《函数的极大值与极小值》

合集下载

高等数学《函数的极值与最大、最小值》课件

高等数学《函数的极值与最大、最小值》课件

3) 若 f ( x)在开区间内定义,这时最值不一定存 在 ,有些实际应用问题根据实际可确定问题一 定有解 .
设 f ( x)在开区间内定义且可导, f ( x)在开区间内 有唯一驻点 x0 ,若 f ( x0 )是 f ( x)的极小值(极大值) , 则 f ( x0 )是 f ( x)的最小值 (最大值) .
f (0) 1为极大值 , 即为最大值 .
x 1时, f ( x) f (0) 1 , 即当 x 1时, 有 e x 1 . 1 x
小结
注意最值与极值的区别. 最值是整体概念而极值是局部概念. 实际问题求最值的步骤. 利用最大、小值证明不等式
思考题
若 f (a) 是 f ( x) 在[a, b] 上的最大值或最 小值,且 f (a)存在,是否一定有 f (a) 0 ?
当x 2时,f ( x) 0;
M
当x 2时,f ( x) 0.
f (2) 1为f ( x)的极大值.
定理2(第二充分条件)
设 f ( x) 在 x0处具有二阶导数,且 f ( x0 ) 0 , f ( x0 ) 0 ,则 (1) 若 f ( x0 ) 0 ,则 f ( x0 )为 f ( x)的极大值 .
f
( xk ),
f
(a),
f
(b)
}.
min
x[ a ,b ]
f (x)
min{
f ( x1) ,,
f ( xk ),
f (a),
f (b) }.
例1 求函数 y 2x3 3x2 12x 14 的在[3,4] 上的最大值与最小值.
解 f ( x) 6( x 2)(x 1)
解方程 f ( x) 0,得 x1 2, x2 1.

高等数学-第七版-课件-3-6 函数的极值与最大值最小值

高等数学-第七版-课件-3-6 函数的极值与最大值最小值

o
x
定义 设函数f(x)在点x0的某邻域U(x0)内有定义, 如果对于去心邻域U0(x0)内的任一x,有 y f(x)<f(x0)(或f(x)>f(x0)) 称f(x0)为函数f(x)的一个极大值(极小值) 函数的极大值与极小值统称为函数的极值, 使函数取得极值的点称为极值点 注 极值是一个局部的概念
海岸位于A点南侧40km,是一条东西走向的笔直长堤. 演习中部队先从A出发陆上行军到达海堤,再从海堤处乘舰艇 到达海岛B. 已知陆上行军速度为每小时36km,舰艇速度为
每小时12km.问演习部队在海堤的何处乘舰艇才能使登岛用 y 时最少? 分析 陆上行军耗时 o 海上行军耗时 A
(0,40)
? R(x,0) B
x
(140,-60)
三、最大值最小值问题
(一)最大值最小值求法
(二)最值应用问题
三、最大值最小值问题
(一)最大值最小值求法
(二)最值应用问题
例4 从边长为a的一张正方形薄铁皮的四角切去 边长为x的四个小正方形,折转四边,作一 个盒子,问x为何值时盒子的容积最大?
例5 某企业以钢材为主要生产材料。设该厂每天的钢材需求量为 R吨,每次订货费为C1元,每天每吨钢材的存贮费为C2元 (其中R、 C1、 C2为常数),并设当存贮量降为零时,能 立即得到补充(在一个订货周期内每天的平均存贮量为订货 量的二分之一)求一个最佳的订货周期,使每天的平均费用 最小? q(t) Q o T C C0
o
x
定义 设函数f(x)在区间I上有定义,如果存在x0∈I,使得对于区间I内 的任一x,有 f(x)≤f(x0)(或f(x)≥f(x0)),则称f(x0)为函数f(x) 在区间I上的最大值(或最小值).

函数的极值与最大值最小值

函数的极值与最大值最小值

lim
x x0
f (x) f (x0 ) (x x0 )n
2
(n为正整数)
试讨论 f (x)在 x x0 点的极值问题.
解:由于 lim f (x) f (x0 ) 2 0, xx0 (x x0 )n

0,当x U (x0, ) 时,有
f
(x) f (x0 ) (x x0 )n
a 1 当a 1时,则1 e1a 0,a 1 0,于是,f (a) 0; 当a 1时,则1 e1a 0,a 1 0,于是,f (a) 0; 因此,当a 1时,f (a) 0,由第二充分条件可知: f (a) 为极小值.
-11-
例 4 设 f (x)在 x0 的某个邻域内连续,且
切线与直线 y 0 及 x 8所围成的三角形面积最大.
解 如图,设所求切点为 P(x0, y0 ), y
T
则切线PT为:y y0 2x0 (x x0 ),
B
P
y0 x02 ,
oA
Cx
A(
1 2
x0
,
0),
C(8, 0),
B(8, 16x0 x02 )
SABC
1(8 2
1 2 x0 )(16 x0
由极值定义可知:f (x)在 x0 不取得极值.
-13-
二、最大值最小值问题
假定:f (x)在[a,b]上连续,在(a,b)内除有限个点外可导, 且至多有有限个驻点.
讨论:f (x) 在[a,b]上的最大值与最小值的问题.
★ 最值的存在性:
若 f (x)在[a,b] 上连续,则 f (x) 在[a,b]上的最值必定存在.
如:y x3,y x0 0, 但 x 0 不是极值点.
【注 2】函数的极值点只可能是驻点或导数不存在的点.

函数的极值与最大值最小值

函数的极值与最大值最小值
极值点是否一定是驻点? 驻点是否一定是极值点? 考察x=0是否是函数y=x3的 驻点, 是否是函数的极值点.
x1 x2 x3 x4 x5
定理1(必要条件) 设函数f(x)在点x0处可导, 且在x0处取得极值, 那么f ′(x0)=0. •驻点 使导数f ′(x)为零的点(方程f ′(x)=0的实根)称为函数 f(x)的驻点. 观察与思考: (1) 观察曲线的升降与极值
x1 x2
x3 x4 x5
定理2(第一充分条件)
设函数f(x)在x0处连续, 且在(a, x0)∪(x0, b)内可导. (1)如果在(a, x0)内f ′(x)>0, 在(x0, b)内f ′(x)<0, 那么函数f(x) 在x0处取得极大值; (2)如果在(a, x0)内f ′(x)<0, 在(x0, b)内f ′(x)>0, 那么函数f(x) 在x0处取得极小值; (3)如果在(a, x0)及(x0, b)内 f ′(x)的符号相同, 那么函数f(x) 在x0处没有极值.
1 2 所以当b= d 时, 抗弯截面模量 W 最大, 这时 h = d . 3 3
讨论:
函数f(x)=x4, g(x)=x3在点x=0是否有极值? >>>
例2 求函数f(x)=(x2−1)3+1的极值. 解 f ′(x)=6x(x2−1)2. 令f ′(x)=0, 求得驻点x1=−1, x2=0, x3=1. f ′′(x)=6(x2−1)(5x2−1). 因为f ′′(0)=6>0, 所以f (x)在x=0处取得极小值, 极小值为f(0)=0. 因为f ′′(−1)=f ′′(1)=0, 所以用定理3无法判别. 因为在−1的左右邻域内f ′(x)<0, 所以f(x)在−1处没有极值. 同理, f(x)在1处也没有极值.

高中数学人教A版选择性必修第二册函数的极值与最大(小)值 完整版课件

高中数学人教A版选择性必修第二册函数的极值与最大(小)值 完整版课件

小试牛刀
1.函数 f (x)的定义域为 R,导函数 f ′(x)的图象如图所示,则函数 f (x)( )
A.无极大值点,有四个极小值点 B.有三个极大值点,两个极小值点 C.有两个极大值点,两个极小值点 D.有四个极大值点,无极小值点
C [设 y=f ′(x)的图象与 x 轴的交点从左到右横坐标依次为 x1,x2, x3,x4,则 f (x)在 x=x1,x=x3 处取得极大值, 在 x=x2,x=x4 处取得极小值.]
对于一般的函数y=f(x),是否具有同样的性质?
探究2:观察下图,函数y=f(x)在x=a,b,c,d,e等点的函数值与这些点附近的函数值有什么 关系?y=f(x)在这些点处的导数值时多少?在这些点附近,函数y=f(x)导数的正负有什 么规律?
以a,b为例进行说明.
概念解析
1.极值点与极值 (1)极小值点与极小值 若函数 y=f (x)在点 x=a 的函数值 f (a)比它在点 x=a 附近其他
典例解析
问题1:函数的极大值一定大于极小值吗?
归纳总结
一般地,求函数 y=fx的极值的步骤 1求出函数的定义域及导数 f′x; 2解方程 f′x=0,得方程的根 x0可能不止一个; 3用方程 f′x=0 的根,顺次将函数的定义域分成若干个开区间, 可将 x,f′x,fx在每个区间内的变化情况列在同一个表格中;
(-∞,-1)∪(2,+∞) [f ′(x)=3x2+6ax+3(a+2), ∵函数 f (x)既有极大值又有极小值, ∴方程 f ′(x)=0 有两个不相等的实根, ∴Δ=36a2-36(a+2)>0, 即 a2-a-2>0,解得 a>2 或 a<-1.]
4.已知函数 f (x)=2ef ′(e)ln x-xe,则函数 f (x)的极大值为______.

《函数的极大值与极小值》ppt课件

《函数的极大值与极小值》ppt课件

x3
3
4x
4)
'
=
x2
4
=
(
x
2)( x
2)
3
令y′=0,解得x1=-2,x2=2
当x变化时,y′,y的变化情况如下表
x (-∞,-2) -2 (-2,2) 2 (2,+∞)
f (x) +
0

0
+
f (x)

28
极大值3

极小值
4 3

∴当x=-2时,y有极大值且y极大值= 28
当当a=-1/2时,f 由 f ( x) = 0 得
( x) = 3x2 3
x
=
1
2

2
x 3 2
x=
=
1
3( x

1)(
x
1 2
)
列表如下:
x
(, 1) 1
2
2
f (x) + 0
( 1 ,1) 2

1 (1, ) 0+
f (x) Z 极大值 ] 极小值 Z
在x=1时取极小值,符合题意. 综上a=-1/2.
函数f(x)的极大值为f(2)=
4 e2
14
例3.函数y=alnx+bx2+x在x=1和x=2处有
极值,(1)求a、b的值.
(2)求出极值并指出是极大值还是极小值
解:
y ' = (a ln x bx2 x) ' = a 2bx 1
x
由题意,在x=1和x=2处,导数为0

a a 2
2b 1 = 0 4b 1 = 0

人教版高中数学选择性必修2《函数的极值与最大(小)值》PPT课件

人教版高中数学选择性必修2《函数的极值与最大(小)值》PPT课件

根据以上信息,我们画出f(x)的大致图象如图所示.
(3)方程()=( ∈ )的解的个数为函数=()的图象与直线=的
交点个数.
1
由(1)及图可得,当= − 2时,()有最小值( − 2)=− e2.
所以,关于方程()=( ∈ )的解的个数有如下结论:
1
当 < − e2时,解为0个;
结合上面两图以及函数极值中的例子,不难看出,只要把函数=()的所有极值连同
端点的函数值进行比较,就可以求出函数的最大值与最小值.
在开区间(,)上函数的最值常见的有以下几种情况:
图(1)中的函数=()在(,)上有最大值而无最小值;
图(2)中的函数=()在(,)上有最小值而无最大值;
(2),(4),(6)是函数=()的极大值.
探究:进一步地,你能找出函数=()在区间[,]上的最小值、最大值吗?
从图中可以看出,函数=()在区间[,]上的最小值是(3 ),最大值是().
在下面两图中,观察[,]上的函数=()和=()的图象,它们在[,]上
当半径 < 2时, ′() < 0,()单调递减,即半径越大,利润越低.
(1)半径为6 cm时,利润最大.
(2)半径为2 cm时,利润最小,这时(2) < 0,表示此种瓶内饮料的利润还不
够瓶子的成本,此时利润是负值.
换一个角度:如果我们不用导数工具,直接从函数()的图象上观察,你
=()=0.2 ×
4
3
π
3

3
2
0.8π =0.8π
3
− 2 ,0 < ≤ 6.
所以 ′()=0.8π(2 − 2).
令 ′()=0,解得=2.
当 ∈ (0,2)时, ′() < 0;当 ∈ (2,6)时, ′() > 0.

函数的极值与最大值最小值

函数的极值与最大值最小值
第五节 函数的极值与最大值最小值
一、函数的极值及其求法 二、最大值与最小值问题
一、函数的极值及其求法
极值定义 设函数 f ( x)在 x0 的某邻域U ( x0 )内有定义,
如果对 x U ( x0 ) ,有 f ( x ) f ( x0 ) ( 或 f ( x ) f ( x0 ) ),
求函数 f ( x ) x 2 3 x 2 在 [3,4] 上的 例3 最大值与最小值 .
解: 显然
一定取得最大值与最小值.
f ( x) ( x 2)( x 1)

x 1, x 2为不可导点
x [3,1] [2,4] x (1,2).
x 2 3 x 2, f ( x) 2 x 3 x 2,

2 5
0 0.33
2 ( 5 , )
其极大值为 是极大点,
是极小点, 其极小值为
确定函数极值点和极值的步骤
(1) 确定函数定义域 , 并求导数 f ( x );
(2) 求出 f ( x ) 的全部驻点与不可导点;
(3)驻点和不可导点将定义域区间分成若干个区间, 列表考察导函数在各个区间内的符号,以便确定该点
x 最大(小)值若在区间内部取得,则它一定是极大(小)值. o a x1 x2 x3x4 b x 2 , x4 为极小值点
费马( Fermat )引理
设函数 f ( x)在 x0 的某邻域U ( x0 )内有定义,
若 (1) f ( x)在 x0 点可导
则 f ( x0 ) 0.
(2) f ( x)在 x0 点取得极大值或极小值
点处的切线与直线 y 0 及 x 8 所围成的三角形

新教材高中数学5-3-2函数的极值与最大小值第一课时函数的极值课件新人教A版选择性必修第二册

新教材高中数学5-3-2函数的极值与最大小值第一课时函数的极值课件新人教A版选择性必修第二册
请根据题设条件把下面的解析补充完整. 解:由 f(x)=x-1+eax,得 f′(x)=1-eax. 当 a≤0 时,f′(x)>0,f(x)为(-∞,+∞)上的增函数,所以函数 f(x)
无极值 .
当 a>0 时,令 f′(x)=0,得 ex=a,即 x=ln a,
当 x∈(-∞,ln a)时,f′(x) <0; 当 x∈(ln a,+∞)时,f′(x) >0, 所以 f(x)在(-∞,ln a)上 单调递减 ,在(ln a,+∞)上 单调递增 , 故 f(x)在 x=ln a 处取得极小值且极小值为 f(ln a)=ln a ,无极大值. 综上, 当 a≤0 时,函数 f(x)无极值 ; 当___a_>__0_时__,__f_(_x_)在___x_=__l_n_a__处__取__得__极__小__值__l_n_a_,__无__极__大__值__.
∴f(x)在R上为增函数,无极值,故舍去. 当a=2,b=9时, f′(x)=3x2+12x+9=3(x+1)(x+3). 当x∈(-∞,-3)时,f(x)为增函数; 当x∈(-3,-1)时,f(x)为减函数; 当x∈(-1,+∞)时,f(x)为增函数. ∴f(x)在x=-1时取得极小值,∴a=2,b=9.
2.已知函数极值求参数时的注意点 (1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法 求解. (2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数 法求解后必须验证充分性.
[对点练清] 1.[已知极值求参数范围]若函数f(x)=x3+x2-ax-4在区间(-1,1)上恰有一个
[对点练清] [多选]已知函数 y=xf′(x)的图象如图所示,则下列说法正确的是 A.函数 f(x)在区间(1,+∞)上是增函数 B.函数 f(x)在区间(-1,1)上无单调性 C.函数 f(x)在 x=-12处取得极大值 D.函数 f(x)在 x=1 处取得极小值

函数的极值与最大(小)值(第一课时)(教学设计)

函数的极值与最大(小)值(第一课时)(教学设计)

§5.3.2函数的极值与最大(小)值(第一课时)一、内容和内容解析内容:极值的概念,了解函数的极值与导数的关系,运用导数方法求函数极值.内容解析:(1)极值的概念:函数的极值本质反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.教学时可以用高台跳水实例引入函数极值的讨论,先让学生结合实际经验,通过观察图形直观形象的得到“局部最值"的初步想法,通过对比函数的最值,引发学生的认知冲突,使学生认识到“局部最值”不同于函数最值,是一个全新的概念,从而生成函数极值的概念.(2)函数的极值与导数的关系:学生对函数的极值有了初步的了解后,学生就会面临难题,如何利用导数求函数的极值呢?这一部分主要是探究求极值的算法,虽然没有新知识和新概念的生成,但教师在教学中依然要符合学生的认知规律,要让学生认识到利用导数来求极值是通过探究自然而然形成的.先让学生观察函数极值附近两侧的图像变化,认识到函数极值点左右两侧图像变化趋势是相反的.学生知道图象的上升与下降是用单调性来刻画的,而函数单调性又可以用导数来刻画的.从而,学生自然而然地就明白函数的极值可以借助导数来求解.二、目标和目标解析目标:结合函数图像,了解可导函数在某点取得极值的必要条件和充分条件;理解函数极值的概念,会用导数求函数的极大值与极小值.通过观察具体的函数图像,学生直观感知极值这一概念的生成过程,并积极主动地参与探索函数的极值与导数值变化之间的关系的活动,亲身经历用导数研究极值方法的过程.通过学习,学生体会导数在研究函数性质中的工具性和优越性,掌握极值是函数的局部性质,增强数形结合的意识;通过体会成功,形成学习数学知识、了解数学文化的积极态度;通过规范地表达求函数极值的过程,养成缜密的思维习惯.目标解析:达成上述目标的标志是:能够通过函数图象判断函数的极值点和极值.能够通过导函数的图象判断函数的极值点.能够利用导数研究解一元三次函数的极值.三、教学问题诊断分析1.教学问题一:为何可以利用导数直接判断极值是第一个教学问题,也是教学难点,在没有教师的引导下,导数介入函数的极值中是很难理解.因此,探究的起点应从学生熟悉的公式或概念开始.学生对函数的极值有了初步的了解后,那么困惑产生了:如何求函数的极值呢?2.教学问题二:函数在某点处的导数值为0是可导函数取得极值的必要条件,而非充分条件.这个第二个教学问题,也是教学难点.基于以上分析,确定本节课的教学重难点:函数在某点取得极值的必要条件与充分条件,求可导函数的极值的步骤.四、教学策略分析t a =时,运动员距水面的高度h t=a 附近函数导数值的正负性变化,教学时可以采用信息技术工具,放大函数在t a =t=a 的左侧某点处的切线,当切点沿函数图象从t a =的左侧移动至右侧时,切线斜率由正数变到为0,再由0变到负数. 五、教学过程与设计教学环节问题或任务师生活动设计意图情景 引入观察庐山连绵起伏的图片,思考庐山的山势有什么特点?师生活动:学生间激烈地争论着这个问题,教师再给出这节课要研究的角度,结合苏轼在《题西林壁》中的诗句“横看成岭侧成峰,远近高低各不同”,描述的是庐山的连绵起伏.由此联想庐山的连绵起伏形成好多的"峰点" 与''谷点",这就象数学上要研究的函数的极值.将学生从"要我学"被动学习情绪激发到“我要学”的积极主动的学习欲望上来,学生能够自觉地参与课堂教学的过程中来.探究新知[问题1]观察下图,图1和图2,函数在点x a =处的函数值与它附近的函数值之间有什么关系?ayxO[问题2] 观察图像,找出图中的极值点,并说明哪些为极大值点,哪些为极小值点?教师1:提出问题1. 学生1:学生观察分析后发表自己的见解.师生共同总结:函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都大,它是一个局部的概念,不同于函数的最值,为了区分函数的最值,我们要加以新的定义.教师引导学生,给出极大值的概念:函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都大,我们把a 叫做函数()y f x =的极大值点,()f a 叫做函数()y f x =的极大值.学生通过类比,给出极小值的概念:函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都小,我们把a 叫做函数()y f x =的极小值点,()f a 叫做函数()y f x =的极小值. 教师再强调:让学生将观察分析得到的结论用科学严谨的数学语言表达出来,有利于学生思维从感性层面提升到理性层面,培养归纳概括能力.fed cb O xyay=f'(x )O a b x 1x 2x 3x 4x 5x 6。

函数的极值与最大值最小值

函数的极值与最大值最小值
)
(
)
3
(
检查
x
f
¢
0
)
(
)
2
(
的根
求驻点,即方程
=
¢
x
f
);
(
)
1
(
x
f
¢
求导数
.
)
4
(
求极值
例1
求函数 的极值.

得驻点

的左右两侧附近,
因此 不是极值.

点左侧,当 时,
2.9 函数的极值与最大值最小值
讨论蛋白质含量随积温变化的情况.
解 单位土地面积上黑麦草的蛋白质含量的比例为 此函数导数的计算比较复杂,作近似计算 §2.9 函数的极值与最大值最小值


得w = 683,是最大值点,
此时收获得到的蛋白质数量最多;

得w =493,是增长曲线的拐点,
此时是蛋白质数量增加最快的阶段.
只有一个驻点,而最大值一定存在,此驻点就是最大值点,
即当产量为300件时,总利润最大,为25000元.
L(300)=25000,
§2.9 函数的极值与最大值最小值
例6
河北沧州地区种植黑麦草作为饲料,单位土地面积上黑麦草的干物质积累量m是积温w的函数,
而随着植物的生长,干物质中的蛋白质含量 的比例逐渐下降,经验公式为
极值,
定理1
(必要条件)
证明略. (费马引理)
导数等于零的点称为函数的驻点.
§2.9 函数的极值与最大值最小值
例如,

① 可导函数的极值点一定是驻点,但反过来驻点不一定是极值点;
② 导数不存在的点也可能是极值点.

5.3.2 函数的极值与最大(小)值 【新人教A版数学】选择性必修第二册

5.3.2 函数的极值与最大(小)值  【新人教A版数学】选择性必修第二册

2.求函数y=f(x)极值的方法 一般地,可按如下方法求函数y=f(x)的极值: 解方程f'(x)=0,当f'(x0)=0时: (1)如果在x0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x0)是⑦ 极大值 ; (2)如果在x0附近的左侧f'(x)<0,右侧f'(x)>0,那么f(x0)是⑧ 极小值 .
3.函数的极大值是否一定大于函数的极小值? 提示:一个函数的极大值未必大于极小值,如图所示,x1是极大值点,x4是极小值点, 但f(x1)<f(x4),因此函数的极大值与极小值之间无确定的大小关系.
1.求可导函数f(x)的极值的步骤 (1)确定函数的定义域; (2)求函数的导数f'(x); (3)由f'(x)=0,求出全部的根; (4)列表:方程的根将整个定义域划分成若干个区间(如果根中含有参数,则需根据 参数的范围分类划分区间),把x, f'(x), f(x)在每个区间内的变化情况列在一个表格 内; (5)判断得结论:若导数在根x0附近左正右负,则函数在x0处取得极大值;若左负右 正,则取得极小值.
1|利用导数解决函数的极值问题
情境 “横看成岭侧成峰,远近高低各不同,”说的是庐山的高低起伏,错落有致. 在群山之中,各个山峰的顶端,虽然不一定是群山的最高处,但它却是其附近的最 高点.那么,在数学上,这种现象如何来刻画呢?
问题 1.函数的极大(小)值是不是函数在定义域中的最大(小)值呢? 提示:极值是一个局部概念,由定义知极值只是某个点的函数值与它附近点的函 数值比较是大或小,并不意味着它在函数的整个定义域内最大或最小. 2.函数的极大(小)值是不是唯一的? 提示:函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小 值可以不止一个.

函数的极大(小)值和最大(小)值

函数的极大(小)值和最大(小)值

§2-6 函数的极大(小)值和最大(小)值1.函数的极大(小)值 一个函数在它有定义的区间上可能没有最大(小)值,但它在某个部分区间上可能会有最大(小)值,即局部最大值或局部最小值.函数的局部最大值或局部最小值,又称为函数的极大值或极小值.具体地说,设函数)(x f 在点),(0b a x ∈连续.若有足够小的正数δ,使)||0()()(00δ<-<<x x x f x f (图2-21) 则称函数)(x f 在点0x 取到极大值)(0x f ,并称点0x 为函数)(x f 的极大值点.同理,使 )||0()()(11δ<-<>x x x f x f (图2-21) 则称函数)(x f 在点1x 取到极小值)(1x f ,并称点1x 为函数)(x f 的极小值点.函数的极大值和极小值统称为函数的极值,而函数的极大值点和极小值点统称为函数的极值点. 因为函数的极值是函数在小范围内的最大值或最小值,根据定理2-1,我们就有下面的结论:若函数()f x 在某区间内的点0x 处取到极值且有导数'0()f x ,则'=0()0f x .因此,0()0f x '=是可微函数....在点0x 取到极值的必要条件,但它不是可微函数取到极值的充分条................件.! 例如函数3)(x x f =,尽管有0)0(='f ,但0不是它的极值点(图2-22).以后,就把使0()0f x '=的点0x 称为函数)(x f 的驻点(可能不是极值点.......).需要指出,不能把上面的结论简单说成“函数取到极值的必要条件”.例如,函数()f x x =(图2-23),它在点0有极小值(也是最小值),可是它在点0没有导数.因此,函数在区间内部的极值点只可能是它的驻点或没有导数的点.它们合在一起称为函数的临界点.一般情形下,求连续函数)(x f 在开区间),(b a 内的极值时,一般步骤是:第一步,求出)(x f 在区间),(b a 内的所有临界点(即驻点或没有导数的点);第二步,对于每一个临界点,再用下面的判别法验证它是否为极值点;第三步,求出函数在极值点处的函数值(即函数的极大值或极小值).判别法Ⅰ 设0x 为连续函数)(x f 在区间),(b a 内的临界点(驻点或没有导数的点).若有足够小的正数δ,使(见图2-24)⑴)(x f 在),(00x x δ-内是增大的且在),(00δ+x x 内又是减小的,则)(0x f 是极大值; 图2-23x图2-21[或] [或]⑵)(x f 在),(00x x δ-内是减小的且在),(00δ+x x 内又是增大的,则)(0x f 是极小值;[或0)(<'x f ] [或0)(>'x f ]⑶)(x f 在),(00δδ+-x x 内是增大的或是减小的,则)(0x f 不是极值.当0x 为函数)(x f 的驻点且0)(0≠''x f 时,就用下面的判别法Ⅱ.判别法Ⅱ 设0x 为函数)(x f 在区间),(b a 内的驻点[即0)(0='x f ].若有二阶导数0)(0≠''x f ,则⑴ 当0)(0<''x f 时,)(0x f 是极大值; ⑵ 当0)(0>''x f 时,)(0x f 是极小值.[当0)(0=''x f 时,函数)(x f 在点0x 是否取到极值,需要做进一步的讨论]证 根据例22(§2-5),则有222200000011()()()()()()()()22f x h f x f x h f x h o h f x f x h o h '''''+=+++=++于是得 20001()()[()(1)]2f x h f x f x o h ''+-=+ 因为0)(0≠''x f ,所以当||h 足够小时,)]1()([0o x f +''与)(0x f ''同符号.因此,有正数δ,使当0||h δ<≤时,0()f x h +0()f x -=000,()00,()0f x f x ''<<⎧⎨''>>⎩ 这就是要证的结论.例23 求函数1323-+=x x y 的极值.解 2363(2)y x x x x '=+=+,666(1)y x x ''=+=+由0='y 得驻点122,0x x =-=.因为2060,60x x y y =-=''''=-<=>,所以31)2(3)2(232=--+-=-=x y 是极大值; 01x y ==-是极小值.【注】若函数()f x 在点0x 没有导数或二阶导数0()0f x ''=,就去用上面的判别法Ⅰ.2.函数的最大(小)值(又称为绝对极值) 函数的最大(小)值是指函数在定义域或定义域中某个区间上的最大(小)值.求连续函数)(x f 在闭区间],[b a 上的最大值和最小值时,方法更简单:第一步,先求出)(x f 在开区间),(b a 内的临界点;并求出)(x f 在所有临界点上的函数值.(1) 0图2-24 (2)(3)第二步,把以上函数值与区间端点上的函数值)(a f 和)(b f 放在一起做比较,其中最大者就是函数)(x f 在闭区间],[b a 上的最大值,最小者就是函数)(x f 在闭区间],[b a 上的最小值.非闭区间上的连续函数可能没有最大值或最小值.在这种情形下,就要根据具体问题,经过分析后才能确定某个函数值是最大值或最小值.例如,⑴ 函数)(x f 在区间),[b a 上增大(减小)时,)(a f 就是最小值(最大值);⑵ 函数)(x f 在区间],(b a 上增大(减小)时,)(b f 就是最大值(最小值);⑶ 设有点),(b a c ∈. 若函数)(x f 在区间],(c a 上增大且又在区间),[b c 上减小,则)(c f 就是最大值;若函数)(x f 在区间],(c a 上减小且又在区间),[b c 上增大,则)(c f 就是最小值.例24 证明不等式:)0(1e >+>x x x .证 令)0()1(e )(≥+-=x x x f x ,则)(x f 在),0[+∞上是连续函数.因为)0(01e )(>>-='x x f x [即函数()f x 是增函数]所以(0)0f =是最小值.因此,()0(0)f x x >>,即)0(1e >+>x x x .例25 证明:函数)10()(<<-=αααx x x f 在区间),0(+∞内有最大值α-=1)1(f . 由此再证明近代数学中著名的赫尔窦(H ölder)不等式:11110,0,0,0;1p q ab a b a b p q p qp q ⎛⎫≤+>>>>+= ⎪⎝⎭ 证 由0)1()(11=-=-='--αααααx x x f 得驻点1=x . 因为 当10<<x 时, 0)1()(1>-='-ααx x f [即)(x f 增大],当+∞<<x 1时, 0)1()(1<-='-ααx x f [即)(x f 减小],所以α-=1)1(f 是最大值.其次,令q p b a x p ==-,1α,则111qp p p p p q p q q q a a a f ab a b b b p b p --⎛⎫⎛⎫=-⋅=- ⎪ ⎪⎝⎭⎝⎭ 而根据上述结论,即α-≤1)(x f ,则得不等式111(1)11q p q p aba b f p p q α---≤=-=-= 两端同乘q b ,并注意1=-p q q ,则得要证的不等式q p b qa p ab 11+≤. 在非闭区间上求一个函数的最大(小)值问题,常常出现在实际应用问题中.解这类问题时,首先需要根据问题本身,运用几何学或物理学或其他有关科学中的知识,列出“目标函数”(即要求它的最大值或最小值的函数)的函数式.这样,问题就变成求目标函数的最大值或最小值.例如, “当矩形周长l 为定值时,它的长和宽为何值时面积最大?”或“当矩形面积S 为定值时,它的长和宽为何值时周长最小?”设矩形的一边长为x ,则前一个问题的目标函数就是(矩形面积)()2l S x x x ⎛⎫=- ⎪⎝⎭ 02l x ⎛⎫<< ⎪⎝⎭ 而后一个问题的目标函数就是(矩形周长)()2S l x x x ⎛⎫=+ ⎪⎝⎭ )0(+∞<<x 这样,问题就变成求函数)(x S 的最大值或求函数)(x l 的最小值.例26 设有闭合电路如图2-25. 它由电动势E 、内阻r 和纯电阻负载E 所构成.若E 和r 是已知常数,问负载R 为何值时,电流的电功率最大?解 根据电学的知识,闭合电路中电流的电功率为R I P 2=(I 为电流强度)而根据闭合电路的欧姆定律,电流强度R r E I +=. 因此,电功率为 22)(R r R E P += (自变量为R ) 由0='P ,即由0)()()()(2)(324222=+-=++⋅-+⋅='R r R r E R r R r R E R r E P 得r R =. 因此,当负载r R =(内阻)时,电功率取到最大值r E P 4/2=.例27 由材料力学的知识,横截面为矩形的横梁的强度是2h x k =ε(k 为比例系数,x 为矩形的宽,h 为矩形的高)今要将一根横截面直径为d 的圆木,切成横截面为矩形且有最大强度的横梁,那么矩形的高与宽之比应该是多少?解 如图2-26,因为222x d h -=,所以22()(0)kx d x x d ε=-<<.令0='x ε,即22222()2(3)0x k d x x k d x ε'=--=-=⎡⎤⎣⎦ 则得驻点x d=根据实际问题的提法,当矩形的宽/x d =强度ε取到最大值.此时,因为d dd x d h 32)3(2222=-=-= 所以2/=x h .图2-26在实际工作中,技术人员是按下面的几何方法设计的:把圆木的横截面(圆)的直径AB 分成三等份(如图2-27),再分别自分点C 和D 向相反方向作直径AB 的垂线,交圆周后做成图中那样的矩形.这个矩形的长边与短边的比值就是2.例28 已知某工厂生产x 件产品的成本为21()2500020040C x x x =++(元) 问:⑴ 要使平均成本最小,应生产多少件产品? ⑵ 若产品以每件500元售出,要获得最大利润,应生产多少件产品?最大利润是多少? 解 ⑴ 平均成本为x x x x C x C 40120025000)()(++==(元/件) 让040125000)(2=+-='x x C ,则得1000=x (件).因此,生产1000件产品时平均成本最小. ⑵ 售出x 件产品时,收入为x 500(元),而利润为=)(x L (收入)x 500-(成本))40120025000(500)(2x x x x C ++-= 212500030040x x =-+- 让020300)(=-='x x L ,则得6000=x (件).因此,生产6000件产品并全部售出时,获得的利润最大.最大利润为900000)6000(=L (元). 习 题1.求下列函数的极值(极大值或极小值):求连续函数在定义区间内的极值时,应先找出导数等于零的点(驻点)和没有导数的点,然后按上面指出的判别法,去判别函数在这些点上是否取到极大值或极小值.⑴x x x f -=3)(; ⑵242)(x x x f -=; ⑶122)(2-+-=x x x x f ;⑷()f x x = ⑸x x x f -=e )(; ⑹x x x f ln )(=; ⑺x x x f -+=e )1()(3; ⑻3231)1()(x x x f -=.答案:⑴max minf f ⎛= ⎝;⑵1)1(,0)0(m in m ax -=±=f f ; ⑶2)2(,2)0(m in m ax =-=f f ;⑷min 34f ⎛⎫= ⎪⎝⎭;⑸1m ax e )1(-=f ;⑹12m in e 2)e (---=f ;⑺2m ax e 27)2(-=f ;⑻max min 1(1)03f f ⎛⎫= ⎪⎝⎭. 2.求下列函数在指出区间上的最大值和最小值:⑴];2,2[,1823-+--=x x x y ⑵];1,1[,15-++=x x y⑶];2,1[,13--=x x y ⑷511,,1;12y x x ⎡⎤=-⎢⎥++⎣⎦ ⑸211,1,12x y x +⎡⎤=-⎢⎥+⎣⎦. 答案:⑴;11,27203-⑵;1,3-⑶;443,23-⑷;31,1532⑸0,2242-. 3.设n a a a <<< 21. 当x 为何值时,函数∑=-=ni i a x x f 12)()(取最小值?答案:n a a a x n +++=21(算术平均值). 4.设.0>a 求函数||11||11)(a x x x f -+++=的最大值. 提示:把区间),(+∞-∞分成三个区间(,0),(0,),(,)a a -∞+∞. 答案:21a a++. 5.证明下面的不等式: ⑴ );01(2)1ln(2<<--<+x x x x ⑵ 12ln 1(0);21x x x ⎛⎫+>> ⎪+⎝⎭ ⑶ );0(arctan 33><<-x x x x x ⑷ 1e 1(0)x x x -≥>. 6.设有方程033=+-c x x (c 为常数).问:当c满足什么条件时,方程有:⑴三个实根,⑵两个实根,⑶一个实根? [提示:分别研究下图⑴,⑵,⑶]答案:⑴22<<-c ;⑵2±=c ;⑶2-<c 或2>c .7.在什么条件下,方程()300x px q pq ++=≠有:⑴一个实根,⑵三个实根?提示:参考上一题的做法. 答案:⑴042723>+q p ;⑵042723<+q p . 8.确定下列各方程实根的个数,并指出只含有一个实根的区间:⑵ 第6题图⑴ 0109623=-+-x x x ; ⑵ 020********=-+--x x x x ;⑶ )0(ln ≠=k kx x ; ⑷2e (0)x ax a =>.答案:⑴一个实根,在)5,4(内;⑵两个实根,32,1221<<-<<-x x ;⑶当0<k 时有一个实根,在)1,0(内;当1e0-<<k 时有两个实根,+∞<<<<21e ,e 1x x ; 当1e -=k 时有一个实根e =x ;当1e ->k 时没有实根.⑷当4e 02<<a 时有一个实根,在)0,(-∞内;当4e 2>a 时有三个实根, 1230,02,2x x x -∞<<<<<<+∞.9.设有二阶导数)(a f ''. 证明:⑴ 若函数)(x f 在点a 取到极大值,则0)(≤''a f ;⑵ 若函数)(x f 在点a 取到极小值,则0)(≥''a f .10.设函数21()22sin (0),(0)2f x x x f x ⎛⎫=-+≠= ⎪⎝⎭. 证明:)(x f 有最大值2)0(=f ,但)(x f 在点0的左旁附近不是增大的,而且在点0的右旁附近不是减小的(这说明判别法Ⅰ中的条件不是必要的).11.应用题 ⑴设两正数x 与y 的和等于常数a (a y x =+).求)0,0(>>n m y x n m 的最大值.⑵设两正数x 与y 的乘积等于常数a (a xy =).求)0,0(>>+n m y x n m 的最小值.⑶在有一定体积的所有正圆柱体中,当底圆半径与高之比为何值时,它有最小的表面积?⑷用薄钢板做一个容积为定值v 的无盖圆柱形桶.假若不计钢板厚度和剪裁时的损耗,问桶底半径r 与高h 各为多少时,用料最省?⑸从半径为R 的圆上切掉一个扇形后,把余下部分卷成一个漏斗.问余下部分扇形的圆心角θ为何值时,卷成漏斗的容积最大?第11⑸题图⑵ ⑴ 第11⑹题图x⑹(反射定律) 如图示,由点A 经点B ,再到点C . 证明:当入射角α等于反射角β时,折线ABC 的长度最短.⑺一商家销售某种商品的价格为x p 2.07-=(万元/T),其中x 为销售量(单位:T);商品的成本为13+=x C (万元).(i )若每销售一吨商品,政府要征税t 万元,求商家获最大利润时的销售量;(ii )t 为何值时,政府税收的总额最大?答案:⑴n m n m n m n m n m a +++)(;⑵n m n m mn n m a n m +⎪⎪⎭⎫ ⎝⎛+1)(;⑶1∶2;⑷r h ==⑸2θ=弧度);⑺(i )t x 5.210-=;(ii )2=t .。

函数的极大值与极小值ppt课件(自制)

函数的极大值与极小值ppt课件(自制)
91.要及时把握梦想,因为梦想一死 ,生命 就如一 只羽翼 受创的 小鸟, 无法飞 翔。― ―[兰斯 顿·休 斯] 92.生活的艺术较像角力的艺术,而 较不像 跳舞的 艺术; 最重要 的是: 站稳脚 步,为 无法预 见的攻 击做准 备。― ―[玛科 斯·奥 雷利阿 斯] 93.在安详静谧的大自然里,确实还 有些使 人烦恼.怀疑.感到压 迫的事 。请你 看看蔚 蓝的天 空和闪 烁的星 星吧!你的心将 会平静 下来。[约翰·纳森·爱 德瓦兹]
oa
y
x0 b x
f(x)
f(x) >0 f(x) =0 f(x) <0
f(x) 增
极大值 减
x x0左侧
x0 x0右侧
f(x) f(x) <0 f(x) =0 f(x) >0
oa x0
bx
f(x) 减
极小值 增
请问如何判断f (x0)是极大值或是极小值?
左正右负为极大,右正左负为极小
2022/3/22
附近,P点的位置最高,函数值最大
2022/3/22
4
函数的极大值与极小值
高二数学备课组
2022/3/22
5
课题:导数的应用--极值点
我行 我能 我要成功 我能成功
数学建构
函数极值的定义
一般地,设函数f(x)在点x0附近有定义, 如果对x0附近的所有的点,都有f(x)﹤f (x0),我 们就说f (x0)是函数f(x)的一个极大值,记作 y = 极大值 f (x0);如果对x0附近的所有的点,都有 f(x)﹥f (x0),我们就说f (x0)是函数f(x)的一 个极小值,记作y极小值=f (x0).
19、上天不会亏待努力的人,也不会 同情假 勤奋的 人,你 有多努 力时光 它知道 。 20、成长这一路就是懂得闭嘴努力, 知道低 调谦逊 ,学会 强大自 己,在 每一个 值得珍 惜的日 子里, 拼命去 成为自 己想成 为的人 。6.凡 是内心 能够想 到.相信 的,都 是可以 达到的 。――[NapoleonHill]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: f (x) 2x 1,令f (x) 0,解得x 1 .列表 2
x
f (x) f (x)
(, 1 ) 2
1
2
0
极小值f (1) 2
( 1 ,) 2
因此,当x
1 2
时,
f ( x ) 有 极 小 值 f (12 )
9 4
.
小结:求函数f(x)的极值的步骤:
(1)求导数f′(x); (2)求方程f′(x)=0的根;(x为极值点.)
1 6
4、求y ex cos x的极值.
解 : y ex cos x sin x,令y 0,
即cos x sin x 0得,x k k Z ,
4
当x
2k
4
, 2k
5
4
k
Z
时,y
0,
f
x 为减函数,
当x
2k
3
4
,
2k
4
k
Z
时,y
0,
f
x 为增函数,
因此当x=2k
4
k
Z
时,
y极大值
2
2k
e
4
,
2
当x=2k
3
4
k
Z
时,
y极小值
2
2k
e
3
4
.
2
五、课堂小结
求函数f(x)的极值的步骤:
(1)求导数f′(x); (2)求方程f′(x)=0的根;(x为极值点.)
(3)用函数的导数为0的点,顺次将函 数的定义区间分成若干小开区间,并 列成表格.检查f′(x)在方程根左右的 值的符号,求出极大值和极小值.
X1
X1右侧
f (x) f (x) 0 f (x) 0 f (x) 0
f (x) 增
极大植f(x1)

极小值与导数之间的关系
X
X2左侧
X2
X2右侧
f (x) f (x) 0 f (x) 0 f (x) 0
f (x) 减
极小植f(x2)

(三)、导数的应用
例1:求f(x)=x2-x-2的极值.
x (-∞,-2) -2 (-2,2) 2 (2,+∞)
f (x) +
0

0
+
f (x)

28
极大值3

极小值
4 3

∴当x=-2时,y有极大值且y极大值= 28 当x=2时,y有极小值且y极小值= 4 3
3
例3:下列函数中,x=0是极值点的函数
是( B )
A.y=-x3
B.y=x2
C.y=x2-x
如果f(x0)的值比x0附近所有各点的函数值都小, 我们就说f(x0)是函数的一个极小值。记作y极小值 =f(x0),x0是极小值点。
极大值与极小值统称为极值.
注意 1、在定义中,取得极值的点称为极值 点,极值点是自变量(x)的值,极值指 的是函数值(y)。
2、极值是一个局部概念,极值只是某个点 的函数值与它附近点的函数值比较是最大 或最小,并不意味着它在函数的整个的定义 域内最大或最小。
则f(x)无极值 D.函数f(x)在区间(a,b)上一定存在最值
2、函数 f (x) a sin x 1 sin 3x 在
x 处具有极值,3求a的值
3
分析:f(x)在 x 处有极值,根据一点是极值点的
必要条件可知, f 3'( ) 0可求出a的值.
3
解: f '(x) (a sin x 1 sin 3x) ' a cos x cos 3x3∵来自f'(
)
0

3

a cos
cos(3
)0
1
a 1
0
3
3
2
∴a=2.
3、y=alnx+bx2+x在x=1和x=2处有极值,
求a、b的值.
解:y ' (a ln x bx2 x) ' a 2bx 1 x
因为在x=1和x=2处,导数为0

a 2b 1 0
a 2
4b
1
0
a
2 3
b
D.y=1/x
分析:做这题需要按求极值的三个步骤, 一个一个求出来吗?不需要,因为它只要判断
x=0是否是极值点,只要看x=0点两侧的导数是否
异号就可以了。
四、课堂练习
1、下列说法正确的是( C )
A.函数在闭区间上的极大值一定比 极小值大
B.函数在闭区间上的最大值一定是 极大值
C.对于f(x)=x3+px2+2x+1,若|p|< 6 ,
函数的极大值与极小值
一、知识回顾:
一般地,设函数y=f(x)在某个区间内可 导,则函数在该区间
如果f′(x)>0, 则f(x)为增函数; 如果f′(x)<0, 则f(x)为减函数.
一、知识回顾:
根据导数确定函数的单调性的步骤:
1.确定函数f(x)的定义域. 2.求出函数的导数. 3.解不等式f ′(x)>0,得函数单增区间;
3、函数的极值不是唯一的即一个函数在某区间 上或定义域内极大值或极小值可以不止一个。
4、极大值与极小值之间无确定的大小关系即一 个函数的极大值未必大于极小值,如下图所示,
x1 是极大值点,x4是极小值点,而 f (x4 ) f (x1)
(二)、极值与导数的关系 极大值与导数之间的关系
X
X1左侧
解不等式f′(x)<0,得函数单减区间.
一、知识回顾:
注意:如果在某个区间内恒有f′(x)=0, 则f(x)为常数函数.
当x=x0时, f′(x0)=0,且当x<x0与x>x0时 f′(x0)异号,则函数在该点单调性发生改变.
二、构建数学
三、新课讲授
(一)、函数极值的定义
一般地,设函数y=f(x)在x=x0及其附近有定义, 如果f(x0)的值比x0附近所有各点的函数值都大,我 们就说f(x0)是函数的一个极大值,记作y极大值=f(x0), x0是极大值点。
(3)用函数的导数为0的点,顺次将函 数的定义区间分成若干小开区间,并 列成表格.检查f′(x)在方程根左右的 值的符号,求出极大值和极小值.
例2:求 y 1 x3 4x 4 的极值
解:y
'
(1
x3
3
4x
4)
'
x2
4
(
x
2)( x
2)
3
令y′=0,解得x1=-2,x2=2
当x变化时,y′,y的变化情况如下表
相关文档
最新文档