雷电保护及电力装置过电压防护

合集下载

防雷避雷安全保障措施

防雷避雷安全保障措施

防雷避雷安全保障措施引言:随着科技的迅猛发展,雷电对人类生活和财产安全带来了巨大的威胁。

因此,制定有效的防雷避雷安全保障措施对于降低雷击事故的发生具有重要意义。

本文将从建筑物的防雷设计、人身防护、电力设备的防雷措施、预警系统和防雷救灾设施等方面分别展开详细阐述。

一、建筑物的防雷设计建筑物是人们居住、办公和生活的场所,它的防雷设计直接关系到居民和设备的安全。

为了提高建筑物的防雷能力,可以采取以下措施:1.1 合理选择材料:使用优质导电材料来建造建筑物,能够有效地引导雷电电流,减少雷击的发生。

1.2 设立避雷针:在建筑物的屋顶或高处设置避雷针,通过引导雷电的路径,将雷电安全地引入地下,避免对建筑物和人员造成伤害。

1.3 防雷接地系统:合理设置接地系统,确保建筑物能够及时释放雷电能量,减小雷击的破坏范围。

1.4 防雷装置:在建筑物外墙、屋顶等易遭雷击的部位安装防雷装置,增强消散雷电的能力,从而降低雷击的风险。

二、人身防护除了建筑物的防雷设计,人身防护也是确保人们在雷电天气下安全的重要环节。

以下是一些常见的人身防护措施:2.1 避免在雷电天气下暴露在室外空旷地带,尽量躲避在室内或遮蔽物下。

2.2 不要在雷电天气下接打电话或使用电子设备,因为电子设备能够吸引雷电。

2.3 在雷电天气下,避免接触大面积的金属,如大型门窗、金属框架等,以减少受到雷击的风险。

2.4 如果被困在室外无法躲避雷电,应尽量蹲下,双脚尽量靠近,以减少雷电通过身体的可能性。

三、电力设备的防雷措施电力设备的防雷措施是为了保障电力系统的稳定运行和人员的安全。

以下是一些常见的电力设备防雷措施:3.1 安装避雷器:在电力系统中合理安装避雷器,能够将雷电引导到地下,保护设备和人员不受雷击的危害。

3.2 设立过电压保护装置:过电压保护装置能够在电力系统出现过电压时迅速切断电源,以保护设备免受雷击。

3.3 定期检查设备:定期对电力设备进行检查和维护,确保设备的正常运行和防雷措施的有效性。

高压电力输送线设施的输电线路过电压保护

高压电力输送线设施的输电线路过电压保护

高压电力输送线设施的输电线路过电压保护高压电力输送线是将电能从发电厂输送到各个用电地点的重要组成部分。

然而,在输电线路运行过程中,可能会出现过电压的问题,这可能导致设备损坏、功率损耗甚至设备故障。

因此,对于高压电力输送线设施的输电线路过电压保护至关重要。

过电压是指电压超出设备或线路设计额定值的电压。

过电压的主要原因包括雷击、工频过电压、绝缘故障和电力系统突然负荷变化等。

这些因素都可能导致输电线路中的电压突然升高,超出设备的耐受范围。

为了保护高压电力输送线设施的输电线路免受过电压的影响,可以采取以下几种措施:1. 预防雷击过电压:在输电线路的设计和建设中,可以采用避雷装置和避雷模块来吸收或分散雷电冲击,从而防止雷击过电压对输电线路造成损害。

避雷器能够在雷电过电压出现时提供低阻抗路径,将过电压分流至地。

2. 控制工频过电压:在电力系统中,由于负载突变、停电后重新供电、串联电容器的切除等因素,可能会产生瞬态过电压。

为了控制这些过电压,可以采用悬垂线、导线附加挂点和线路电抗补偿等方法,以减少或消除瞬态过电压。

3. 检测和修复绝缘故障:绝缘故障是导致输电线路过电压的常见原因之一。

为了及时发现并修复绝缘故障,可以使用绝缘监测系统来对输电线路进行实时监测,以便在故障出现时及时采取措施。

此外,定期进行绝缘测试和维护也是保护输电线路的重要手段。

4. 调整电力系统负荷:电力系统负荷的突然变化可能引起过电压。

通过合理调度和管理电力系统负荷,控制负荷突变的发生,可以减少过电压的产生。

5. 安装过电压保护设备:过电压保护设备是保护输电线路免受过电压损害的最后一道防线。

常见的过电压保护设备包括避雷器、放电棒、电压互感器、电力电容器和电力熔断器等。

这些设备通过分流或引导过电压,保护设备和线路免受损坏。

综上所述,对于高压电力输送线设施的输电线路过电压保护至关重要。

通过预防雷击过电压、控制工频过电压、检测和修复绝缘故障、调整电力系统负荷以及安装过电压保护设备,可以有效保护输电线路免受过电压的影响,确保电力系统的安全运行。

交流特高压电网的雷电过电压防护

交流特高压电网的雷电过电压防护

交流特高压电网的雷电过电压防护特高压电网作为电力系统中的重要组成部分,承担着大功率输电的任务,对于雷电过电压防护具有重要意义。

特高压电网在输电过程中容易受到雷电过电压的影响,如不加以防护,可能会对电网设备和系统运行造成损害甚至发生事故。

因此,特高压电网必须采取一系列措施来防止雷电过电压的产生和传播。

首先,特高压电网必须采用合适的导线材料和结构。

特高压电网输电线路通常采用的是悬垂绝缘子,这种绝缘子有良好的绝缘性能和抗风振性能,能够有效地抵御雷电过电压的冲击。

此外,为了提高线路的耐雷电性能,可以在导线上加装避雷针和避雷器,从而将雷电过电压引入地面,保护线路设备。

其次,特高压电网还需要配置雷电过电压保护装置。

雷电过电压保护装置通常采用的是避雷器,可以将雷电过电压引入地面,保护电网设备不受损害。

在特高压电网中,避雷器通常安装在变电站设备的进出线路、变压器和电缆终端等位置。

避雷器能够有效地吸收雷电过电压的能量,保持设备工作在安全电压范围内。

另外,特高压电网还需要加强对接地系统的构建。

良好的接地系统能够将雷电过电压迅速引入地面,减少对设备的影响。

特高压电网接地系统包括接地网、接地极和接地线等,通过有效地配置这些设施,可以提高接地系统的效果。

此外,特高压电网还可以采用接地引雷的方法,将雷电引入地下,减少对电网的影响。

总之,特高压电网的雷电过电压防护是确保电网设备和系统安全运行的关键措施。

通过采用合适的导线材料和结构,配置雷电过电压保护装置,并加强对接地系统的构建,可以有效地防止雷电过电压对电网的影响。

特高压电网必须认真对待雷电过电压防护工作,确保电网的可靠运行。

只有这样,特高压电网才能够更好地为社会提供稳定可靠的电力供应。

电力系统中的过电压保护装置设计与分析

电力系统中的过电压保护装置设计与分析

电力系统中的过电压保护装置设计与分析概述:电力系统中的过电压保护装置扮演着至关重要的角色,它能够有效地保护电力设备免受过电压的损害,保障系统的稳定运行。

本文将对过电压保护装置的设计与分析进行详细探讨,包括过电压的原因、过电压保护装置的作用、设计原则和常见的保护装置类型。

一、过电压的原因过电压是指电力系统中电压超过额定值的现象。

它通常由以下原因引起:1. 雷电击中:当闪电击中地面或设备时,会产生大量的超过额定电压的电磁波,这会对电力系统产生严重影响。

2. 短路故障:当电力系统发生短路故障时,电流突然增大,导致电压剧烈波动,超过设备的耐受程度。

3. 开关操作:电力系统中的开关操作会引起电压的突变,如果操作不当或有故障发生,将导致过电压。

二、过电压保护装置的作用过电压保护装置的主要作用是监测电力系统中的电压变化,并在电压超过预定阈值时采取保护措施。

它能够及时检测到过电压现象,并将其限制在能够耐受的范围内,以保护电力设备的安全运行。

过电压保护装置的工作原理是通过电压传感器采集电压信号,并将其输入到保护装置中进行分析处理。

当电压超过设定的阈值时,保护装置将触发动作,采取相应的措施来限制电压,如断开电源或投入阻抗。

三、过电压保护装置的设计原则过电压保护装置的设计应遵循以下原则:1. 准确性:保护装置应具备高精度的电压传感器,能够准确检测电压变化,并根据实际情况采取相应的保护措施。

2. 快速性:保护装置必须能够在电压超过阈值时迅速动作,以最快的速度对电力设备进行保护,避免损害的发生。

3. 稳定性:保护装置应具备良好的稳定性,能够抵抗外界的干扰和噪声,并在各种工作条件下保持稳定性能。

4. 可靠性:保护装置必须具备高可靠性,能够长时间稳定工作,并在故障发生时能够及时报警或触发保护动作。

5. 灵活性:保护装置应具备一定的灵活性,能够根据不同的电力系统特点和需求进行配置和调整,以实现最佳的保护效果。

四、常见的过电压保护装置类型根据不同的保护对象和保护策略,过电压保护装置可分为多种类型,包括:1. 涌流抑制器:主要用于防止雷电冲击产生的过电压对设备的影响。

电气五防基本介绍

电气五防基本介绍

电气五防基本介绍电气五防是指对电气设备及其系统进行防护的五项措施,包括过电压防护、过电流防护、漏电防护、短路防护和接地保护。

这些措施在电气工程中起着关键作用,能够确保设备的安全运行和人员的人身安全。

一、过电压防护过电压防护是指通过合适的装置和器材,防止因电压突然升高导致设备损坏或发生危险事故。

常用的过电压防护装置包括避雷器、过电压保护器和电力电容器等。

这些装置能够有效地限制电压的上升速度,保护设备不受雷击、电网故障等因素的影响。

二、过电流防护过电流防护是指通过适当的保护装置,防止电流超过设备额定值导致设备烧毁或发生危险事故。

常见的过电流防护装置包括熔断器、断路器和隔离开关等。

这些装置通过自动切断电路,阻止过大的电流通过,保护设备不受电流过载和短路故障的影响。

三、漏电防护漏电防护是指通过检测电气设备或线路中的漏电情况,并通过适当的措施保护人身安全。

常用的漏电防护装置有漏电保护器和零序电流保护装置等。

漏电保护器能快速感应到漏电电流,一旦发生漏电现象,就能迅速断开电路,保护人身安全。

四、短路防护短路防护是指通过适当的措施,防止短路电流对设备造成损坏或引发危险事故。

常见的短路防护装置有熔断器和断路器等。

这些装置能够快速切断电路,限制短路电流的大小,防止设备过载和烧毁。

五、接地保护接地保护是指通过合适的接地装置和接地系统,将电气设备和系统的金属部分或非金属部分与地面接地,以确保设备的正常运行和人员的安全。

接地装置包括接地网、接地体和接地极等。

接地保护能够将电气设备中的感应电流引入地下,保护设备免受触电和雷击的影响。

总结起来,电气五防是指在电气工程中对电压、电流、漏电、短路和接地进行的防护措施,通过合适的装置和器材,确保设备的正常运行和人员的人身安全。

这些防护措施在电气系统中具有至关重要的作用,能够减少事故发生的可能性,并保护设备不受损坏。

在电气工程设计和施工过程中,必须充分考虑这些防护要求,并采取相应的措施进行实施。

第六 雷电过电压防护

第六 雷电过电压防护
混凝土杆的自然接地电阻 在高土壤电阻率的地区,用一般方法很难降低接
地电阻时,可采用多根放射形接地体,或连续伸 长接地体,或采用某种有效的降阻剂降低接地电
Hale Waihona Puke 阻值土壤电阻 率 Ω.m接地电阻 Ω
≤10 100~5 0 00
≤10 ≤15
500~10 00
≤20
1000~20 00
≤25
>200 0
≤30
3)尽量缩短避雷器与被保护设备间的电气距 离。
三、变电站避雷器保护配置
(1)配电装置每组母线上应装设避雷器,但是进出 线都装有避雷器的除外。
(2)旁路母线是否装设避雷器视其运行时避雷器到 被保护设备的电气距离是否满足要求而定。
(3)330KV及以上变压器和并联电抗器处必须装设 避雷器,避雷器应尽可能靠近设备本体。
第六章 雷电过电压防护
输电线路上的雷电过电压
1、直击雷过电压:是由雷电直接击中杆塔、避雷 线或导线引起的过电压;一般采用避雷线保护
2、感应雷过电压:是由雷击线路附近大地,由于 电磁感应在导线产生的过电压
运行经验表明,直击雷过电压对电力系统的危害 最大,感应雷过电压只对35KV及以下的线路会造 成雷害。
3
五、采用消弧线圈接地方式
适用条件: 雷电活动强烈、接地电阻又难以降低的地区
作用原理: 单相对地闪络时,消弧线圈使其不至于发展成持
续工频电弧 两相或三相对地闪络时,第一相闪络并不会造成
跳闸,先闪络的导线相当于一根避雷线,增加了分流和对 未闪络相的耦合作用,使未闪络相绝缘上的电压下降,从 而提高了线路的耐雷水平。
与通信线路之间的交叉跨越档、过江大跨越高杆塔、变电 站的进线保护段等处。
九、采用线路型金属氧化物避雷器

基础知识雷电侵入波的过电压保护(一)

基础知识雷电侵入波的过电压保护(一)

基础知识雷电侵入波的过电压保护(一)电力交流4群:458622441为了防止雷电侵入波对变电站电气设备绝缘造成击穿损坏,应采取措施减少近区雷击闪络,并且要合理配置避雷器,使雷电侵入波通过避雷器对地放电,将能量泄露掉,这样就不致对电气设备的绝缘造成威胁。

因此对雷电侵入波的过电压保护主要措施有变电站进线端保护、变电站母线装设避雷器、主变压器中性点装设避雷器、与架空线路直接连接的电力电缆终端头处装设避雷器等。

变电站进线端保护目的防止进入变电站的架空线路在近区遭受直接雷击,并对由远方输入的雷电侵入波通过避雷器或电缆线路、串联电抗器等将其过电压数值限制到一个对电气设备没有危险的较小数值。

具体措施(1)未沿全线装设避雷线的35-110KV架空送电线路,应在变电站1-2Km的进线端架设避雷线。

如果该进线隔离开关或断路器在雷雨季经常开路运行,同时线路侧又带电,则必须在进线端的末端,即靠近隔离开关或短路器处装设一组排气式避雷器或阀型避雷器。

(2)对于3-10KV配电装置(或电力变压器)其进线防雷保护和母线防雷保护的接线方式如图。

3-10KV主变压器的最大电气距离从图中可知配电装置的每组母线上装设站用阀型避雷器FZ一组;在每路架空进线上也装设配电线路用阀型避雷器FS一组,有电缆段的架空线路避雷器应装设在电缆头附近,其接地端应和电缆金属外皮相连;如果进线电缆在与母线相连时串接电抗器,则应在电抗器和电缆头之间增加一组阀型避雷器。

实际上无论电缆进线或架空进线,只要与母线之间的隔离开关或断路器在夏季雷雨季节时经常处于断路状态,而线路侧又带电时,只要与母线之间的隔离开关或断路器在夏季雷雨季节时经常处于断路状态,而线路侧又带电时,则靠近隔离开关或断路器处必须装设一组阀型避雷器,以防止雷电侵入波遇到断口时无法进行,出现反射而使绝缘击穿造成事故。

雷电进行波沿着电力线路往前进行时,这就是波的反射。

雷电反射波与进行波两者叠加,其电压数值为原有进行波的2倍,对电气设备容易造成击穿。

输电线路过电压的保护措施有哪些

输电线路过电压的保护措施有哪些

输电线路过电压的保护措施有哪些输电线路过电压的保护措施。

随着电力系统的不断发展,输电线路的过电压问题也日益凸显。

过电压是指电压在瞬时或持续时间内超过了系统正常工作范围的现象。

输电线路过电压可能由雷电、开关操作、负荷变化等原因引起,如果不加以有效的保护措施,将给电网设备和系统带来严重的损害。

因此,针对输电线路过电压问题,需要采取一系列的保护措施,以确保电网的安全稳定运行。

一、过电压的类型。

输电线路过电压可以分为内部过电压和外部过电压两种类型。

内部过电压是指由于电网内部原因引起的过电压,如电容性过电压、感应性过电压等。

外部过电压是指由于外部原因引起的过电压,如雷电引起的过电压等。

二、过电压的危害。

输电线路过电压会给电网设备和系统带来严重的危害,主要表现在以下几个方面:1. 对设备的损害,过电压会导致设备绝缘击穿、绝缘老化,甚至损坏设备。

2. 对系统的影响,过电压会引起系统频率偏差、电压不稳定等问题,影响系统的正常运行。

3. 对安全的威胁,过电压会引起火灾、爆炸等安全事故,对人员和设备造成严重威胁。

因此,对输电线路过电压问题必须高度重视,采取有效的保护措施。

三、过电压的保护措施。

针对输电线路过电压问题,可以采取以下一些保护措施:1. 避雷装置,在输电线路上设置避雷装置,用于防止雷电引起的过电压。

避雷装置可以分为避雷针、避雷带等,用于释放雷电的能量,减小雷电对输电线路的影响。

2. 避雷接地,在输电线路上设置良好的接地系统,用于释放过电压的能量。

良好的接地系统可以有效地降低过电压对设备和系统的影响。

3. 过电压保护装置,在输电线路上设置过电压保护装置,用于监测和控制过电压。

过电压保护装置可以根据输电线路的实际情况,采取不同的保护措施,如限流、分流、短路等,以保护设备和系统。

4. 绝缘监测系统,在输电线路上设置绝缘监测系统,用于监测绝缘状态。

绝缘监测系统可以及时发现绝缘老化、击穿等问题,采取相应的措施,以保护设备和系统。

电气设备防雷规范要求及防护措施

电气设备防雷规范要求及防护措施

电气设备防雷规范要求及防护措施电气设备防雷规范要求及防护措施在电力行业和建筑领域中具有重要的意义。

随着科技的不断发展,人们对电气设备的需求也在不断增加,因此,在使用和安装电气设备时,必须严格遵守相关的防雷规范要求,以确保设备的安全使用和人身安全。

一、电气设备防雷规范要求1. 灵敏度级别根据电气设备所处的环境条件和使用要求,规定了不同灵敏度级别的设备,例如,较高的灵敏度级别适用于医疗设备和计算机等精密仪器。

在电气设备的开发和使用中,要确保其灵敏度级别符合相应的规范要求。

2. 外部闪击电流浪涌保护防雷规范要求在电气设备上安装外部闪击电流浪涌保护装置,以防止天气恶劣时发生的大气电荷的灾害性影响。

这些保护装置包括避雷针、避雷网和避雷器等。

3. 接地系统电气设备的接地系统是电气安全的重要组成部分。

防雷规范要求设备必须具备正确且良好的接地系统,以确保设备和人员在雷电天气条件下的安全。

4. 金属外壳和屏蔽大多数电气设备都具有金属外壳或屏蔽,可以有效防护设备内部的电子元件免受雷电的侵害。

防雷规范要求这些金属外壳和屏蔽必须连接良好,避免漏电和电磁辐射。

5. 安全距离电气设备与雷电直接接触时,有可能导致设备过载或短路,甚至引发火灾等严重后果。

规范要求在选择设备安装位置时,考虑到设备与雷电活动的安全距离,以降低这些风险。

二、电气设备防护措施1. 安装接地系统安装良好的接地系统是防止电气设备受到雷电侵害的重要措施之一。

接地系统应包括合适的接地电极和地线,确保设备与地之间的电位差维持在安全范围内。

2. 安装避雷装置合理选择和安装避雷装置可以有效地减少雷电对电气设备的伤害。

避雷装置包括避雷针、避雷网和避雷器等,可以将雷击电流引导到地面,避免对设备造成直接损害。

3. 使用金属外壳和屏蔽选择具有金属外壳和屏蔽的电气设备,可以提供额外的保护,有效减少雷电对电子元件的影响。

同时,确保金属外壳和屏蔽良好连接,以保持电气设备的完整性和安全性。

国家电网公司输变电设备防雷工作管理规定

国家电网公司输变电设备防雷工作管理规定

附件:国家电网公司输变电设备防雷工作管理规定第一章总则第一条为加强国家电网公司输变电设备的防雷工作管理,使防雷工作规范化、标准化,不断提高输变电设备的耐雷水平,特制定本规定。

第二条电力系统输电线路、变电站设备的雷电过电压防护,是保护输电线路、变电站设备和人身安全的重要技术手段,是电网建设及运行管理工作的重要组成部分。

第三条防雷工作是一项全方位、全过程的技术管理工作,应在设计审查、设备选型、监造、验收、安装、调试和试生产的电力建设全过程及运行、检修、技术改造等电网生产全过程开展防雷工作。

第四条本规定适用于国家电网公司系统各区域电网公司、省(自治区、直辖市)电力公司及所属供电企业、发电企业和施工企业。

第二章防雷工作管理范围及主要内容第五条防雷工作设备管理的范围分为输电线路、变电站的防雷及雷电定位系统。

(一)输电线路包括:避雷线、接地装置、避雷器、耦合地线、塔顶避雷针和其它非常规避雷装置等。

(二)变电站包括:避雷器、避雷针、避雷线、接地装置、变压器中性点保护间隙等。

(三)雷电定位系统主站及各地分布的探测站等配套设施。

第六条防雷工作按照国家电网公司的专业技术标准的有关防雷技术规定,开展输变电设备的防雷保护设计、施工、运行维护、检修和技术改造等工作。

第七条防雷工作应定期对防雷保护设备及其构成的保护系统的合理性进行监测、检查及评价,以确保保护功能正常发挥作用。

第八条防雷工作实施动态化管理,对运行中的防雷保护设施要根据电网各个时期的运行特点、所处地位及重点、难点问题及时进行防护技术要求的调整.第九条防雷工作应定期开展防雷保护设施的运行评价,应及时进行雷害事故分析并制定防雷反事故措施。

第十条防雷工作应加大科技投入,积极运用新思路和新观念,广泛采用先进、可靠的技术和方法,依托技术进步来实现防雷工作手段的现代化、规范化.第三章防雷工作管理第十一条输电线路防雷(一)设计、选型、审查管理1、设计单位应贯彻国家电力行业有关防雷的设计技术规程、标准要求,并必须满足国家电网公司或主管网省公司有关防雷的技术标准、规程规范和反事故技术措施实施细则。

10kV配电线路防雷保护措施

10kV配电线路防雷保护措施

10kV配电线路防雷保护措施摘要:10kv 配电线路在运行过程中遭遇雷击的事故时有发生,这不仅影响到配电线路的运行,给工农业的发展带来损失。

本文首先说明了10kV 配电线路雷击过电压形式,然后分析了发生雷害事故的危害和主要原因,最后详细阐述了10kV 配电线路防雷保护措施。

关键词:10kV;配电线路;防雷;过电压;绝缘一、10kV 配电线路雷击过电压形式(一)直击雷过电压直击雷过电压是雷云击中杆塔、电力装置等物体时,强大的雷电流流过该物体泄入大地,在该物体上产生的很高的电压降。

(二)感应雷过电压研究表明,10k V 架空配电线路由雷击引起线路闪络或故障的主要因素不是直击雷过电压而是感应雷过电压,配电线路遭受直接雷过电压的概率很小,约占雷害事故的 20%,感应雷过电压导致的故障比例超过 80%。

因此 10k V 配电线路的防雷研究主要针对感应雷过电压。

二、发生雷害事故的危害和主要原因分析(一)雷害事故的危害雷害事故是难以完全避免的一种的灾害,而一旦发生雷害,对于电力装置和配电电缆甚至是周边的一些建筑物,都会造成一定程度的破坏和影响,雷击事故的危害,主要体现在两个方面:1、一般情况下,雷害事故的的雷击过电压都会超过80k V,从而容易击穿电器绝缘,会使得电力设备发生闪络的现象,轻则造成电路跳闸,使得周围一定范围内的区域大面积停电,影响周边居民的正常生活和生产,重则可能由此引起电力火灾或者造成路过的人民群众的触电;2、一旦发生雷害事故,电力企业势必要对电力装置或配电电缆进行维修抢救,如果雷害事故发生频率较高,将会对电力企业造成巨大的经济损失,也使得企业的运营成本大幅度上涨,降低了电力企业的经济效益,不利于电力行业的发展。

(二)发生雷害事故的主要原因分析1、根据相关调查发现,我国目前对于10k V配电线路防雷的资金投入还不多,导致10kV 配电线路防雷水平设施存在很多缺陷,甚至有一些配电设备还没有安装足够的防雷装置。

高压超高压电缆的防雷与过电压保护研究

高压超高压电缆的防雷与过电压保护研究

高压超高压电缆的防雷与过电压保护研究超高压电缆在电力传输中起着至关重要的作用。

然而,由于其特殊的电气特性和工作环境,电缆系统常常受到雷击和过电压的威胁。

为了保护电缆系统的安全稳定运行,研究人员对高压超高压电缆的防雷与过电压保护进行了深入的研究。

本文将探讨这些研究的关键方面。

一、防雷研究高压超高压电缆系统由于其高电压等级,对雷电侵害非常敏感。

雷电击中电缆系统可能导致设备和线路的瞬态电压升高,从而引发电气设备的故障和电力系统的中断。

因此,防雷是确保电缆系统稳定运行的重要措施之一。

为了提高电缆系统的防雷能力,研究人员采用了多种方法和装置。

其中之一是安装避雷针。

避雷针通过将雷电引流至地面,减少了雷电击中电缆系统的可能性。

此外,还可以在电缆系统上安装避雷器,用于吸收和分散过电压,保护设备的安全运行。

除了安装防雷装置,维护电缆绝缘的良好状态也非常重要。

因为高压超高压电缆中使用的绝缘材料往往不能阻挡雷电的穿透。

因此,研究人员通过使用特殊的绝缘材料,如绝缘屏蔽层和屏蔽层地线,来提高电缆的防雷能力。

二、过电压保护研究超高压电缆系统还常常受到过电压的威胁。

过电压是电力系统中电压瞬态升高的现象,是导致设备损坏和电力系统中断的主要原因之一。

研究人员通过过电压保护装置来防止过电压对电缆系统的损害。

过电压保护装置分为内部和外部两种。

内部过电压保护装置是直接安装在电缆系统内,用于吸收和分散过电压。

常见的内部过电压保护装置包括细分电阻、放电器和压敏电阻等。

这些装置能够在过电压到来时迅速分散和限制电压的升高,保护电缆系统的安全。

外部过电压保护装置则是安装在电缆系统外部,用于分散和吸收过电压。

常见的外部过电压保护装置包括避雷器和避雷针。

它们能够将过电压引流至地面,避免过电压对电缆系统的损害。

此外,合理设计和选用电缆系统的接头和终端设备也是保护电缆系统免受过电压侵害的重要措施。

研究人员通过改进接头和终端设备的结构和绝缘材料,提高其隔离能力和耐电压能力,保护电缆系统的安全运行。

防雷过电压保护及接地施工难点与解决措施

防雷过电压保护及接地施工难点与解决措施

防雷过电压保护及接地施工难点与解决措施防雷过电压保护和接地施工,说起来简单,可真不是个轻松活儿!你要知道,这里面可有大问题,不是你想像中那么简单。

雷雨天,一旦雷电来袭,整片区域电力设备一旦被雷击中,搞不好一切都得“报销”,所以防雷保护这一块儿可得格外重视。

那你说,怎么才能让这些电器设备高枕无忧呢?答案就在防雷过电压保护和接地施工这两大“绝招”里。

防雷过电压保护这个事儿,真的是个大挑战。

雷电一来,电压直接暴涨,瞬间可能就把电力设备搞个“天翻地覆”,这时候我们就得通过防雷装置来把电压“拦住”——想象一下,就像在大雨天,撑开一把大伞,把你和水滴给挡住了。

没错,防雷装置就这么一个“简单”的功能,可问题是,选择和安装它得讲究点儿。

不能随便找个地方插个设备就完事儿,得根据具体的情况,找对位置,选对型号。

有些地方看似高大上的设备,其实远远不如那个不起眼的“角落设备”靠谱。

对了,有的施工队伍为了省事,随便在墙角丢几个防雷装置,这种马虎的做法可是大忌啊!你要真信了,想必雷电一来,你的设备就会哭得比你还惨。

说到接地施工,哎,这就更讲究技术了。

很多人可能觉得,接地就跟埋根似的,挖个坑埋个铜棒就行。

殊不知,接地可不是这么简单的事儿!接地系统的设计,必须考虑到土壤的电导率、环境的湿度、气候的变化等等。

如果一个接地系统没做好,你可能根本无法有效地将雷电引入大地,结果设备还是得“干掉”!更惨的是,有时候接地电阻一旦过大,设备反而成为了雷电的“导体”,结果就成了悲剧。

所以说,接地施工的难度不在于埋几个铜棒,而是要做足功课,把每一环节都考虑得清清楚楚。

这就像做饭,调味料不加好,最后的菜只能是“死味”,谁吃谁尴尬。

还记得我有个朋友,他家去年安装了防雷系统,本来想着这些装置能为他们家保驾护航,谁知道安装后第一场大雷雨就把防雷装置给“打爆”了。

结果整个系统瘫痪,电器全都坏了,损失不小。

追根溯源,原来是安装时没有严格按照规范要求,设备没有做严格的测试,设备不合格,问题也就随之而来了。

交流特高压电网的雷电过电压防护范本

交流特高压电网的雷电过电压防护范本

交流特高压电网的雷电过电压防护范本特高压电网是指额定电压在1000千伏及以上的输电电网。

由于电网的特殊性,特高压电网的运行安全面临着各种挑战,其中雷电过电压是一种常见的威胁。

为了保护特高压电网免受雷电过电压的损害,需要采取一系列的防护措施。

以下是一个交流特高压电网的雷电过电压防护的范本,供参考。

一、绝缘设计:1. 采用特别设计的合成绝缘子,提高绝缘子强度,增加绝缘性能。

2. 按照规定的安全距离原则设置绝缘子串,避免串串击穿。

3. 组织绝缘子表面维护,保持绝缘子的清洁度。

4. 对于交流特高压电网的主要绝缘子串,可采用气体绝缘子绝缘设计,提高绝缘性能。

二、接地设计:1. 合理设置摇杆接地装置,确保线路的可靠接地。

2. 使用合适的接地材料,如混凝土、铜排等,提高接地效果。

3. 根据地质条件,选择合适的接地电阻值,降低接地电阻。

三、避雷器:1. 在特高压输电线路的过电压抵抗系统中,安装适量的避雷器,提高系统的过电压抵抗能力。

2. 选择合适的避雷器额定电压,确保避雷器在过电压事件时正常工作。

四、线路参数控制:1. 控制线路的电气参数,如电阻、电感和电容等,来减小雷电过电压产生的影响。

2. 合理设置线路的参数,使得对雷电过电压的敏感程度最小化。

五、设备保护:1. 设备绝缘性能的监控和维护,如绝缘电阻检测、局部放电监测等。

2. 安装合适的电压互感器和电流互感器,进行设备状态的实时监测,并采取相应的保护措施。

六、人员安全:1. 高压线路的人员应接受专业的培训,具备特高压电网运行和维护的技能。

2. 员工应佩戴符合标准的防护装备,如绝缘手套、绝缘靴等。

3. 定期进行安全检查和维护,确保设备和线路的安全运行。

以上是一个交流特高压电网的雷电过电压防护的范本,通过绝缘设计、接地设计、避雷器、线路参数控制、设备保护和人员安全等多个方面对于特高压电网的雷电过电压进行综合保护。

这些措施可以降低特高压电网受到雷电过电压的影响,提高电网的运行安全性。

雷电过电压防护

雷电过电压防护
作用:降低接地电阻; 缘水平;
接地电阻—接地点电 保护接地(外壳接地):保护人
位与接地电流比值--
身安全;
接地阻抗—大地阻抗 效应的总和。
防雷接地:输电铁塔、避雷针下 的接地装置—作用降低雷电流流
过时避雷针(线、器)顶部的电
压。
雷电过电压防护
海纳百川
雷电过电压防护
11.3 架空输电线路的雷电过电压
雷电过电压防护
直击雷过电压两类
反击: 雷击线路杆塔或避雷线时,雷电流通过雷击点阻抗,使该
点电位大大升高,当雷击点与导线之间的电位差超过线路绝缘 的冲击电压时,会对导线发生闪络,使导线出现过电压。
这时杆塔或避雷线的电位反而会高于导线,故称为反击。 绕击:
雷电流直接击中导线(无避雷线)或绕过避雷线(屏蔽失效) 击中导线,直接在导线上引起过电压--称为绕击。
原理: 雷闪放电使地面电场畸变,避雷针顶端形
成局部场强集中空间,影响雷闪先导放电的发 生方向,使雷闪对避雷针放电,再经过接地装 置将雷电流引入大地,从而保护物体免遭雷击。
雷电过电压防护
定向高度
雷云—大地 空间广阔,先导放电任意方向随机发展。
定向高度H—雷闪先导放电发展到距离地面某一高度H, 才
会在一定范围内受避雷针影响,对避雷针放
原理与避雷针相同
架空输电线、发电厂、变电
所保护。
分流作用:减小流经杆塔入
地的雷电流,从而降低塔顶
电位。
耦合作用:对导线耦合,降
低导线感应过电压。
雷电过电压防护
避雷线保护范围
rx=0.47(h-hx)p hx≥h/2 rx=(h-1.35hx) p hx<h/2
考题?
雷电过电压防护

雷电防护在建筑施工中的安全要求

雷电防护在建筑施工中的安全要求

雷电防护在建筑施工中的安全要求雷电是一种强大而破坏性的自然现象,经常会在建筑施工场地上出现,对工人和设备的安全带来潜在威胁。

为了保护工人和施工项目的安全,有必要在建筑施工中采取适当的雷电防护措施。

本文将介绍雷电防护在建筑施工中的安全要求。

1.建立合适的雷电防护系统为了保证建筑施工现场的安全,建立一个合适的雷电防护系统是必要的。

该系统应由专业人员设计并符合相关的法规和标准。

雷电防护系统应包括避雷针、接地系统和过电压保护装置等组成部分。

避雷针是一种常用的雷电防护设备,它能够将雷电击中的可能性降低到最低。

接地系统则用于将雷击过电流引入地下,以保护建筑物和人员的安全。

过电压保护装置则用于在雷电击中时限制电压升高,以避免电气设备受损。

2.对建筑材料的要求在建筑施工中,选择合适的建筑材料也是防止雷电危害的重要环节。

具有良好导电性能的建筑材料可以最大程度地减少雷电冲击对建筑物的影响。

其中,金属材料是最常见的具有良好导电性能的材料之一。

在建筑物的结构中加入金属材料,例如铝板、铜杆等,可以有效地引导雷电击中的电流,并将其排放到大地。

此外,建筑中使用金属屋面、金属窗框等也可以提供一定程度的雷电保护。

3.合理安装避雷设备除了合适的雷电防护系统和建筑材料,合理安装避雷设备也不可忽视。

对于建筑施工现场,应根据现场具体情况进行避雷装置的布置。

首先,需要合理选择避雷针的位置。

避雷针应安装在建筑物的高处,尽可能接近建筑物的最高点。

其次,在建筑物周围应设置避雷网,以增加雷电击中避雷针的概率。

此外,还需要合理安装接地装置,并确保其与避雷设备之间的连通良好。

接地装置应埋设在地下,以提供良好的导电路径,确保雷击过电流能够迅速引入地下。

4.培训和意识提高建筑施工人员的培训和意识提高也是确保雷电防护安全的重要环节。

施工人员应接受雷电防护的相关培训,了解雷电的危害和防护措施。

同时,施工现场应设置明显的雷电防护警示标识,提高工人的意识。

工人应严格遵守雷电防护规程,正确使用个人防护装备,确保自身安全。

避雷器及过电压防护基础知识

避雷器及过电压防护基础知识

避雷器及过电压防护
二、雷电危害及防雷
避免发电厂和变电所的电气设备以及输电线路遭到直接雷 击侵害的有效措施是安装避雷针、避雷线;在导线和大地之间 ,装设与保护设备并联的避雷器,从而限制过电压,保护电力 系统的安全运行。
避雷器及过电压防护
三、避雷器类型
避雷器能释放雷电或兼能释放电力系统操作过电压能量, 保护电工设备免受瞬时过电压危害,又能截断续流,不致引起 系统接地短路的电器装置。
避雷器及过电压防护
瓷 外 套 避 雷 器
避雷器及过电压防护
复 合 外 套 避 雷 器
避雷器及过电压防护
三、避雷器类型
(4)氧化锌雷器分类 • 按标称放电电流分
避雷器及过电压防护
三、避雷器类型
(4)氧化锌雷器分类
• 按结构性能分类 • 金属氧化物避雷器按结构性能可分为无间隙﹝W﹞、 带串联
间隙﹝C﹞、带并联间隙 ﹝B﹞三类。
避雷器及过电压防护
三、避雷器类型 (3)阀型避雷器:阀型避雷器是由火花间隙和非线性电阻
这两种基本元件组成的。间隙与非线性电阻相串联。
我国目前生产的阀型避雷器主要分为普通阀型避雷器和磁吹 阀型避雷器两大类。普通阀型避雷器有FS和FZ两种系列;磁吹 阀型避雷器有FCD和FCZ两种系列。避雷器Leabharlann 过电压防护避雷器及过电压防护
八、电力系统的防雷接地
关于接地事故的反措要求
(1)根据地区短路容量的变化,应校核接地装置(包括设备接地引下线)的热 稳定容量,并据短路容量的变化及接地装置的腐蚀程度对接地装置进行改造。
式中:Sg——接地线的最小截面,mm2; Ig——流过接地线的短路电流稳定值,A(根据系统5~10 年发展规划,
避雷器及过电压防护

雷击对变电所电子设备的危害及其防护范本

雷击对变电所电子设备的危害及其防护范本

雷击对变电所电子设备的危害及其防护范本引言雷击是指大气中产生的雷电直接对地面设施进行打击,造成电子设备损坏甚至引发事故。

对于变电所来说,电子设备是其核心组成部分,雷击带来的危害不容忽视。

本文将详细介绍雷击对变电所电子设备的危害以及常见的防护方法和范本。

一、雷击对变电所电子设备的危害1. 直接损坏设备雷击直接打击设备,如发电机、变压器等,造成电气设备烧毁、损坏。

这会导致设备的正常运行受到影响,甚至无法正常工作。

2. 引发电弧雷电对设备产生冲击和放电,可能引发电弧,导致电路短路、设备故障、电气火灾等严重后果。

3. 破坏电缆雷电的高能量冲击可能损坏电缆,导致电缆短路、放电,进一步影响设备的正常运行和电力系统的稳定性。

4. 干扰电子设备雷电产生的电磁波辐射可能对电子设备产生干扰,导致设备失效、数据丢失,甚至引发事故。

二、防护方法1. 突击电流的防护为了防止雷电的高能电流通过设备,可在设备上加装足够强度的避雷针或避雷装置。

避雷针和避雷装置可将雷电引入到设备外部的接地系统中,保护设备不受雷击损坏。

2. 避雷导线的防护为了防止雷电的电压脉冲通过导线传导到设备,可在变电所的电缆和导线上安装避雷器。

避雷器能够在雷电过电压发生时迅速导通,将雷电的能量引入地线而不是设备。

3. 过电压保护装置的防护过电压保护装置能够在电压超过设定值时自动短路,将过电压引导到接地,保护设备不受雷击的影响。

在变电所中应配置合适的过电压保护装置,如熔断器、放电管等。

4. 接地系统的防护良好的接地系统能够有效降低设备受到雷击的损害。

接地网应具备合适的导电性能和良好的接地效果,确保将雷电迅速引入地下。

5. 信号线防雷对于变电所的信号线,可采取屏蔽措施,如使用带屏蔽的电缆、增加滤波器等,减少雷电干扰对信号的影响。

6. 环境监测与预警通过安装雷电监测系统,及时发现雷电活动,以便采取必要的防护措施。

同时,还可以安装雷电预警装置,发出警报,提醒工作人员进行预防措施。

电力系统过电压的防护措施

电力系统过电压的防护措施

电力系统过电压的防护措施引言:电力系统过电压是指电力系统中电压超过额定值的现象,可能对电力设备和系统造成严重损坏。

为了保护电力系统的正常运行和设备的安全性,必须采取一系列的过电压防护措施。

本文将介绍几种常见的过电压防护措施,以确保电力系统的稳定运行。

一、过电压的原因过电压通常由以下几个原因引起:1. 外部原因:如雷击、电网故障、电力负荷突变等。

2. 内部原因:如电力设备故障、电力系统操作失误等。

二、过电压防护措施1. 避雷器的应用避雷器是一种常见的过电压防护设备,用于保护电力设备免受雷击和电网故障引起的过电压。

避雷器能够迅速将过电压引入地,保护设备免受损坏。

在电力系统中,避雷器通常安装在变压器、母线、电缆等关键设备的进出线路上。

2. 过电压保护装置的应用过电压保护装置是一种自动保护设备,能够监测电力系统中的电压,并在电压超过设定值时迅速切断电路,以保护设备免受过电压的影响。

过电压保护装置通常安装在电力系统的关键位置,如变压器、发电机、电缆等。

3. 耐压等级的选择在设计电力系统时,应根据系统的工作电压和设备的耐压等级选择合适的设备。

设备的耐压等级应大于系统中可能出现的最高电压,以确保设备在过电压情况下不会损坏。

4. 接地系统的建设良好的接地系统是防止过电压的重要手段之一。

通过合理设计和建设接地系统,可以将过电压迅速引入地,保护设备免受损坏。

接地系统应包括接地网、接地极、接地装置等。

5. 过电压监测与维护定期对电力系统进行过电压监测和维护是防止过电压的有效手段。

通过监测系统中的电压变化,及时发现并处理可能引起过电压的故障,以保护设备的安全运行。

6. 教育与培训加强对电力系统过电压防护的教育与培训,提高工作人员的安全意识和技能水平,是确保过电压防护措施有效实施的重要环节。

工作人员应了解过电压的危害性,掌握正确的操作方法和应急处理措施。

结论:电力系统过电压的防护措施是确保电力系统安全运行的重要保障。

通过合理应用避雷器、过电压保护装置,选择合适的耐压等级,建设良好的接地系统,定期监测和维护电力系统,加强教育与培训,可以有效预防和减少过电压对电力设备和系统的损害。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章雷电保护及电力装置过电压防护第一节建筑物防雷1 建筑物防雷的分类建筑物应根据其重要性、使用性质、发生雷电事故的可能性和后果,按防雷要求分为三类。

(1) 应划为第一类防雷建筑物:一、凡制造、使用或贮存炸药、火药、起爆药、火工品等大量爆炸物质的建筑物,因电火花而引起爆炸,会造成巨大破坏和人身伤亡者。

二、具有0区或10区爆炸危险环境的建筑物。

三、具有1区爆炸危险环境的建筑物,因电火花而引起爆炸,会造成巨大破坏和人身伤亡者。

(2) 应划为第二类防雷建筑物:一、国家级重点文物保护的建筑物。

二、国家级的会堂、办公建筑物、大型展览和博览建筑物、大型火车站、国宾馆、国家级档案馆、大型城市的重要给水水泵房等特别重要的建筑物。

三、国家级计算中心、国际通讯枢纽等对国民经济有重要意义且装有大量电子设备的建筑物。

四、制造、使用或贮存爆炸物质的建筑物,且电火花不易引起爆炸或不致造成巨大破坏和人身伤亡者。

五、具有1区爆危险环境的建筑物,且电火花不易引起爆炸或不致造成巨大破坏和人身伤亡者。

六、具有2区或11区爆炸危险环境的建筑物。

七、工业企业内有爆炸危险的露天钢质封闭气罐。

八、预计雷击次数大于0.06次/a的部、省级办公建筑物及其它重要或人员密集的公共建筑物。

九、预计雷击次数大于0.3次/a的住宅、办公楼等一般性民用建筑物。

(3) 应划为第三类防雷建筑物:一、省级重点文物保护的建筑物及省级档案馆。

二、预计雷击次数大于或等于0.012次/a,且小于或等于0.06次/a的部、省级办公建筑物及其重要或人员密集的公共建筑物。

三、预计雷击次数大于或等于0.06次/a,且小于或等于0.3次/a的住宅、办公楼等一般性民用建筑物。

四、预计雷击次数大于或等于0.06次/a的一般性工业建筑物。

五、根据雷击后对工业生产的影响及产生的后果,并结合当地气象、地形、地质及周围环境等因素,确定需要防雷的21区、22区、23区火灾危险环境。

六、在平均雷暴日大于15d/a的地区,高度在15m及以上的烟囱、水塔等孤立的高耸建筑物;在平均雷暴日小于或等于15d/a的地区,高度在20m及以上的烟囱、水塔等孤立的高耸建筑物。

2 建筑物的防雷措施(1) 一般规定一、各类防雷建筑物应采取防直击雷和防雷电波侵入的措施。

第一类防雷建筑物和四、五、六款所规定的第二类防雷建筑物尚应采取防雷电感应的措施。

二、装有防雷装置的建筑物,在防雷装置与其它设施和建筑物内人员无法隔离的情况下,应采取等电位连接。

(2) 第一类防雷建筑物的防雷措施独立避雷针(网)图13.1-1 一类防雷建筑物(独立避雷针(网))的防雷措施避雷针(网)安装在建筑物上图13.1-2 一类防雷建筑物(避雷针(网)安装在建筑物上)的防雷措施(3) 第二类防雷建筑物的防雷措施图13.1-3 二类防雷建筑物的防直击雷措施图13.1-4 二类防雷建筑物的防雷击感应和雷电波侵入措施(3) 第三类防雷建筑物的防雷措施图13.1-5 三类防雷建筑物的防雷措施3. 防雷装置(1) 接闪器1) 避雷针宜采用圆钢或焊接钢管制成,其直径不应小于下列数值:针长1m以下:圆钢为12mm ;钢管为20mm 。

针长1~2m:圆钢为16mm ;钢管为25mm 。

烟囱顶上的针:圆钢为20mm ;钢管为40mm 。

2) 避雷网和避雷带宜采用圆钢或扁钢,优先采用圆钢。

圆钢直径不应小于8 mm。

扁钢截面不应小于48 mm2,其厚度不应小于4 mm。

当烟囱上采用避雷环时,其圆钢直径不应小于12 mm。

扁钢截面不应小于100 mm2,其厚度不应小于4 mm。

3) 架空避雷线和避雷网宜采用截面不小于35 mm2的镀锌钢铰线。

4) 除第一类防雷建筑物外,金属屋面的建筑物宜利用其屋面作为接闪器,并应符合下列要求:一、金属板之间采用搭接时,其搭接长度不应小于100 mm;二、金属板下面无易燃物品时,其厚度不应小于0.5 mm;三、金属板下面有易燃物品时,其厚度,铁板不应小于4 mm,铜板不应小于5 mm,铝板不应小于7 mm;四、金属板无绝缘被覆屋。

注:薄的油漆保护层或0.5mm厚沥青层或1mm厚聚氯乙烯层均不属于绝缘覆层。

5) 除第一类防雷建筑物和第二类防雷建筑物排放爆炸危险气体、蒸气或粉尘的放散管、呼吸阀、排风管等的管口外应处于接闪器的保护范围内的规定外,屋顶上永久性金属物宜作为接闪器,但其各部件之间均应连成电气通路,并应符合下列规定:一、旗杆、栏杆、装饰物等,其尺寸应符合3.(1)1)条和2)条的规定。

二、钢管、钢罐的壁厚不小于2.5 mm,但钢管、钢罐一旦被雷击穿,其介质对周围环境造成危险时,其壁厚不得小于4 mm。

注:利用屋顶建筑构件内钢筋作接闪器应符合相应的规定。

6)除利用混凝土构件内钢筋作接闪器外,接闪器应热镀锌或涂漆。

在腐蚀性较强的场所,尚应采取加大其截面或其它防腐措施。

(2) 引下线1) 引下线宜采用圆钢或扁钢,宜优先采用圆钢。

圆钢直径不应小于8 mm。

扁钢截面不应小于48 mm2,其厚度不应小于4 mm。

当烟囱上的引下线采用圆钢时,其直径不应小于12 mm;采用扁钢时,其截面不应小于100 mm2,厚度不应小于4 mm。

防腐措施应符合3.(1)6)条的要求。

注:利用建筑构件内钢筋作引下线应符合相应的规定。

2) 引下线应沿建筑物外墙明敷,并经最短路径接地;建筑艺术要求较高者可暗敷,但其圆钢直径不应小于10 mm,扁钢截面不应小于80 mm2。

3) 建筑物的消防梯、钢柱等金属构件宜作为引下线,但其各部件之间均应连成电气通路。

4) 采用多根引下线时,宜在各引下线上于距地面0.3 m至1.8 m之间装设断接卡。

当利用混凝土钢筋、钢柱作为自然引下线并同时采用基础接地体时,可不设断接卡,但利用钢筋作引下线时应在室内外的适当地点设若干连接板,该连接板可供测量、接人工接地体和作等电位连接用。

当仅利用钢筋作引下线并采用埋于土壤中的人工接地体时,应在每根引下线上于距地面不低于0.3 m 处接地体连接板。

采用埋于土壤中的人工接地体时应设断接卡,其上端应与连接板或钢柱焊接。

连接板处宜有明显标志。

5) 在易受机械损坏和防人身接触的地方,地面上1.7 m 至地面下0.3 m 的一段接地线应采取暗敷或镀锌角钢、改性塑料管或橡胶管等保护设施。

(3) 接 地 装 置1) 埋于土壤中的人工垂直接地体宜采用角钢、钢管或圆钢;埋于土壤中的人工水平接地体宜采用扁钢或圆钢。

圆钢直径不应小于10 mm ;扁钢截面不应小于100 mm 2,其厚度不应小于4 mm ;角钢厚度不应小于4 mm ;钢管壁厚不应小于3.5 mm 。

在腐蚀性较强的土壤中,应采取热镀锌等防腐措施或加大截面。

接地线应与水平接地体的截面相同。

2) 人工垂直接地体的长度宜为 2.5 m 。

人工垂直接地体间的距离及人工水平接地体间的距离宜为5 m ,当受地方限制时可适当减小。

3) 人工接地体在土壤中的埋设深度不应小于0.5 m 。

接地体应远离由于砖窑、烟道等高温影响使土壤电阻率升高的地方。

4) 防直击雷的人工接地体距建筑物出入口或人行道不应小于3 m 。

当小于3 m 时应采取下列措施之一:一、水平接地体局部深埋不应小于1 m ;二、水平接地体局部应包绝缘物,可采用50~80 mm 厚的沥青层;三、采用沥青碎石地面或在接地体上面敷设50~80 mm 厚的沥青层,其宽度应超过接地体2 m 。

5) 埋在土壤中的接地装置,其连接应采用焊接,并在焊接处作防腐处理。

4. 建筑物年预计雷击次数计算(1) 建筑物年预计雷击次数应按下式确定:e g A kN N =式中 N -建筑物年预计雷击次数,次/a ;k -校正系数,在一般情况下取1,在下列情况下取相应数值:位于旷野孤立的建筑物取2;金属屋面的砖木结构建筑物取1.7;位于河边、湖边、山坡下或山地中土壤电阻率较小处、地下水露头处、土山顶部、山谷风口等处的建筑物,以及特别潮湿的建筑物取1.5;N g -建筑物所处地区雷击大地的年平均密度,次/km 2•a ;A e -与建筑物截收相同雷击次数等效面积,km 2。

(2) 雷击大地的年平均密度应按下式确定:3.124.0d g T N =式中 Td -年平均雷暴日,根据当地气象台、站资料确定,d/a 。

(3) 建筑物等效面积A e 应为其实际面积向外扩大后的面积。

其计算方法应符合下列规定: 1)当建筑物的高H 小于100m 时,其每边的扩大宽度和等效面积应按下列公式计算确定(图13.1-6):)200(H H D -=610)]200()200()(2[-•-+-•++=H H H H W L LW A e π式中 D -建筑物每边的扩大宽度,m ;L 、W 、H -分别为建筑物的长、宽、高,m 。

图13.1-6 建筑物的等效面积注:建筑物平面积扩大后的面积A e 如图13.1-6中周边虚线所包围的面积。

2)当建筑物的高H 等于或大于100m 时,其每边的扩大宽度应按等于建筑物的高H 计算;建筑物等效面积应按下式确定:6210])(2[-•+++=H W L H LW A e π3)当建筑物各部位的高不同时,应沿建筑物周边逐点算出最大扩大宽度,其等效面积A e 应按每点最大扩大宽度外端的连接线所包围的面积计算。

5. 接地装置冲击接地电阻与工频接地电阻的换算(1) 接地装置冲击接地电阻与工频接地电阻的换算应按下式确定:i AR R =~式中 R ~-接地装置各支线的长度取值小于或等于接地体的有效长度l e 或者有支线大于l e而取其等于l e 时的工频接地电阻,Ω;A -换算系数,其数值宜按图13.1-7确定; R I -所要求的接地装置冲击接地电阻,Ω。

(2) 接地体的有效长度应按下式确定:ρ2=e l式中 l e -接地体的有效长度,应按图13.1-8计量,m ; ρ-敷设接地体处的土壤电阻率,Ω•m 。

(3) 环绕建筑物的环形接地体应按以下方法确定冲击接地电阻:1)当环形接地体周长的一半l 大于或等于接地体的有效长度l e 时,引下线的冲击接地电阻应为从与该引下线的连接点起沿两侧接地体各取l e 长度算出的工频接地电阻(换算系数A 等于1)。

2)当环形接地体周长的一半l小于l e时,引下线的冲击接地电阻应为以接地体的实际长度算出的工频接地电阻再除以A值。

(4) 与引下线连接的基础接地体,当其钢筋从与引下线的连接点量起大于20 m时,其冲击接地电阻应为以换算系数A等于1和以该连接点为圆心、20 m为半径的半球体范围内的钢筋体的工频接地电阻。

图13.1-7 换算系数A注:l为接地体最长支线的实际长度,其计量与l e类同。

当它大于l e时,取其等于l e。

图13.1-8 接地体有效长度的计量第二节低压配电系统过电压防护1电涌保护器(SPD)的选择1.1电压开关型SPD1.1.1气体放电管图13.2-1 气体放电管图例由密装在玻璃管或陶瓷管中相隔一定距离的两个金属电极,管内充满惰性气体。

相关文档
最新文档