弹性力学-应力和应变
弹性力学-平面应力-平面应变问题
平面应力问题的求解方法
解析法
实验法
通过数学分析的方法,将问题转化为 数学方程进行求解。适用于简单几何 形状和边界条件的问题。
通过实验测试来测量物体的应力分布, 通常需要制作模型并进行加载测试。 适用于无法通过理论分析求解的问题。
有限元法
将物体离散化为有限个小的单元,通 过求解每个单元的平衡方程来得到整 个物体的应力分布。适用于复杂几何 形状和边界条件的问题。
弹性力学的基本方程
描述物体在受力后的应力 与应变之间的关系。
描述物体在受力后发生的 位移和应变关系。
描述物体内部力的平衡关 系03
平面应力问题
平面应力问题的定义
平面应力问题是指在弹性力学中,物 体受到的应力作用在某一平面内,且 在该平面上没有作用力的问题。
平面应力问题通常适用于薄板、薄壳 等二维结构,其中应力分量在某一平 面内变化,而垂直于该平面的方向上 ,应力和应变均为零。
THANKS
感谢观看
04
平面应变问题
平面应变问题的定义
平面应变问题是指在弹性力学中,应变和应力都仅发生在某一平面内的现象。在 此情况下,应变和应力分量都与离开平面的距离无关。
平面应变问题通常出现在薄壁结构、板壳结构等二维结构中,其中主要的变形和 应力分布都在一个平面内。
平面应变问题的求解方法
1 2 3
有限元法
通过将问题离散化为有限个小的单元,利用弹性 力学的平衡方程和变形协调方程,求解每个单元 的应力、应变和位移。
跨学科的研究
与其他学科的交叉研究 可能会带来新的思想和 理论。例如,与物理学 、化学、生物学等学科 的交叉可能会为弹性力 学的研究提供新的视角 和思路。
实验与理论的结 合
实验技术的发展将有助 于更好地验证理论的正 确性和实用性。同时, 理论的发展也将为实验 提供更好的指导。因此 ,实验与理论的结合将 是未来研究的一个重要 方向。
弹性力学弹性材料的应力应变关系与力学行为
弹性力学弹性材料的应力应变关系与力学行为弹性力学是研究物体在受力作用下产生的形变,并研究这种形变与施加力之间的关系的力学学科。
弹性材料是指在受到外力作用时,可以恢复其原有形状和大小的材料。
在弹性力学中,应力应变关系是研究弹性材料变形的重要理论基础,同时也是理解弹性材料力学行为的关键。
一、应力应变关系弹性材料的应力应变关系是指在弹性变形过程中,材料受到的应力与应变之间的关系。
根据前人的研究,线弹性模型是描述弹性材料应力应变关系较为简单的模型。
在线弹性模型中,应力与应变之间满足线性的关系,即应力与应变成正比。
线弹性模型的数学表达为:应力=弹性模量×应变其中,弹性模量是描述材料抵抗形变的能力,常用符号为E,单位为帕斯卡(Pa);应变是材料在受力作用下发生的形变,通常用ε表示。
二、力学行为在实际工程中,弹性材料的力学行为可以通过拉伸试验来研究。
拉伸试验是将材料在两端加以拉伸,观察材料的变形与受力之间的关系。
通过拉伸试验可以得到材料的应力-应变曲线,从而了解其力学行为。
应力-应变曲线通常可分为三个阶段:线弹性阶段、屈服阶段和塑性阶段。
1. 线弹性阶段材料在小应变下,应力与应变之间呈线性关系,即遵循线弹性模型。
在这个阶段,材料受力后会发生弹性形变,一旦撤去外力,材料便会恢复到初始状态。
2. 屈服阶段当应力超过材料的屈服强度时,材料开始发生塑性变形。
此时,材料的应变与外力不再成线性关系,应力-应变曲线开始变得非线性。
3. 塑性阶段在超过屈服阶段后,材料会出现塑性变形,即使撤去外力,材料也不能完全恢复到初始状态。
材料在这个阶段会发生永久性变形。
除了拉伸试验,弹性材料的力学行为还可以通过其他实验方法进行研究,如压缩试验和剪切试验等。
通过这些实验,可以探究材料在不同受力情况下的变形特性。
总结:弹性力学中,弹性材料的应力应变关系是研究弹性材料变形的重要理论基础。
应力应变关系可以通过线弹性模型进行描述,其中应力与应变成正比。
弹性力学基本概念
弹性力学基本概念弹性力学是力学的一个分支领域,研究材料在受力时的弹性变形和恢复变形的行为规律。
本文将介绍弹性力学的基本概念,包括应力、应变、胡克定律和杨氏模量等。
一、应力和应变在弹性力学中,应力和应变是两个基本的物理量,用来描述物体在受力时的变形情况。
应力是单位面积上的力,通常用希腊字母σ表示。
应力可以分为正应力和剪应力两种。
正应力是指垂直于受力面的力,它可以通过力的大小和受力面的面积计算得到。
正应力的单位是帕斯卡(Pa),1Pa等于1牛顿/平方米。
剪应力是指平行于受力面的力,它也可以通过力的大小和受力面的面积计算得到。
剪应力的单位也是帕斯卡(Pa)。
应变是物体由于受力而发生的变形程度,通常用希腊字母ε表示。
应变可以分为线性应变和剪切应变两种。
线性应变是指物体在受力下发生的长度变化与原长度之比。
线性应变的计算公式为:ε = ΔL / L,其中ΔL表示长度变化,L表示原长度。
剪切应变是指物体在受到剪应力时,各层之间相对位置的变化。
剪切应变的计算公式为:γ = Δx / h,其中Δx表示位置变化,h表示物体的厚度。
二、胡克定律胡克定律是弹性力学的基本定律之一,描述了材料的应力和应变之间的关系。
胡克定律可以用公式表示为:σ = Eε,其中σ表示应力,E表示杨氏模量,ε表示应变。
杨氏模量是衡量材料硬度和刚度的重要物理量,表示单位应力下材料的单位应变。
杨氏模量的单位是帕斯卡(Pa)。
胡克定律表明,当材料处于弹性变形状态时,应力和应变之间成正比。
杨氏模量越大,材料的刚度越高,抵抗变形的能力也越强。
三、弹性常数除了杨氏模量,弹性力学还有其他一些描述材料力学性质的常数。
泊松比是描述材料在受到正应力时,在垂直方向上的应变情况的比值。
泊松比的计算公式为:ν = -ε_2 / ε_1,其中ε_1表示垂直方向上的线性应变,ε_2表示平行方向上的线性应变。
弹性体模量是描述材料在受力时的刚度的物理量,定义为单位体积的材料在受力时所发生的应变与应力之比。
关于弹性体受力后某一方向的应力与应变关系
弹性力学中应力与应变为线性关系,应力与应变的比例常数E 被称为弹性系数或扬氏模量,不同的材料有其固定的扬氏模量。
虽然无法对应力进行直接的测量但是通过测量由外力影响产生的应变可以计算出应力的大小。
应力是应变的原因,应变是应力的结果。
应力概念解释:物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。
在所考察的截面某一点单位面积上的内力称为应力。
同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。
拓展资料
应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。
对某种材
料来说,应力可能达到的这个限度称为该种材料的极限应力。
极限应力值要通过材料的力学试验来测定。
将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。
材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。
工程构件,大多数情形下,内力并非均匀分布,通常“破坏”或“失效”往往从内力集度最大处开始,因此,有必要区别并定义应力概念。
弹性力学中的应力与应变关系
弹性力学中的应力与应变关系弹性力学是力学的一个重要分支,研究物体在外力的作用下产生的形变与应力的关系。
在弹性力学理论中,应力与应变关系是最为核心的概念之一。
本文将探讨弹性力学中的应力与应变关系的基本原理,并从不同角度对其进行分析。
一、基本概念在弹性力学中,应力是描述物体内部单位面积受力情况的物理量。
它可以分为正应力和剪应力。
正应力表示物体在垂直于某一平面上的受力情况,剪应力表示物体在平行于某一平面上的受力情况。
应力的大小一般采用希腊字母σ表示。
应变是描述物体形变情况的物理量。
它可以分为线性应变和体积应变。
线性应变表示物体中某一方向上的长度相对变化,体积应变表示物体在各个方向上的体积变化。
应变的大小可以用希腊字母ε表示。
二、胡克定律胡克定律是描述弹性体材料中应力与应变关系最基本的定律。
其数学表达式为σ = Eε,即应力等于弹性模量与应变之积。
其中,弹性模量E是描述物体对应变的抵抗能力的物理量。
根据胡克定律,应力与应变之间的关系是线性的,即若应变增大,则应力也会相应增大。
胡克定律适用范围有限,对于非线性应力-应变关系的材料,需要采用其他力学模型进行描述。
例如,当外力作用超出一定范围时,弹性体会发生塑性变形,此时应力和应变之间的关系就无法再用胡克定律来描述。
三、材料力学模型由于胡克定律的局限性,研究者们提出了各种各样的材料力学模型来描述应力与应变之间的关系。
其中,最常用的有线性弹性模型、非线性弹性模型和本构模型。
线性弹性模型是胡克定律的拓展,它适用于应力与应变关系呈线性关系的情况。
在这种模型中,应力与应变之间的关系是单一的、唯一的。
当外力作用停止后,物体能够完全恢复到初始状态。
非线性弹性模型适用于应力与应变关系不再呈线性关系的情况。
它可以更好地描述材料的实际变形情况。
在这种模型中,应力与应变之间的关系可以是非线性的、曲线状的。
本构模型是一种综合考虑多种因素的力学模型,它可以更全面地描述材料的应力与应变关系。
弹性力学中的应力与应变理论
弹性力学中的应力与应变理论弹性力学是研究物体在受力作用下的变形与恢复的力学分支。
应力与应变理论是弹性力学的重要组成部分,它描述了物体在受到外力作用时产生的应力和应变之间的关系。
在本文中,我们将深入探讨弹性力学中的应力与应变理论。
一、应力的概念与分类应力是物体在受力作用下产生的单位面积的内力。
根据受力方向的不同,应力可以分为三类:拉应力、压应力和剪应力。
1. 拉应力:拉应力是指物体在受到拉伸力作用下产生的应力。
拉应力可分为轴向拉应力和切向拉应力。
轴向拉应力是指沿物体轴线方向产生的应力,而切向拉应力则是指垂直于轴线方向产生的应力。
2. 压应力:压应力是指物体在受到压缩力作用下产生的应力。
与拉应力类似,压应力也可分为轴向压应力和切向压应力。
3. 剪应力:剪应力是指物体在受到剪切力作用下产生的应力。
剪应力沿着物体内部平面的切线方向产生。
二、应变的概念与分类应变是物体在受力作用下发生的长度、面积或体积的变化。
根据变形形式的不同,应变可分为三类:线性应变、平面应变和体积应变。
1. 线性应变:线性应变是指物体在受力作用下产生的长度变化与初始长度之比。
它是最基本的应变形式,常用符号ε表示。
线性应变假设变形产生的应力与应变之间呈线性关系。
2. 平面应变:平面应变是指物体在受到外力作用下产生的面积变化与初始面积之比。
平面应变常用符号γ表示。
3. 体积应变:体积应变是指物体在受到外力作用下产生的体积变化与初始体积之比。
体积应变常用符号η表示。
三、胡克定律与应力应变关系胡克定律是弹性力学中最基本的定律之一,它描述了由于外力作用下物体的弹性变形情况。
胡克定律可以简要表述为:应力与应变成正比。
根据胡克定律,可以得出应力与应变的数学关系,即应力等于弹性模量与应变之积。
根据具体的应力类型和应变类型,应力与应变的关系可以用不同的公式来表示。
四、应力与应变的计算方法在实际应用中,为了计算物体在受力作用下的应变情况,可以使用不同的方法来计算应力和应变。
《力学》第八章弹性体应力和应变ppt课件
= y(x x) y(x)
x
当 x 0 时:
= lim y(x x) y(x) y
x0
x
x
因此,
=G y
x
上页 下页 返回 结束
第八章 弹性体的应力和应变 5、剪切形变的弹性势能密度(单位体积的弹性势能):
E
0 p
1 G
2
2
(5)
注意:切变只能在固体中产生,流体中不会产生。所以流体中只 能传播纵波,而固体中既能传播纵波,也能传播横波。
弹性体是变形体的一种,它的特征为:在外力作用 下物体变形,当外力不超过某一限度时,除去外力后物 体即恢复原状。绝对弹性体是不存在的。物体在外力除 去后的残余变形很小时,一般就把它当作弹性体处理。
上页 下页 返回 结束
第八章 弹性体的应力和应变
人类从很早时就已经知道利用物体的弹性性质了,比如古代 弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹 性原理,而人们有系统、定量地研究弹性力学,是从17世纪开 始的。
由于课程所限,我们在本章仅对弹性体力学作简单的 介绍,为振动部分和波动部分作准备。
上页 下页 返回 结束
第八章 弹性体的应力和应变
§8.1 弹性体的拉伸和压缩形变
弹性体有四种形变:拉伸压缩、剪切、扭转和弯曲。其实,最基本的形 变只有两种:拉伸压缩和剪切形变;扭转和弯曲可以看作是由两种基本形变 的组成。
1. 正压力(拉伸压缩应力)
= Fn
S
(1)
其中,F沿作用力截面的法线方向。
例:如图示,一般取n为外法线方向,则
0,也可能是 0.
上页 下页 返回 结束
第八章 弹性体的应力和应变
2. 线应变(相对伸长或压缩)
弹性力学中的应力和应变
弹性力学中的应力和应变弹性力学是物理学中的一个重要分支,研究物体在外力作用下的变形和应力分布规律。
在弹性力学中,应力和应变是两个关键的概念。
本文将详细介绍弹性力学中的应力和应变,并探讨它们之间的关系和物体在外力作用下的行为。
一、应力的概念与分类在弹性力学中,应力是描述物体内部受力状况的物理量。
它的定义是单位面积上的力,即单位面积上所受的力。
在材料力学中,通常将力的作用面积取无限小,这样就可以得到面积趋于无穷小的情况下的应力。
根据作用方向的不同,应力可以分为三种类型:正应力、剪应力和体应力。
1. 正应力:即垂直于物体截面的力在该截面上单位面积的作用力。
正应力可以分为正拉应力和正压应力,正拉应力是指物体上的拉力,正压应力是指物体上的压力。
2. 剪应力:即平行于物体截面的力在该截面上单位面积的作用力。
剪应力是指物体上的切力,它使得物体相对于截面沿切应变方向发生形变。
3. 体应力:即物体内部体积元素上的力在该体积元素上单位体积的作用力。
体应力是指物体中各个点处的压力或拉力。
二、应变的概念与分类应变是描述物体变形程度的物理量,它是物体的形状改变相对于初始形状的相对变化量。
应变也可以分为三种类型:线性应变、剪应变和体应变。
1. 线性应变:即物体在受力下沿作用力方向产生的长度变化与初始长度的比值。
线性应变通常用拉伸应变表示。
2. 剪应变:即物体在受剪力作用下发生的相对位移与物体初始尺寸的比值。
3. 体应变:即物体受力时体积的相对变化量与初始体积的比值。
三、应力和应变的关系应力和应变之间存在着一定的关系,它们之间通过杨氏模量来联系。
杨氏模量是描述物体在拉伸应力作用下的应变程度的物理量。
弹性体的材料有两个重要的杨氏模量:弹性模量(或称杨氏模量)和剪切模量。
1. 弹性模量(E):它描述的是物体在正应力作用下的正应变情况。
根据材料的不同,弹性模量也不同。
2. 剪切模量(G):它描述的是物体在剪应力作用下的剪应变情况。
弹性力学第四章应力和应变关系
第四章应力和应变关系应变能原理应力应变关系的一般表达式完全各向异性弹性体正交各向异性弹性体本构关系弹性常数各向同性弹性体应变能格林公式广义胡克定理一个弹性对称面的弹性体本构关系各向同性弹性体的应力和应变关系应变表示的各向同性本构关系一、内容介绍前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。
由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。
应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。
对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。
这是材料的固有特性,因此称为物理方程或者本构关系。
对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。
分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。
本章的任务就是建立弹性变形阶段的应力应变关系。
二、重点1、应变能函数和格林公式;2、广义胡克定律的一般表达式;3、具有一个和两个弹性对称面的本构关系;4、各向同性材料的本构关系;5、材料的弹性常数。
§4.1 弹性体的应变能原理学习思路:弹性体在外力作用下产生变形,因此外力在变形过程中作功。
同时,弹性体内部的能量也要相应的发生变化。
借助于能量关系,可以使得弹性力学问题的求知识点解方法和思路简化,因此能量原理是一个有效的分析工具本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。
根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。
探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。
如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。
因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。
弹性力学平面应力问题和平面应变问题
有限差分法的精度取决于差分格式的选择和网格的划分,同时需要注意数 值稳定性和计算精度的问题。
边界元法
边界元法是一种基于边界积 分方程的数值分析方法,通 过将微分方程转化为边界积
分方程来求解。
变形特点
应用领域
在平面应力问题中,变形主要发生在作用 面上,而在平面应变问题中,变形可以发 生在整个结构中。
平面应力问题在桥梁、建筑和机械等领域 有广泛应用,而平面应变问题在岩土、地 质和材料等领域有广泛应用。
06
结论与展望
结论总结
平面应力问题和平面应变问题在弹性力学中具有重要地位,它们是描述物体在应力作用下的变形和应 力分布的基础。
弹性模量表示材料在受力作用下的刚度,是衡量材料抵 抗弹性变形能力的重要参数。
剪切模量表示材料在剪切力作用下的刚度,与弹性模量 和泊松比有关。
03
平面应变问题
应变状态分析
平面应变条件
应变分量中,只有$varepsilon_{x}$ 、$varepsilon_{y}$和 $gamma_{xy}$不为零,其余分量为 零。
有限元法在弹性力学平面应力问题和平面应变问题中广泛 应用,因为它能够处理复杂的几何形状和边界条件,且计 算精度高。
有限元法的实现需要建立离散化的模型、选择合适的单元 类型和求解算法,并进行数值稳定性和误差分析。
有限差分法
有限差分法是一种基于差分原理的数值分析方法,通过将微分方程转化为 差分方程来求解。
薄板弯曲问题
考虑一个矩形薄板,受到一对相距较远的集中力作用,使板发生弯曲。根据平面应力问题,可以分析 板的应力分布、中性面位置以及挠度等。
弹性力学弹性体的应力与应变关系
弹性力学弹性体的应力与应变关系弹性力学是一门研究固体材料在外力作用下的变形和应力分布规律的学科。
其中,弹性体是一类能够在外力作用下发生形变,但恢复力可以将其恢复到原始状态的物质。
弹性体的应力与应变关系是弹性力学中的基本概念和重要理论。
一、什么是应力与应变在力学中,应力是物体受来自外界作用的力引起的单位面积内的力的大小。
它是描述物体受力情况的物理量。
应力可分为正应力和剪应力两种,正应力作用于物体的表面上的垂直方向,而剪应力则作用于物体的表面上的切向方向。
应变是描述材料形变程度的物理量,是物体在受力下发生变形时单位长度的变化。
应变也可分为正应变和剪应变两种,正应变是物体长度在受力作用下产生的相对变化量,而剪应变则是物体形状的变化量与原始尺寸之比。
二、背景知识弹性体的应力与应变关系可以通过背景知识来理解。
弹性体的主要特性是能够在外力的作用下发生形变,但当外力消失时,它能够恢复到原来的形状和尺寸。
这是因为弹性体的分子或原子之间存在着弹性力,当外力作用结束时,弹性力将趋于平衡,使得物体恢复到原来的状态。
三、胡克定律胡克定律是描述弹性体应力与应变关系的基本定律。
根据胡克定律,当外力作用于弹性体时,弹性体内部的应力与应变成正比。
具体数学描述如下:σ = Eε其中,σ代表应力,单位为帕斯卡(Pa),E代表弹性模量,单位为帕斯卡(Pa),ε代表应变,为无单位。
胡克定律适用于弹性体在线性弹性范围内,即应力与应变成正比,并且比例系数恒定。
此时的应力-应变关系为线性关系,称为胡克定律。
超出线性弹性范围后,材料会发生塑性变形。
四、弹性模量弹性模量是表征弹性体抵抗形变的能力大小的物理量。
它是胡克定律中比例系数的倒数,可以用来度量弹性体的刚度。
常见的弹性模量有:1. 杨氏模量(Young's Modulus):用E表示,描述的是物体在拉伸或压缩时的应变与应力之间的关系。
2. 剪切模量(Shear Modulus):用G表示,描述的是物体在受剪时的应变与应力之间的关系。
弹性力学系统中的应变与应力分布
弹性力学系统中的应变与应力分布弹性力学是研究物体在受力作用下的形变和恢复过程的学科。
在弹性力学系统中,应变和应力分布是两个重要的概念。
应变描述了物体在受力作用下的形变程度,而应力则表示物体单位面积上承受的力的大小。
在弹性力学系统中,应变可以分为线性应变和剪切应变。
线性应变是指物体在受力作用下沿着受力方向发生的形变,剪切应变则是指物体在受力作用下发生的平行于受力方向的形变。
应变的大小可以通过应变率来衡量,即单位时间内的形变量。
应力分布是指物体在受力作用下承受的力在不同部位的分布情况。
根据受力方向的不同,应力可以分为正应力和剪切应力。
正应力是指力的方向与物体表面垂直的应力,剪切应力则是指力的方向与物体表面平行的应力。
应力的大小可以通过应力张量来描述,其中包括正应力和剪切应力的分量。
在弹性力学系统中,应变和应力之间存在着一定的关系。
根据胡克定律,当物体受到的力小于其弹性极限时,应变和应力之间呈线性关系。
这种线性关系可以通过应力-应变曲线来描述,曲线的斜率即为物体的弹性模量,反映了物体对外力的抵抗能力。
应变和应力的分布情况对物体的性能和稳定性具有重要影响。
例如,在工程领域中,对于承受外力的结构件,需要合理设计应力分布,以保证结构的强度和稳定性。
通过对应力分布的分析和优化,可以减少结构的应力集中和疲劳破坏的风险。
此外,应变和应力的分布也与物体的形状和材料性质密切相关。
不同形状和材料的物体在受力作用下会出现不同的应变和应力分布情况。
例如,对于长方形梁受弯的情况,弯曲应变和弯曲应力的分布呈现出特定的形态,可以通过数学模型和实验来研究和预测。
在实际应用中,弹性力学的概念和方法广泛应用于工程、材料科学、地质学等领域。
通过对应变和应力分布的研究,可以帮助我们理解物体在受力作用下的变形和破坏机制,从而指导工程设计和材料选择。
此外,弹性力学的研究还为新材料和新结构的设计提供了理论基础和技术支持。
总之,弹性力学系统中的应变和应力分布是研究物体形变和恢复过程的重要概念。
弹性力学第四章应力应变
当变形较小时,可展开成泰勒级数, 并略去二阶以上的小量。
f1 f1 f1 f1 f1 f1 xy x ( f1 )0 x y z yz xz z 0 x 0 xz 0 y 0 yz 0 xy 0
x C11 x C12 y C13 z C14 yz C15 xz C16 xy y C21 x C22 y C23 z C24 yz C25 xz C26 xy z C31 x C32 y C33 z C34 yz C35 xz C36 xy yz C41 x C42 y C43 z C44 yz C45 xz C46 xy
上式中 cmn(m,n=1,2…6)是弹性系数,共36个,对 于均匀材料它们为常数,称为弹性常数,与坐标无关。
上式即为广义胡克定律,可以看出应 力和应变之间是线性的。 可以证明各弹性常数之间存在关系式 cmn = c nm 。对于最一般的各向异性介质,弹 性常数也只有21个。
§4.2 弹性体变形过程中的功与能
yz C41 x C42 y C43 z C44 yz C45 xz C46 xy
xz C51 x C52 y C53 z C54 yz C55 xz C56 xy
(4-2)
xy C61 x C62 y C63 z C64 yz C65 xz C66 xy
0 0 0
f3 f3 f3 f3 f3 f3 z ( f3 )0 z yz x y xz xy z 0 x 0 xz 0 y 0 yz 0 xy 0
弹性力学平面应力问题和平面应变问题
弹性力学与材料科学、计算科学、生物学等学科的交叉融合,为解决 复杂工程问题提供了新的思路和方法。
数值模拟与计算
随着计算机技术的进步,数值模拟和计算在弹性力学领域的应用越来 越广泛,能够更精确地模拟和预测材料的力学行为。
多尺度分析
从微观到宏观的多尺度分析方法,能够更好地理解材料的微观结构和 宏观性能之间的关系。
它们简化了问题的复杂性,使得 弹性力学成为一种实用的工程工 具。
02
基本假设的局限性
03
限制条件的考虑
在某些情况下,这些假设可能不 成立,例如在处理非均匀、非各 项同性或大变形问题时。
在应用弹性力学时,必须考虑这 些限制条件,以确保结果的准确 性和可靠性。
06 弹性力学的发展趋势和未 来研究方向
弹性力学的发展趋势
非线性力学
随着工程结构的复杂性和非线性特征的增加,非线性力学的研究越来 越受到重视,为解决复杂工程问题提供了新的理论和方法。
未来研究方向
新材料和新结构的力学行为
智能材料的力学行为
研究新型材料和复杂结构的力学行为,探 索其性能优化和设计方法。
研究智能材料的响应机制和调控方法,探 索其在传感器、驱动器和自适应结构等领 域的应用。
生物医学中的弹性力学问题
研究生物组织的力学行为和生理功能,探 索其在生物医学工程和再生医学等领域的 应用。
环境与可持续发展的弹性力学问 题
研究环境因素对材料和结构的影响,探索 其在环保和可持续发展等领域的应用。
THANKS FOR WATCHING
感谢您的观看
材料力学性能的测试
材料弹性模量的测定
通过实验测定材料的弹性模量,可以了解材料的力学性能,为工程设计和材料选择提供依据。
弹性力学中的应变与应力关系
弹性力学中的应变与应力关系弹性力学是物理学中的一个重要分支,主要研究物质体积和形状在外力作用下所发生的变化及其原因。
具体来说,就是通过研究应力(反映外力作用效果的物理量)和应变(反映物质形状和体积改变的物理量)之间的关系,来理解和解释物质的弹性行为。
本文将详细阐述应力和应变在弹性力学中的相关内容。
首先,我们需要明确应力和应变的概念,以便更好地理解二者之间的关系。
应力是弹性力学研究的基本物理量,它可以反映物质内部的力的大小和方向。
根据力的分布特点和作用方式,可以将应力分为正应力和剪应力等类型。
与此同时,应变是描述物体位形变化的物理量,它可以反映物体形状和体积的变化情况。
在弹性力学中,应力和应变之间的基本关系通常用应力--应变法则或哈肋定律来描述。
具体来说,对于同一物体,存在一个比例系数(即弹性模量),当其应力不超过一定值(即弹性限度)时,应力和应变之间达到正比关系,即应力等于弹性模量乘以应变。
这就是典型的线性弹性行为。
当然,应力和应变的关系并不总是线性的。
当物体受到的应力超过一定值后,应变可能导致物体的永久性形变,这就涉及到弹性物质的塑性行为。
塑性行为是弹性力学的另一个重要研究方向,对于理解材料的力学行为有着特别重要的意义。
在实际应用中,不同的应力类型和物质性质可能会引起不同的应变特性。
因此,为了更具体、精确地描述和理解应力和应变之间的关系,出现了多种理论和模型,如弹塑性理论、粘弹性理论、破坏理论等。
这些理论和模型都在一定程度上解释了应力和应变之间的复杂关系,并为理解和控制各种物质的弹性行为提供了重要的理论工具。
总的来说,弹性力学中的应力与应变关系是一个复杂而重要的主题,只有深入理解和掌握应力与应变的特性,才能准确地分析和预测物质在受力情况下的弹性行为。
而对于这些知识的理解和应用,在工程技术、材料科学等领域有着广泛的应用前景。
弹性力学 第四章应力和应变的关系
vI t
x
x
t
y
y
t
z
z
t
yz
yz
t
xz
xz
t
xy
xy
t
若固定x,y,z的值,则得在dt时间内vI 的增量为,即在上式两边乘以dt
dvI xd x yd y zd z yzd yz xz d xz xyd xy
由于内能密度 vI 是状态的单值函数,dvI 必须是全微分,因此
所以
v
1 2
(
x
x
y y
zz
xy xy
xz xz
zy zy )
张量表示
v
1 2
ij
ij
弹性体应变能 V v dV V
§4-3 各向异性弹性体
(一)极端各向异性弹性体
理论具有36个弹性常数
x c11 x c12 y c13 z c14 xy c15 yz c16 zx y c21 x c22 y c23 z c24 xy c25 yz c26 zx
的值,根据无初始应力假设,( f1)0为0。均匀材料,函数 f1
对应变的一阶偏导数为常数。这是因为对物体内各点来说,
承受相同的应力,必产生相同的应变;反之,物体内各点
有相同的应变,必承受同样的应力。
经过上面的处理后,小变形情况就可简化为
广义胡克定律
x C11 x C12 y C13 z C14 xy C15 yz C16 xz y C21 x C22 y C23 z C24 xy C25 yz C26 xz z C31 x C32 y C33 z C34 xy C35 yz C36 xz xy C41 x C42 y C43 z C44 xy C45 yz C46 xz yz C51 x C52 y C53 z C54 xy C55 yz C56 xz xz C61 x C62 y C63 z C64 xy C65 yz C66 xz
弹性力学 第04章应力和应变关系
第四章应力与应变关系§4-1 应力和应变的最一般关系式§4-2 弹性体变形过程中的功和能§4-3 各向异性弹性体§4-4 各向同性弹性体§4-5 弹性常数的测定§4-6 各向同性体应变能密度的表达式显然有5225C C =同理可证nmmn C C =这样就证明了极端各向异性体,只有6+30/2=21个独立的弹性常数。
⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧xy xz yz z y x xy xzyz z y x C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C γγγεεετττσσσ66564636266156554535255146454434244 136353433233 126252423222 16 15 14 13 12 111②具有一个弹性对称面的各向异性弹性体如果物体内的每一点都具有这样一个平面,关于该平面对称的两个方向具有相同的弹性,则该平面称为物体的弹性对称面,而垂直于弹性对称面的方向,称为物体的弹性主方向。
这样,物体的弹性常数从21个变为13个。
若Oyz 为弹性对称面,则(可用坐标变换公式得到)⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧xy xz yz z y x xy xzyz z y x C C C C C C C C C C C C C C C C C C C C γγγεεετττσσσ665656554434244 13433233 1242322214 13 1211100000000000000如果互相垂直的3个平面中有2个式弹性对称面,则第3个平面必然也是弹性对称面。
弹性力学第四章应力应变
弹性力学问题的求解方法
解析法
通过数学手段,将弹性力学问题转化为数学方程,如微分方程或积 分方程,然后求解这些方程得到弹性体的应力和应变。
数值法
对于一些难以解析求解的弹性力学问题,可以采用数值方法进行求 解,如有限元法、有限差分法等。
实验法
通过实验手段测量弹性体的应力和应变,如拉伸、压缩、弯曲等实验。
本构方程描述了物体内部的应力与应变之间的关系,是材料力学性质的表现。
本构方程的数学表达式因材料而异,对于线性弹性材料,本构方程为:$sigma_{ij} = lambda epsilon_{kk} + 2mu epsilon_{ij}$,其中$lambda$和$mu$分别为拉梅 常数。
04
弹性力学问题解法
01
材料性能评估
利用弹性力学理论,可以对材料的性能进行评估,包括材料的弹性模量、
泊松比、剪切模量等参数,为材料的加工和应用提供依据。
02
材料结构设计
通过弹性力学理论,可以对材料进行结构设计,通过调整材料的微观结
构和组分,优化材料的性能,提高材料的承载能力和稳定性。
03
材料失效分析
弹性力学还可以用于材料失效分析,通过分析材料的应力分布和应变状
分类
单位
根据不同的分类标准,应变可以 分为多种类型,如线应变、角应 变、剪应变等。
应变的单位是单位长度上的变形 量,常用的单位有百分数、弧度 等。
应变状态
01
02
03
单轴应变
当物体受到单向拉伸或压 缩时,只在某一方向上发 生形变,其他方向上保持 不变。
多轴应变
当物体受到多方向上的作 用力时,会在多个方向上 发生形变,形变情况比较 复杂。
弹性力学基本概念总结
弹性力学基本概念总结弹性力学是研究物体在受力作用下产生的变形与应力分布规律的科学。
在弹性力学中,存在一些基本的概念,这些概念对于理解物体的弹性变形和力学响应非常重要。
本文将对弹性力学中的一些基本概念进行总结。
一、应力和应变1. 应力应力是单位面积上的力,用符号σ表示。
在弹性力学中,常用的应力有拉伸应力、压缩应力和剪切应力。
拉伸应力表示物体在拉伸力作用下的应力,压缩应力表示物体在压缩力作用下的应力,剪切应力表示物体在层叠力作用下的应力。
2. 应变应变是物体在受力作用下发生的变形程度,用符号ε表示。
与应力类似,应变也有拉伸应变、压缩应变和剪切应变。
拉伸应变表示物体在拉伸力作用下的应变,压缩应变表示物体在压缩力作用下的应变,剪切应变表示物体在层叠力作用下的应变。
二、胡克定律胡克定律是弹性力学的基础定律之一,它描述了弹性固体的线弹性响应。
根据胡克定律,应力与应变之间的关系可以用以下公式表示:σ = Eε其中,σ为应力,E为杨氏模量,ε为应变。
胡克定律表明,线弹性材料的应力与应变成正比。
三、杨氏模量和剪切模量1. 杨氏模量杨氏模量是衡量材料抵抗拉伸应力的能力的物理量。
它表示了单位应力下的应变程度。
杨氏模量用符号E表示,单位是帕斯卡(Pa)。
杨氏模量越大,材料越具有抵抗拉伸应力的能力。
2. 剪切模量剪切模量是衡量材料抵抗剪切应力的能力的物理量。
它表示了单位剪切应力下的剪切应变程度。
剪切模量用符号G表示,单位也是帕斯卡(Pa)。
剪切模量越大,材料越具有抵抗剪切应力的能力。
四、弹性极限和屈服点1. 弹性极限弹性极限是材料在弹性变形过程中能够承受的最大应力。
当应力超过弹性极限时,材料将发生剧烈的塑性变形或破裂。
2. 屈服点屈服点是材料在受力过程中的一个关键点。
在屈服点之前,材料仅发生弹性变形,应力与应变成正比。
而在屈服点之后,材料开始发生塑性变形,应变增加的同时应力逐渐减小。
五、弹性体和弹性力学模型1. 弹性体弹性体是指在受力作用下产生弹性变形,但在去除外力后可以恢复原状的物体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
σ x τ xy τ xz σ xx σ xy σ xz τ xy σ y τ yz 或σ xy σ yy σ yz τ z τ yz σ z σ xz σ yz σ zz
写法: 采用张量下标记号的应力写法 写法: 把坐标轴x、 、 分别 把坐标轴 、y、z分别 表示, 用x1、x2、x3表示, 或简记为x 或简记为 j (j=1,2,3),
s j = σ j −σm, ( j = 1,2,3)
应力偏张量也有三个不变量: 应力偏张量也有三个不变量:
(3 −13)
J1 = s1 + s2 + s3 = σ1 +σ2 +σ3 −3σM = 0 1 2 2 2 J2 = −(s1s2 + s2s3 + s3s1) = (s1 + s2 + s3 ) 2 J3 = s1s2s3
3
偏张量的第二不变量 J2 有关。 有关。
四、等效应力 1.定义: 定义: 定义 相等的两个应力状态的力学效应相同, 如果假定 J2相等的两个应力状态的力学效应相同,那么
对一般应力状态可以定义: 对一般应力状态可以定义:
σ ≡ 3J2 =
1 2
(σ1 −σ2 )2 + (σ2 −σ3 )2 + (σ3 −σ1)2
三、等斜面上的应力 等斜面:通过某点做平面 ,该平面的法线与三个应力主轴
夹角相等 坐标轴与三个应力主轴一致, 设在这一点取 x1, x2 , x3 坐标轴与三个应力主轴一致, σ 3 则等斜面法线的三个方向余弦为
l1 = l2 = l3 =1/ 3
(3 − 20)
八面体面: 八面体面:
满足(3-20)式的面共有八个,构成 满足( 20)式的面共有八个, 一个八面体,如图所示。 一个八面体,如图所示。 等斜面常也被叫做八面体面。 等斜面常也被叫做八面体面。 若八面体面上的应力向量用F 表示,则按( 若八面体面上的应力向量用F8表示,则按(3-3)式有 1 2 2 2 2 2 2 2 F = (σ1l1) + (σ2l2 ) + (σ3l3) = (σ1 +σ2 +σ3 ) (3− 21) 8 3
sN1 σ11 σ12 σ13 l1 SN 2 = σ21 σ22 σ23 l2 o S σ σ32 σ33 l3 N3 31
SNi = σ ijl j (3 - 3)
N
O
SN
采用张量下标记号, 采用张量下标记号,可简写成 说明: 说明:
(3 − 8)
(3 − 8′)
或即
将这个行列式展开得到
λ3 − I1λ2 − I2λ − I3 = 0,
其中 I = σ , 1 kk
(3 − 9)
(3−10) (3−11) (3−12)
1 I2 = − (σiiσkk −σikσki ), 2 I3 = σij .
2. 应力张量的不变量
当坐标轴方向改变时,应力张量的分量 均将改变,但主应力的 当坐标轴方向改变时 应力张量的分量σ ij均将改变 但主应力的 大小不应随坐标轴的选取而改变.因此 方程(3-9)的系数 I1、I2、I3 因此,方程 大小不应随坐标轴的选取而改变 因此 方程 的系数 的值与坐标轴的取向无关,称为应力张量的三个不变量 应力张量的三个不变量。 的值与坐标轴的取向无关,称为应力张量的三个不变量。
x1 3 x2 i)重复出现的下标叫做求和下标,相当于 ∑ ,这称为求和约定; 求和下标, )重复出现的下标叫做求和下标
j =1
ii)不重复出现的下标i叫做自由下标,可取 )不重复出现的下标 叫做自由下标,可取i=1,2,3; 叫做自由下标
(4) 应力张量的分解
1.静水“压力”σ11 = σ 22 = σ 33 = σ 静水“压力”: 静水 在静水压力作用下,应力 应变间服从弹性规律 应变间服从弹性规律, 在静水压力作用下,应力—应变间服从弹性规律,且不会屈 不会产生塑性变形。 服、不会产生塑性变形。
λ ,则它在各
SNi = σ ijl j
(3 - 3)
(3 - 7)
(σ ij - λδij )l j = 0.
2 2 2 l1 + l2 + l3 = 1,即li li = 1.
应有
σij − λδ ij = 0,
σ11 − λ σ12 σ13 σ21 σ 22−λ σ23 = 0 σ31 σ32 σ33 − λ
塑性力学
第 1 章
应力和应变
第一章 应力和应变
§1.1 应力分析 §1.2 应变分析
§1.1 应力分析
一、应力张量及其分解 (1) 一点的应力状态
通过一点P 通过一点 的各个面上应力状况的集合 —— 称为一点的应力状态 x面的应力: σ x ,τ xy ,τ xz 面的应力: 面的应力 y面的应力: σ y ,τ yx ,τ yz 面的应力: 面的应力 z面的应力: σ z ,τ zx ,τ zy 面的应力: 面的应力
(3−17)
1 J2 = [(σ1 −σ2 )2 + (σ2 −σ3)2 + (σ3 −σ1)2 ], (3−18) 6 1 2 2 2 J2 = [σ1 +σ2 +σ3 −σ1σ2 −σ2σ3 −σ3σ1] (3−19) 3
说明: 说明: 在第四章中将看到, 在屈服条件中起重要作用。 在第四章中将看到, 2 在屈服条件中起重要作用。至于 J3 可以注 J 意它有这样的特点: 的分量多么大, 意它有这样的特点:不管 sij 的分量多么大,只要有一个主偏应力 为零, 在屈服条件中不可能起决定作用。 为零,就有 J3 = 0 。这暗示 J3 在屈服条件中不可能起决定作用。
不产生塑性变形的部分 应力 产生塑性变形的部分
反映静水“压力” 反映静水“压力”:
2.平均正应力: 平均正应力: 平均正应力
1 1 σ m = (σ11 +σ 22 +σ 33 ) = σ kk 3 3 (3 - 4)
3.应力张量的分解: 应力张量的分解: 应力张量的分解 应力张量可作如下分解: 应力张量可作如下分解:
用张量符号表示: 用张量符号表示: 其中: 其中:
σij = σmδij + sij ,
(3 − 5)
1 0 0 δij = 0 1 0 0 0 1
i 1,当 = j, δij = i 0,当 ≠ j,
(3 − 6)
或
应力球张量
——与单元体的体积变形有关 与单元体的体积变形有关
σ13 σ11 σ12 σ13 σm 0 0 σ11 −σm σ12 σ σ σ = 0 σ 0 + σ σ22 −σm σ23 m 21 22 23 21 σ31 σ32 σ33 0 0 σm σ31 σ32 σ33 −σm
2.等效应力 σ 的特点 等效应力
σ j ( j =1,2,3)全反号时 σ 的数值不变。 的数值不变。
3. Sij 空间
Sij 空间指的是以 Sij 的九个分量为坐标轴的九维偏应力空间; 的九个分量为坐标轴的九维偏应力空间;
σ 标志着所考察的偏应力状态与材料未受力(或只受静水应 标志着所考察的偏应力状态与材料未受力(
说明: 说明:
2 3
J2 .
(3− 23)
八面体面上的应力向量可分解为两个分量: 八面体面上的应力向量可分解为两个分量: i)垂直于八面体面的分量,即正应力 σ8 = σm ,它与应力球张 i)垂直于八面体面的分量, 垂直于八面体面的分量 量有关, 有关; 量有关,或者说与 I1有关; ii)沿八面体面某一切向的分量,即剪应力 τ8 = 2 J2 ,与应力 ii)沿八面体面某一切向的分量 沿八面体面某一切向的分量,
(3 −1)
上式中左边是工程力学的习惯写法, 上式中左边是工程力学的习惯写法,右边是弹性力学的习惯写法
σ11 σ12 σ13 σ σ22 σ23 = σij = σ ji , 21 σ31 σ32 σ33
(3 − 2)
(3) 斜截面上的应力与应力张量的关系
坐标系中, 在xj坐标系中,考虑一个法线为 的斜平面。 坐标系中 考虑一个法线为N的斜平面 N是单位向量,其方向作弦为 l1, l2 , l3 , 是单位向量, 是单位向量 则这个面上的应力向量S 则这个面上的应力向量 N的三个分量与应力张量 σ ij 之间的关系 x3
力 称为该点一个主应力 σ N 称为该点一个主应力 σ 若某一斜面上
τ N = 0,则该斜面上的正应
;
(2)应力主向 )
称为主平面 主平面; σ 所在的平面 —— 称为主平面; 称为应力主向 应力主向; 主应力 σ所在平面的法线方向 —— 称为应力主向; 主应力
根据主平面的定义, 重合。 根据主平面的定义,SN与N重合。若SN的大小为 坐标轴上的投影为 SNi = λli 代入(3-3)式 代入(
I2 = −(σ1σ2 +σ2σ3 +σ3σ1),
(3−10)′ (3−11)′ (3−12)′
应力偏张量S 显然也是一种应力状态即I 的应力状态 的应力状态。 应力偏张量 ij显然也是一种应力状态即 1=0的应力状态。 不难证明,它的主轴方向与应力主轴方向一致, 不难证明,它的主轴方向与应力主轴方向一致,而主值 称为主偏应力 主偏应力) (称为主偏应力)为:
I1 = σkk , 1 I2 = − (σiiσkk −σikσki ), 2 I3 = σij .
当用主应力来表示不变量时
(3−10) (3−11) (3−12)
σ 可以证明方程( 可以证明方程(3-9)有三个实根,即三个主应力 σ1、σ2、 3 有三个实根,
I1 = σ1 +σ2 +σ3, I3 = σ1σ2σ3