弹塑性力学(浙大课件)
合集下载
弹塑性力学-弹塑性本构关系ppt课件
为非负,即有 0
功,即 0
(应变硬化和理想塑性材料)
(应变软化材料)
工程弹塑性力学·塑性位势理论
(2) 德鲁克塑性公设的表述
德鲁克公设可陈述为:对于处在某一状态下的稳定材 料的质点(试件),借助于一个外部作用在其原有应力状态 之上,缓慢地施加并卸除一组附加压力,在附加应力的施 加和卸除循环内,外部作用所作之功是非负的。
Ñ W
0 ij
ij
0 ij
d ij 0
Ñ 由于弹性应变εije在应力循环
中是可逆的,因而
( ij
0 ij
)
d
e
ij
0
0 ij
于是有:
Ñ WD WDp
( ij
0 ij
)d
p
ij
0
0 ij
工程弹塑性力学·塑性位势理论
(3) 德鲁克塑性公设的重要推论
Ñ WD WDp
( ij
0 ij
)d
势理论。他假设经过应力空间的任何一点M,必有一
塑性位势等势面存在,其数学表达式称为塑性位势函
数,记为:
g I1, J2, J3, H 0
或
g ij , H 0
式中, H 为硬化参数。
塑性应变增量可以用塑性位势函数对应力微分的表达
式来表示,即:
d
p ij
d
g
ij
工程弹塑性力学·塑性位势理论
不小于零,即附加应力的塑性功不出现负值, 则这种材料就是稳定的,这就是德鲁克公设。
工程弹塑性力学·塑性位势理论
在应力循环中,外载所作的 功为:
Ñ W
0 ij
ij
d ij
0
不论材料是不是稳定,上述 总功不可能是负的,不然, 我们可通过应力循环不断从 材料中吸取能量,这是不可 能的。要判断材料稳定必须 依据德鲁克公设,即附加应 力所作的塑性功不小零得出
工程弹塑性力学第八章.pptx
8.1 平面应变问题的基本方程
物体的各点位移发生在xoy平面内:
u u(x, y) v v(x, y) w 0 (8.1)
应变分量为:
x
u x
,
y
v y
,
z
0
(8.2)
xy
v x
u , y
yz
zx
0
z 0
x
x (x, z
y), y z (x, y)
y (x,
y)
(8.3)
xy
xy (x,
y),
yz zx 0
8.1 平面应变问题的基本方程
理想刚塑性材料的总应变分量:
忽略弹性变形
p
ij
ij
(8.4)
流动速度场
du
dv
dw
vx (x, y) dt , vy (x, y) dt , vz (x, y) dt 0
应变率张量
vx
x
1 ( vx vy ) 2 y x
8.1 平面应变问题的基本方程
间断条件
对于应力场,作用与反作用定律要求:间断线上的应力矢量应连续, (•n)+= (•n) 连续,其余分量可以间断
n
n
nt
nt
t
t
对于速度场,连续性条件要求:法向分量应连续,切线分量可以间断, 塑性区可相对于刚性区作相对滑动,即:
vn vn vt vt
0代入
vx 0, vy 0 (8.26)
x
y
沿特征线的正应变率 等于零,没有伸缩。
8.2 特征线和滑移线
三、沿滑移线上的速度方程式
y 图 8.4 速度的坐标变换
vx v cos v sin
弹塑性力学01ppt课件
第1章 绪论1-2
线性弹性力学的发展,出现了许多分支学科,
如薄壁构件力学、薄壳力学、热弹性力学、 粘弹性力学、各向异性弹性力学等。
37
弹性力学解法也得到不断发展
数值解法 微分方程的差分解 [迈可斯(1932)] 有限单元法 [1946年]
第1章 绪论1-2
复变函数(20世纪30年代)萨文和穆斯赫利什维利 作了大量的研究工作,解决了许多孔口应力集中等 问题。
14
固体材料的弹塑性简单 说明(简单拉伸性能)
弹性极限(屈服 极限)
比例极限
弹性 阶段
塑性阶段(强化)
第1章 绪论
卸加载 (弹性)
弹性应变 塑性应变
低碳钢试件简单拉伸试 验应力—应变曲线图
弹性应变
15
第1章 绪论
• “完全弹性”是对弹性体变形的抽象。
完全弹性使得物体变形成为一种理想模型。 完全弹性是指在一定温度条件下,材料的应力 和应变之间一一对应的关系。 这种关系与时间无关,也与变形历史无关。
38
钱伟长
钱学森
胡海昌 徐芝伦
39
§1-2 弹性力学中的几个基本概念
一、体力
分布在物体体积内的力(重力、惯性力) z
大小: 平均集度
体力
lim F f V 0 V
O
x
fz V
F f
fy
fx
P
y
图11a 40
§1-2 弹性力学中的几个基本概念
方向 f的方向就是ΔF的极限方向
矢量f在坐标轴x、y、z上的投影fx、 f y、 fz ,称为
材料的应力和应变关系通常称为 本构关系
——物理关系或者物理方程
• 线性弹性体和非线性弹性体
工程弹塑性力学课件
工程弹塑性力学课件
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。
弹塑性力学课件第三章
zx C61x C62 y C63z C64 xy C65 yz C66 zx
C ij
ijkl kl
Cijkl Cijlk
2021/1/10
4
第三章 本构关系
一、线性弹性体的本构方程——具有一个弹性对称面的线
性弹性体
x
y
C11
C12 C22
C13 C23
C14 C24
2021/1/10
10
第三章 本构关系
一、线性弹性体的本构方程——各向同性弹性体
x
1 E
x
( y
z ) ,
xy
1 G
xy
y
1 E
y
( x
z ) ,
yz
1 G
yz
z
1 E
z
( x
y ) ,
zx
1 G
zx
ij 1Eij Ekkij
2021/1/10
11
第三章 本构关系 一、线性弹性体的本构方程——各向同性弹性体
0 x
0
y
z xy
C33 0 0
对
C44 0
0 z
0
xy
yz
zx
称
C55
0 C66
yz zx
2021/1/10
6
第三章 本构关系 一、线性弹性体的本构方程——正交各向异性弹性体
x y z xy
1 Ex
xy
1 Ey
对
xz
yz
弹塑性力学课件第三章
第三章 本构关系
本章学习要点:
掌握各项同性材料的广义Hooke定律 掌握弹性应变能密度函数的概念及计算 理解初始屈服、后继屈服以及加卸载的概 念 掌握几个常用的屈服条件 理解弹塑性材料的增量和全量本构关系的 基本概念
弹塑性力学课件
5.Ramberg-Osgood模型
其加载规律可写为: ( 9)
如取 就有
说明:这对应于割线余率为0.7E的应力和应变,上式 中有三个参数可用来刻画实际材料的拉伸特性,而在 数学表达式上也较为简单。
6. 等向强化模型及随动强化模型
M
M1 C
等向强化模型
S
A
—— 是刻画塑性变形历史的参数
假定材料是不可压缩的:A0l0=Al,并认为名义应力 达到最高点C时出现颈缩:
[1] 由
则在颈缩时真应力应满足条件
结论:拉伸失稳分界点的斜率正好和该点的纵坐标值相等。
[2] 注意到
颈缩时的条件也可写为:
即
结论: 拉伸失稳点C的斜率为其纵坐标值除以 (1 )
[3] 以截面积收缩比q为自变量
其中
——为变形后第2杆与第1杆(和第3杆)之间的夹角 可见(33)式中有三个未知量 在不卸载的情况下,由本构方程:
得到 P 与 a 之间的非线性关系
结论: 随着 的增长, 的值将会由于强化效应和 角的减小而提高, 但也会随着杆件截面积的收缩而下降。故当 很大时,结构将可能 变成不稳定的。
§1.8 弹性极限曲线
卸载时的载荷-位移曲线(见图9) 与初始弹性加载时的曲线有相同 的斜率。
应力和应变:
最终的应力和应变值可由(21)、(25)和(22)、(26)下式的叠加求得:
残余应力和残余应变:
特别地,当载荷P值全部卸除后,由△P=-P*,便得到杆 中的残余应力和残余应变(见图10)为:
其中
节点O的残余位移为:
不产生新的塑性变形的限制条件:
其中
值满足
(37)式对应于图12中虚线所构成 的六边形区域。 说明: 可见在加载方向一侧屈服载荷有所提高而与加载方向相反 的一侧屈服载荷有所降低。可用来对应变硬化和包氏效应 等现象做一个比较形象的解释。
最新弹塑性力学第六章PPT课件
25.07.2024
21
§6-3 平面问题的基本解法
其中
2
2 x2
2 y2
平面应变问题:
G 2uG 1 12u, f0
25.07.2024
22
§6-3 平面问题的基本解法
边界条件:位移边界
u u , v v 在Su上
力的边界
X lx myx
Y lxymy (在S 上)
(应力需要用位移微分表示)
19
§6-2平面问题的基本方程和边界条件
力的边界条件: X n
Xlx myx
Ylxymy (在S上)
25.07.2024
20
§6-3 平面问题的基本解法
3.1 位移法 基本未知函数:u(x,y) , v(x,y)
基本方程两个:用 u , v 表示的平衡微分方程。 平面应力问题:
G 2uG 1 1 u, f0
2. 无体力作用时,应力函数及其一阶偏导数 的边界值可分别由边界的面力的主矩和主矢 量来确定。
25.07.2024
37
§6-3 平面问题的基本解法
( x)B ( x )A A B F y d S A B Y d S R y
B
B
( y)B( y)AAF xd SAX d SR x
y
x
c3
1
25.07.2024
48
§6-4 多项式应力函数运用举例
3. 取为三次项: (x,y)d1x3d2 x2yd3x2y d4y3
62 2 6
代入 4 =0, 满足。
将 代入应力分量与应力函数的关系式,得
25.07.2024
49
§6-4 多项式应力函数运用举例
x 2y2 d3xd4y
弹塑性力学(浙大课件)_图文
物体的速度、加速度
在讨论力学问题时,仅引进标量和矢量的概念是不够的
如应力状态、应变状态、惯性矩、弹性模量等
张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成:
M=rn=3n
标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
二阶以上的张量 已不可能在三维 空间有明显直观 的几何意义。
(a)
显然,方向余弦l1,l2,l3将由式(a)中
的任意两式和l12+l22+l32=1所确定。
若设偏应力状态 :
由于:
主方向的方向余弦为l1’,l2’,l3’,则由式(1.9)同样得
(b)
显然,方向余弦l1’,l2’,l3’将由式(b)中
的任意两式和l1’2+l2’2+l3’ 2=1所确定
。
可见式(a)与式(b)具有相同的系数, 且已知l12+l22+l32= l1’2+l2’2+l3’ 2=1
I2’应用较广,又可表达为:
(1.52)
1.3 应变张量
等效应变(应变强度):
(1.54)
等效剪应变(剪应变强度):
(1.55)
1.4 应变速率张量
一般来说物体变形时,体内任一点的变形不但与坐标有关,
而且与时间也有关。如以u、v、w表示质点的位移分量,则:
设应变速率分量为:
质点的运动速度分量
1.4 应变速率张量
斜截面外法线n的方向余弦:
令斜截面ABC 的面积为1
(1.3)
(1.4)
i :自由下标;j为求和下标 (同一项中重复出现)。
1.1 应力张量
斜截面OABC上的正应力:
在讨论力学问题时,仅引进标量和矢量的概念是不够的
如应力状态、应变状态、惯性矩、弹性模量等
张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成:
M=rn=3n
标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
二阶以上的张量 已不可能在三维 空间有明显直观 的几何意义。
(a)
显然,方向余弦l1,l2,l3将由式(a)中
的任意两式和l12+l22+l32=1所确定。
若设偏应力状态 :
由于:
主方向的方向余弦为l1’,l2’,l3’,则由式(1.9)同样得
(b)
显然,方向余弦l1’,l2’,l3’将由式(b)中
的任意两式和l1’2+l2’2+l3’ 2=1所确定
。
可见式(a)与式(b)具有相同的系数, 且已知l12+l22+l32= l1’2+l2’2+l3’ 2=1
I2’应用较广,又可表达为:
(1.52)
1.3 应变张量
等效应变(应变强度):
(1.54)
等效剪应变(剪应变强度):
(1.55)
1.4 应变速率张量
一般来说物体变形时,体内任一点的变形不但与坐标有关,
而且与时间也有关。如以u、v、w表示质点的位移分量,则:
设应变速率分量为:
质点的运动速度分量
1.4 应变速率张量
斜截面外法线n的方向余弦:
令斜截面ABC 的面积为1
(1.3)
(1.4)
i :自由下标;j为求和下标 (同一项中重复出现)。
1.1 应力张量
斜截面OABC上的正应力:
工程弹塑性力学-浙大-05
e e1 e2 e3
例如: l0 1.5l0 1.8l0 2l0
e1
1.5l0 l0 l0
0.5;
e2
1.8l0 1.5l0 1.5l0
0.2;
e2
2l0 1.8l0 1.8l0
0.11;
e 2l0 l0 1.0。
l0
e e1 e2 e3
5.3 应变的表示法
• 工程应变与自然应变的关系:
• 一般应力-应变曲线: s =Ee , e < es (屈服前:线弹性) s =(e) ,e > es (屈服后)
5.2 应力应变简化模型
1. 理想弹塑性模型 (软钢或强化率较低的材料)
s
加载: s ds 0, e s / E signs
ss
为一个大于或
等于零的参数
卸载: s ds 0, de ds / E
工程弹塑性力学
浙江大学 建筑工程学院
第五章 简单应力状态的弹塑性问题
5.1 基本实验资料 5.2 应力-应变的简化模型 5.3 应变的表示法 5.4 理想弹塑性材料的简单桁架 5.5 线性强化弹塑性材料的简单桁架 5.6 加载路径对桁架内应力和应变的影响
5.1 基本实验资料
拉伸试验和静水压力试验是塑性力学 中的两个基本试验,塑性应力应变关 系的建立是以这些实验资料为基础。
E
O
es
| s | s s ,
e s /E
符号函
数: 1, s 0
e
sign s
0,
s 0
1, s 0
5.2 应力应变简化模型
1. 理想弹塑性模型
用应变表示的加载准则:
s
加载: s de 0, s s s sign e
弹塑性力学讲稿课件
详细描述
金属材料的弹塑性分析主要关注金属在受力过程中发生的弹性变形和塑性变形。通过弹塑性分析,可以预测金属 在复杂应力状态下的行为,为金属材料的加工、设计和应用提供理论依据。
混凝土结构的弹塑性分析
总结词
混凝土结构在受到压力时会产生弹性变形和塑性变形,弹塑性分析是研究混凝土结构在受力过程中应 力和变形的变化规律。
总结词
复杂结构与系统的弹塑性行为研究是推动工程应用的重 要基础。
详细描述
在实际工程中,许多结构和系统的弹塑性行为非常复杂 ,如大型桥梁、高层建筑、航空航天器等,需要从整体 和局部多个角度进行研究,以揭示其力学行为和稳定性 规律,为工程安全和优化设计提供科学依据。
THANKS
感谢观看
VS
详细描述
复合材料的弹塑性分析主要关注复合材料 的组成材料和复合方式对弹塑性性能的影 响。通过弹塑性分析,可以预测复合材料 在不同环境下的力学性能,为复合材料的 应用和发展提供理论依据。
工程结构的弹塑性分析
总结词
工程结构在受到外力作用时会产生变形,弹 塑性分析是研究工程结构在外力作用下的应 力和应变的变化规律。
03
弹塑性力学的分析方法
有限元法
有限元法是一种将连续体离散化 为有限个小的单元体的集合,并 对每个单元体进行受力分析的方
法。
有限元法通过将复杂的结构或系 统简化为有限个简单的单元,使
得计算变得简单且精度较高。
有限元法广泛应用于各种工程领 域,如结构分析、热传导、流体
动力学等。
有限差分法
01
有限差分法是一种将偏微分方程 转化为差分方程的方法,通过离 散化空间和时间变量来求解问题 。
其他常见的弹塑性力学分析方法还包括有限体积法、无网格 法等。
金属材料的弹塑性分析主要关注金属在受力过程中发生的弹性变形和塑性变形。通过弹塑性分析,可以预测金属 在复杂应力状态下的行为,为金属材料的加工、设计和应用提供理论依据。
混凝土结构的弹塑性分析
总结词
混凝土结构在受到压力时会产生弹性变形和塑性变形,弹塑性分析是研究混凝土结构在受力过程中应 力和变形的变化规律。
总结词
复杂结构与系统的弹塑性行为研究是推动工程应用的重 要基础。
详细描述
在实际工程中,许多结构和系统的弹塑性行为非常复杂 ,如大型桥梁、高层建筑、航空航天器等,需要从整体 和局部多个角度进行研究,以揭示其力学行为和稳定性 规律,为工程安全和优化设计提供科学依据。
THANKS
感谢观看
VS
详细描述
复合材料的弹塑性分析主要关注复合材料 的组成材料和复合方式对弹塑性性能的影 响。通过弹塑性分析,可以预测复合材料 在不同环境下的力学性能,为复合材料的 应用和发展提供理论依据。
工程结构的弹塑性分析
总结词
工程结构在受到外力作用时会产生变形,弹 塑性分析是研究工程结构在外力作用下的应 力和应变的变化规律。
03
弹塑性力学的分析方法
有限元法
有限元法是一种将连续体离散化 为有限个小的单元体的集合,并 对每个单元体进行受力分析的方
法。
有限元法通过将复杂的结构或系 统简化为有限个简单的单元,使
得计算变得简单且精度较高。
有限元法广泛应用于各种工程领 域,如结构分析、热传导、流体
动力学等。
有限差分法
01
有限差分法是一种将偏微分方程 转化为差分方程的方法,通过离 散化空间和时间变量来求解问题 。
其他常见的弹塑性力学分析方法还包括有限体积法、无网格 法等。
《弹塑性力学》课件
结构弹塑性分析的方法包括有限元法、有限差分法、边界元法等数值计算 方法。
材料的弹塑性行为模拟
材料的弹塑性行为模拟是研究材料在 不同应力状态下表现出的弹塑性性质 ,对于理解材料的力学行为和优化材 料设计具有重要意义。
材料弹塑性行为模拟的方法包括分子 动力学模拟、有限元分析等。
通过实验和数值模拟相结合的方法, 可以研究材料的微观结构和宏观性能 之间的关系,预测材料的弹塑性行为 。
THANKS
感谢观看
弹塑性力学在工程实践中的挑战与解决方案
工程实践中,由于材料和结 构的复杂性,弹塑性力学应 用面临诸多挑战,如非线性 行为、边界条件和初始条件
的确定等。
为了解决这些挑战,需要采 用先进的数值计算方法和实 验技术,提高模拟精度和可
靠性。
此外,加强跨学科合作,将 弹塑性力学与计算机科学、 物理学等学科相结合,可以 推动工程实践中的弹塑性力 学应用不断发展。
《弹塑性力学》课件
目录
• 弹塑性力学概述 • 弹性力学基础 • 塑性力学基础 • 材料弹塑性性质 • 弹塑性力学在工程中的应用
01
弹塑性力学概述
弹塑性力学的定义
弹塑性力学是一门研究材料在弹性和 塑性范围内行为的学科。它主要关注 材料在外力作用下发生的变形行为, 以及这种行为与材料内部应力、应变 的关系。
塑性
材料在应力超过屈服极限后发生的不可逆变形。
屈服准则
描述材料开始进入塑性状态的应力条件。
塑性力学的基本方程
应力平衡方程
01
描述受力物体内部应力分布的平衡关系。
几何方程
02
描述材料在塑性变形过程中应变与位移的关系。
屈服准则
03
确定材料进入塑性状态的条件。
材料的弹塑性行为模拟
材料的弹塑性行为模拟是研究材料在 不同应力状态下表现出的弹塑性性质 ,对于理解材料的力学行为和优化材 料设计具有重要意义。
材料弹塑性行为模拟的方法包括分子 动力学模拟、有限元分析等。
通过实验和数值模拟相结合的方法, 可以研究材料的微观结构和宏观性能 之间的关系,预测材料的弹塑性行为 。
THANKS
感谢观看
弹塑性力学在工程实践中的挑战与解决方案
工程实践中,由于材料和结 构的复杂性,弹塑性力学应 用面临诸多挑战,如非线性 行为、边界条件和初始条件
的确定等。
为了解决这些挑战,需要采 用先进的数值计算方法和实 验技术,提高模拟精度和可
靠性。
此外,加强跨学科合作,将 弹塑性力学与计算机科学、 物理学等学科相结合,可以 推动工程实践中的弹塑性力 学应用不断发展。
《弹塑性力学》课件
目录
• 弹塑性力学概述 • 弹性力学基础 • 塑性力学基础 • 材料弹塑性性质 • 弹塑性力学在工程中的应用
01
弹塑性力学概述
弹塑性力学的定义
弹塑性力学是一门研究材料在弹性和 塑性范围内行为的学科。它主要关注 材料在外力作用下发生的变形行为, 以及这种行为与材料内部应力、应变 的关系。
塑性
材料在应力超过屈服极限后发生的不可逆变形。
屈服准则
描述材料开始进入塑性状态的应力条件。
塑性力学的基本方程
应力平衡方程
01
描述受力物体内部应力分布的平衡关系。
几何方程
02
描述材料在塑性变形过程中应变与位移的关系。
屈服准则
03
确定材料进入塑性状态的条件。
弹塑性力学(浙大通用课件)通用课件
塑性力学
研究材料在塑性状态下应 力和应变行为的科学。
塑性力学的基本假 设
塑性变形是连续的,且不改变物质的性质。 塑性变形过程中,应力和应变之间存在单值关系,且该关系是连续的。 塑性变形过程中,材料内部的应力状态是稳定的,不会出现应力振荡或波动。
塑性力学的基本方程
应力平衡方程
在塑性状态下,物体的内部应力场满 足平衡方程,即合力为零。
应变协调方程
本构方程
在塑性状态下,应力和应变之间的关 系由本构方程描述,该方程反映了材 料的塑性行为特性。
在塑性状态下,物体的应变状态满足 应变协调方程,即应变是连续的。
塑性力学的边值问题
01
塑性力学中的边值问题是指给定 物体的边界条件和初始条件,求 解物体内部的应力和应变状态的 问题。
02
边值问题可以通过求解微分方程 或积分方程来解决,具体方法取 决于问题的具体形式和条件。
04
材料弹塑性性质
材料弹性性质
弹性模量
材料在弹性变形阶段所表现出的 刚度,反映了材料抵抗弹性变形
的能力。
泊松比
描述材料在受到压力时横向膨胀 的程度,反映了材料在弹性变形
阶段的横向变形特性。
弹性极限
材料在弹性变形阶段所能承受的 最大应力,超过该应力值材料将
发生不可逆的塑性变形。
材料塑性性 质
屈服点
解析法的优点是精度高、理论严 谨,但缺点是适用范围较窄,对
于复杂问题难以得到解析解。
有限元法
有限元法是一种将连续的求解域离散化为有限个小的单元,通过求解这些小单元的 解来逼近原问题的求解方法。
它适用于各种复杂的几何形状和边界条件,能够处理大规模的问题,并且可以方便 地处理非线性问题。
第四章-弹塑性断裂力学PPT课件
a* 2a
18
3.材料加工硬化的修正
考虑材料加工硬化,当 s 200 ~ 400MPa 时,低
碳钢取
f
1 2
(
s
b)
代替 s 。其中 f
为流变应力。
b 为材料的抗拉强度。
综合考虑上述3部分内容
D-B模型的计算公式
8 f a* ln sec[ (M )]
E
2 f
19
§4.5 J积分的定义和特性
主要包括COD理论和J积分理论.
3
§4.1 小范围屈服条件下的COD 一.COD
COD(Crack Opening Displacement) 裂纹张开位移。 裂纹体受载后,裂纹尖端附近的塑性区导致裂纹尖端表面 张开——裂纹张开位移:表达材料抵抗延性断裂能力
c —COD准则
裂纹失稳扩展的临界值
第四章 弹塑性断裂 力学
线弹性断裂力学 脆性材料或高强度钢所发生的脆性断裂 小范围屈服:塑性区的尺寸远小于裂纹尺寸
弹塑性断裂力学 大范围屈服:端部的塑性区尺寸接近或超过裂纹尺寸,
如:中低强度钢制成的构件. 全面屈服:材料处于全面屈服阶段,如:压力容器的
接管部位.
2
弹塑性断裂力学的任务:在大范围屈服下,确定能定 量描述裂纹尖端区域弹塑性应力,应变场强度的参量.以 便利用理论建立起这些参量与裂纹几何特性、外加载荷之 间的关系,通过试验来测定它们,并最后建立便于工程应 用的断裂准则。
( 12
x1
22
x2
)
u2 x1
11
2u1 x12
12
2u2 x12
21
2u1 x1x2
22
2u2 x1x2
)]dx1dx2
弹塑性力学PPT课件精选全文
◆ 体力分量指向同坐标轴正向一致取正,反之负。
.
*
⑾.静力边界条件
◆ 一个客观的弹塑性力学问题,在物体边界上 任意一点的应力分量和面力分量必定满足这 组方程。
◆ 面力分量指向同坐标轴正向一致取正,反之 取负。
.
*
◆ 当边界面与某一坐标轴相垂直时,应力分量 与相应的面力分量直接对应相等。
.
*
2、几何假设——小变形条件
(1)在弹塑性体产生变形后建立平衡方程时,可以 不考虑因变形而引起的力作用线方向的改变;
从而使得平衡条件与几何变形条件线性化。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定:
.
*
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所占有的 全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内部各点 处,以及每一点处各个方向上的物理性质相同。
1、物理假设:
(3)力学模型的简化假设: (A)完全弹性假设 ;(B)弹塑性假设。
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
.
.
*
⑾.静力边界条件
◆ 一个客观的弹塑性力学问题,在物体边界上 任意一点的应力分量和面力分量必定满足这 组方程。
◆ 面力分量指向同坐标轴正向一致取正,反之 取负。
.
*
◆ 当边界面与某一坐标轴相垂直时,应力分量 与相应的面力分量直接对应相等。
.
*
2、几何假设——小变形条件
(1)在弹塑性体产生变形后建立平衡方程时,可以 不考虑因变形而引起的力作用线方向的改变;
从而使得平衡条件与几何变形条件线性化。
(2)在研究问题的过程中可以略去相关的二次及二 次以上的高阶微量;
假定物体在受力以后,体内的位移和变形是微小 的,即体内各点位移都远远小于物体的原始尺寸,而 且应变( 包括线应变与角应变 )均远远小于1。根据 这一假定:
.
*
五、 弹塑性力学的基本假设
(1)连续性假设:假定物质充满了物体所占有的 全部空间,不留下任何空隙。
(2)均匀性与各向同性的假设:假定物体内部各点 处,以及每一点处各个方向上的物理性质相同。
1、物理假设:
(3)力学模型的简化假设: (A)完全弹性假设 ;(B)弹塑性假设。
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
.
弹塑性力学1-introductionPPT优秀课件
• 塑性变形无体积变化。
• 拉、压屈服应力相等。不考虑鲍兴格(Bauschinger)效应。
2021/6/3
26
鲍兴格(Bauschinger)效应
2021/6/3
27
三、应力-应变关系的简化
• 为了突出塑性力学问题的主要特征,提 出了几种简化模型。
2021/6/3
28
1、理想弹塑性
不考虑材料的强化,认为材料屈服后无止境地塑 性流动。
• 工程问题的对象是结构 • 结构的功能——承受载荷 • 结构的基本单元——构件 • 构件的属性
– 承受载荷、可变形、由固体材料构成
2021/6/3
11
构件的种类——杆件、板、壳、块体
材料力学 • 研究对象-杆件 • 平面假定
2021/6/3
材料力学的研究对象
12
弹塑性力学 • 研究对象广泛 • 数学方法(场)
2021/6/3
35
部分资料从网络收集整 理而来,供大家参考,
感谢您的关注!
• 确定一般工程结构受外力作用时的内力分布、弹塑性 变形,从而可以了解其承载能力;
• 达到其它工程目的; • 为解决进一步的工程力学问题提供必要的理论基础。
2021/6/3
15弹塑性力学ຫໍສະໝຸດ 固体力学的一个分支刚体 理论力学 振动理论
力 学
可变 形体
固体
流体
材料力学 结构力学 弹性力学 塑性力学 断裂力学 损伤力学 细观力学
2021/6/3
24
弹性力学的基本假设
• 连续性 • 均匀性 • 各向同性 • 小变形 • 无初应力
2021/6/3
25
二、塑性力学的基本假定
• 忽略蠕变和松弛的效应。
1-弹塑性力学第一章 绪 论 弹塑性力学讲义 中文版 教学课件
第一章 绪 论 (Introduction)
1.1 研究内容
弹塑性力学是研究物体变形规律的一门学科, 是固体力学的一个分支。研究变形体受外界作用 (外载荷、边界强制位移、温度场等)时在变形体 内的反应(应力场、应变场、应变速度场等)。
与其它工程力学(理论力学、材料力学、结构 力学)的区别:研究方法、对象、结果的差异。弹 塑性力学的研究对象是整体(而不是分离体)变形 体内部的应力、应变分布规律(而不是危险端面)。
第一章 绪 论 (Introduction)
第一章 绪 论 (Introduction)
1.4 基本假设
假设的目的:为了简化研究 ✓ 连续性假设(无间隙、无空洞、无堆积) ✓ 均质、各向同性假设 ✓ 弹、塑性体假设
弹性体——满足广义虎克定律; 塑性体——符合体积不可压缩规律
✓ 小变形假设(几何假设。弹性:整个变形体;塑性: 各个变形瞬时)
✓ 无初始应力作用假设
1.1 研究内容
弹塑性力学是研究物体变形规律的一门学科, 是固体力学的一个分支。研究变形体受外界作用 (外载荷、边界强制位移、温度场等)时在变形体 内的反应(应力场、应变场、应变速度场等)。
与其它工程力学(理论力学、材料力学、结构 力学)的区别:研究方法、对象、结果的差异。弹 塑性力学的研究对象是整体(而不是分离体)变形 体内部的应力、应变分布规律(而不是危险端面)。
第一章 绪 论 (Introduction)
第一章 绪 论 (Introduction)
1.4 基本假设
假设的目的:为了简化研究 ✓ 连续性假设(无间隙、无空洞、无堆积) ✓ 均质、各向同性假设 ✓ 弹、塑性体假设
弹性体——满足广义虎克定律; 塑性体——符合体积不可压缩规律
✓ 小变形假设(几何假设。弹性:整个变形体;塑性: 各个变形瞬时)
✓ 无初始应力作用假设
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z
O
x
不同的面上的应 力是不同的
n
C
A n
y
到底如何描绘一 点处的应力状态?
1.1 应力张量
C
z
一点的应力状态可由过该点的微小
正平行六面体上的应力分量来确定。
应力张量
ij yxx
xy y
xz yz
(1.1)
zx zy z zzxzy yz
y
yx xz x
yz P zy
xy x xy xz
31 32 33
代入式(1.14)后得:
3 3 2 6 8 0 ( 4)( 1)( 2) 0
解得主应力为: 1 4; 2 1; 3 2;
1.2 应力偏量张量
1).应力张量分解
物体的变形
体积改变 形状改变
球应力状态/静水压力
由各向相等的应力状态引起的
弹性性质
材料晶格间的移动引起的
代入
SSNN21
11l1 21l1
12l2 22l2
13l3 23l3
SN 3 l3
SN 3 31l1 32l2 33l3
(211l11
)l1 12l2 ( 22 )l2
13l3 23l3
0 0
(1.8)
31l1 32l2 ( 33 )l3 0
物体的速度、加速度
在讨论力学问题时,仅引进标量和矢量的概念是不够的
如应力状态、应变状态、惯性矩、弹性模量等
张量
关于三维空间,描述一切物理恒量的 分量数目可统一地表示成:
M=rn=3n
标量:n=0,零阶张量 矢量:n=1,一阶张量 应力,应变等:n=2,二阶张量
二阶以上的张量 已不可能在三维 空间有明显直观 的几何意义。
3 、张量函数的求导
aijbkl Cijkl
张量导数就是把张量的每个分量都对坐标参数求导数。
ui,i
ui xi
u1 x1
u2 x2
u3 x3
ui, jk
2ui x j xk
2ux x jxk
, 2uy x jxk
, 2uz x jxk
0.4 主要参考书目
1 、Y.C.Fung(冯元桢)
《Foundations of Solid Mechanics》 《固体力学导论》 《A first course in continuum mechanics 》《连续介质力学导论》
31 32 33
主应力大小与坐标选择无关,故 J1,J2,J3也必与坐标选择无关。
J1, J2, J3 : 应力不变量
1.1 应力张量
若坐标轴选择恰与三个主坐标重合:
J1 1 2 3 J2 (12 23 31) J3 1 23
(1.16)
主剪应力面:平分两主平面夹角的平面,数值为:
13 23 0 (1.13) 33
1.1 应力张量
联合求解 l1,l2,l3:
行列式展开后得:
(11 )( 22 )( 33 ) 12 23 31 21 32 13 13 31( 22 ) 23 32 (11 ) 12 21( 33 ) 0
简化后得
3 J1 2 J2 J3 0 (1.14)
1 0 0
张量表示:dij 0 1 0
0 0 1
0.3 几个基本概念
张量的计算:
1 、张量的加减 凡是同阶的两个或两个以上的张量可以相加 (减),并得到同阶的一个新张量,法则为:
Aijk L Bijk Cijk
2 、张量的乘法
第一个张量中的每一个分量乘以第二个张量中的每一个分量,从而得到 一个新的分量的集合—新张量,新张量的阶数等于因子张量的阶数之和。
J1 11 22 33 kk
是关于λ的三次方程,它的三个根,即为三个主 应力,其相应的三组方向余弦对应于三组主平面。
式中:
J2
11 21
12 22
22 32
23 33
33 13
31 11
1 2
(ii kk
ik ki
)
(1.15)
11 12 13 J3 21 22 23 ij
lili 1
(1.12)
联合求解 l1,l2,l3:
(11 )l1 12l2 13l3 0
21l1 31l1
( 22 )l2 23l3 32l2 (33 )l3
0 0
l12 l22 l32 1
l1,l2,l3不全等于0
11 21 31
12 22
32
j 1
S
N
2
21l1
22l2
23l3
3
2 jlj
(1.3)
j 1
3
S
N
3
31l1 32l2 33l3
3 jlj
j 1
SNi ijl j (1.4)
i :自由下标;j为求和下标 (同一项中重复出现)。
1.1 应力张量
斜截面OABC上的正应力:
N SN1l1 SN 2l2 SN 3l3
ai xi a1x1 a2 x2 a3x3
ii 11 22 33 (i : 哑标,i 1, 2,3) SNi ijl j i1l1 i2l2 i3l3
(i :自由下标,j :哑标,i, j 1, 2,3)
dij记号:Kroneker-delta记号
dij
1, 0,
i i
j j
1
2
3
2
,
2
3
1
2
,
3
1
2
2
(1.17)
3
3
1
1
2 1
主剪应力面(1 )
1 2
1.1 应力张量
最大最小剪应力:
取主方向为坐标轴取向,则一点处任一截面上的剪应力的计算式:
2 N
S
2 N
1
S
2 N
2
S
2 N
3
2 N
(1l1)2
( 2l2 )2
( 3l3 )2
(1l12
2l22
3l32 )2
xy=1 , yz =2, zx =1, 应力单位为MPa。试求该点的主应力值。
解: J1 11 22 33 3 0 0 3
J2
11 21
12 22
22 32
23 33
33 13
31 11
(3 0 11) (0 0 2 2) (0 3 11) 6
11 12 13 J3 21 22 23 3 0 0 1 2 11 2 11 0 1 2 2 3 11 0 8
2 、杨桂通
《弹塑性力学》
3 、徐秉业
《应用弹塑性力学》
第一章 弹塑性力学基础
1.1 应力张量 1.2 偏量应力张量 1.3 应变张量 1.4 应变速率张量 1.5 应力、应变 Lode参数
1.1 应力张量 ~力学的语言
1).一点的应力状态
n
lim
A0
pn A
正应力
n
lim
A0
ps A
剪应力
过C点可以做无 穷多个平面K
0.3 几个基本概念
下标记号法:
为了书写上的方便,在张量的记法中,都采用下标字母符号来表示和区
别该张量的所有分量。这种表示张量的方法,就称为下标记号法。
(x, y, z) (x1, x2, x3) xi (i 1, 2,3)
xx , xy , xz , yx , yy , yz , zx , zy , zz , ij (i, j x, y, z)
自由标号: 不重复出现的下标符号,在其变程N(关于三维空间N=3)
内分别取数1,2,3,…,N
哑标号:
重复出现的下标符号称为哑标号,取其变程N内所有分量, 然后再求和,也即先罗列所有各分量,然后再求和。
0.3 几个基本概念
求和约定:
当一个下标符号在一项中出现两次时,这个下标符号应理解为取其变程
N中所有的值然后求和,这就叫做求和约定。
斜截面外法线n的方向余弦:
cos(n, cos(n,
x1 x2
) )
l1 l2
令斜截面ABC 的面积为1
SOBC SOAC
1 cos(n, x1) 1 cos(n, x2 )
l1 l2
cos(n, x3) l3
SOAB 1 cos(n, x3 ) l3
3
SN1 11l1 12l2 13l3 1 jl j
2 2
13
1
3
2
l1
0
及l2
0
第二组解: l1
0
; l2
2 2
;
l3
2 2
23
2
3
2
消去l2
第三组解: l1
2 2
; l2
2 2
;
l3
0
12
1
2
2
因为:1 2 3
max 1 3
min
2
1.1 应力张量
3
八面体(每个坐标象限1个面)
4).八面体上的应力
2
• 沿主应力方向取坐标轴,与坐标轴等倾角的
3 )l22
1 2
(
2
3 )]
0
1.1 应力张量
最大最小剪应力:
l1 ( 1
3
)[(1
3
)l12
(
2
3
)l22
1 2
(1
3
)]
0
l2
(
2
3
)[(1
3
)l12
(
2
3 )l22
1 2
(
2
3
)]
0
它们分别作用在 与相应主方向成 45º的斜截面上