)求P(A i)和所求事件B在各个互斥事件A i发生条件下的概率P(A i)P(B|A i).(3)代入全概率公式计算.跟踪训练3 (1)设甲乘汽车、动车前往某目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为√A.0.78B.0.8C.0.82D.0.84设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.(2)(2022·郑州模拟)第24届冬奥会于2022年2月4日至20日在北京和张家口举行,中国邮政陆续发行了多款纪念邮票,其图案包括“冬梦”“冰墩墩”和“雪容融”等.小王有3张“冬梦”、2张“冰墩墩”和2张“雪容融”邮票;小李有“冬梦”“冰墩墩”和“雪容融”邮票各1张.小王现随机取出一张邮票送给小李,分别以A1,A2,A3表示小王取出的是“冬梦”“冰墩墩”和“雪容融”的事件;小李再随机取出一张邮票,以B表示他取出的邮票是“冰墩墩”的事件,则P(B|A2)=_____,P(B)=_____.第三部分A.事件A与B互斥B.事件A与B对立√C.事件A与B相互独立D.事件A与B既互斥又相互独立∴P(AB)=P(A)P(B)≠0,∴事件A与B相互独立,事件A与B不互斥也不对立.4个都不能正常照明的概率为(1-0.8)4=0.001 6,只有1个能正常照明的概率为4×0.8×(1-0.8)3=0.025 6,所以至少有两个能正常照明的概率是1-0.001 6-0.025 6=0.972 8.2.(2023·开封模拟)某盏吊灯上并联着4个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是0.8,那么在这段时间内该吊灯上的灯泡至少有两个能正常照明的概率是A.0.819 2B.0.972 8C.0.974 4D.0.998 4√3.根据历年的气象数据可知,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为√A.0.8B.0.625C.0.5D.0.1设“发生中度雾霾”为事件A,“刮四级以上大风”为事件B,所以P(A)=0.25,P(B)=0.4,P(AB)=0.2,4.(2022·青岛模拟)甲、乙两名选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为√A.0.36B.0.352C.0.288D.0.648由题意可得甲最终获胜有两种情况:一是前两局甲获胜,概率为0.6×0.6=0.36,二是前两局甲一胜一负,第三局甲胜,概率为×0.6×0.4×0.6=0.288,这两种情况互斥,∴甲最终获胜的概率P=0.36+0.288=0.648.记事件A 为“该考生答对题目”,事件B 1为“该考生知道正确答案”,事件B 2为“该考生不知道正确答案”,则P (A )=P (A |B 1)·P (B 1)+P (A |B 2)·P (B 2)=1×0.5+0.25×0.5=0.625.5.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为25%,那么他答对题目的概率为A.0.625B.0.75C.0.5D.0.25√6.将甲、乙、丙、丁4名医生随机派往①,②,③三个村庄进行义诊活动,每个村庄至少派1名医生,A表示事件“医生甲派往①村庄”; B表示事件“医生乙派往①村庄”; C表示事件“医生乙派往②村庄”,则A.事件A与B相互独立B.事件A与C相互独立√。

备考2020年高考数学一轮复习:60 随机事件的概率

备考2020年高考数学一轮复习:60 随机事件的概率

备考2020年高考数学一轮复习:60 随机事件的概率一、单选题(共12题;共24分)1.(2分)甲、乙、丙三位同学独立的解决同一个间题,已知三位同学能够正确解决这个问题的概率分别为12、13、14,则有人能够解决这个问题的概率为()A.1213B.34C.14D.1242.(2分)在体育选修课排球模块基本功(发球)测试中,计分规则如下(满分为10分):①每人可发球7次,每成功一次记1分;②若连续两次发球成功加0.5分,连续三次发球成功加1分,连续四次发球成功加1.5分,以此类推,…,连续七次发球成功加3分.假设某同学每次发球成功的概率为23,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是()A.2635B.2535C.2636D.25363.(2分)奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是()A.对立事件B.不可能事件C.互斥但不对立事件D.不是互斥事件4.(2分)一个盒中有4个新乒乓球,2个旧兵乓球,每次比赛时取出两个,用后放回,则第二次比赛时取到两只都是新球的概率为()A.225B.425C.725D.8255.(2分)为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员投篮练习,若他第1球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第2球投进的概率为()A.34B.58C.716D.9166.(2分)将三颗做子各掷一次,设事件A=“三个点数互不相同”,B=“至多出现一个奇数”,则概率P(A B)等于()A.14B.3536C.518D.5127.(2分)甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,则下列说法正确的是()A.甲获胜的概率是16B.甲不输的概率是12C.乙输棋的概率是23D.乙不输的概率是128.(2分)下列事件中是随机事件的个数有()①连续两次抛掷两个骰子,两次都出现2点;②在地球上,树上掉下的雪梨不抓住就往下掉;③某人买彩票中奖;④已经有一个女儿,那么第二次生男孩;⑤在标准大气压下,水加热到90℃是会沸腾。

高考数学复习考点知识与结论专题讲解60 事件的概率

高考数学复习考点知识与结论专题讲解60 事件的概率

高考数学复习考点知识与结论专题讲解第60讲 事件的概率与概型【知识通关】通关一通关一、、随机事件及其概率1.事件的相关概念(1)必然事件:在条件S 下,一定会发生的事件. (2)不可能事件:在条件S 下,一定不会发生的事件. (3)随机事件:在条件S 下可能发生也可能不发生的事件. 2.频率与概率(1)事件的频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比【例】()An n f A n=为事件A 出现的频率。

(2)概率的统计定义:在相同的条件下,大量重复进行同一试验时,随机事件A 发生的频率()An n f A n=会在某个常数附近摆动,则把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率。

要点诠释:(1)频数是一个整数,其取值范围为0,A A n n n N ≤≤∈,因此随机事件A 发生的频率()An n f A n=的可能取值介于0与1之间,即0≤()n f A ≤1.(2)必然事件M 的概率为1,即P (M )=1;不可能事件N 的概率为0,即P (N )=0;随机事件A 的概率满足01P ≤≤(A).通关二通关二、、概率的几个基本性质1.任何事件的概率都在0∼1之间,即0≤P (A )≤1.必然事件的概率为1,不可能事件的概率为0.2.当事件A 与事件B 互斥时,P (A U B )=P (A )+P (B ).3.对立事件的概率之和为1,即若事件A 与事件B 对立,则P (A )+P (B )=1.4.当事件A 与事件B 互相独立时,P (AB )=P (A )P (B ).【结论第讲】结论一结论一、、独立事件的概率与性【例1】已知A,B,C 为三个独立事件,若事件A 发生的概率是12,事件B 发生的概率是23,事件C 发生的概率是34,求下列事件的概率:(1)事件A,B,C 至少发生一个; (2)事件A,B,C 只发生一个; (3)事件A,B,C 只发生两个; (4)事件A,B,C 至多发生两个.【解析】(1)记“事件A,B,C 至少发生一个”为1A ,其对立事件为1A :“事件A,B,C 一个也不发生”,从而1111123=23424P P P B C ⋅⋅××=(A )1-(A )=1-(A )=1-. 所以事件A,B,C 至少发生一个的概率为2324. (2)记“事件A ,B ,C 只发生一个”为2A ,则事件2A ,包括三种情况∶第一种是只发生事件A ,事件B ,C 不发生(即事件A B C i 发生);第二种是只发生事件B ,事件A ,C 不发生(即事件A B C i i 发生);第三种是只发生事件C ,事件A ,B 不发生(即事件A B Ci i 发生);而这三种情况是不可能同时发生的,即事件A B C i ,A B C i ,A B Ci i 彼此互斥.根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为P (2A )=P(A B C i i )+P(A B C i i )+P(A B Ci i )= 12312424244++=所以A ,B ,C 只发生一个的概率为14(3)记“事件A ,B ,C 只发生两个”为3A ,则事件3A ,包括三种彼此互斥的情况∶A B C i i ; A B C i i ;A B C i i 由互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为P (3A )=P (A B C i i )+P (A B C i i )+P (A B C i i )=2361124242424++=所以事件 A ,B ,C 只发生两个的概率为1124(4)记“事件A ,B ,C 至多发生两个”为4A ,则包括彼此互斥的三种情况∶事件A ,B ,C 一个也不发生,即1A ;事件A ,B ,C 只发生一个,即2A ;事件A ,B ,C 只发生两个,即3A 故P (4A )=1P(A )+P (2A ) P (3A )=1611183242424244++==所以事件 A ,B ,C 至多发生两个的概率为34【变式】甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:(1)两个人都译出密码的概率; (2)两个人都译不出密码的概率; (3)恰有1个人译出密码的概率; (4)至多1个人译出密码的概率; (5)至少1个人译出密码的概率.【解析】记“甲独立地译出密码”为事件A,“乙独立地译出密码”为事件B,A,B 为相互独立事件,且P(A)=13,P(B)= 14. (1)两个人都译出密码的概率为:P(AB)=P(A)·P(B)=111=3412×. (2)两个人都译不出密码的概率为:111==[[=342P A B P A P B P P ⋅⋅⋅×()()()1-(A)]1-(B)]=(1-)(1-(3)恰有1个人译出密码可以分为两类:甲译出乙未译出以及甲未译出乙译出,且两个 事件为互斥事件,所以恰有1个人译出密码的概率为:P=P(A B +A B)=P(A)P(B )+P(A )P(B)=11115(1)(1343412×−+−×=. (4)“至多1个人译出密码”的对立事件为“有两个人译出密码”,所以至多1个人译出 密码的概率为:1-P(AB)=1-P(A)P(B)=111113412−×=.(5)“至少1个人译出密码”的对立事件为“两人未译出密码”,所以至少1个人译出密码的概率为:2311()1()()1342P A B P A P B −⋅=−=−×=.结论二结论二、、条件概率1.条件概率:事件B 在事件A 已经发生的情况下,发生的概率称为B 在A 条件下的条件概率,记为B|A.2.利用定义计算,先分别计算概率P(AB)和P(A),然后代入公式P(B|A)=()()P AB P A . 3.利用缩小样本空间法计算(局限在古典概型内),即将原来的样本空间Ω缩小为已知的事件A,原来的事件B 缩小为AB,利用古典概型计算概率:P(B|A)=()()P AB P A . 要点诠释:P(AB),P(B|A),P(A|B),P(A),P(B)之间关系的应用,即P(B|A)=()()P AB P A , P(A|B)= ()()P AB P B , P(AB)=P(A|B)·P(B)=P(B|A)·P(A).【例2】在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再次取到不合格品的概率为____________ 【答案】499【解析】设事件A 为“第一次取到不合格品”,事件B 为“第二次取到不合格品”,4(|)99P B A =. 【变式】甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是________(写出所有正确结论的编号). ①P (B )25=;②15(|)11P B A =;③事件B 与事件1A 相互独立; ④1A ,2A ,3A 是两两互斥的事件;⑤P (B )的值不能确定,因为它与1A ,2A ,3A 中究竟哪一个发生有关. 【答案】②④【解析】易见1A ,2A ,3A 是两两互斥的事件,④正确;151()102P A ==,221()105P A ==,33()10P A =;11115()5211(|)1()112P BA P B A P A ×===,由此知,②正确; 24(|)11P B A =,34(|)11P B A =;而P (B ) 1231122331514349()()()()(|)()(|)()(|)211511101122P A B P A B P A B P A P B A P A P B A P A P B A =++=++=×+×+×=. 由此知①③⑤不正确。

2025届高考数学一轮复习教案:计数原理、概率、随机变量及其分布-事件的独立性、条件概率与全概率公式

2025届高考数学一轮复习教案:计数原理、概率、随机变量及其分布-事件的独立性、条件概率与全概率公式

第四节事件的独立性、条件概率与全概率公式【课程标准】1.了解两个事件相互独立的含义.2.了解条件概率与独立性的关系,会利用乘法公式计算概率.3.会利用全概率公式计算概率.【考情分析】考点考法:高考命题常以现实生活为载体,考查相互独立事件、条件概率、全概率;条件概率、全概率是高考热点,常以选择题的形式出现.核心素养:数学抽象、数学运算【必备知识·逐点夯实】【知识梳理·归纳】1.相互独立事件(1)概念:对任意两个事件A与B,如果P(AB)=__P(A)P(B)__成立,则称事件A与事件B相互独立,简称为独立.(2)性质:若事件A与B相互独立,那么A与,与B,与也都相互独立.2.条件概率(1)概念:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=(B)()为在事件A 发生的条件下,事件B发生的条件概率,简称条件概率.(2)两个公式:①利用古典概型:P(B|A)=(B)();②概率的乘法公式:P(AB)=__P(A)P(B|A)__.【微点拨】P(B|A)与P(A|B)是两个不同的概率,前者是在A发生的条件下B发生的概率,后者是在B发生的条件下A发生的概率.3.全概率公式一般地,设A1,A2,…,A n是一组__两两互斥__的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=.我们称此公式为全概率公式.【基础小题·自测】类型辨析改编易错高考题号12341.(多维辨析)(多选题)下列说法正确的是()A.对于任意两个事件,公式P(AB)=P(A)P(B)都成立B.若事件A,B相互独立,则P(B|A)=P(B)C.抛掷2枚质地均匀的硬币,设“第一枚正面朝上”为事件A,“第二枚正面朝上”为事件B,则A,B相互独立D.若事件A1与A2是对立事件,则对任意的事件B⊆Ω,都有P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)【解析】选BCD.因为当两个事件A,B相互独立时公式P(AB)=P(A)P(B)成立,所以选项A错误;因为事件A,B相互独立,所以P(AB)=P(A)P(B),P(B|A)=(B)()=P(B),所以选项B正确;因为抛掷2枚质地均匀的硬币,第一枚正面朝上,与第二枚正面的朝向无关,所以选项C正确;因为事件A1与A2是对立事件,所以B=A1B+A2B,所以P(B)=P(A1B)+P(A2B)=P(A1)P(B|A1)+P(A2)P(B|A2),所以选项D正确.2.(必修第二册P253习题4改条件)甲、乙两人独立地破解同一个谜题,破解出此谜题的概率分别为12,23,则此谜题没被破解出的概率为()A.16B.13C.56D.1【解析】选A.设“甲独立地破解出此谜题”为事件A,“乙独立地破解出此谜题”为事件B,则P(A)=12,P(B)=23,故P()=12,P()=13,所以P()=12×13=16,即此谜题没被破解出的概率为16.3.(条件概率公式使用错误)已知3件次品和2件正品混在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,则在第一次取出次品的条件下,第二次取出的也是次品的概率是()A.310B.35C.12D.14【解析】选C.设事件A表示第一次取出次品,事件B表示第二次取出次品,P(A)=35,P(AB)=35×24=310,则在第一次取出次品的条件下,第二次取出的也是次品的概率是P(B|A)=(B)()=31035=12.4.(2022·天津高考)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A 的概率为________;已知第一次抽到的是A,则第二次抽取A的概率为________.【解析】由题意,设第一次抽到A为事件B,第二次抽到A为事件C,则P(BC)=452×351=1221,P(B)=452=113,所以P(C|B)=(B)()=1221113=117.答案:1221117【巧记结论·速算】如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)…P(A n).【即时练】从应届高中生中选拔飞行员,已知这批学生体型合格的概率为13,视力合格的概率为16,其他几项标准合格的概率为15,从中任选一名学生,则该生各项均合格的概率为(假设各项标准互不影响)()A.49B.190C.45D.59【解析】选B.各项均合格的概率为13×16×15=190.【核心考点·分类突破】考点一事件的相互独立性角度1事件独立性的判断[例1](2021·新高考Ⅰ卷)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立【解析】选B.设甲、乙、丙、丁事件发生的概率分别为P(A),P(B),P(C),P(D).则P(A)=P(B)=16,P(C)=56×6=536,P(D)=66×6=16,对于A选项,P(AC)=0;对于B选项,P(AD)=16×6=136;对于C选项,P(BC)=16×6=136;对于D选项,P(CD)=0.若两事件X,Y相互独立,则P(XY)=P(X)P(Y),因此B选项正确.【解题技法】两个事件相互独立的判断方法(1)定义法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)充要条件法:事件A,B相互独立的充要条件是P(AB)=P(A)P(B).【对点训练】某校为提升学生的综合素养、大力推广冰雪运动,号召青少年成为“三亿人参与冰雪运动”的主力军,开设了“陆地冰壶”“陆地冰球”“滑冰”“模拟滑雪”四类冰雪运动体验课程.甲、乙两名同学各自从中任意挑选两门课程学习,设事件A=“甲、乙两人所选课程恰有一门相同”,事件B=“甲、乙两人所选课程完全不同”,事件C=“甲、乙两人均未选择陆地冰壶课程”,则()A.A与B为对立事件B.A与C互斥C.A与C相互独立D.B与C相互独立【解析】选C.依题意,甲、乙两人所选课程有如下情形:①有一门相同;②两门都相同;③两门都不相同.故A与B互斥不对立,A与C不互斥,所以P(A)=C41C31C21C42C42=23,P(B)=C42C42C42=16,P(C)=C32C32C42C42=14,且P(AC)=C31C21C42C42=16,P(BC)=0,所以P(AC)=P(A)P(C),P(BC)≠P(B)P(C),即A与C相互独立,B与C不相互独立.角度2独立性事件的概率[例2](2023·临沂模拟)“11分制”乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,若甲先发球,两人又打了2个球后该局比赛结束的概率为________;若乙先发球,两人又打了4个球后该局比赛结束,则甲获胜的概率为________.【解析】记两人又打了X个球后该局比赛结束,设双方10∶10平后的第k个球甲得分为事件A k(k=1,2,3…),则P(X=2)=P(A1A2)+P(12)=P(A1)P(A2)+P(1)P(2)=0.5×0.4+0.5×0.6=0.5.由乙先发球,且甲获胜的概率P=P(A12A3A4)+P(1A2A3A4)=P(A1)P(2)P(A3)P(A4)+P(1)P(A2)P(A3)P(A4)=0.4×0.5×0.4×0.5+0.6×0.5×0.4×0.5= 0.1.答案:0.50.1【解题技法】求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于它们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.【对点训练】(2020·全国Ⅰ卷)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.【解析】(1)甲连胜四场的概率为116.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为1-116-116-18=34.(3)丙最终获胜有两种情况:比赛四场结束且丙最终获胜的概率为18.比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18.因此丙最终获胜的概率为18+116+18+18=716.【加练备选】某一部件由三个电子元件按如图方式连接而成,元件1和元件2同时正常工作,或元件3正常工作,则部件正常工作.设三个电子元件正常工作的概率均为34且各个元件能否正常工作相互独立,那么该部件正常工作的概率为()A.764B.1532C.2732D.5764【解析】选D.讨论元件3正常与不正常:第一类,元件3正常,上部分正常或不正常都不影响该部件正常工作,则正常工作的概率为34×1=34;第二类,元件3不正常,上部分必须正常,则正常工作的概率为14×(34×34)=964,故该部件正常工作的概率为34+964=5764.考点二条件概率[例3](1)七巧板是中国民间流传的智力玩具.它是由如图所示的七块板组成:五块等腰直角三角形(其中两块小型三角形、一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形.可以拼成人物、动物、植物、房亭、楼阁等多种图案.现从七巧板中取出两块,已知取出的是三角形,则两块板恰好是全等三角形的概率为()A .35B .25C .27D .15【解析】选D .设事件A 为“从七巧板中取出两块,取出的是三角形”,事件B 为“两块板恰好是全等三角形”,则P (AB )=2C 72=221,P (A )=C 52C 72=1021,所以P (B |A )=(B )()=2211021=15.(2)(2022·新高考Ⅰ卷改编)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100人(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:项目不够良好良好病例组4060对照组1090从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.(|)(|)与(|)(|)的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.①证明:R =(|)(|)·(|)(|);②利用该调查数据,给出P (A |B ),P (A |)的估计值,并利用①的结果给出R 的估计值.【解析】①因为R =(|)(|)·(|)(|)=(B )()·()(B )·(B )()·()(B ),所以R =(B )()·()(B )·(B )()·()(B ).所以R =(|)(|)·(|)(|).②由已知P (A |B )=40100=25,P (A |)=10100=110,又P (|B )=60100=35,P (|)=90100=910,所以R =(|)(|)·(|)(|)=25×91035×110=6.所以指标R 的估计值为6.【解题技法】求条件概率的常用方法(1)定义法:P (B |A )=(B )().(2)样本点法:P (B |A )=(B )().【对点训练】1.某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪,在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为()A .0.8B .0.4C .0.2D .0.1【解析】选A .根据题意,在该地的中学生中随机调查一位同学,设选出的同学爱好滑冰为事件A,选出的同学爱好滑雪为事件B,由于该地中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪,则P(B)=0.5,同时爱好两个项目的占该地中学生总人数的50%+60%-70%=40%,则P(AB)=0.4,则P(A|B)=(B)()=0.40.5=0.8.2.根据历年的气象数据可知,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为()A.0.8B.0.625C.0.5D.0.1【解析】选A.设“发生中度雾霾”为事件A,“刮四级以上大风”为事件B,所以P(A)=0.25,P(B)=0.4,P(AB)=0.2,则在发生中度雾霾的情况下,刮四级以上大风的概率为P(B|A)=(B)()=0.20.25=0.8.考点三全概率公式的应用[例4](1)一份新高考数学试卷中有8道单选题,小胡对其中5道题有思路,3道题完全没有思路.有思路的题做对的概率是0.9,没有思路的题只能猜一个答案,猜对答案的概率为0.25,则小胡从这8道题目中随机抽取1道做对的概率为() A.79160B.35C.2132D.58【解析】选C.设事件A表示“小胡做对”,事件B表示“小胡选到有思路的题”,则小胡从这8道题目中随机抽取1道做对的概率P(A)=P(B)P(A|B)+P()P(A|) =58×0.9+38×0.25=2132.(2)在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知当发送信号0时,被接收为0和1的概率分别为0.93和0.07;当发送信号1时,被接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的,则接收的信号为1的概率为()A.0.48B.0.49C.0.52D.0.51【解析】选D.设事件A=“发送的信号为0”,事件B=“接收的信号为1”,则P(A)=P()=0.5,P(B|A)=0.07,P(B|)=0.95,因此P(B)=P(A)P(B|A)+P()P(B|)=0.5×(0.07+0.95)=0.51.【解题技法】利用全概率公式解题的思路(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件A i(i=1,2,…,n).(2)求P(A i)和所求事件B在各个互斥事件A i发生条件下的概率P(B|A i).(3)代入全概率公式计算.【对点训练】某商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂每箱装100个,废品率为0.06,乙厂每箱装120个,废品率为0.05.(1)任取一箱,求从中任取一个为废品的概率;(2)若将所有产品开箱混放,求任取一个为废品的概率.【解析】记事件A为取到的是甲厂的产品,事件B为取到的是乙厂的产品,事件C 为取到的是废品.(1)P(A)=3050=35,P(B)=2050=25,P(C|A)=0.06,P(C|B)=0.05,由全概率公式,得P(C)=P(A)P(C|A)+P(B)P(C|B)=7125.(2)P(A)=30×10030×100+20×120=59,P(B)=20×12030×100+20×120=49,P(C|A)=0.06,P(C|B)=0.05,由全概率公式,得P(C)=P(A)P(C|A)+P(B)P(C|B)=118.。

高考数学第一轮复习资料随机事件的概率

高考数学第一轮复习资料随机事件的概率

-1 -第39讲 随机事件的概率第39讲随机事件的概率1八随机事件和确定事件両芝/必裁事件I 裡斜$卜」定缈生的刪 __ •'厨人~丽能輛n 往条杵$ F 匚定不金雄吐的事申\faSTl■Ju'l T 在雳件E 下•可就我生也可能空发牛的事杵(1) 在条件S 下,一定会发生的事件,叫做 相对于条件S 的必然事件.(2) 在条件S 下,一定不会发生的事件,叫 做相对于条件S 的不可能事件. (3) 必然事件与不可能事件统称为相对于 条件S 的确定事件.(4) 在条件S 下可能发生也可能不发生的事 件,叫做相对于条件S 的随机事件.(5) 确定事件和随机事件统称为事件,一般 用大写字母A ,B ,C …表示. 2.频率与概率(1)在相同的条件S 下重复n 次试验,观察某 一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A) =罟为事件A 出现的频率. (2)对于给定的随机事件 A ,如果随着试验次 数的增加,事件A 发生的频率f n (A)稳定在某 个常数上,把这个常数记作 P(A),称为事件 A 的概率,简称为A 的概率. 3•概率的几个基本性质(1) 概率的取值范围:0丰(A) <1 (2) 必然事件的概率P(E)= 1. (3) 不可能事件的概率P(F)= 0. (4) 互斥事件概率的加法公式①如果事件A 与事件B 互斥,则P(A U B) =P(A) + P(B).②若事件B 与事件A 互为对立事件,则P(A) =1 — P(B).考点剖析曇点 随机事件的关系【例1】一个均匀的正方体玩具的各个面上分 别标以数字123,4,5,6将这个玩具向上抛掷1 次,设事件A 表示向上的一面出现奇数点, 事件B 表示向上的一面出现的点数不超过 3, 事件C 表示向上的一面出现的点数不小于 4, 则()A . A 与B 是互斥而非对立事件B . A 与B 是对立事件C . B 与C 是互斥而非对立事件 件B ,C 是对立事件,故应选D.【拓展练习】1■对飞机连续射击两次,每次发 射一枚炮弹.设A = {两次都击中飞机},B = {两次都没击中飞机},C 二{恰有一弹击中飞 机},D = {至少有一弹击中飞机},其中彼此 互斥的事件是 _______________ 互为对立事件的是<?寸j丄A ■VJ1 2345D . B 与C 是对立事件 【解析】如图作6X 3的坐标表格,x 轴为基本事件(点数),y 轴为事件,在单元格内按事件包含的 基本事件打上 ⑷。

届高考数学一轮复习讲义课件:随机事件的概率与古典概型(共59张PPT)精选全文

届高考数学一轮复习讲义课件:随机事件的概率与古典概型(共59张PPT)精选全文
第一节 随果机事可件的能概率不与古相典概同型.
第一节 随机事件的概率与古典概型 第一节 随机事件的概率与古典概型 第一节 随机事件的概率与古典概型 第一节 随机事件的概率与古典概型 第一节 随机事件的概率与古典概型 第一节 随机事件的概率与古典概型 第一节 随机事件的概率与古典概型 第一节 随机事件的概率与古典概型 第一节 随机事件的概率与古典概型 第一节 随机事件的概率与古典概型 第一节 随机事件的概率与古典概型 第一节 随机事件的概率与古典概型 第一节 随机事件的概率与古典概型 第一节 随机事件的概率与古典概型
变式迁移 1 指出下列两个随机事件中的一次试验是什么?一共进行了几 次试验? (1)同一枚质地均匀的硬币抛 10 次,有 10 次正面朝上; (2)姚明在本赛季共罚球 87 次,有 69 次投球命中.
解析 (1)抛一次硬币就是一次试验,一共进行了 10 次试验. (2)罚一次球就是一次试验,一共进行了 87 次试验.
典例对对碰
题型一 对随机实验的理解 例 1.下列随机事件中,一次试验是指什么?它们各有几次试验? (1)一天中,从北京开往沈阳的 7 列列车,全部正点到达; (2)抛 10 次质地均匀的硬币,硬币落地时 5 次正面向上. 分析 关键看这两个事件的条件是什么.
解析 (1)一列列车开出,就是一次试验,共有 7 次试验.(2)抛
4.事件与集合的关系 (1)包含事件. 如果事件 A 发生,则事件 B 一定发生,这时我们就说事件 B 包含事件 A,记作 B⊇A(A⊆B). ①与集合比,B 包含 A,可用图所示.
②不可能事件记作∅,显然 C⊇∅(C 为任一事件). ③事件 A 也包含于事件 A,即 A⊆A. 例如:在投掷骰子的试验中,{出现 1 点}⊆{出现的点数为奇数}.

第88讲、随机事件、频率与概率(教师版)2025高考数学一轮复习讲义

第88讲、随机事件、频率与概率(教师版)2025高考数学一轮复习讲义

第88讲随机事件、频率与概率知识梳理知识点1、随机试验我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E 表示.我们感兴趣的是具有以下特点的随机试验:(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.知识点2、样本空间我们把随机试验E 的每个可能的基本结果称为样本点,全体样本点的集合称为试验E 的样本空间,一般地,用.Ω.表示样本空间,用ω表示样本点,如果一个随机试验有n 个可能结果1ω,2ω,…,n ω,则称样本空间}{12,,,n ωωωΩ= 为有限样本空间.知识点3、随机事件、确定事件(1)一般地,随机试验中的每个随机事件都可以用这个试验的样本空间的子集来表示,为了叙述方便,我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.当且仅当A 中某个样本点出现时,称为事件A 发生.(2)Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.(3)空集∅不包含任何样本点,在每次试验中都不会发生,我们称为∅为不可能事件.(4)确定事件:必然事件和不可能事件统称为相对随机事件的确定事件.知识点4、事件的关系与运算①包含关系:一般地,对于事件A 和事件B ,如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或者称事件A 包含于事件B ),记作B A ⊇或者A B ⊆.与两个集合的包含关系类比,可用下图表示:不可能事件记作∅,任何事件都包含不可能事件.②相等关系:一般地,若B A ⊇且A B ⊇,称事件A 与事件B 相等.与两个集合的并集类比,可用下图表示:③并事件(和事件):若某事件发生当且仅当事件A 发生或事件B 发生,则称此事件为事件A 与事件B 的并事件(或和事件),记作A B (或A B +).与两个集合的并集类比,可用下图表示:④交事件(积事件):若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件),记作A B (或AB ).与两个集合的交集类比,可用下图表示:知识点5、互斥事件与对立事件(1)互斥事件:在一次试验中,事件A 和事件B 不能同时发生,即=A B ∅ ,则称事件A 与事件B 互斥,可用下图表示:如果1A ,2A ,…,n A 中任何两个都不可能同时发生,那么就说事件1A ,.2A .,…,nA 彼此互斥.(2)对立事件:若事件A 和事件B 在任何一次实验中有且只有一个发生,即A B =Ω 不发生,A B =∅ 则称事件A 和事件B 互为对立事件,事件A 的对立事件记为A .(3)互斥事件与对立事件的关系①互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生.②对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即“互斥”是“对立”的必要不充分条件,而“对立”则是“互斥”的充分不必要条件.知识点6、概率与频率(1)频率:在n 次重复试验中,事件A 发生的次数k 称为事件A 发生的频数,频数k 与总次数n 的比值kn,叫做事件A 发生的频率.(2)概率:在大量重复尽心同一试验时,事件A 发生的频率kn总是接近于某个常数,并且在它附近摆动,这时,就把这个常数叫做事件A 的概率,记作()P A .(3)概率与频率的关系:对于给定的随机事件A ,由于事件A 发生的频率kn随着试验次数的增加稳定于概率()P A ,因此可以用频率kn来估计概率()P A .必考题型全归纳题型一:随机事件与样本空间例1.(2024·全国·高三专题练习)已知集合A 是集合B 的真子集,则下列关于非空集合A ,B 的四个命题:①若任取x A ∈,则x B ∈是必然事件;②若任取x A ∉,则x B ∈是不可能事件;③若任取x B ∈,则x A ∈是随机事件;④若任取x B ∉,则x A ∉是必然事件.其中正确的命题有()A .1个B .2个C .3个D .4个【答案】C【解析】因为集合A 是集合B 的真子集,所以集合A 中的元素都在集合B 中,集合B 中存在元素不是集合A 中的元素,作出其韦恩图如图:对于①:集合A 中的任何一个元素都是集合B 中的元素,任取x A ∈,则x B ∈是必然事件,故①正确;对于②:任取x A ∉,则x B ∈是随机事件,故②不正确;对于③:因为集合A 是集合B 的真子集,集合B 中存在元素不是集合A 中的元素,集合B 中也存在集合A 中的元素,所以任取x B ∈,则x A ∈是随机事件,故③正确;对于④:因为集合A 中的任何一个元素都是集合B 中的元素,任取x B ∉,则x A ∉是必然事件,故④正确;所以①③④正确,正确的命题有3个.例2.(2024·全国·高三专题练习)以下事件是随机事件的是()A .标准大气压下,水加热到100C ︒,必会沸腾B .走到十字路口,遇到红灯C .长和宽分别为,a b 的矩形,其面积为abD .实系数一元一次方程必有一实根【答案】B【解析】A .标准大气压下,水加热到100℃必会沸腾,是必然事件;故本选项不符合题意;B .走到十字路口,遇到红灯,是随机事件;故本选项符合题意;C .长和宽分别为,a b 的矩形,其面积为ab 是必然事件;故本选项不符合题意;D .实系数一元一次方程必有一实根,是必然事件.故本选项不符合题意.故选:B .例3.(2024·全国·高三专题练习)袋中装有形状与质地相同的4个球,其中黑色球2个,记为12B B 、,白色球2个,记为12W W 、,从袋中任意取2个球,请写出该随机试验一个不等可能的样本空间:Ω=.【答案】121121{},,B B B W B W (答案不唯一)【解析】从袋中任取2个球,共有如下情况121112212212,,,,,B B B W B W B W B W W W .其中一个不等可能的样本空间为121121Ω},,{B B B W B W =,此样本空间中两个黑球的情况有1个,一黑一白的情况有2个,是不等可能的样本空间.故答案为:121121Ω},,{B B B W B W =.(答案不唯一)变式1.(2024·全国·高一专题练习)将一枚硬币抛三次,观察其正面朝上的次数,该试验样本空间为.【答案】{}0,1,2,3【解析】因为将一枚硬币抛三次,其正面朝上的次数可能为0,1,2,3,所以该试验样本空间为{}0,1,2,3.故答案为:{}0,1,2,3.变式2.(2024·高一课时练习)设样本空间Ω={1,2,3},则Ω的不同事件的总数是.【答案】8【解析】集合{1,2,3}的子集个数为328=,所以Ω的不同事件的总数是8,变式3.(2024·全国·高一专题练习)从含有6件次品的50件产品中任取4件,观察其中次品数,其样本空间为.【答案】{}0,1,2,3,4【解析】由分析可知取出的4件产品的次品个数为0,1,2,3,4,所以样本空间为{}0,1,2,3,4,故答案为:{}0,1,2,3,4.【解题方法总结】确定样本空间的方法(1)必须明确事件发生的条件.(2)根据题意,按一定的次序列出问题的答案.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.题型二:随机事件的关系与运算例4.(2024·全国·高三专题练习)端午节是我国传统节日,记事件A =“甲端午节来宝鸡旅游”,记事件B =“乙端午节来宝鸡旅游”,且1()3P A =,3()4P B =,假定两人的行动相互之间没有影响,则()P A B = ()A .56B .712C .34D .14【答案】A【解析】依题意1()3P A =,3()4P B =且A 、B 相互独立,所以()()()13135()34346P A B P A P B P AB =+-=+-⨯= .故选:A.例5.(2024·全国·高三专题练习)已知事件A 与事件B 互斥,记事件B 为事件B 对立事件.若()0.6P A =,()0.2P B =,则()P A B +=()A .0.6B .0.8C .0.2D .0.48【答案】B【解析】因为事件A 与事件B 互斥,所以A B ⊆,所以()(1()0.8P A B P B P B +==-=.故选:B例6.(2024·全国·高三专题练习)对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设事件A 表示随机事件“两枚炮弹都击中飞机”,事件B 表示随机事件“两枚炮弹都未击中飞机”,事件C 表示随机事件“恰有一枚炮弹击中飞机”,事件D 表示随机事件“至少有一枚炮弹击中飞机”,则下列关系不正确的是()A .A D ⊆B .B D =∅C .A CD ⋃=D .A B B D⋃=⋃【答案】D【解析】“至少有一枚炮弹击中飞机”包含两种情况:一种是恰有一枚炮弹击中飞机,另一种是两枚炮弹都击中飞机.所以A D ⊆,B D =∅ ,“恰有一枚炮弹击中飞机”指第一枚击中第二枚没击中或第一枚没击中第二枚击中,所以A C D ⋃=,又B D 包含该试验的所有样本点,为必然事件,而事件A B ⋃表示“两个炮弹都击中飞机或者都没击中飞机”,所以A B B D ⋃≠⋃.故选:D变式4.(2024·全国·高三专题练习)某家族有,X Y 两种遗传性状,该家族某成员出现X 性状的概率为415,出现Y 性状的概率为215,,X Y 两种性状都不出现的概率为710,则该成员,X Y 两种性状都出现的概率为()A .115B .110C .215D .415【答案】B【解析】设该家族某成员出现X 性状为事件A ,出现Y 性状为事件B ,则,X Y 两种性状都不出现为事件A B ⋂,两种性状都出现为事件A B ⋂,所以,()()42,1515P B P A ==,()710P A B = ,所以,()()3110P A B P A B =-=,又因为()()()()P A B P A P B P A B =+- ,所以,()()()()110P A B P A P B P A B =+-= ,故选:B变式5.(2024·上海长宁·统考一模)掷两颗骰子,观察掷得的点数;设事件A 为:至少一个点数是奇数;事件B 为:点数之和是偶数;事件A 的概率为()P A ,事件B 的概率为()P B ;则()1P A B -⋂是下列哪个事件的概率()A .两个点数都是偶数B .至多有一个点数是偶数C .两个点数都是奇数D .至多有一个点数是奇数【答案】D【解析】由题意,事件A B ⋂为:两个点数都为奇数,由概率()1P A B -⋂指的是事件A B ⋂的对立事件的概率,则事件A B ⋂的对立事件为:至少有一个点数为偶数,或者至多有一个点数为奇数.故选:D.变式6.(2024·全国·高三专题练习)如图,甲、乙两个元件串联构成一段电路,设M =“甲元件故障”,N =“乙元件故障”,则表示该段电路没有故障的事件为()A .M N ⋃B .M N⋃C .M N ⋂D .M N【答案】C【解析】因甲、乙两个元件串联,线路没有故障,即甲、乙都没有故障.即事件M 和N 同时发生,即事件M N ⋂发生.故选:C.变式7.(2024·全国·高三专题练习)已知()0.3P A =,()0.1P B =,若B A ⊆,则()P AB =()A .0.1B .0.2C .0.3D .0.4【答案】A【解析】由于B A ⊆,所以()()0.1P AB P B ==.故选:A【解题方法总结】事件的关系运算策略(1)互斥事件是不可能同时发生的事件,但也可以同时不发生.(2)进行事件的运算时,一是要紧扣运算的定义,二是要全面考虑同一条件下的试验可能出现的全部结果,必要时可列出全部的试验结果进行分析.也可类比集合的关系和运用Venn图分析事件.题型三:频率与概率例7.(2024·陕西西安·西安市大明宫中学校考模拟预测)在一个口袋中放有m个白球和n 个红球,这些球除颜色外都相同,某班50名学生分别从口袋中每次摸一个球,记录颜色后放回,每人连续摸10次,其中摸到白球的次数共152次,以频率估计概率,若从口袋中随机摸1个球,则摸到红球概率的估计值为.(小数点后保留一位小数)【答案】0.7【解析】由题意可知:一共摸500次,其中摸到白球的次数共152次,摸到红球的次数共348次,所以摸到红球概率的估计值为3480.7 500».故答案为:0.7例8.(2024·全国·高三对口高考)下列说法:①设有一批产品,其次品率为0.05,则从中任取200件,必有10件次品;②做100次抛硬币的试验,有51次出现正面.因此出现正面的概率是0.51;③随机事件A的概率是频率的稳定值;④随机事件A的概率趋近于0,即()P A趋近于0,则A是不可能事件;⑤抛掷骰子100次,得点数是1的结果是18次,则出现1点的频率是950;⑥随机事件的频率就是这个事件发生的概率;其中正确的有.【答案】③⑤【解析】概率指的是无穷次试验中,出现的某种事件的频率总在一个固定的值的附近波动,这个固定的值就是概率.①通过概率定义可以分析出,出现的事件是在一个固定值波动,并不是一个确定的值,则本题中从该批产品中任取200件,应该是10件次品左右,不一定出现10件次品,错误;②100次抛硬币的试验并不是无穷多次试验,出现的频率也不是概率,事实上硬币只有两个面,每个面出现的概率是相等的,所以因此出现正面的概率是0.5,错误;③随机事件的概率是通过多次试验,算出频率后来估计它的概率的,当试验的次数多了,这个频率就越来越接近概率,所以随机事件A的概率是频率的稳定值,正确;④随机事件A的概率趋近于0,说明事件A发生的可能性很小,但并不表示不会发生,错误;⑤抛掷骰子100次,得点数是1的结果是18次,则出现1点的频率是18910050=,正确;⑥根据概率的定义,随机事件的频率只是这个事件发生的概率的近似值,它并不等于概率,错误;综上,正确的说法有③⑤.故答案为:③⑤例9.(2024·全国·模拟预测)在对于一些敏感性问题调查时,被调查者往往不愿意给正确答复,因此需要特别的调查方法.调查人员设计了一个随机化装置,在其中装有形状、大小、质地完全相同的50个黑球和50个白球,每个被调查者随机从该装置中抽取一个球,若摸到黑球则需要如实回答问题一:你公历生日是奇数吗?若摸到白球则如实回答问题二:你是否在考试中做过弊.若100人中有52人回答了“是”,48人回答了“否”.则问题二“考试是否做过弊”回答“是”的百分比为(以100人的频率估计概率).【答案】54%/0.54【解析】由题意可知,每名调查者从袋子中抽到1个白球或黑球的概率均为0.5,所以,100人中回答第一个问题的人数为1000.550⨯=,则另外50人回答了第二个问题,在摸到黑球的前提下,回答“是”的概率为12,即摸到黑球且回答“是”的人数为150252⨯=,则摸到白球且回答“是”的人数为522527-=,所以,问题二“考试是否做过弊”且回答“是”的百分比为270.5454% 50==.故答案为:54%.变式8.(2024·全国·高三对口高考)已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1、2、3、4表示命中,5、6、7、8、9、0表示不命中,再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:907966191925271932812458569683 431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为.【答案】0.25/1 4【解析】20组随机数中表示三次投篮恰好有两次命中的是191、271、932、812、393,其频率为50.2520=,以此估计该运动员三次投篮恰有两次命中的概率为0.25.故答案为:0.25变式9.(2024·全国·高三专题练习)一家药物公司试验一种新药,在500个病人中试验,其中307人有明显疗效,120人有疗效但疗效一般,剩余的人无疗效,则没有明显疗效的频率是.【答案】0.386/193 500【解析】由题意可得没有明显疗效的人数为500307193-=,所以没有明显疗效的频率为1930.386 500=,故答案为:0.386变式10.(2024·全国·高三专题练习)若随机事件A在n次试验中发生了m次,则当试验次数n很大时,可以用事件A发生的频率mn来估计事件A的概率,即()≈P A.【答案】m n【解析】在相同的条件下,随着试验次数的增加,事件A发生的频率会在随机事件A发生的概率()P A附近摆动并趋于稳定,这个性质成为频率的稳定性.因此,可以用事件A发生的频率mn来估计事件A的概率,即()≈P A mn.故答案为:m n变式11.(2024·全国·高三专题练习)已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生0到9之间取整数值的随机数,指定2,4,6,8表示命中十环,0,1,3,5,7,9表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:321 421 292 925 274 632 800 478 598 663 531 297 396 021 506318 230 113 507 965据此估计,小张三次射击恰有两次命中十环的概率约为.【答案】0.3【解析】由题意,随机数组421,292,274,632,478,663共6个,表示恰有两次命中十环,所以概率为60.320P==.故答案为:0.3.变式12.(2024·广东广州·高三铁一中学校考阶段练习)长时间玩手机可能影响视力.据调查,某校学生大约有40%的人近视,而该校大约有20%的学生每天玩手机超过1小时,这些人的近视率约为50%.现从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率约为.【答案】0.375【解析】设该学校人数为x ,依题意得,近视的人数为0.4x ,玩手机超过1小时的人有0.2x ,近视人数为0.1x ,于是玩手机小于1小时但又近视的人数为(0.40.1)0.3x x -=,玩手机小于1小时的总人数为(10.2)0.8x x -=,这类人的近视率约为0.30.3750.8xx=.故答案为:0.375变式13.(2024·上海浦东新·高三华师大二附中校考阶段练习)袋中有10个球,其中有m 个红球,n 个蓝球,有放回地随机抽取1000次,其中有597次取到红球,403次取到蓝球,则其中红球最有可能有个.【答案】6【解析】5976100010mm =⇒≈.所以红球最有可能有6个.故答案为:6【解题方法总结】(1)概率与频率的关系(2)随机事件概率的求法题型四:生活中的概率例10.(2024·全国·高三专题练习)某购物网站开展一种商品的预约购买,规定每个手机号只能预约一次,预约后通过摇号的方式决定能否成功购买到该商品.规则如下:(ⅰ)摇号的初始中签率为0.19;(ⅱ)当中签率不超过1时,可借助“好友助力”活动增加中签率,每邀请到一位好友参与“好友助力”活动可使中签率增加0.05.为了使中签率超过0.9,则至少需要邀请位好友参与到“好友助力”活动.【答案】15【解析】因为摇号的初始中签率为0.19,所以要使中签率超过0.9,需要增加中签率0.90.190.71-=,因为每邀请到一位好友参与“好友助力”活动可使中签率增加0.05,所以至少需要邀请0.7114.20.05=,所以至少需要邀请15位好友参与到“好友助力”活动.故答案为:15例11.(2024·江西吉安·江西省泰和中学校考一模)设有外形完全相同的两个箱子,甲箱中有99个白球,1个黑球,乙箱中有1个白球,99个黑球.随机地抽取一箱,再从取出的一箱中抽取一球,结果取得白球,我们可以认为这球是从箱中取出的.【答案】甲.【解析】分别求出甲箱中取到白球的概率和乙箱中取到白球的概率,由此进行判断. 甲箱有99个白球1个黑球,∴随机地取出一球,得白球的可能性是99 100,乙箱中有1个白球和99个黑球,从中任取一球,得白球的可能性是1 100,由此看到,这一白球从甲箱中抽出的概率比从乙箱中抽出的概率大得多.既然在一次抽样中抽得白球,当然可以认为是由概率大的箱子中抽出的.∴我们作出推断是从甲箱中抽出的.故答案为:甲例12.(2024·全国·高三专题练习)有以下说法:①一年按365天计算,两名学生的生日相同的概率是1365;②买彩票中奖的概率为0.001,那么买1000张彩票就一定能中奖;③乒乓球赛前,决定谁先发球,抽签方法是从1~10共10个数字中各抽取1个,再比较大小,这种抽签方法是公平的;④昨天没有下雨,则说明“昨天气象局的天气预报降水概率是90%”是错误的.根据我们所学的概率知识,其中说法正确的序号是.【答案】①③【解析】根据“概率的意义”求解,买彩票中奖的概率0.001,并不意味着买1000张彩票一定能中奖,只有当买彩票的数量非常大时,我们可以看成大量买彩票的重复试验,中奖的次数为n;1 000昨天气象局的天气预报降水概率是90%,是指可能性非常大,并不一定会下雨.说法②④是错误的,而利用概率知识可知①③是正确的.故答案为①③.【解题方法总结】概率和频率的关系:概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.题型五:互斥事件与对立事件例13.(2024·四川眉山·仁寿一中校考模拟预测)袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.至少有一个白球;红、黑球各一个D.恰有一个白球;一个白球一个黑球【答案】C【解析】对于A,至少有一个白球和都是白球的两个事件能同时发生,不是互斥事件,A不是;对于B,至少有一个白球和至少有一个红球的两个事件能同时发生,不是互斥事件,B不是;对于C,至少有一个白球和红、黑球各一个的两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,C是;对于D,恰有一个白球和一个白球一个黑球的两个事件能同时发生,不是互斥事件,D不是.故选:C例14.(2024·全国·高三专题练习)从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个黑球与都是黑球B.至少有一个黑球与至少有一个红球C.恰有一个黑球与恰有两个黑球D.至少有一个黑球与都是红球【答案】C【解析】对于A:事件:“至少有一个黑球”与事件:“都是黑球”可以同时发生,如:两个都是黑球,∴这两个事件不是互斥事件,A ∴不正确;对于B :事件:“至少有一个黑球”与事件:“至少有一个红球”可以同时发生,如:一个红球一个黑球,B ∴不正确;对于C :事件:“恰好有一个黑球”与事件:“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能是两个都是红球,∴两个事件是互斥事件但不是对立事件,C ∴正确;对于D :事件:“至少有一个黑球”与“都是红球”不能同时发生,但一定会有一个发生,∴这两个事件是对立事件,D ∴不正确;故选:C .例15.(2024·四川宜宾·统考三模)抛掷一枚质地均匀的骰子一次,事件1表示“骰子向上的点数为奇数”,事件2表示“骰子向上的点数为偶数”,事件3表示“骰子向上的点数大于3”,事件4表示“骰子向上的点数小于3”则()A .事件1与事件3互斥B .事件1与事件2互为对立事件C .事件2与事件3互斥D .事件3与事件4互为对立事件【答案】B【解析】由题可知,事件1可表示为:{}13,5A =,,事件2可表示为:{}2,4,6B =,事件3可表示为:{}4,5,6C =,事件4可表示为:{}1,2D =,因为{}5A C = ,所以事件1与事件3不互斥,A 错误;因为A B ⋂为不可能事件,A B ⋃为必然事件,所以事件1与事件2互为对立事件,B 正确;因为{}4,6B C = ,所以事件2与事件3不互斥,C 错误;因为C D ⋂为不可能事件,C D ⋃不为必然事件,所以事件3与事件4不互为对立事件,D 错误;故选:B.变式14.(2024·广西柳州·柳州高级中学校联考模拟预测)从数学必修一、二和政治必修一、二共四本书中任取两本书,那么互斥而不对立的两个事件是()A .至少有一本政治与都是数学B .至少有一本政治与都是政治C .至少有一本政治与至少有一本数学D .恰有1本政治与恰有2本政治【答案】D【解析】从装有2本数学和2本政治的四本书内任取2本书,可能的结果有:“两本政治”,“两本数学”,“一本数学一本政治”,“至少有一本政治”包含事件:“两本政治”,“一本数学一本政治”.对于A,事件“至少有一本政治”与事件“都是数学”是对立事件,故A错误;对于B,事件“至少有一本政治”包含事件“都是政治”,两个事件是包含关系,不是互斥事件,故B错误;对于C,事件“至少有一本数学”包含事件:“两本数学”,“一本数学一本政治”,因此两个事件都包含事件“一本数学一本政治”,不是互斥事件,故C错误;对于D,“恰有1本政治”表示事件“一本数学一本政治”,与事件“恰有2本政治”是互斥事件,但是不对立,故D正确.故选:D.,,个,从中任取2个,则互斥而不变式15.(2024·全国·高二)袋内分别有红、白、黑球321对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰有一个白球;一个白球一个黑球D.至少有一个白球;红、黑球各一个【答案】D【解析】对于A,“至少有一个白球”说明有白球,白球的个数可能为1或2,而“都是白球”说明两个全是白球,这两个事件可以同时发生,故A中事件不是互斥的;对于B,当两球一个白球一个红球时,“至少有一个白球”与“至少有一个红球”均发生,故不互斥;对于C,“恰有一个白球”,表示黑球个数为0或1,即可能是一个白球和一个黑球,这与“一个白球一个黑球”不互斥;对于D,“至少一个白球”发生时,“红、黑球各一个”不会发生,故二者互斥,从袋中任取2个也可能是两个红球,即二者可能都不发生,故二者不对立,故选:D变式16.(多选题)(2024·全国·高三专题练习)从1,2,3,L,9中任取三个不同的数,则在下述事件中,是互斥但不是对立事件的有()A.“三个都为偶数”和“三个都为奇数”B.“至少有一个奇数”和“至多有一个奇数”C.“至少有一个奇数”和“三个都为偶数”D.“一个偶数两个奇数”和“两个偶数一个奇。

2020版高考数学一轮复习-第4讲随机事件的概率教案(理)(含解析)新人教A版

2020版高考数学一轮复习-第4讲随机事件的概率教案(理)(含解析)新人教A版

第4讲随机事件的概率基础知识整合1.概率(1)在相同条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有□01稳定性.我们把这个常数叫做随机事件A的□02概率,03P(A).记作□04概率是一个确定(2)频率反映了一个随机事件出现的频繁程度,但频率是随机的,而□的值,因此,人们用□05概率来反映随机事件发生的可能性的大小,有时也用□06频率作为随机事件概率的估计值.(3)概率的几个基本性质①概率的取值范围:□070≤P(A)≤1.②必然事件的概率:P(A)=□081.③不可能事件的概率:P(A)=□090.④概率的加法公式如果事件A与事件B互斥,则P(A∪B)=□10P(A)+P(B).⑤对立事件的概率若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=□111,P(A)=□121-P(B).2.事件的关系与运算1.从集合的角度理解互斥事件和对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.(2)事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.2.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n).1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( ) A.互斥事件但非对立事件B.对立事件但非互斥事件C.互斥事件也是对立事件D .以上都不对答案 A解析 由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.故选A.2.(2019·宁夏检测)抽查10件产品,设事件A 为“至少有2件次品”,则事件A 的对立事件为( )A .至多有2件次品B .至多有1件次品C .至多有2件正品D .至少有2件正品答案 B解析 ∵“至少有n 个”的反面是“至多有n -1个”,又∵事件A “至少有2件次品”,∴事件A 的对立事件为“至多有1件次品”.3.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,事件“至少有一名女生”与事件“全是男生”( )A .是互斥事件,不是对立事件B .是对立事件,不是互斥事件C .既是互斥事件,也是对立事件D .既不是互斥事件,也不是对立事件答案 C4.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是0.05和0.03,则抽检一件是正品(甲级品)的概率为( )A .0.95B .0.97C .0.92D .0.08答案 C解析 记抽检的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因此所求概率为P (A )=1-P (B )-P (C )=1-0.05-0.03=0.92.5.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:这一地区男婴出生的概率约是________(保留四位小数).答案 0.5173解析 男婴出生的频率依次约是:0.5200,0.5173,0.5173,0.5173.由于这些频率非常接近0.5173,因此这一地区男婴出生的概率约为0.5173.6.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为23,则这班参加聚会的同学的人数为________. 答案 18解析 设女同学有x 人,则该班到会的共有(2x -6)人,所以x 2x -6=23,得x =12,故该班参加聚会的同学有18人.核心考向突破考向一 事件的概念例1 从6件正品与3件次品中任取3件,观察正品件数与次品件数,判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.(1)“恰好有1件次品”和“恰好有2件次品”;(2)“至少有1件次品”和“全是次品”;(3)“至少有2件次品”和“至多有1件次品”.解 从6件正品与3件次品中任取3件,共有4种情况:①3件全是正品;②2件正品1件次品;③1件正品2件次品;④全是次品.(1)“恰好有1件次品”即“2件正品1件次品”;“恰好有2件次品”即“1件正品2件次品”,它们是互斥事件但不是对立事件.(2)“至少有1件次品”包括“2件正品1件次品”“1件正品2件次品”“全是次品”3种情况,它与“全是次品”既不是互斥事件也不是对立事件.(3)“至少有2件次品”包括”1件正品2件次品”“全是次品”2种情况;“至多有1件次品”包括“2件正品1件次品”“全是正品”2种情况,它们既是互斥事件也是对立事件.触类旁通事件间关系的判断方法对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件,这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪几个试验结果,从而断定所给事件的关系.即时训练 1.(2019·湖北十市联考)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .“至少有一个黑球”与“都是黑球”B .“至少有一个黑球”与“都是红球”C .“至少有一个黑球”与“至少有一个红球”D .“恰有一个黑球”与“恰有两个黑球”答案 D解析 A 中的两个事件是包含关系,不是互斥事件;B 中的两个事件是对立事件;C 中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D 中的两个事件是互斥而不对立的关系.考向二 随机事件的概率与频率例2 (2018·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)解 (1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000. 第四类电影中获得好评的电影部数是200×0.25=50, 故所求概率为502000=0.025. (2)设“随机选取1部电影,这部电影没有获得好评”为事件B .没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628(部).由古典概型概率公式得P (B )=16282000=0.814. (3)增加第五类电影的好评率,减少第二类电影的好评率.触类旁通概率和频率的关系概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.即时训练 2.(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300;若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100,所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8,因此Y 大于零的概率的估计值为0.8. 考向三 互斥、对立事件的概率角度1 互斥事件的概率 例3 (2019·唐山模拟)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.解 (1)设A 表示事件“赔付金额为3000元”,B 表示事件“赔付金额为4000元”,以频率估计概率,得P (A )=1501000=0.15,P (B )=1201000=0.12. 由于投保金额为2800元,赔付金额大于投保金额对应的情形是3000元和4000元, 所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4000元”.由已知,样本车辆中车主为新司机的有0.1×1000=100(辆),而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24, 由频率估计概率得P (C )=0.24.角度2 对立事件的概率例4 (2019·扬州模拟)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).解 (1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟). (2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110. P (A )=1-P (A 1)-P (A 2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.触类旁通求复杂的互斥事件的概率的一般方法(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率求和,运用互斥事件的概率求和公式计算. 2间接法:先求此事件的对立事件的概率,再用公式P A =1-P A ,即运用逆向思维,特别是“至少”“至多”型题目,用间接法就显得较简便.即时训练 3.某商场有奖销售中,购满100元商品得1张奖券,多购多得,1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C );(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.解 (1)P (A )=11000,P (B )=101000=1100,P (C )=501000=120. (2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=11000+1100+120=611000. 故1张奖券的中奖概率为611000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,P (N )=1-P (A ∪B )=1-⎝ ⎛⎭⎪⎫11000+1100=9891000. 故1张奖券不中特等奖且不中一等奖的概率为9891000.。

四川省甘孜藏族自治州高考数学一轮复习:60 随机事件的概率

四川省甘孜藏族自治州高考数学一轮复习:60 随机事件的概率

四川省甘孜藏族自治州高考数学一轮复习:60 随机事件的概率姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017高一下·鞍山期末) 一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A . 至多有一次中靶B . 两次都中靶C . 只有一次中靶D . 两次都不中靶2. (2分) (2016高二上·孝感期中) 某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么互斥而不对立的两个事件是()A . 至少有1名男生和至少有1名女生B . 恰有1名男生和恰有2名男生C . 至少有1名男生和都是女生D . 至多有1名男生和都是女生3. (2分) (2018高一下·芜湖期末) 若干个人站成一排,其中为互斥事件的是()A . “甲站排头”与“乙站排头”B . “甲站排头”与“乙不站排尾”C . “甲站排头”与“乙站排尾”D . “甲不站排头”与“乙不站排尾”4. (2分) (2017高二下·莆田期末) 某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间Y统计结果如下:办理业务所需的时间Y/分12345频率0.10.40.30.10.1从第一个顾客开始办理业务时计时,据上表估计第三个顾客等待不超过4分钟就开始办理业务的概率为()A . 0.22B . 0.24C . 0.30D . 0.315. (2分)一个人打靶时连续射击三次,与事件“至多有两次中靶”互斥的事件是()A . 至少有两次中靶B . 三次都中靶C . 只有一次中靶D . 三次都不中靶6. (2分) (2019高二下·上海期末) 设为两个随机事件,给出以下命题:(1)若为互斥事件,且,,则;(2)若,,,则为相互独立事件;(3)若,,,则为相互独立事件;(4)若,,,则为相互独立事件;(5)若,,,则为相互独立事件;其中正确命题的个数为()A . 1B . 2C . 3D . 47. (2分)口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是()A . 0.42B . 0.28C . 0.3D . 0.78. (2分)设事件A,B,已知P(A)=, P(B)=,,则A,B之间的关系一定为()A . 两个任意事件B . 互斥事件C . 非互斥事件D . 对立事件9. (2分) (2018高二上·福建期中) 袋中装有黑、白两种颜色的球各三个,现从中取出两个球.设事件P表示“取出的都是黑球”;事件Q表示“取出的都是白球”;事件R表示“取出的球中至少有一个黑球”.则下列结论正确的是()A . P与R是互斥事件B . P与Q是对立事件C . Q和R是对立事件D . Q和R是互斥事件,但不是对立事件10. (2分)某学生解选择题出错的概率为0.1,该生解三道选择题至少有一道出错的概率是()A .B .C .D .11. (2分)下列叙述正确的是()A . 任何事件的概率总是在之间B . 频率是客观存在的,与试验次数无关C . 随着试验次数的增加,频率一般会越来越接近概率D . 概率是随机的,在试验前不能确定12. (2分)甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.4,敌机被击中的概率为()A . 1B . 0.86C . 0.24D . 0.76二、填空题 (共5题;共5分)13. (1分)一个口袋内装有大小相同的红球、白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________.14. (1分) (2019高一上·山东月考) 抛掷一枚质地均匀的骰子(六个面上的点数分别为1,2,3,4,5,6),事件A为“正面朝上的点数为3”,事件B为“正面朝上的点数为偶数”,则 ________.15. (1分) (2018高一下·定远期末) 事件A , B互斥,它们都不发生的概率为,且P(A)=2P(B),则P()=________.16. (1分)(2020·南昌模拟) 从一箱产品中随机地抽取一件,设事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,则事件“抽到的产品不是一等品”的概率为________17. (1分) (2020高二下·天津期末) 从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=________.三、解答题 (共5题;共50分)18. (15分) (2017高三上·古县开学考) 某种产品的质量以其指标值来衡量,其指标值越大表明质量越好,且指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的指标值,得到了下面的试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数8 2042 228B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数 4 1242 3210(1)分别估计用A配方,B配方生产的产品的优质品率;(2)已知用B配方生产的一件产品的利润y(单位:元)与其指标值t的关系式为y= ,估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述产品平均每件的利润.19. (10分) (2017高二下·潍坊期中) 某班有6名班干部,其中男生4人,女生2人,任选3人参加学校的义务劳动.(1)求男生甲或女生乙被选中的概率;(2)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(A)和P(B|A).20. (10分) (2018高一下·南阳期中) 由经验得知,在某商场付款处排队等候付款的人数及概率如表:排队人数人以上概率(1)至多有人排队的概率是多少?(2)至少有人排队的概率是多少?21. (10分) (2018高二上·吉林期末) 某市医疗保险实行定点医疗制度,按照“就近就医、方便管理” 的原则,规定参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区附近有三家社区医院,并且他们的选择是等可能的、相互独立的.(1)求甲、乙两人都选择社区医院的概率;(2)求甲、乙两人不选择同一家社区医院的概率;(3)设在4名参加保险人员中选择社区医院的人数为,求的分布列和数学期望及方差.22. (5分) (2020高二下·泸县月考) 为了促进学生的全面发展,某市教育局要求本市所有学校重视社团文化建设,2014年该市某中学的某新生想通过考核选拨进入该校的“电影社”和“心理社”,已知该同学通过考核选拨进入这两个社团成功与否相互独立根据报名情况和他本人的才艺能力,两个社团都能进入的概率为,至少进入一个社团的概率为,并且进入“电影社”的概率小于进入“心理社”的概率(Ⅰ)求该同学分别通过选拨进入“电影社”的概率和进入心理社的概率;(Ⅱ)学校根据这两个社团的活动安排情况,对进入“电影社”的同学增加1个校本选修课学分,对进入“心理社”的同学增加0.5个校本选修课学分.求该同学在社团方面获得校本选修课学分分数不低于1分的概率.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共50分)18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省高考数学一轮复习:60 随机事件的概率
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2017高二上·荆门期末) 抽查10件产品,设事件A:至少有2件次品,则A的对立事件为()
A . 至多有2件次品
B . 至多有1件次品
C . 至多有2件正品
D . 至多有1件正品
2. (2分)一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则()
A . A与B是互斥而非对立事件
B . A与B是对立事件
C . B与C是互斥而非对立事件
D . B与C是对立事件
3. (2分) (2019高二上·保定月考) 古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,“金克木,木克士,土克水,水克火,火克金”.从五种不同属性的物质中随机抽取两种,则抽到的两种物质不相克的概率为()
A .
B .
C .
D .
4. (2分)在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案(正确答案可能是一个或多个选项),有一道多选题考生不会做,若他随机作答,则他答对的概率是()
A .
B .
C .
D .
5. (2分) (2016高三上·黑龙江期中) 现有甲,乙两个靶,某射手向甲靶射击一次,命中的概率是,向乙靶射击两次,每次命中的概率是,若该射手每次射击的结果相互独立,则该射手完成以上三次射击恰好命中一次的概率是()
A .
B .
C .
D .
6. (2分) (2017高二下·池州期末) 甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1 ,乙解决这个问题的概率是p2 ,那么恰好有1人解决这个问题的概率是()
A . p1p2
B . p1(1﹣p2)+p2(1﹣p1)
C . 1﹣p1p2
D . 1﹣(1﹣p1)(1﹣p2)
7. (2分)从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是()
A . 至少有一个黑球与都是黑球
B . 至少有一个黑球与至少有一个红球
C . 恰有一个黑球与恰有两个黑球
D . 至少有一个黑球与都是红球
8. (2分)在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为()
A . 3件都是正品
B . 至少有1次品
C . 3件都是次品
D . 至少有1件正品
9. (2分) (2018高一下·临沂期末) 某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么互斥而不对立的两个事件是()
A . 至少有1名男生和至少有1名女生
B . 至多有1名男生和都是女生
C . 至少有1名男生和都是女生
D . 恰有1名男生和恰有2名男生
10. (2分)下列各组事件中,不是互斥事件的是()
A . 一个射手射击一次,命中环数大于9与命中环数小于8
B . 统计一个班级数学期末考试成绩,平均分数不低于85分与平均分数不高于85分
C . 播种菜籽100粒,发芽90粒与发芽80粒
D . 检查某种产品,次品率低于1%与次品率为1%
11. (2分)下列叙述正确的是()
A . 任何事件的概率总是在之间
B . 频率是客观存在的,与试验次数无关
C . 随着试验次数的增加,频率一般会越来越接近概率
D . 概率是随机的,在试验前不能确定
12. (2分)(2020·日照模拟) 两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()
A .
B .
C .
D .
二、填空题 (共5题;共5分)
13. (1分) (2017高二下·曲周期中) 一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是________.
14. (1分) (2017高二下·邢台期末) 某校组织“中国诗词”竞赛,在“风险答题”的环节中,共为选手准备了A、B、C三类不同的题目,选手每答对一个A类、B类或C类的题目,将分别得到300分、200分、100分,但如果答错,则相应要扣去300分、200分、100分,根据平时训练经验,选手甲答对A类、B类或C类题目的概率分别为0.6、0.75、0.85,若腰每一次答题的均分更大一些,则选手甲应选择的题目类型应为________ (填A、B 或C)
15. (1分)一箱产品中有正品4件,次品3件,从中任取2件,下列四组事件:
①恰有一件次品和恰有两件次品;
②至少有一件次品和全是次品;
③至少有一件正品和至少有一件次品;
④至少有一件次品和全是正品.
其中两个事件互斥的组是________ (填上序号)
16. (1分) (2020高二上·惠州期末) 已知两个事件 A 和B互斥,记事件是事件的对立事件,且
,,则 ________.
17. (1分)小明通过做游戏的方式来确定周末活动,他随机地往单位圆中投掷一点,若此点到圆心的距离大于,则周末看电影;若此点到圆心的距离小于,则周末打篮球;否则就在家看书.那么小明周末在家看书的概率是________.
三、解答题 (共5题;共50分)
18. (15分)(2017·泰州模拟) 环保部门对5家造纸厂进行排污检查,若检查不合格,则必须整改,整改后经复查仍然不合格的,则关闭.设每家造纸厂检查是否合格是相互独立的,且每家造纸厂检查前合格的概率是,整改后检查合格的概率是,求:
(Ⅰ)恰好有两家造纸厂必须整改的概率;
(Ⅱ)至少要关闭一家造纸厂的概率;
(Ⅲ)平均多少家造纸厂需要整改?(其中()5≈ )
19. (10分) (2017高二下·池州期末) 甲、乙俩人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.
(Ⅰ)记甲恰好击中目标2次的概率;
(Ⅱ)求乙至少击中目标2次的概率;
(Ⅲ)求乙恰好比甲多击中目标2次的概率;
20. (10分) (2018高一下·南阳期中) 由经验得知,在某商场付款处排队等候付款的人数及概率如表:
排队人数人以上
概率
(1)至多有人排队的概率是多少?
(2)至少有人排队的概率是多少?
21. (10分)设人的某一特征(如眼睛的大小)是由他的一对基因所决定,以d表示显性基因,r表示隐性基因,
则具有dd基因的人为纯显性,具有rr基因的人为纯隐性,具有rd基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,问:
(1) 1个孩子显露显性特征的概率是多少?
(2)“该父母生的2个孩子中至少有1个显露显性特征”,这种说法正确吗?
22. (5分)(2019·榆林模拟) 大学先修课程,是在高中开设的具有大学水平的课程,旨在让学有余力的高中生早接受大学思维方式、学习方法的训练,为大学学习乃至未来的职业生涯做好准备.某高中成功开设大学先修课程已有两年,共有250人参与学习先修课程,这两年学习先修课程的学生都参加了高校的自主招生考试(满分100分),结果如下表所示:
分数
人数25501005025
参加自主招生获得
0.90.80.60.40.3
通过的概率
(Ⅰ)这两年学校共培养出优等生150人,根据下图等高条形图,填写相应列联表,并根据列联表检验能否在犯错的概率不超过0.01的前提下认为学习先修课程与优等生有关系?
优等生非优等生总计
学习大学先修课程250
没有学习大学先修课程
总计150
(Ⅱ)已知今年全校有150名学生报名学习大学选项课程,并都参加了高校的自主招生考试,以前两年参加大学先修课程学习成绩的频率作为今年参加大学先修课程学习成绩的概率.
(ⅰ)在今年参与大学先修课程学习的学生中任取一人,求他获得高校自主招生通过的概率;
(ⅱ)某班有4名学生参加了大学先修课程的学习,设获得高校自主招生通过的人数为,求的分布列,试估计今年全校参加大学先修课程学习的学生获得高校自主招生通过的人数.
参考数据:
0.150.100.050.0250.0100.005
2.072 2.706
3.841 5.024 6.6357.879
参考公式:,其中
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共5题;共5分)
13-1、
14-1、
15-1、
16-1、
17-1、
三、解答题 (共5题;共50分) 18-1、
19-1、
20-1、
20-2、
21-1、
21-2、
22-1、
第11 页共11 页。

相关文档
最新文档