压电材料及其应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压电材料及其应用

学院:材料学院

专业:材料科学与工程系班级:1019001

姓名:***

学号:**********

压电材料及其应用

李耘飞

材料科学与工程

1101900118

一、压电材料的定义

压电材料是指可以将压强、振动等应力应变迅速转变为电信号,或将电信号转变为形变、振动等信号的机电耦合的功能材料。

当你在点燃煤气灶或热水器时,就有一种压电陶瓷已悄悄地为你服务了一次。生产厂家在这类压电点火装置内,藏着一块压电陶瓷,当用户按下点火装置的弹簧时,传动装置就把压力施加在压电陶瓷上,使它产生很高的电压,进而将电能引向燃气的出口放电。于是,燃气就被电火花点燃了。压电陶瓷的这种功能就叫做压电效应。压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。

压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。

二、压电材料的主要特性包括:

(1)机电转换性能:应具有较大的压电系数;

(2)机械性能:压电元件作为受力元件,希望它的机械强度高、机械刚度大,以期获得宽的线性范围和高的固有频率;

(3)电性能:应具有高的电阻率和大的介电常数,以减小电荷泄漏并获得良好的低频特性(4)温度和湿度的稳定性要好。具有较高的居里点,以得到宽的工作温度范围

(5)时间稳定性:其电压特性应不随时间而蜕变。

压电材料的主要特性参数有:(1) 压电常数、(2) 弹性常数、 (3) 介电常数、(4) 机电耦合系数、(5) 电阻、 (6) 居里点。

三、压电材料的分类

压电材料可分为三类:压电晶体(单晶)、压电陶瓷(多晶)和新型压电材料。其中压电单晶中的石英晶体和压电多晶中的钛酸钡与锆钛酸铅系列压电陶瓷应用较普遍。

(1)压电晶体

1)石英晶体

石英晶体是典型的压电晶体,分为天然石英晶体和人工石英晶体,其化学成份是二氧化硅(SiO2),其压电常数d11=2.1×10-12C/N,压电常数虽小,但时间和温度稳定性极好,在20℃~200℃范围内,其压电系数几乎不变;达到573℃时,石英晶体就失去压电特性,该温度称为居里点,并无热释电性(了解更多)。另外,石英晶体的机械性能稳定,机械强度和机械品质因素高,且刚度大,固有频率高,动态特性好;且绝缘性、重复性均好。

下面以石英晶体为例来说明压电晶体内部发生极化产生压电效应的物理过程。在一个晶体单元体中,有3个硅离子和6个氧离子,后者是成对的,构成六边的形状。在没有外力的作

用时,电荷互相平衡,外部没有带电现象。如果在X轴方向或Y轴方向受压,由于离子之间造成错位,电荷的平衡关系受到破坏,产生极化现象,使表面产生电荷。当在Z轴方向受力时,由于离子对称平移,表面不呈现电荷,没有压电效应。这就是石英晶体产生压电效应的机理。

2)其他压电晶体

锂盐类压电和铁电单晶如铌酸锂(LiNbO3)、钽酸锂(LiTaO3)、锗酸锂LiGeO3)等压电材料,也得到广泛应用,其中以铌酸锂为典型代表。

铌酸锂是一种无色或浅黄色透明铁电晶体。从结构看,它是一种多畴单晶。它必须通过极化处理后才能成为单畴单晶,从而呈现出类似单晶体的特点,即机械性能各向异性。它的时间稳定性好,居里点高达1200℃,在高温、强幅射条件下,仍具有良好的压电性,且机械性能,如机电耦合系数、介电常数、频率等均保持不变。此外,它还具有良好的光电、声光效应,因此在光电、微声和激光等器件方面都有重要应用。不足之处是质地脆、抗机械和热冲击性差。

(2)压电陶瓷

压电陶瓷是人工合成的多晶体压电材料,它由无数细微的电畴组成。这些电畴实际上是自发极化的小区域,自发极化的方向完全是任意排列的,在无外电场作用时,各电畴的极化作用相互抵消,因此不具有压电效应;只有经过极化处理后才具有压电效应。即在一定的温度和强电场(例如20~30KV/cm直流电场)作用下,内部电畴自发极化方向都趋向于电场的方向,极化处理后压电陶瓷具有一定极化强度。在外电场去除后,各电畴的自发极化在一定程度上按原外电场方向取向,其内部仍存在有很强的剩余极化强度,使得压电陶瓷极化的两端就出现束缚电荷(一端为正电荷,另一端为负电荷),由于束缚电荷的作用,在压电陶瓷的电极表面就会吸附自由电荷。这些自由电荷与压电陶瓷内的束缚电荷符号相反而数值相等当压电陶瓷受到与极化方向平行的外力作用而产生压缩变形,电畴发生偏转,内部正负束缚电荷之间的距离变小,剩余极化强度也将变小,因此,原来吸附的自由电荷,有一部分被释放而出现放电现象。当外力撤消后,压电陶瓷恢复原状,内部的正负束缚电荷之间的距离变大,极化强度也变大,电极上又吸附一部分自由电荷而出现充电现象。充、放电电荷的多少与外力的大小成比例关系,这种由机械能转变为电能的现象,称为压电陶瓷的正压电效应。同样,压电陶瓷也存在逆压电效应。

通常将压电陶瓷的极化方向定义为Z轴,在垂直于Z轴的平面上的任意选择一正交轴系作为X轴和Y轴。对于X轴和Y轴,其压电效应是相同的(即压电常数相等),这是与石英晶体的不同之处。

常见的压电陶瓷有锆钛酸铅系压电陶瓷(PZT)、钛酸钡陶瓷(BaTiO3)、铌酸盐系压电陶瓷,如铌酸铅(PbNb2O3)、铌镁酸铅压电陶瓷(PMN)等,压电陶瓷的特点是压电常数大,灵敏度高;制造工艺成熟,可通过合理配方和掺杂等人工控制来达到所要求的性能。压电陶瓷除有压电性外,还具有热释电性,因此它可制作热电传感器件而用于红外探测器中。但作压电器件应用时,这会给压电传感器造成热干扰,降低稳定性。所以,对高稳定性的传感器,压电陶瓷的应用受到限制。另外,压电陶瓷的成形工艺性也好,成本低廉,利于广泛应用。压电陶瓷按照受力和变形的形式不同可以制成各种形状的压电元件,常见的有片状和管状,管状压电元件的极化方向可以是轴向的,也可以是圆环的径向。

(3)新型压电材料

新型压电材料可分为压电半导体和有机高分子压电材料两种。

1)压电半导体

硫化锌(ZnS)、碲化镉(CeTe)、氧化锌(ZnO)、硫化镉(CdS)等材料具有显著的特点,即

相关文档
最新文档