初二一次函数提高练习题

合集下载

初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)概要1

初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)概要1

初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)一.选择题(共15小题)1.下列各图能表示y是x的函数是()A. B.C.D.2.在下列各图象中,y不是x函数的是()A.B.C.D.3.下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C.D.4.下列四个关系式:(1)y=x;(2)y=x2;(3)y=x3;(4)|y|=x,其中y不是x 的函数的是()A.(1)B.(2)C.(3)D.(4)5.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+1006.下列式子中y是x的函数的有几个?()①y=l,②y=x2,③y2=x,④y=|x|,⑤y=,⑥y=2x.A.2 B.3 C.4 D.57.在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积8.如果每盒钢笔有10支,售价25元,那么购买钢笔的总钱数y(元)与支数x 之间的关系式为()A.y=10x B.y=25x C.y=x D.y=x9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=x+12 B.y=﹣2x+24 C.y=2x﹣24 D.y=x﹣1210.若等腰三角形的周长为60cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是()A.y=60﹣2x(0<x<60)B.y=60﹣2x(0<x<30)C.y=(60﹣x)(0<x<60)D.y=(60﹣x)(0<x<30)11.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断正确的有()A.1个 B.2个 C.3个 D.4个12.如表列出了一项实验的统计数据:y5080100150…x30455580…它表示皮球从一定高度落下时,下落高度y与弹跳高度x的关系,能表示变量y 与x之间的关系式为()A.y=2x﹣10 B.y=x2 C.y=x+25 D.y=x+513.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x (kg)间有下面的关系:x012345y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm14.当前,雾霾严重,治理雾霾方法之一是将已生产的PM2.5吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾程度B.PM2.5C.雾霾D.城市中心区立体绿化面积15.下列说法正确的是()A.若y<2x,则y是x的函数B.正方形面积是周长的函数C.变量x,y满足y2=2x,y是x的函数D.温度是变量二.填空题(共9小题)16.汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为.17.已知方程x﹣3y=12,用含x的代数式表示y是.18.为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是.19.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.20.如图表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象.下面几个结论:①比赛开始24分钟时,两人第一次相遇.②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇.正确的结论为.21.小明画了一个边长为2cm的正方形,如果将正方形的边长增加xcm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为.22.如图所示的函数图象反映的过程是:小明从家去书店看一会儿书,又去学校取封信后马上回家,其中x表示时间(单位:小时),y表示小明离家的距离(单位:千米),则小明从学校回家的平均速度为千米∕小时.23.如图1,在矩形ABCD中,动点P从点B出发,沿BC﹣CD﹣DA运动至点A 停止,设点P运动的路程为x,△ABP的面积为y.如果y关于x的函数图象如图2所示,则△ABC的面积是.24.如图,长方形ABCD中,AB=4,AD=2.点Q与点P同时从点A出发,点Q 以每秒1个单位的速度沿A→D→C→B的方向运动,点P以每秒3个单位的速度沿A→B→C→D的方向运动,当P,Q两点相遇时,它们同时停止运动.设Q点运动的时间为x(秒),在整个运动过程中,当△APQ为直角三角形时,则相应的x 的值或取值范围是.三.解答题(共16小题)25.中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准时间/分12345…0.360.72 1.08 1.44 1.8…电话费/元(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?26.如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D 路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图3是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.根据图象:(1)求a、b、c的值;(2)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P与Q相遇时x的值.27.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?28.如图所示,A、B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线PQR和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t 之间的关系.根据图象回答下列问题:(1)甲和乙哪一个出发更早?早出发多长时间?(2)甲和乙哪一个更早到达B城,早多长时间?(3)乙出发大约用多长时间就追上甲?(4)描述一下甲的运动情况.(5)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑自行车在全程的平均速度.29.为响应教育局组织的三热爱教育活动,某学校要给每位学生印制一份宣传资料,甲印刷厂提出:每份收0.1元印刷费,另收100元制版费;乙印刷厂提出:每份收0.2元印刷费,不收制版费.(1)分别写出两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)当印制多少份资料时,两个印刷厂费用一样多?(3)如果该校有800人,那么应选哪家印刷厂划算?30.陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学所用的路程与时间的关系示意图.根据图中提供的信息回答下列问题:(1)陈杰家到学校的距离是多少米?书店到学校的距离是多少米?(2)陈杰在书店停留了多少分钟?本次上学途中,陈杰一共行驶了多少米?(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米?(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?31.端午节小明来到奥体中心观看中超联赛第14轮重庆力帆主场迎战广州富力的比赛.进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票,同时,他爸爸从家里吃饭骑自行车以小明3倍的速度给小明送票,两人在途中相遇,相遇后爸爸立即骑自行车吧小明送回奥体中心.如图,线段AB、OB分别表示父子俩送票、取票过程中,离奥体中心的距离S(米)与所用时间t(分钟)之间关系的图象,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)从图中可知,小明家离奥体中心米,爸爸在出发后分钟与小明相遇.(2)求出父亲与小明相遇时离奥体中心的距离?(3)小明能否在比赛开始之前赶回奥体中心?请计算说明.32.如图,△ABC底边BC上的高是6厘米,当三角形的定点C沿底边所在直线向点B运动时,三角形的面积发生了变化.1.在这个变化过程中,自变量是,因变量是.2.如果三角形的底边长为x(厘米),三角形的面积y(厘米2)可以表示为.3.当底边长从12厘米变到3厘米时,三角形的面积从厘米2到厘米2;当点C运动到什么位置时,三角形的面积缩小为原来的一半?33.一游泳池长90米,甲乙两人分别从两对边同时向所对的另一边游去,到达对边后,再返回,这样往复数次.图中的实线和虚线分别表示甲、乙与游泳池固定一边的距离随游泳时间变化的情况,请根据图形回答:(1)甲、乙两人分别游了几个来回?(2)甲、乙两人在整个游泳过程中,谁曾休息过?休息过几次?(3)甲游了多长时间?游泳的速度是多少?(4)在整个游泳过程中,甲、乙两人相遇了几次?34.如图表示一辆汽车在行驶途中的速度v(千米/时)随时间t(分)的变化示意图.(1)从点A到点B、点E到点F、点G到点H分别表明汽车在什么状态?(2)汽车在点A的速度是多少?在点C呢?(3)司机在第28分钟开始匀速先行驶了4分钟,之后立即以减速行驶2分钟停止,请你在本图中补上从28分钟以后汽车速度与行驶时间的关系图.35.圆柱的底面半径是2cm,当圆柱的高h(cm)由大到小变化时,圆柱的体积V(cm3)随之发生变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)在这个变化过程中,写出圆柱的体积为V与高h之间的关系式?(3)当h由5cm变化到10cm时,V是怎样变化的?(4)当h=7cm时,v的值等于多少?36.如图,梯形ABCD上底的长是4,下底的长是x,高是6.(1)求梯形ABCD的面积y与下底长x之间的关系式;(2)用表格表示当x从10变到16时(每次增加1),y的相应值;(3)x每增加1时,y如何变化?说明你的理由.37.物体自由下落的高度h(米)和下落时间t(秒)的关系是:在地球上大约是h=4.9t2,在月球上大约是h=0.8t2,当h=20米时,(1)物体在地球上和在月球上自由下落的时间各是多少?(2)物体在哪里下落得快?38.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x≤30)提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?39.下表是达州某电器厂2014年上半年每个月的产量:x/月123456y/台100001000012000130001400018000(1)根据表格中的数据,你能否根据x的变化,得到y的变化趋势?(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高?(3)试求2014年前半年的平均月产量是多少?40.一只蚂蚁在一个半圆形的花坛的周边寻找食物,如图1,蚂蚁从圆心O出发,按图中箭头所示的方向,依次匀速爬完下列三条线路:(1)线段OA、(2)半圆弧AB、(3)线段BO后,回到出发点.蚂蚁离出发点的距离S(蚂蚁所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,问:(1)请直接写出:花坛的半径是米,a=.(2)当t≤2时,求s与t之间的关系式;(3)若沿途只有一处有食物,蚂蚁在寻找到食物后停下来吃了2分钟,并知蚂蚁在吃食物的前后,始终保持爬行且爬行速度不变,请你求出:①蚂蚁停下来吃食物的地方,离出发点的距离.②蚂蚁返回O的时间.(注:圆周率π的值取3)初二数学一次函数函数基础常考题与提高练习和与压轴难题(含解析)参考答案与试题解析一.选择题(共15小题)1.(2015春•唐山期末)下列各图能表示y是x的函数是()A. B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断后利用排除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y 不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.2.(2015春•荔城区期末)在下列各图象中,y不是x函数的是()A.B.C.D.【分析】答题时知道函数的意义,然后作答.【解答】解:函数的一个变量不能对应两个函数值,故选C.【点评】本题主要考查函数的概念,基本知识要掌握,不是很难.3.(2016春•天津期末)下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C.D.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.(2015春•宜春期末)下列四个关系式:(1)y=x;(2)y=x2;(3)y=x3;(4)|y|=x,其中y不是x的函数的是()A.(1)B.(2)C.(3)D.(4)【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定不是函数的个数.【解答】解:根据对于x的每一个取值,y都有唯一确定的值与之对应,(1)y=x,(2)y=x2,(3)y=x3满足函数的定义,y是x的函数,(4)|y|=x,当x取值时,y不是有唯一的值对应,y不是x的函数,故选:D.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x 叫自变量.5.(2015春•高密市期末)据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+100【分析】每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.【解答】解:y=100×0.05x,即y=5x.故选:B.【点评】本题主要考查了根据实际问题列一次函数解析式,正确表示出一分钟滴的水的体积是解题的关键.6.(2014秋•阳谷县期末)下列式子中y是x的函数的有几个?()①y=l,②y=x2,③y2=x,④y=|x|,⑤y=,⑥y=2x.A.2 B.3 C.4 D.5【分析】直接利用函数的定义进而分析得出即可.【解答】解:①y=l,y不是x的函数;②y=x2,y是x的函数;③y2=x,y不是x的函数;④y=|x|,y是x的函数;⑤y=,y是x的函数;⑥y=2x,y是x的函数.故选:C.【点评】此题主要考查了函数的概念,正确把握函数的定义是解题关键.7.(2015春•烟台期末)在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积【分析】函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.【解答】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:A【点评】本题主要考查的是对函数的定义,关键是根据函数的定义对自变量和因变量的认识和理解.8.(2015春•重庆校级期末)如果每盒钢笔有10支,售价25元,那么购买钢笔的总钱数y(元)与支数x之间的关系式为()A.y=10x B.y=25x C.y=x D.y=x【分析】首先根据单价=总价÷数量,用每盒钢笔的售价除以每盒钢笔的数量,求出每支钢笔的价格是多少;然后根据购买钢笔的总钱数=每支钢笔的价格×购买钢笔的支数,求出购买钢笔的总钱数y(元)与支数x之间的关系式即可.【解答】解:25÷10=所以购买钢笔的总钱数y(元)与支数x之间的关系式为:y=x.故选:D.【点评】此题主要考查了函数关系式的求法,以及单价、数量、总价的关系,要熟练掌握;解答此题的关键是根据单价=总价÷数量,求出每支钢笔的价格是多少.9.(2016春•乐亭县期末)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长度恰好为24米.要围成的菜园是如图所示的长方形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=x+12 B.y=﹣2x+24 C.y=2x﹣24 D.y=x﹣12【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式.【解答】解:由题意得:2y+x=24,故可得:y=﹣x+12(0<x<24).故选:A.【点评】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.10.(2014秋•章丘市校级期末)若等腰三角形的周长为60cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是()A.y=60﹣2x(0<x<60)B.y=60﹣2x(0<x<30)C.y=(60﹣x)(0<x<60)D.y=(60﹣x)(0<x<30)【分析】根据底边长+两腰长=周长,建立等量关系,变形即可,再根据三角形两边之和大于第三边及周长的限制,确定自变量的取值范围.【解答】解:依题意得x+2y=60,即y=(60﹣x)(0<x<30).故选D.【点评】本题考查了函数关系式、等腰三角形三边关系的性质、三角形三边关系定理,得出y与x的函数关系式是解题关键.11.(2013春•涟水县校级期末)笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据题意列出函数解析式,再根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.【解答】解:由题意得:y=3a,此问题中a、y都是变量,3是常量,或a,y都是常量,则③④,故选:B.【点评】此题主要考查了常量和变量,关键是掌握变量和常量的定义.12.(2015春•泰山区期末)如表列出了一项实验的统计数据:y5080100150…x30455580…它表示皮球从一定高度落下时,下落高度y与弹跳高度x的关系,能表示变量y 与x之间的关系式为()A.y=2x﹣10 B.y=x2 C.y=x+25 D.y=x+5【分析】观察各选项可知y与x是一次函数关系,设函数关系式为y=kx+b,然后选择两组数据代入,利用待定系数法求一次函数解析式解答即可.【解答】解:根据题意,设函数关系式为y=kx+b,则解得:,则y=2x﹣10.故选:A.【点评】本题考查了函数关系式的求解,根据各选项判断出y与x是一次函数关系是解题的关键,熟练掌握待定系数法求一次函数解析式也很重要.13.(2014春•雅安期末)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下面的关系:x012345y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为13.5cm【分析】由表中的数据进行分析发现:物体质量每增加1kg,弹簧长度y增加0.5cm;当不挂重物时,弹簧的长度为10cm,然后逐个分析四个选项,得出正确答案.【解答】解:A、y随x的增加而增加,x是自变量,y是因变量,故A选项正确;B、弹簧不挂重物时的长度为10cm,故B选项错误;C、物体质量每增加1kg,弹簧长度y增加0.5cm,故C选项正确;D、由C知,y=10+0.5x,则当x=7时,y=13.5,即所挂物体质量为7kg时,弹簧长度为13.5cm,故D选项正确;故选:B.【点评】本题考查了函数的概念,能够根据所给的表进行分析变量的值的变化情况,得出答案.14.(2014春•招远市期末)当前,雾霾严重,治理雾霾方法之一是将已生产的PM2.5吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾程度B.PM2.5C.雾霾D.城市中心区立体绿化面积【分析】根据函数的关系,可得答案.【解答】解;雾霾的程度随城市中心区立体绿化面积的增大而减小,雾霾的程度是城市中心区立体绿化面积的函数,城市中心区立体绿化面积是自变量,故选:D.【点评】本题考查了常量与变量,函数与自变量的关系是解题关键.15.(2015秋•高密市期末)下列说法正确的是()A.若y<2x,则y是x的函数B.正方形面积是周长的函数C.变量x,y满足y2=2x,y是x的函数D.温度是变量【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断各选项.【解答】解:A、若y<2x,则y是x的函数,不符合函数的定义,故本选项错误;B、设正方形的周长为L,面积为S,用L表示S的函数关系式为:S=L2,故本选项正确;C、变量x,y满足y2=2x,y是x的函数,不符合函数的定义,故本选项错误;D、在不同的情况下,温度不一定是变量,故本选项错误;故选B.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.二.填空题(共9小题)16.(2016春•石城县期末)汽车开始行使时,油箱中有油55升,如果每小时耗油7升,则油箱内剩余油量y(升)与行使时间t(小时)的关系式为y=﹣7t+55.【分析】剩油量=原有油量﹣工作时间内耗油量,把相关数值代入即可.【解答】解:∵每小时耗油7升,∵工作t小时内耗油量为7t,∵油箱中有油55升,∴剩余油量y=﹣7t+55,故答案为:y=﹣7t+55【点评】考查列一次函数关系式;得到剩油量的关系式是解决本题的关键.17.(2011春•攀枝花期末)已知方程x﹣3y=12,用含x的代数式表示y是y=x ﹣4.【分析】要用含x的代数式表示y,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.【解答】解:移项得:﹣3y=12﹣x,系数化为1得:y=x﹣4.故答案为:y=x﹣4.【点评】考查了函数的表示方法,解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.18.(2015秋•巴南区校级期末)为了增强抗旱能力,保证今年夏粮丰收,某村新建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是③.【分析】根据图象1可知进水速度小于出水速度,结合图2中特殊点的实际意义即可作出判断.【解答】解:①0点到1点既进水,也出水;②1点到4点同时打开两个管进水,和一只管出水;③4点到6点只进水,不出水.正确的只有③.故答案为:③.【点评】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.19.(2016春•酒泉期末)某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为y=0.11x﹣0.03.【分析】话费=三分钟以内的基本话费0.3+超过3分钟的时间×0.11,把相关数值代入即可求解.【解答】解:超过3分钟的话费为0.11×(x﹣3),通话时间超过3分钟,。

一次函数经典提高题(含答案)

一次函数经典提高题(含答案)

n dg s14一次函数经典练习题过关测试一、选择题:1.已知y 与x+3成正比例,并且x=1时,y=8,那么y 与x 之间的函数关系式为( )(A )y=8x (B )y=2x+6(C )y=8x+6 (D )y=5x+32.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过( )(A )一象限(B )二象限(C )三象限(D )四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是( )(A )4 (B )6 (C )8 (D )164.若甲、乙两弹簧的长度y (cm )与所挂物体质量x (kg )之间的函数解析式分别为y=k 1x+a 1和y=k 2x+a 2,如图,所挂物体质量均为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( )(A )y 1>y 2 (B )y 1=y 2(C )y 1<y 2(D )不能确定5.设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内, 则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( )6.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过第( )象限.(A )一 (B )二 (C )三 (D )四 7.一次函数y=kx+2经过点(1,1),那么这个一次函数( )(A )y 随x 的增大而增大 (B )y 随x 的增大而减小(C )图像经过原点 (D )图像不经过第二象限8.无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限9.要得到y=-x-4的图像,可把直线y=-x ( ).3232(A )向左平移4个单位(B )向右平移4个单位(C )向上平移4个单位(D )向下平移4个单位10.若函数y=(m-5)x+(4m+1)x 2(m 为常数)中的y 与x 成正比例,则m 的值为( )(A )m>-(B )m>5 (C )m=- (D )m=5141411.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ).(A )k<(B )<k<1 (C )k>1(D )k>1或k<13131312.过点P (-1,3)直线,使它与两坐标轴围成的三角形面积为5, 这样的直线可以作( )(A )4条(B )3条 (C )2条 (D )1条 13.已知abc≠0,而且=p ,那么直线y=px+p 一定通过( )a b b c c ac a b+++==(A )第一、二象限 (B )第二、三象限(C )第三、四象限 (D )第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a 的取值范围是( )(A )-4<a<0 (B )0<a<2(C )-4<a<2且a≠0 (D )-4<a<215.在直角坐标系中,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )(A )1个(B )2个 (C )3个 (D )4个16.一次函数y=ax+b (a 为整数)的图象过点(98,19),交x 轴于(p ,0),交y 轴于( 0,q ),若p 为质数,q 为正整数,那么满足条件的一次函数的个数为( )(A )0 (B )1 (C )2 (D )无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数.当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( )(A )2个 (B )4个 (C )6个 (D )8个18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( )(A )2个(B )4个 (C )6个 (D )8个19.甲、乙二人在如图所示的斜坡AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a<b );乙上山的速度是a 米/分,下山的速度是2b 米/分.如果甲、乙二人同时从点A 出发,12时间为t (分),离开点A 的路程为S (米), 那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A 的路程S (米) 之间的函数关系的是( )20.若k 、b 是一元二次方程x 2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b 中,y 随x 的增大而减小,则一次函数的图像一定经过( )(A )第1、2、4象限 (B )第1、2、3象限(C )第2、3、4象限 (D )第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y 的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y 的值随x 的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m 不经过第三象限,则m 的取值范围是_________.5.函数y=-3x+2的图像上存在点P ,使得P 到x 轴的距离等于3, 则点P 的坐标为__________.6.过点P (8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=x 与y=-2x+3的图像的交点在第_________象限.238.某公司规定一个退休职工每年可获得一份退休金, 金额与他工作的年数的算术平方根成正比例,如果他多工作a 年,他的退休金比原有的多p 元,如果他多工作b 年(b≠a),他的退休金比原来的多q 元,那么他每年的退休金是(以a 、b 、p 、 q )表示______元.9.若一次函数y=kx+b ,当-3≤x≤1时,对应的y 值为1≤y≤9, 则一次函数的解析式为________.三、解答题1.已知一次函数y=ax+b 的图象经过点A (2,0)与B (0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y 的值在-4≤y≤4范围内,求相应的y 的值在什么范围内.2.已知y=p+z ,这里p 是一个常数,z 与x 成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y 与x 之间的函数关系式;(2)如果x 的取值范围是1≤x≤4,求y 的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的. 小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:第一档第二档第三档第四档凳高x (cm ) 37.040.042.045.0桌高y (cm )70.0 74.8 78.0 82.8(1)小明经过对数据探究,发现:桌高y 是凳高x 的一次函数,请你求出这个一次函数的关系式;(不要求写出x 的取值范围);(2)小明回家后, 测量了家里的写字台和凳子,写字台的高度为77cm ,凳子的高度为43.5cm ,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3) 求小明出发多长时间距家12千米?5.已知一次函数的图象,交x 轴于A (-6,0),交正比例函数的图象于点B ,且点B 在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位, 求正比例函数和一次函数的解析式.he i r8.在直角坐标系x0y 中,一次函数的图象与x 轴,y 轴,分别交于A 、B 两点, 点C 坐标为(1,0),点D 在x 轴上,且∠BCD=∠ABD,求图象经过B 、D 两点的一次函数的解析式.9.已知:如图一次函数y=x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线12交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地收割小麦,其中30 台派往A 地,20台派往B 地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A 地 1800元/台 1600元/台B 地1600元/台1200元/台(1)设派往A 地x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y (元),请用x 表示y ,并注明x 的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元, 说明有多少种分派方案,并将各种方案写出.15.A 市、B 市和C 市有某种机器10台、10台、8台, 现在决定把这些机器支援给D 市18台,E 市10.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值.答案:1.B 2.B 3.A 4.A 5.B 提示:由方程组 的解知两直线的交点为(1,a+b ),y bx ay ax b =+⎧⎨=+⎩而图A 中交点横坐标是负数,故图A 不对;图C 中交点横坐标是2≠1,故图C 不对;图D 中交点纵坐标是大于a ,小于b 的数,不等于a+b ,故图D 不对;故选B .6.B 提示:∵直线y=kx+b 经过一、二、四象限,∴ 对于直线y=bx+k ,0,k b <⎧⎨>⎩∵ ∴图像不经过第二象限,故应选B .0,0k b <⎧⎨>⎩7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y 随x 的增大而减小,故B 正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C 错误.∵k<0,b= 2>0,∴其图像经过第二象限,故D 错误.8.C 9.D 提示:根据y=kx+b 的图像之间的关系可知,将y=-x 的图像向下平移4个单位就可得到y=-x-4的图像.323210.C 提示:∵函数y=(m-5)x+(4m+1)x 中的y 与x 成正比例,∴ ∴m=-,故应选C .5,50,1410,,4m m m m ≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即1411.B 12.C 13.B 提示:∵=p ,a b b c c ac a b+++==∴①若a+b+c≠0,则p==2;()()()a b b c c a a b c+++++++②若a+b+c=0,则p==-1,a b cc c+-=∴当p=2时,y=px+q 过第一、二、三象限;当p=-1时,y=px+p 过第二、三、四象限,综上所述,y=px+p 一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q│>0, k·b<0,||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭A A 一次函数y=kx+b 中,y 随x 的增大而减小一次函数的图像一定经过一、二、四000k k b <⎫⇒<⇒⇒⎬>⎭象限,选A .二、1.-5≤y≤19 2.2<m<3 3.如y=-x+1等.4.m≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全.5.(,3)或(,-3).提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-31353当y=3时,x=;当y=-3时,x=;∴点P 的坐标为(,3)或(,-3).13531353提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b .∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b.将P (8,2)代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组 92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩即∴两函数的交点坐标为(,),在第一象限.98348.. 9.y=2x+7或y=-2x+3 10.222()aq bp bp aq --10042009三、1.(1)由题意得: 20244a b a b b +==-⎧⎧⎨⎨==⎩⎩即即∴这个一镒函数的解析式为:y=-2x+4( 函数图象略). (2)∵y=-2x+4,-4≤y≤4, ∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z 与x 成正比例,∴设z=kx (k≠0)为常数,则y=p+kx .将x=2,y=1;x=3,y=-1分别代入y=p+kx ,得 解得k=-2,p=5,2131k p k p +=⎧⎨+=-⎩∴y 与x 之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x 1=1,x 2=4分别代入y=-2x+5,得y 1=3,y 2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b ,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得2131k p k p +=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米. (2)设直线CD 的解析式为y=k 1x+b 1,由C (2,15)、D (3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E 、F 两点的直线解析式为y=k 2x+b 2,由E (4,30),F (6,0),代入得y=-15x+90,(4≤x≤6)过A 、B 两点的直线解析式为y=k 3x ,∵B(1,15),∴y=15x.(0≤x≤1),分别令y=12,得x=(小时),x=(小时).26545答:小明出发小时或小时距家12千米.265455.设正比例函数y=kx ,一次函数y=ax+b ,∵点B 在第三象限,横坐标为-2,设B (-2,y B ),其中y B <0,∵S △AOB =6,∴AO·│y B │=6,12∴y B =-2,把点B (-2,-2)代入正比例函数y=kx , 得k=1.把点A (-6,0)、B (-2,-2)代入y=ax+b ,得 1062223a ba ab b ⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩即即∴y=x,y=-x-3即所求.128.∵点A 、B 分别是直线与x 轴和y 轴交点,∴A(-3,0),B (0),∵点C 坐标(1,0)由勾股定理得,设点D 的坐标为(x ,0).(1)当点D 在C 点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴①BC CD AB BD ==∴,∴8x 2-22x+5=0,22321112x x x -+=+∴x 1=,x 2=,经检验:x 1=,x 2=,都是方程①的根,52145214∵x=,不合题意,∴舍去,∴x=,∴D 点坐标为(,0).145252dAl l t he rb 设图象过B 、D 两点的一次函数解析式为y=kx+b ,502b k k b b ⎧⎧==⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为.(2)若点D 在点C 左侧则x<1,可证△ABC∽△ADB,∴ ②AD BD AB CB == ∴8x 2-18x-5=0,∴x 1=-,x 2=,经检验x 1=,x 2=,都是方程②的根.14521452∵x 2=不合题意舍去,∴x 1=-,∴D 点坐标为(-,0),521414∴图象过B 、D (-,0)两点的一次函数解析式为,14综上所述,满足题意的一次函数为或.9.直线y=x-3与x 轴交于点A (6,0),与y 轴交于点B (0,-3),12∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,∴cot∠ODC=cot∠OAB,即,OD OAOC OB=∴OD==8.∴点D 的坐标为(0,8),463OC OA OB ⨯=A 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由 2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩即即∴点E 的坐标为(,-).2254511.(1)y=200x+74000,10≤x≤30(2)三种方案,依次为x=28,29,30的情况.15.(1)由题设知,A 市、B 市、C 市发往D 市的机器台数分x ,x ,18-2x ,发往E 市的机器台数分别为10-x ,10-x ,2x-10.于是W=200x+300x+400(18-2x )+800(10-x )+700(10-x )+500(2x-10)=-800x+17200.又 010,010,01828,59,x x x x ≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x 是整数).由上式可知,W 是随着x 的增加而减少的,所以当x=9时,W 取到最小值10000元; 当x=5时,W 取到最大值13200元.(2)由题设知,A 市、B 市、C 市发往D 市的机器台数分别为x ,y ,18-x-y ,发往E 市的机器台数分别是10-x ,10-y ,x+y-10,于是W=200x+800(10-x )+300y+700(10-y )+ 400(19-x-y )+500(x+y-10)=-500x-300y-17200.又010,010,010,010,0188,1018,x x y y x y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且(x ,y 为整数).010,010,018.x y x y ≤≤⎧⎪≤≤⎨⎪≤+≤⎩W=-200x-300(x+y )+17200≥-200×10-300×18+17200=9800.当x= 10,y=8时,W=9800.所以,W 的最小值为9800.又W=-200x-300(x+y )+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W 的最大值为14200.。

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案一、选择题1.已知函数y = 2x + 3,若x = 4,则y =a) 8b) 11c) 7d) 9答案:b) 112.若函数y = kx + 5,当x = 3时,y = 17,则k的值为:a) 3b) 4c) 5d) 6答案:d) 63.已知函数y = -3x + 2,若x = -2,则y =a) 4b) 8c) -2d) -8答案:a) 44.若函数y = 4x - 5,当x = -1时,y =a) -4b) 9c) -9d) 11答案:c) -9二、填空题1.函数y = 2x + 3表示一条直线,其斜率为____,截距为____。

答案:2,32.已知一次函数y = -5x + k,当x = 2时,y = 9,则k的值为____。

答案:193.已知函数y = 3x + 4,若x = -1,则y的值为____。

答案:14.函数y = -2x - 1与y轴交于点(____,0)。

答案:-0.5三、解答题1.已知函数y = 2x + 1,求:(1)当x = 3时,y的值为多少?(2)当y = 5时,求相应的x值。

解:(1)将x = 3代入函数中,得到y = 2*3 + 1 = 7。

所以当x = 3时,y的值为7。

(2)将y = 5代入函数中,得到5 = 2x + 1,解方程得到x = 2。

所以当y = 5时,相应的x值为2。

2.已知函数y = -3x + 5,求:(1)求函数与x轴和y轴的交点坐标。

(2)求函数的斜率和截距。

解:(1)当函数与x轴交点时,y = 0,代入函数得到0 = -3x + 5,解方程得到x = 5/3。

所以与x轴的交点坐标为(5/3, 0)。

当函数与y轴交点时,x = 0,代入函数得到y = 5。

所以与y轴的交点坐标为(0, 5)。

(2)已知函数y = -3x + 5,斜率为-3,截距为5。

四、应用题1.一个移动应用程序每下载一个应用,需支付固定的5元服务费和每个应用的2元费用。

数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)

数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)

数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)一.选择题(共9小题)1.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x 的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<102.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a3.函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠34.关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x轴的交点是(﹣2,0)③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有()A.5个 B.4个 C.3个 D.2个5.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.6.下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线7.已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m8.如果一次函数y=kx+b,当﹣3≤x≤1时,﹣1≤y≤7,则kb的值为()A.10 B.21 C.﹣10或2 D.﹣2或109.若函数y=(2m+1)x2+(1﹣2m)x+1(m为常数)是一次函数,则m的值为()A.m B.m=C.m D.m=﹣二.填空题(共9小题)10.直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=.11.已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第象限.12.已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k(k为常数)上,则a 与b的大小关系是a b.(填“>”“<”或“=”)13.已知正比例函数y=(1﹣m)x|m﹣2|,且y随x的增大而减小,则m的值是.14.如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为.15.已知一次函数y=(﹣3a+1)x+a的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是.16.如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C 为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCP的面积S与运动时间t(s)的函数图象如图2所示,则BC的长是.17.如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在同一条直线上,则点A2015的坐标是.18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD 沿x轴向右平移m个单位.当点A落在MN上时,则m=.三.解答题(共22小题)19.已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.20.如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.21.已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S=S△PAB.△QAB①用含a的代数式表示b;②若QA=QB,求点Q的坐标.22.某仓库甲、乙、丙三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图象,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙工作.(1)甲、乙、丙三辆车中,谁是进货车?(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨.23.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.25.已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2;(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.26.如图1,点A的坐标是(﹣2,0),直线y=﹣x+4和x轴、y轴的交点分别为B、C点.(1)判断△ABC的形状,并说明理由;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,它们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;并求当t等于多少时,S的值等于?②在运动过程中,当△MON为直角三角形时,求t的值.27.如图,一次函数y=﹣x+6的图象分别与y轴、x轴交于点A、B,点P从点B出发,沿BA以每秒1个单位的速度向点A运动,当点P到达点A时停止运动,设点P的运动时间为t秒.(1)点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点坐标;(2)在(1)的基础上,设点Q为y轴上一动点,当PQ+BQ的值最小时,求Q 点坐标;(3)在整个运动过程中,当t为何值时,△AOP为等腰三角形?28.如图,在平面直角坐标系中,已知点A(0,1)、D(﹣2,0),作直线AD 并以线段AD为一边向上作正方形ABCD.(1)填空:点B的坐标为,点C的坐标为.(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.29.有一根直尺,短边的长为2cm,长边的长为10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合,将直尺沿AB方向平移,如图②.设平移的长度为x cm,且满足0≤x≤10,直尺与直角三角形纸板重合部分的面积(即图中阴影部分)为Scm2.(1)当x=0时,S=;当x=4时,S=;当x=10时,S=.(2)是否存在一个位置,使阴影部分的面积为11cm2?若存在,求出此时x的值.30.如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且(n﹣3)2+=0,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求A、C两点的坐标;(2)连接PA,用含t的代数式表示△POA的面积;(3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.31.如图,在平面直角坐标系中,△ABC为等腰三角形,AB=AC,将△AOC沿直线AC折叠,点O落在直线AD上的点E处,直线AD的解析式为,则(1)AO=;AD=;OC=;(2)动点P以每秒1个单位的速度从点B出发,沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S 与t之间的函数关系式;(3)在(2)的条件下,直线CE上是否存在一点Q,使以点Q、A、D、P为顶点的四边形是平等四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.32.已知在平面直角坐标系中,A(a、o)、B(o、b)满足+|a﹣3|=0,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求a、b的值.(2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.(3)若∠OPD=45°,求点D的坐标.33.如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求AB的长;(2)求CD的所在直线的函数关系式;(3)若动点P从点B出发,以每秒1个单位长度的速度沿B→A方向运动,过P=,求此时点P的坐标.作x轴的垂线交x轴于点E,若S△PBE34.在平面直角坐标系xoy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q 为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.35.对于两个已知图形G1、G2,在G1上任取一点P,在G2上任取一点Q,当线段PQ的长度最小时,我们称这个最小的长度为图形G1、G2的“密距”;当线段PQ的长度最大值时,我们称这个最大的长度为图形G1、G2的“疏距”.请你在学习、理解上述定义的基础上,解决下面的问题;在平面直角坐标系xOy中,点A的坐标为(﹣3,4),点B的坐标为(3,4),矩形ABCD的对称中心为点O.(1)线段AD和BC的“密距”是,“疏距”是;(2)设直线y=x+b(b>0)与x轴、y轴分别交于点E、F,若线段EF与矩形ABCD的“密距”是1,求它们的“疏距”;(3)平面直角坐标系xOy中有一个四边形KLMN,将矩形ABCD绕点O旋转一周,在旋转过程中,它与四边形KLMN的“疏距”的最大值为7,①旋转过程中,它与四边形KLMN的“密距”的取值范围是;②求四边形KLMN的面积的最大值.36.在平面直角坐标系中,已知A,B两点分别在x轴,y轴上,OA=OB=4,C在线段OA上,AC=3,过点A作AE⊥BC,交BC的延长线于E,直线AE交y轴于D.(1)求点D坐标.(2)动点P从点A出发,沿射线AO方向以每秒1个单位长度运动,设点P的运动时间为t秒,△POB的面积为y,求y与t之间的函数关系式并直接写出自变量的取值范围.(3)在(2)问的条件下,当t=1,PB=5时,在y轴上是否存在一点Q,使△PBQ 为以PB为腰的等腰三角形?若存在,求点Q的坐标;若不存在,请说明理由.37.如图,四边形OABC中,CB∥OA,∠OCB=90°,CB=1,OA=OC,O为坐标原点,点A在x轴上,点C在y轴上,直线过A点,且与y轴交于D点.(1)求出A、点B的坐标;(2)求证:AD=BO且AD⊥BO;(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.38.如图,一次函数y=﹣x+的图象与坐标轴分别交于点A和B两点,将△AOB沿直线CD折起,使点A与点B重合,直线CD交AB于点D.(1)求点C的坐标;(2)在射线DC上求一点P,使得PC=AC,求出点P的坐标;(3)在坐标平面内,是否存在点Q(除点C外),使得以A、D、Q为顶点的三角形与△ACD全等?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理.39.已知,如图,在平面直角坐标系中,点A、B的横坐标恰好是方程x2﹣4=0的解,点C的纵坐标恰好是方程x2﹣4x+4=0的解,点P从C点出发沿y轴正方向以1个单位/秒的速度向上运动,连PA、PB,D为AC的中点.1)求直线BC的解析式;2)设点P运动的时间为t秒,问:当t为何值时,DP与DB垂直且相等?3)如图2,若PA=AB,在第一象限内有一动点Q,连QA、QB、QP,且∠PQA=60°,问:当Q在第一象限内运动时,∠APQ+∠ABQ的度数和是否会发生改变?若不变,请说明理由并求其值.40.方成同学看到一则材料,甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h,甲出发0.5h与乙相遇,…请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲、乙行驶的路程S甲、S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象.数学初二一次函数提高练习与常考题和培优难题压轴题(含解析)参考答案与试题解析一.选择题(共9小题)1.(2016春•农安县月考)已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<10【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,进行求解.【解答】解:根据三角形的三边关系,得则0<20﹣2x<2x,由20﹣2x>0,解得x<10,由20﹣2x<2x,解得x>5,则5<x<10.故选D.【点评】本题考查了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是解题的关键.2.(2012秋•镇赉县校级月考)如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【分析】根据所在象限判断出a、b、c的符号,再根据直线越陡,则|k|越大可得答案.【解答】解:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则|k|越大,∴c>b>a,故选:B.【点评】此题主要考查了正比例函数图象的性质,y=kx中,当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x 的增大而减小.同时注意直线越陡,则|k|越大.3.(2016春•重庆校级月考)函数的自变量x的取值范围是()A.x≤2 B.x≥2且x≠3 C.x≥2 D.x≤2且x≠3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0且x﹣3≠0,解得:x≤2且x≠3,自变量的取值范围x≤2,故选A.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(2016春•南京校级月考)关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x轴的交点是(﹣2,0)③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有()A.5个 B.4个 C.3个 D.2个【分析】根据一次函数的性质和图象上点的坐标特征解答.【解答】解:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;②当y=0时,y=﹣x﹣2中,x=﹣2,故图象过(﹣2,0),正确;③因为k=﹣1<0,所以y随x增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2与y=﹣x的k值(斜率)相同,故两图象平行,正确.故选B.【点评】本题考查了一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.5.(2016春•重庆校级月考)一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B.C.D.【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【解答】解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.【点评】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.6.(2015春•浠水县校级月考)下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线【分析】分别利用一次函数和反比例函数的定义以及其性质分析得出即可.【解答】解:A、所有的正比例函数肯定是一次函数,正确,不合题意;B、一次函数的一般形式是y=kx+b(k≠0),故此选项错误,符合题意;C、正比例函数和一次函数的图象都是直线,正确,不合题意;D、正比例函数的图象是一条过原点的直线,正确,不合题意;故选:B.【点评】此题主要考查了一次函数和反比例函数的定义,正确把握其性质是解题关键.7.(2016春•无锡校级月考)已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m【分析】根据一次函数图象与系数的关系,确定m、n的符号,然后由绝对值、二次根式的化简运算法则解得即可.【解答】解:根据图示知,关于x的一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0;∴|n﹣m|﹣=n﹣m﹣(﹣m)+(n﹣m)=2n﹣m.故选D.【点评】本题主要考查了一次函数图象与系数的关系,二次根式的性质与化简,绝对值的意义.一次函数y=kx+b(k≠0,b≠0)的图象,当k<0,b>0时,经过第一、二、四象限.8.(2015秋•盐城校级月考)如果一次函数y=kx+b,当﹣3≤x≤1时,﹣1≤y≤7,则kb的值为()A.10 B.21 C.﹣10或2 D.﹣2或10【分析】由一次函数的性质,分k>0和k<0时两种情况讨论求解.【解答】解:由一次函数的性质知,当k>0时,y随x的增大而增大,所以得,解得.即kb=10;当k<0时,y随x的增大而减小,所以得,解得.即kb=﹣2.所以kb的值为﹣2或10.故选D.【点评】此题考查一次函数的性质,要注意根据一次函数图象的性质分情况讨论.9.(2015秋•西安校级月考)若函数y=(2m+1)x2+(1﹣2m)x+1(m为常数)是一次函数,则m的值为()A.m B.m=C.m D.m=﹣【分析】根据一次函数的定义列出算式计算即可.【解答】解:由题意得,2m+1=0,解得,m=﹣,故选:D.【点评】本题考查的是一次函数的定义,一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.二.填空题(共9小题)10.(2014春•邹平县校级月考)直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=﹣3.【分析】根据一次函数与正比例函数的关系可得直线y=kx向下平移2个单位后得y=kx﹣2,然后把(﹣4,10)代入y=kx﹣2即可求出k的值.【解答】解:直线y=kx向下平移2个单位后所得解析式为y=kx﹣2,∵经过点(﹣4,10),∴10=﹣4k﹣2,解得:k=﹣3,故答案为:﹣3.【点评】此题主要考查了一次函数图象与几何变换,平移后解析式有这样一个规律“左加右减,上加下减”.11.(2016春•南京校级月考)已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第二、三、四象限.【分析】根据直线y=kx+b经过第一、二、四象限可以确定k、b的符号,则易求﹣b的符号,由﹣b,k的符号来求直线y=﹣bx+k所经过的象限.【解答】解:∵直线y=kx+b经过第一、二、四象限,∴k<0,b>0,∴﹣b<0,∴直线y=﹣bx+k经过第二、三、四象限.故答案是:二、三、四.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.12.(2016春•大丰市校级月考)已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k(k为常数)上,则a与b的大小关系是a<b.(填“>”“<”或“=”)【分析】先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<﹣2即可得出结论.【解答】解:∵一次函数y=x+k(k为常数)中,k=>0,∴y随x的增大而增大,∵﹣4<﹣2,∴a<b.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.(2015春•建瓯市校级月考)已知正比例函数y=(1﹣m)x|m﹣2|,且y随x 的增大而减小,则m的值是3.【分析】先根据正比例函数的定义列出关于k的不等式组,求出k取值范围,再根据此正比例函数y随x的增大而减小即可求出k的值.【解答】解:∵此函数是正比例函数,∴,解得m=3,故答案为:3.【点评】本题考查的是正比例函数的定义及性质,根据正比例函数的定义列出关于k的不等式组是解答此题的关键.14.(2016春•天津校级月考)如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为(﹣,﹣).【分析】过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,先根据垂线段最短得出当点B与点D重合时线段AB最短,再根据直线OB的解析式为y=x得出△AOD是等腰直角三角形,故OE=OA=,由此可得出结论.【解答】解:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(﹣,﹣).故答案为:(﹣,﹣).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(2015春•宜兴市校级月考)已知一次函数y=(﹣3a+1)x+a的图象上两点A (x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是0≤a<.【分析】根据y随x的增大而增大可得x的系数大于0,图象不经过第四象限,那么经过一三或一二三象限,那么此函数的常数项应为非负数.【解答】解:∵x1>x2时,y1>y2,∴﹣3a+1>0,解得a<,∵图象不经过第四象限,∴经过一三或一二三象限,∴a≥0,∴0≤a<.故答案为:0≤a<.【点评】考查了一次函数图象上的点的坐标的特点;得到函数图象可能经过的象限是解决本题的关键.16.(2015秋•靖江市校级月考)如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCP 的面积S与运动时间t(s)的函数图象如图2所示,则BC的长是2.【分析】由函数的图象可知点P从点A运动到点D用了2秒,从而得到AD=2,当点P在DE上时,三角形的面积不变,故此DE=4,从而可求得DC=2,于是得到AC=2+2,从而可求得BC的长为2+.【解答】解:由函数图象可知:AD=1×2=2,DE=1×(6﹣2)=4.∵△DEC是等腰直角三角形,∴DC===2.∴AC=2+2.∵△ABC是等腰直角三角形,∴BC===.故答案为:.【点评】本题主要考查的是动点问题的函数图象,由函数图象判断出AD、DE的长度是解题的关键.17.(2016春•盐城校级月考)如图,放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在同一条直线上,则点A2015的坐标是(a,a).【分析】根据题意得出直线BB1的解析式为:y=x,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(a,0),AO∥A1B1,∠B1OC=60°,∴OC=a,CB1=OB1sin60°=a,∴B1的坐标为:(a,a),∴点B1,B2,B3,…都在直线y=x上,∵B1(a,a),∴A1(a,a),∴A2(2a,a),…A n(a,).∴A2015(a,a).故答案为.【点评】此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A 点横纵坐标变化规律是解题关键.18.(2016春•泰兴市校级月考)如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m=3.【分析】根据菱形的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.【解答】解:∵菱形ABCD的顶点C(﹣1,0),点B(0,2),∴点A的坐标为(﹣1,4),当y=4时,﹣x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,故答案为3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单.三.解答题(共22小题)19.(2016春•武城县校级月考)已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.【分析】(1)根据一次函数图象上点的坐标特征,把(﹣1,2)代入y=(m+1)x+2m﹣6求出m的值即可得到一次函数解析式;(2)根据两直线平行的问题得到m+1=2,解出m=1,从而可确定一次函数解析式.(3)两直线的解析式联立方程,解方程即可求得.【解答】解:(1)把(﹣1,2)代入y=(m+1)x+2m﹣6得﹣(m+1)+2m﹣6=2,解得m=9,所以一次函数解析式为y=10x+12;(2)因为函数y=(m+1)x+2m﹣6的图象与直线y=2x+5平行,所以m+1=2,解得m=1,所以一次函数解析式为y=2x﹣4.(3)解得,∴两直线的交点为(1,﹣2).【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.20.(2015秋•兴化市校级月考)如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法即可直接求得l2的函数解析式;(2)首先解两条之间的解析式组成的方程组求得C的坐标,然后利用三角形的面积公式即可求解;(3)△ADF和△ADC的面积相等,则F的纵坐标与C的总坐标一定互为相反数,代入l2的解析式即可求解;(4)求得C关于x轴的对称点,然后求得经过这个点和B点的直线解析式,直线与x轴的交点就是E.【解答】解:(1)设l2的解析式是y=kx+b,根据题意得:,解得:,则函数的解析式是:y=﹣x+4;(2)在中令y=0,解得:x=﹣2,则D的坐标是(﹣2,0).。

(完整版)初二数学一次函数综合习题提高训练及答案详解

(完整版)初二数学一次函数综合习题提高训练及答案详解

一次函数提高训练一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2 (B)y1=y2(C)y1<y2 (D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m 的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2(C)-4<a<2且a≠0 (D)-4<a<215.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(•0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为()(A)0 (B)1 (C)2 (D)无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个18.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A 的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)•之间的函数关系的是()20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(b≠a),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、•q•)表示______元.9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,•则一次函数的解析式为________.10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为Sk(k=1,2,3,……,2008),那么S1+S2+…+S2008=_______.三、解答题1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=3的图象与x轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.已知直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P(•0,-1),Q(0,k),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,⊙Q•与直线AB相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩g gg g g其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①若a+b+c≠0,则p=()()()a b b c c aa b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1,∴当p=2时,y=px+q过第一、二、三象限;当p=-1时,y=px+p过第二、三、四象限,综上所述,y=px+p一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p2+4│q│>0,||k b pk b qk b+=-⎫⎪=-⇒⎬⎪≠⎭ggk·b<0,一次函数y=kx+b中,y随x的增大而减小kkb<⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A.二、1.-5≤y≤19 2.2<m<3 3.如y=-x+1等.4.m≥0.提示:应将y=-2x+m的图像的可能情况考虑周全.5.(13,3)或(53,-3).提示:∵点P到x轴的距离等于3,∴点P的纵坐标为3或-3当y=3时,x=13;当y=-3时,x=53;∴点P的坐标为(13,3)或(53,-3).提示:“点P到x轴的距离等于3”就是点P的纵坐标的绝对值为3,故点P的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b.∵直线y=kx+b与y=x+1平行,∴k=1,∴y=x+b.将P(8,2)代入,得2=8+b,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4xy xy x y⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得∴两函数的交点坐标为(98,34),在第一象限.8.222()aq bpbp aq--. 9.y=2x+7或y=-2x+3 10.10042009三、1.(1)由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4(•函数图象略).(2)∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z与x成正比例,∴设z=kx(k≠0)为常数,则y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B(-2,yB),其中yB<0,∵S△AOB=6,∴12AO·│yB│=6,∴yB=-2,把点B(-2,-2)代入正比例函数y=kx,•得k=1.把点A(-6,0)、B(-2,-2)代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴= 5.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.,面积为2.8.∵点A、B分别是直线y=3与x轴和y轴交点,∴A(-3,0),B(0),∵点C坐标(1,0)由勾股定理得,设点D的坐标为(x,0).(1)当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD=,∴=①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为(52,0).设图象过B、D两点的一次函数解析式为y=kx+b,5 52b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-5.(2)若点D在点C左侧则x<1,可证△ABC∽△ADB,∴AD BDAB CB=,∴=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D点坐标为(-14,0),∴图象过B、D(-14,0)两点的一次函数解析式为,综上所述,满足题意的一次函数为y=-5或.9.直线y=12x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),∴OA=6,OB=3,∵OA ⊥OB ,CD ⊥AB ,∴∠ODC=∠OAB ,∴cot ∠ODC=cot ∠OAB ,即OD OA OC OB =,∴OD=463OC OA OB ⨯=g =8.∴点D 的坐标为(0,8), 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为(225,-45).10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩ ∴A 、B 两点的坐标分别为(-3,0),(0,4)•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′(如图), 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt △BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78.∴当k=78时,⊙Q 与直线AB 相切.11.(1)y=200x+74000,10≤x≤30(2)三种方案,依次为x=28,29,30的情况.12.设稿费为x元,∵x>7104>400,∴x-f(x)=x-x(1-20%)20%(1-30%)=x-x·45·15·710x=111125x=7104.∴x=7104×111125=8000(元).答:这笔稿费是8000元.13.(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5,③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186,得54<y<552 3.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.则y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+•400(19-x-y)+500(x+y-10)=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩(x,y为整数).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.。

八年级数学一次函数提高练习与常考题和培优难题压轴题(含解析)

八年级数学一次函数提高练习与常考题和培优难题压轴题(含解析)

一次函数提高练习与常考题和培优难题压轴题( 含解析)9小题)一.选择题(共1.函数的自变量x的取值范围是()A.x≤ 2 B.x≥ 2 且x≠3C.x≥2D.x≤ 2 且x≠32.关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x 轴的交点是(﹣2,0)③由图象可知y 随x 的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2 平行的直线,其中正确说法有()A.5 个B.4 个C.3 个D.2 个3.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y 与x2x,那么自变量x的取值范围是()的函数关系式为y=20﹣A.x>0 B.0<x<10 C.0<x<5 D.5<x<104.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c 的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a5.一辆慢车以50 千米/小时的速度从甲地驶往乙地,一辆快车以75 千米/小时发,则的速度从乙地驶往甲地,甲、乙两地之间的距500 千米,两车同时出离为图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B. C .D.6.下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线7.已知x 关于的一次函数y=mx+n 的图象如上图,则| n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣m8.如果一次函数y=kx+b,当﹣3≤x≤ 1 时,﹣1≤y≤7,则k b 的值为()A.10 B.21 C.﹣10 或2 D.﹣2或102+(1﹣2m)x +1(m 为常数)是一次函数,则m的值为9.若函数y=(2m+1)x()77页)第2页(共二.填空题(共9小题)10.直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=.11.已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣b x+k经过第象限.12.已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k(k为常数)上,则a与b的大小关系是a b.(填“>”<“”或“=)”,且y随x的增大而减小,则m的值是.|m﹣2|13.已知正比例函数y=(1﹣m)x14.如图,点A的坐标为(﹣1,0),点B(a,a),当线段A B最短时,点B的坐标为.15.已知一次函数y=(﹣3a+1)x+a的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的取值范围是.16.如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,S与运动时间t(s)的函沿着折线A﹣D﹣E运动.在运动过程中,△BCP的面积数图象如图2所示,则BC的长是.17.如图,放置的△OAB1,△B1A1B2,△B2A2B3,⋯都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,⋯都在同一条直线上,则点A2015的坐标是.18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD 沿x轴向右平移m个单位.当点A落在MN上时,则m=.19.已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.20.如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.21.已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S△QAB=S△PAB.①用含a的代数式表示b;②若QA=QB,求点Q的坐标.22.某仓库甲、乙、丙三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图象,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙工作.(1)甲、乙、丙三辆车中,谁是进货车?(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨.23.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.25.已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;2=OE2+A F2;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.26.如图1,点A的坐标是(﹣2,0),直线y=﹣x+4和x轴、y轴的交点分别为B、C点.(1)判断△ABC的形状,并说明理由;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,它们都停止运动.设M运动t秒时,△MON的面积为S.①求S与t的函数关系式;并求当t等于多少时,S的值等于?②在运动过程中,当△MON为直角三角形时,求t的值.27.如图,一次函数y=﹣x+6 的图象分别与y 轴、x 轴交于点A、B,点P从点B出发,沿BA以每秒 1 个单位的速度向点 A 运动,当点P到达点A 时停止运动,设点P的运动时间为t 秒.(1)点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点坐标;(2)在(1)的基础上,设点Q 为y 轴上一动点,当PQ+BQ的值最小时,求Q 点坐标;(3)在整个运动过程中,当t 为何值时,△AOP为等腰三角形?28.如图,在平面直角坐标系中,已知点A(0,1)、D(﹣2,0),作直线ADA D为一边向上作正方形ABCD.并以线段(1)填空:点B的坐标为,点C的坐标为.线DA 向上平移,直至正方形的(2)若正方形以每秒个单位长度的速度沿射顶点C落在y 轴上时停止运动.在运动过程中,设正方形落在y 轴右侧部分的面量t 的取值积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变范围.29.有一根直尺,短边的长为2cm,长边的长为10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点 D 与点A 重合,将直尺沿AB方向平移,如图②.设平移0≤x≤10,直尺与直角三角形纸板重合部分的面积(即的长度为x cm,且满足图中阴影部分)为Scm2.(1)当x=0时,S=;当x=4时,S=;当x=10时,S=.(2)是否存在一个位置,使阴影部分的面积为11cm2?若存在,求出此时x的值.30.如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、2+=0,C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且(n﹣3)点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求A、C两点的坐标;(2)连接PA,用含t的代数式表示△POA的面积;(3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.31.如图,在平面直角坐标系中,△ABC为等腰三角形,AB=AC,将△AOC沿直线AC折叠,点O落在直线AD上的点E处,直线AD的解析式为,则(1)AO=;AD=;OC=;(2)动点P以每秒1个单位的速度从点B出发,沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S 与t之间的函数关系式;(3)在(2)的条件下,直线CE上是否存在一点Q,使以点Q、A、D、P为顶点的四边形是平等四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.32.已知在平面直角坐标系中,A(a、o)、B(o、b)满足+|a﹣3|=0,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求a、b的值.(2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.(3)若∠OPD=4°5,求点D的坐标.33.如图,?ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求AB的长;(2)求CD的所在直线的函数关系式;(3)若动点P从点B出发,以每秒1个单位长度的速度沿B→A方向运动,过P 作x轴的垂线交x轴于点E,若S△PBE=,求此时点P的坐标.34.在平面直角坐标系x oy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非:常距离”,给出如下定义若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).,0),B为y轴上的一个动点,(1)已知点A(﹣①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.35.对于两个已知图形G1、G2,在G1上任取一点P,在G2上任取一点Q,当线段PQ的长度最小时,我们称这个最小的长度为图形G1、G2的“密距”;当线段PQ的长度最大值时,我们称这个最大的长度为图形G1、G2的“疏距”.请你在学习、理解上述定义的基础上,解决下面的问题;在平面直角坐标系xOy中,点A的坐标为(﹣3,4),点B的坐标为(3,4),矩形ABCD的对称中心为点O.(1)线段AD和BC的“密距”是,“疏距”是;(2)设直线y=x+b(b>0)与x轴、y轴分别交于点E、F,若线段EF与矩形ABCD的“密距”是1,求它们的“疏距”;(3)平面直角坐标系xOy中有一个四边形KLMN,将矩形ABCD绕点O旋转一周,在旋转过程中,它与四边形KLMN的“疏距”的最大值为7,①旋转过程中,它与四边形KLMN的“密距”的取值范围是;②求四边形KLMN的面积的最大值.36.在平面直角坐标系中,已知A,B两点分别在x轴,y轴上,OA=OB=4,C在线段OA上,AC=3,过点A作AE⊥BC,交BC的延长线于E,直线AE交y轴于D.(1)求点D坐标.(2)动点P从点A出发,沿射线AO方向以每秒1个单位长度运动,设点P的运动时间为t秒,△POB的面积为y,求y与t之间的函数关系式并直接写出自变量的取值范围.(3)在(2)问的条件下,当t=1,PB=5时,在y轴上是否存在一点Q,使△PBQ为以PB为腰的等腰三角形?若存在,求点Q的坐标;若不存在,请说明理由.37.如图,四边形OABC中,CB∥OA,∠OCB=90°,CB=1,OA=OC,O为坐标原点,点A在x轴上,点C在y轴上,直线过A点,且与y轴交于D点.(1)求出A、点B的坐标;(2)求证:AD=BO且AD⊥BO;(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.38.如图,一次函数y=﹣x+的图象与坐标轴分别交于点A和B两点,将△AOB沿直线CD折起,使点A与点B重合,直线CD交AB于点D.(1)求点C的坐标;(2)在射线DC上求一点P,使得PC=AC,求出点P的坐标;(3)在坐标平面内,是否存在点Q(除点C外),使得以A、D、Q为顶点的三角形与△ACD全等?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理.2﹣4=0 39.已知,如图,在平面直角坐标系中,点 A 、B 的横坐标恰好是方程x的解,点 C 的纵坐标恰好是方程x 2﹣4x+4=0 的解,点 P 从 C 点出发沿 y 轴正方向以 1 个单位/ 秒的速度向上运动,连P A 、PB ,D 为 AC 的中点.1)求直线 BC 的解析式;2)设点 P 运动的时间为 t 秒,问:当 t 为何值时, DP 与 DB 垂直且相等?3)如图 2,若 PA=AB ,在第一象限内有一动点 Q ,连Q A 、QB 、QP ,且∠PQA=60°, 问:当 Q 在第一象限内运动时,∠ APQ+∠ABQ 的度数和是否会发生改变?若不 变,请说明理由并求其值.40.方成同学看到一则材料,甲开汽车,乙骑自行车从 M 地出发沿一条公路匀 速前往 N 地,设乙行驶的时间为 t (h ),甲乙两人之间的距离为 y (km ),y 与 t 的函数关系如图 1 所示,方成思考后发现了图 1 的部分正确信息,乙先出发 1h , 甲出发 0.5h 与乙相遇, ⋯ 请你帮助方成同学解决以下问题:(1)分别求出线段B C ,CD 所在直线的函数表达式;(2)当 20<y <30 时,求 t 的取值范围;(3)分别求出甲、乙行驶的路程S 甲、S 乙与时间 t 的函数表达式,并在图 2 所给 的直角坐标系中分别画出它们的图象.优难题压轴题数学初二一次函数提高练习与常考题和培( 含解析)参考答案与试题解析9小题)一.选择题(共1.(2016 春?重庆校级月考)函数的自变量x 的取值范围是()A.x≤ 2 B.x≥ 2 且x≠3C.x≥2D.x≤ 2 且x≠3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.3≠0,【解答】解:根据题意得:2﹣x≥0 且x﹣解得:x≤ 2 且x≠3,自变量的取值范围x≤2,故选A.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.(2016 春?南京校级月考)关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x 轴的交点是(﹣2,0)③由图象可知y随x 的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2 平行的直线,其中正确说法有()A.5 个B.4 个C.3 个D.2 个【分析】根据一次函数的性质和图象上点的坐标特征解答.【解答】解:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;②当y=0 时,y=﹣x﹣2 中,x=﹣2,故图象过(﹣2,0),正确;③因为k=﹣1<0,所以y 随x增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2 与y=﹣x 的k 值(斜率)相同,故两图象平行,正确.故选B.【点评】本题考查了一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b 中,当k>0 时,y 随x 的增大而增大;当k<0 时,y 随x 的增大而减小.3.(2016 春?农安县月考)已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y 与x 的函数关系式为y=20﹣2x,那么自变量x 的取值范围是()A.x>0 B.0<x<10 C.0<x<5 D.5<x<10【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,进行求解.【解答】解:根据三角形的三边关系,得则0<20﹣2x<2x,由20﹣2x>0,解得x<10,由20﹣2x<2x,解得x>5,则5<x<10.故选D.【点评】本题考查了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是解题的关键.4.(2012 秋?镇赉县校级月考)如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c 的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a【分析】根据所在象限判断出a、b、c 的符号,再根据直线越陡,则| k| 越大可得答案.【解答】解:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则| k| 越大,∴c>b>a,故选:B.【点评】此题主要考查了正比例函数图象的性质,y=kx中,当k>0 时,图象经过一、三象限,y随x 的增大而增大;当k<0 时,图象经过二、四象限,y 随x 的增大而减小.同时注意直线越陡,则| k| 越大.5.(2016 春?重庆校级月考)一辆慢车以50 千米/小时的速度从甲地驶往乙地,一辆快车以75 千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500 千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是()A.B. C .D.【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【解答】解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.【点评】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.6.(2015春?浠水县校级月考)下列语句不正确的是()A.所有的正比例函数肯定是一次函数B.一次函数的一般形式是y=kx+bC.正比例函数和一次函数的图象都是直线D.正比例函数的图象是一条过原点的直线【分析】分别利用一次函数和反比例函数的定义以及其性质分析得出即可.【解答】解:A、所有的正比例函数肯定是一次函数,正确,不合题意;B、一次函数的一般形式是y=kx+b(k≠0),故此选项错误,符合题意;C、正比例函数和一次函数的图象都是直线,正确,不合题意;D、正比例函数的图象是一条过原点的直线,正确,不合题意;故选:B.【点评】此题主要考查了一次函数和反比例函数的定义,正确把握其性质是解题关键.7.(2016春?无锡校级月考)已知x关于的一次函数y=mx+n的图象如上图,则|n﹣m|﹣可化简()A.n B.n﹣2m C.m D.2n﹣mm、n 的符号,然后由绝对值、【分析】根据一次函数图象与系数的关系,确定二次根式的化简运算法则解得即可.x的一次函数y=mx+n 的图象经过第一、二、四【解答】解:根据图示知,关于象限,∴m<0,n>0;∴| n﹣m| ﹣=n﹣m﹣(﹣m)+(n﹣m)=2n﹣m.D.故选【点评】本题主要考查了一次函数图象与系数的关系,二次根式的性质与化简,绝对值的意义.一次函数y=kx+b(k≠0,b≠0)的图象,当k<0,b>0 时,经过第一、二、四象限.8.(2015 秋?盐城校级月考)如果一次函数y=kx+b,当﹣3≤x≤ 1 时,﹣1≤y≤7,()则kb 的值为A.10 B.21 C.﹣10 或2 D.﹣2 或10解.【分析】由一次函数的性质,分k>0 和k<0 时两种情况讨论求【解答】解:由一次函数的性质知,当k>0 时,y 随x 的增大而增大,所以得,解得.即kb=10;当k<0 时,y 随x 的增大而减小,所以得,解得.即kb=﹣2.所以kb的值为﹣2或10.故选D.【点评】此题考查一次函数的性质,要注意根据一次函数图象的性质分情况讨论.2+(1﹣2m)x+1(m为常数)9.(2015秋?西安校级月考)若函数y=(2m+1)x是一次函数,则m的值为()A.m B.m=C.m D.m=﹣【分析】根据一次函数的定义列出算式计算即可.【解答】解:由题意得,2m+1=0,解得,m=﹣,故选:D.【点评】本题考查的是一次函数的定义,一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.二.填空题(共9小题)10.(2014春?邹平县校级月考)直线y=kx向下平移2个单位长度后恰好经过点(﹣4,10),则k=﹣3.【分析】根据一次函数与正比例函数的关系可得直线y=kx向下平移2个单位后得y=kx﹣2,然后把(﹣4,10)代入y=kx﹣2即可求出k的值.【解答】解:直线y=kx向下平移2个单位后所得解析式为y=kx﹣2,∵经过点(﹣4,10),∴10=﹣4k﹣2,解得:k=﹣3,故答案为:﹣3.【点评】此题主要考查了一次函数图象与几何变换,平移后解析式有这样一个规律“左加右减,上加下减”.11.(2016春?南京校级月考)已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第二、三、四象限.【分析】根据直线y=kx+b经过第一、二、四象限可以确定k、b的符号,则易求﹣b的符号,由﹣b,k的符号来求直线y=﹣bx+k所经过的象限.【解答】解:∵直线y=kx+b经过第一、二、四象限,∴k<0,b>0,∴﹣b<0,∴直线y=﹣bx+k经过第二、三、四象限.故答案是:二、三、四.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.12.(2016春?大丰市校级月考)已知点A(﹣4,a)、B(﹣2,b)都在直线y=x+k (k为常数)上,则a与b的大小关系是a<b.(填“>”<“”或“=)”【分析】先根据一次函数的解析式判断出一次函数的增减性,再根据﹣4<﹣2即可得出结论.【解答】解:∵一次函数y=x+k(k为常数)中,k=>0,∴y随x的增大而增大,∵﹣4<﹣2,∴a<b.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.|m﹣2|,且y随x 13.(2015春?建瓯市校级月考)已知正比例函数y=(1﹣m)x的增大而减小,则m的值是3.【分析】先根据正比例函数的定义列出关于k的不等式组,求出k取值范围,再根据此正比例函数y随x的增大而减小即可求出k的值.【解答】解:∵此函数是正比例函数,∴,解得m=3,故答案为:3.【点评】本题考查的是正比例函数的定义及性质,根据正比例函数的定义列出关于k的不等式组是解答此题的关键.14.(2016春?天津校级月考)如图,点A的坐标为(﹣1,0),点B(a,a),当线段AB最短时,点B的坐标为(﹣,﹣).【分析】过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,先根据垂线段最短得出当点B与点D重合时线段AB最短,再根据直线OB的解析式为y=x得出△AOD是等腰直角三角形,故OE=OA=,由此可得出结论.【解答】解:过点A作AD⊥OB于点D,过点D作OE⊥x轴于点E,∵垂线段最短,∴当点B与点D重合时线段AB最短.∵直线OB的解析式为y=x,∴△AOD是等腰直角三角形,∴OE=OA=1,∴D(﹣,﹣).故答案为:(﹣,﹣).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点.的坐标一定适合此函数的解析式是解答此题的关键15.(2015春?宜兴市校级月考)已知一次函数y=(﹣3a+1)x+a的图象上两点A (x1,y1),B(x2,y2),当x1>x2时,y1>y2,且图象不经过第四象限,则a的是0≤a<.取值范围【分析】根据y随x的增大而增大可得x的系数大于0,图象不经过第四象限,负数.为非那么经过一三或一二三象限,那么此函数的常数项应【解答】解:∵x1>x2时,y1>y2,∴﹣3a+1>0,解得a<,∵图象不经过第四象限,∴经过一三或一二三象限,∴a≥0,∴0≤a<.故答案为:0≤a<.【点评】考查了一次函数图象上的点的坐标的特点;得到函数图象可能经过的象.限是解决本题的关键16.(2015秋?靖江市校级月考)如图1,在等腰Rt△ABC中,D为斜边AC边上一点,以CD为直角边,点C为直角顶点,向外构造等腰Rt△CDE.动点P从点A出发,以1个单位/s的速度,沿着折线A﹣D﹣E运动.在运动过程中,△BCPB C的长是2.t(s)的函数图象如图2所示,则的面积S与运动时间【分析】由函数的图象可知点P从点A运动到点D用了2秒,从而得到AD=2,D E=4,从而可求得DC=2,于是当点P在DE上时,三角形的面积不变,故此得到AC=2+2,从而可求得BC的长为2+.2)=4.【解答】解:由函数图象可知:AD=1×2=2,DE=1×(6﹣∵△DEC是等腰直角三角形,∴DC===2.∴AC=2+2.∵△ABC是等腰直角三角形,∴BC===.故答案为:.出AD、DE的【点评】本题主要考查的是动点问题的函数图象,由函数图象判断.长度是解题的关键17.(2016春?盐城校级月考)如图,放置的△OAB1,△B1A1B2,△B2A2B3,⋯都是边长为a的等边三角形,点A在x轴上,点O,B1,B2,B3,⋯都在同一条直点A2015的坐标是(a,a).线上,则【分析】根据题意得出直线B B1的解析式为:y=x,进而得出A,A1,A2,A3坐标,进而得出坐标变化规律,进而得出答案.B1C,垂足为C,B1向x轴作垂线【解答】解:过由题意可得:A(a,0),AO∥A1B1,∠B1OC=60°,∴OC=a,CB1=OB1sin60=°a,∴B1的坐标为:(a,a),∴点B1,B2,B3,⋯都在直线y=x上,∵B1(a,a),∴A1(a,a),∴A2(2a,a),⋯A n(a,).∴A2015(a,a).故答案为.,得出A 【点评】此题主要考查了一次函数图象上点的坐标特征以及数字变化类点横纵坐标变化规律是解题关键.18.(2016春?泰兴市校级月考)如图,在直角坐标系中,菱形ABCD的顶点坐标C(﹣1,0)、B(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m=3.【分析】根据菱形的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.【解答】解:∵菱形ABCD的顶点C(﹣1,0),点B(0,2),∴点A的坐标为(﹣1,4),当y=4时,﹣x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,故答案为3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单.三.解答题(共22小题)19.(2016春?武城县校级月考)已知:函数y=(m+1)x+2m﹣6(1)若函数图象过(﹣1,2),求此函数的解析式.(2)若函数图象与直线y=2x+5平行,求其函数的解析式.(3)求满足(2)条件的直线与直线y=﹣3x+1的交点.【分析】(1)根据一次函数图象上点的坐标特征,把(﹣1,2)代入y=(m+1)x+2m﹣6求出m的值即可得到一次函数解析式;(2)根据两直线平行的问题得到m+1=2,解出m=1,从而可确定一次函数解析式.(3)两直线的解析式联立方程,解方程即可求得.【解答】解:(1)把(﹣1,2)代入y=(m+1)x+2m﹣6得﹣(m+1)+2m﹣6=2,解得m=9,所以一次函数解析式为y=10x+12;(2)因为函数y=(m+1)x+2m﹣6的图象与直线y=2x+5平行,所以m+1=2,解得m=1,所以一次函数解析式为y=2x﹣4.(3)解得,∴两直线的交点为(1,﹣2).【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.20.(2015秋?兴化市校级月考)如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.。

初二年级一次函数所有知识点总结及常考题提高难题压轴题练习[含答案及解析]

初二年级一次函数所有知识点总结及常考题提高难题压轴题练习[含答案及解析]

()()()321000.0k ⎪⎩⎪⎨⎧<=>>b b b ()()()321000.0k ⎪⎩⎪⎨⎧<=><b b b 初二一次函数所有知识点总结和常考题知识点:1.变量与常量:在一个变化过程中,数值发生变化的为变量,数值不变的是常量。

2.函数:在一个变化过程中,如果有两个变量x 与y ,并且对于想x 的每一个确定的值,y 都有唯一确定的值与其对应,则x 自变量,y 是x 的函数。

3.函数解析式:用关于自变量的数学式子表示函数与自变量之间的关系的式子。

4.描述函数的方法:解析式法、列表法、图像法。

5画函数图象的一般步骤:①列表:一次函数只要列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值②描点:在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点③连线:依次用平滑曲线连接各点。

6.正比列函数:形如y=kx (k ≠0)的函数,k 是比例系数。

7.正比列函数的图像性质:⑴ y=kx (k ≠0)的图象是一条经过原点的直线;⑵增减性:①当k>0时,直线y=kx 经过第一、三象限,y 随x 的增大而增大;②当k<0时,直线y=kx 经过第二、四象限,y 随x 的增大而减小,8.一次函数:形如y=kx+b (k ≠0)的函数,则称y 是x 的一次函数。

当b=0时,称y 是x 的正比例函数。

9. 一次函数的图像性质: ⑴图象是一条直线;⑵增减性:①当k>0时, y 随x 的增大而增大;②当k<0时, y 随x 的增大而减小。

10点带入函数一般式列出方程组,求出待定系数;(3)把待定系数值再带入函数一般式,得到函数解析式11.一次函数与方程、不等式的关系:会从函数图象上找到一元一次方程的解(既与x 轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)常考题:一.选择题(共14小题)1.下列函数中,自变量x 的取值范围是x ≥3的是( )A .y=B .y=C .y=x ﹣3D .y=2.下列各曲线中,不能表示y 是x 的函数的是( )A .B .C .D .3.一次函数y=﹣3x ﹣2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.若函数,则当函数值y=8时,自变量x 的值是( ) A .± B .4 C .±或4 D .4或﹣5.下列图形中,表示一次函数y=mx+n 与正比例函数y=mnx (m ,n 为常数,且mn ≠0)的图象的是( )A .B .C .D .6.如果一个正比例函数的图象经过不同象限的两点A (2,m ),B (n ,3),那么一定有( )A .m >0,n >0B .m >0,n <0C .m <0,n >0D .m <0,n <07.已知点(﹣4,y 1),(2,y 2)都在直线y=﹣x+2上,则y 1,y 2大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能比较8.一次函数y=kx+b (k ≠0)的图象如图所示,当y >0时,x 的取值范围是( )A.x<0 B.x>0 C.x<2 D.x>29.如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是()A.10 B.16 C.18 D.2010.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处B.P处C.Q处D.M处11.关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.12.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个13.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时14.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③二.填空题(共13小题)15.函数y=中自变量x的取值范围是.16.已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为.17.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过第象限.18.一次函数y=﹣2x+b中,当x=1时,y<1,当x=﹣1时,y>0.则b的取值范围是.19.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是米/分钟.20.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是.21.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)22.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为.23.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省元.24.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.25.直线y=3x+2沿y轴向下平移5个单位,则平移后直线与y轴的交点坐标为.26.把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为.27.如图,直线y=﹣x+4与y轴交于点A,与直线y=x+交于点B,且直线y=x+与x轴交于点C,则△ABC的面积为.三.解答题(共13小题)28.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.29.如图:在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点坐标.(1)若点D与A,B,C三点构成平行四边形,请写出所有符合条件的点D的坐标;(2)选择(1)中符合条件的一点D,求直线BD的解析式.30.如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.31.如图,直线y=kx+6分别与x轴、y轴相交于点E和点F,点E的坐标为(﹣8,0),点A的坐标为(0,3).(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)探究:当P运动到什么位置时,△OPA的面积为,并说明理由.32.某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)33.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:(1)根据图象,直接写出y1、y2关于x的函数图象关系式;(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.34.某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.35.为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)当用电量是180千瓦时时,电费是元;(2)第二档的用电量范围是;(3)“基本电价”是元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?36.某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气种型号沼气池共需费用y万元.(1)求y与x之间的函数关系式;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.37.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额﹣购机款﹣各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.38.兰新铁路的通车,圆了全国人民的一个梦,坐上火车去观赏青海门源百里油菜花海,感受大美青海独特的高原风光,暑假某校准备组织学生、老师到门源进行社会实践,为了便于管理,师生必须乘坐在同一列高铁上,根据报名人数,若都买一等座单程火车票需2340元,若都买二等座单程火车票花钱最少,则需1650元:(2)由于各种原因,二等座火车票单程只能买x张(参加社会实践的学生人数<x<参加社会实践的总人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐并且总费用最低的前提下,请你写出购买火车票的总费用(单程)y 与x之间的函数关系式.39.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程y1(km),小轿车的路程y2(km)与时间x(h)的对应关系如图所示.(1)甲乙两地相距多远?小轿车中途停留了多长时间?(2)①写出y1与x的函数关系式;②当x≥5时,求y2与x的函数解析式;(3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?40.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA >OB).(1)求点D的坐标.(2)求直线BC的解析式.(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.初二一次函数所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2012•湘潭)下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y=C.y=x﹣3 D.y=【分析】分式有意义,分母不等于0;二次根式有意义:被开方数是非负数就可以求出x的范围.【解答】解:A、分式有意义,x﹣3≠0,解得:x≠3,故A选项错误;B、二次根式有意义,x﹣3>0,解得x>3,故B选项错误;C、函数式为整式,x是任意实数,故C选项错误;D、二次根式有意义,x﹣3≥0,解得x≥3,故D选项正确.故选:D.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.(2015春•营山县期末)下列各曲线中,不能表示y是x的函数的是()A.B.C.D.【分析】根据函数是一一对应的关系,给自变量一个值,有且只有一个函数值与其对应,就是函数,如果不是,则不是函数.【解答】解:A、是一次函数,正确;B、是二次函数,正确;C、很明显,给自变量一个值,不是有唯一的值对应,所以不是函数,错误;D、是二次函数,正确.故选:C.【点评】本题主要考查函数的自变量与函数值是一一对应的,即给自变量一个值,有唯一的一个值与它对应.3.(2010•綦江县)一次函数y=﹣3x﹣2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质容易得出结论.【解答】解:∵解析式y=﹣3x﹣2中,﹣3<0,﹣2<0,∴图象过二、三、四象限.故选A.【点评】在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y 随x的增大而减小.4.(2015•甘南州)若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得x=,∵x≤2,x=不合题意舍去,故x=﹣;再代入下边的方程x=4,∵x>2,故x=4,综上,x的值为4或﹣.故选:D.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.5.(2001•常州)下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C.D.【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当mn >0,m ,n 同号,同正时y=mx+n 过1,3,2象限,同负时过2,4,3象限;②当mn <0时,m ,n 异号,则y=mx+n 过1,3,4象限或2,4,1象限. 故选A .【点评】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题. 一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限.6.(2013•陕西)如果一个正比例函数的图象经过不同象限的两点A (2,m ),B (n ,3),那么一定有( )A .m >0,n >0B .m >0,n <0C .m <0,n >0D .m <0,n <0【分析】根据正比例函数图象所在象限,可判断出m 、n 的正负.【解答】解:A 、m >0,n >0,A 、B 两点在同一象限,故A 错误;B 、m >0,n <0,A 、B 两点不在同一个正比例函数,故B 错误;C 、m <0,n >0,A 、B 两点不在同一个正比例函数,故C 错误;D 、m <0,n <0,A 、B 两点在同一个正比例函数的不同象限,故D 正确. 故选:D .【点评】此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小.7.(2014•永嘉县校级模拟)已知点(﹣4,y 1),(2,y 2)都在直线y=﹣x+2上,则y 1,y 2大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能比较【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【解答】解:∵k=﹣<0,∴y 随x 的增大而减小.∵﹣4<2,∴y 1>y 2.故选:A .【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.8.(2013•娄底)一次函数y=kx+b (k ≠0)的图象如图所示,当y >0时,x 的取值范围是( )A.x<0 B.x>0 C.x<2 D.x>2【分析】根据函数图象与x轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选:C.【点评】此题考查一次函数的图象,运用观察法解一元一次不等式通常是从交点观察两边得解.9.(2008•菏泽)如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA 运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是()A.10 B.16 C.18 D.20【分析】本题难点在于应找到面积不变的开始与结束,得到BC,CD的具体值.【解答】解:动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变.函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9﹣4=5.∴△ABC的面积为=×4×5=10.故选A.【点评】解决本题应首先看清横轴和纵轴表示的量.10.(2009•莆田)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处B.P处C.Q处D.M处【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【解答】解:当点R运动到PQ上时,△MNR的面积y达到最大,且保持一段时间不变;到Q点以后,面积y开始减小;故当x=9时,点R应运动到Q处.故选C.【点评】本题考查动点问题的函数图象问题,有一定难度,注意要仔细分析.11.(2011•张家界)关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.【分析】根据图象与y轴的交点直接解答即可.【解答】解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选C.【点评】本题考查一次函数的图象,考查学生的分析能力和读图能力.12.(2015•鄂州)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.13.(2014•德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时【分析】结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y 轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米;平均速度=总路程÷总时间.【解答】解:A、由函数图象可知,体育场离张强家2.5千米,故A选项正确;B、由图象可得出张强在体育场锻炼30﹣15=15(分钟),故B选项正确;C、体育场离张强家2.5千米,体育场离早餐店距离无法确定,因为题目没说体育馆,早餐店和家三者在同一直线上,故C选项错误;D、∵张强从早餐店回家所用时间为95﹣65=30(分钟),距离为1.5km,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D选项正确.故选:C.【点评】此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.14.(2014•黔西南州)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③【分析】易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.【解答】解:甲的速度为:8÷2=4(米/秒);乙的速度为:500÷100=5(米/秒);b=5×100﹣4×(100+2)=92(米);5a﹣4×(a+2)=0,解得a=8,c=100+92÷4=123(秒),∴正确的有①②③.故选:A.【点评】考查一次函数的应用;得到甲乙两人的速度是解决本题的突破点;得到相应行程的关系式是解决本题的关键.二.填空题(共13小题)15.(2013•内江)函数y=中自变量x的取值范围是x≥﹣且x≠1 .【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故答案为:x≥﹣且x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.(2013•成都)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为﹣.【分析】将点(3,5)代入直线解析式,可得出b﹣5的值,继而代入可得出答案.【解答】解:∵点(3,5)在直线y=ax+b上,∴5=3a+b,∴b﹣5=﹣3a,则==.故答案为:﹣.【点评】本题考查了一次函数图象上点的坐标特征,注意直线上点的坐标满足直线解析式.17.(2014•梅州)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过第一象限.【分析】首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.【解答】解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故答案为:一.【点评】本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.18.(2013•潍坊)一次函数y=﹣2x+b中,当x=1时,y<1,当x=﹣1时,y>0.则b的取值范围是﹣2<b<3 .【分析】将x=1时,y<1及x=﹣1时,y>0分别代入y=﹣2x+b,得到关于b的一元一次不等式组,解此不等式组,即可求出b的取值范围.【解答】解:由题意,得,解此不等式组,得﹣2<b<3.故答案为﹣2<b<3.【点评】本题考查了一次函数的性质,将已知条件转化为一元一次不等式组是解题的关键.19.(2014•益阳)小明放学后步行回家,他离家的路程s(米)与步行时间t (分钟)的函数图象如图所示,则他步行回家的平均速度是80 米/分钟.【分析】他步行回家的平均速度=总路程÷总时间,据此解答即可.【解答】解:由图知,他离家的路程为1600米,步行时间为20分钟,则他步行回家的平均速度是:1600÷20=80(米/分钟),故答案为:80.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.20.(2015•株洲)已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是7≤a≤9 .【分析】根据题意得到x的取值范围是2≤x≤3,则通过解关于x的方程2x+(3﹣a)=0求得x的值,由x的取值范围来求a的取值范围.【解答】解:∵直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),∴2≤x≤3,令y=0,则2x+(3﹣a)=0,解得x=,则2≤≤3,解得7≤a≤9.故答案是:7≤a≤9.。

初二物理一次函数练习题

初二物理一次函数练习题

初二物理一次函数练习题1. 题目一某人从屋顶高度为6米的建筑物上投掷一颗球,球的抛射高度H (米)是其水平距离D(米)的一次函数关系。

已知当水平距离为2米时,球的抛射高度为4.5米。

求该一次函数的表达式,并回答以下问题:(1) 当水平距离为3米时,球的抛射高度是多少?(2) 当球的抛射高度为0时,水平距离是多少?解答:设球的抛射高度H与水平距离D的关系为一次函数,可表示为H = aD + b。

根据已知条件,当D = 2时,H = 4.5。

代入这一对数值,得到4.5 = 2a + b。

(1) 当水平距离为3米时,代入D = 3,得到H = a * 3 + b。

由已知条件得到的方程组中消去常数项,得到a = 1/2。

因此,当水平距离为3米时,球的抛射高度为H = 1/2 * 3 + b = 1.5 + b 米。

(2) 当球的抛射高度为0时,代入H = 0,得到0 = aD + b。

由已知条件得到的方程组中消去常数项,得到a = -2.25。

因此,当球的抛射高度为0时,水平距离为D = -2.25 * 0 + b = b 米。

综上所述,该一次函数的表达式为H = 0.5D + 4.5。

2. 题目二某车以恒定的速度行驶,行驶时间t(小时)与行驶距离s(千米)的关系为一次函数。

已知当行驶时间为2小时时,行驶距离为20千米。

求该一次函数的表达式,并回答以下问题:(1) 当行驶时间为5小时时,行驶距离是多少千米?(2) 当行驶距离为0时,行驶时间是多少小时?解答:设行驶时间t与行驶距离s的关系为一次函数,可表示为s = at + b。

根据已知条件,当t = 2时,s = 20。

代入这一对数值,得到20 = 2a + b。

(1) 当行驶时间为5小时时,代入t = 5,得到s = 5a + b。

由已知条件得到的方程组中消去常数项,得到a = 4。

因此,当行驶时间为5小时时,行驶距离为s = 4 * 5 + b = 20 + b 千米。

初二数学下册一次函数提高练习题

初二数学下册一次函数提高练习题

初二数学下册一次函数提高练习题一、选择题1、下列函数(1)y= x (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x2-1中,是一次函数的有()A.4个 B.3个 C.2个 D.1个2、A 、B(x2,y2)是一次函数y=kx+2(k0)图像上的不同的两点,若则()A.t<0B.t>0C.t>1D. t≤13、直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有()A. 5个B.6个C.7个D.8个4、把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范畴是()A.1<m<7 B.3<m<4 C.m>1 D.m<45、下图中表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数)图像的是( ).A B C D6、如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x 轴向右平移后得到△O′A′B′,点A的对应点在直线上一点,则点B 与其对应点B′间的距离为()A. B.5 y C.3 D.46题图7题图8题图7、在弹性范畴内弹簧的长度y( cm)与所挂物体的质量x(kg)的关系是一次函数,图象如右图所示,则弹簧不挂物体时的长度是( )A.8cmB.9cmC.10.5cmD.11cm8、如图,直线y=kx+b交坐标轴于A(-2,0),B(0,3)两点,则不等式kx+b>0的解集是()A.x>3 B.-2<x<3 C.x<-2 D.x>-29.一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于( )A. B.C. D.以上答案都不对10、若函数y=kx+b的图象如图所示,那么当y1时,x的取值范畴是:( )A、x>0B、x>2C、x<0D、x<211、当直线y=x+2•上的点在直线y=3x-2上相应点的上方时,则()A. x<0B.x<2C.x>0D.x>212、在平面直角坐标系中,线段AB的端点A(-2,4),B(4,2),直线y=k x-2与线段AB有交点,则k的值不可能是()A.5B.-5C.-2D.3二、填空题13、假如直线y = -2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.14、平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x +m上,且AP=OP=4.则m的值是。

(完整word版)初二数学一次函数拔高训练题

(完整word版)初二数学一次函数拔高训练题

初二数学一次函数拔高训练题1.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( )A 、k<31B 、31 < k <1 C 、k>1 D 、k>1或k<31 2.一次函数y=ax+b (a 为整数)的图象过点(98,19),交x 轴于(p,0),交y 轴于(0,q ),若p 为质数,q 为正整数,那么满足条件的一次函数的个数为( )A. 0B.1C.2D.无数3.在直角坐标系中,横,纵坐标都是整数的点称为整点,设k 为整数,当直线y=x -3与y=kx+k 的交点为整点时,k 的值可以取( )(A )2个 (B )4个 (C )6个 (D )8个4.甲、乙二人在如图所示的斜坡AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a <)b ;乙上山的速度是12a 米/分,下山的速度是2b 米/分.如果甲、乙二人同时从点A 出发,时间为t (分),离开点A 的路程为S (米).那么下面图象中,大致表示甲、乙二人从点A 出发后的时间t (分)与离开点A 的路程S (米)之间的函数关系的是( )5.函数的自变量x 的取值范围是_____。

6.若直线1103457323=+y x 与直线897543177=+y x 的交点坐标是(a ,b ), 则222004b a +的值是7.若一次函数y =kx +b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,则一次函数的解析式为________________________.8.某矿泉水厂生产一种矿泉水,经测算,用一吨水生产的矿泉水所获利润y (元)与1吨水的价格x (元)的关系如图所示。

(1)求y 与x 的函数关系式及自变量x 的取值范围; (2)为节约用水,特规定:该厂日用水量不超过20吨时, 水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费。

已知该厂日用水量不少于20吨。

初二上一次函数练习题100道

初二上一次函数练习题100道

初二上一次函数练习题100道一、选择题1. 若函数y=2x-3与y=3x-4相交,则x的值为()A. -1/5B. 1/5C. -2/3D. 2/32. 已知函数y=3x+2,那么当x=1时,y的值等于()A. 3B. 5C. 6D. 83. 若函数y=ax-b与y=3x-4平行,则a的值为()A. 3B. -3C. 4D. -44. 根据图像判断该函数()。

[图像]A. 是一次函数B. 是二次函数C. 是常数函数D. 是分段函数5. 已知函数y=kx-3在x=2处有零点,则k的值为()A. -3B. 2/3C. 3/2D. 3二、填空题1. 一次函数的图像是一条直线,它与x轴交点的坐标为______。

2. 函数y=2x+1的斜率为______,截距为______。

3. 若函数y=ax与y=2x的图像相同,则a的值为______。

4. 根据图像判断该函数y=f(x)在x=3处的函数值为______。

[图像]三、计算题1. 已知函数y=3x-2与y=kx+1相交于点(2,5),求k的值。

2. 已知函数y=2x-1与y=ax+b平行,且它们的截距之和为3,求a的值。

3. 某种水果每斤7元,小明买了x斤水果,花了y元,求这种水果每斤的均价。

4. 函数y=kx-3经过点(3,-1),求k的值。

四、应用题1. 小明和小红同时从同一起点出发,小明每小时走10km,小红每小时走8km。

若小明比小红早3小时到达目的地,则目的地距离起点多远?2. 一条绳子有12米长,要切成两段,其中一段长x米,另一段长y 米。

若两段绳子的长度满足等式2x+y=10,请求x和y的值。

3. 为了提高学生的数学能力,某学校采用竞赛的方式,每答对一题,奖励1分;每答错一题,扣除2分。

某学生参加了100道题,答对60题,答错10题,不会做的题目数量为30题。

求该学生的得分是多少分?五、综合题1. 已知函数y=ax+b与y=-ax+c平行,且这两个函数的图像的纵坐标之和为2x-1,求a和b的值。

八年级数学培优专题一、一次函数培优训练经典题型精选全文完整版

八年级数学培优专题一、一次函数培优训练经典题型精选全文完整版

可编辑修改精选全文完整版一次函数培优经典题型(最新)一、正比例函数的定义1、若y=(m+1)x+m2﹣1是关于x的正比例函数,则m的值为.2、已知函数y=(m+2)x﹣m2+4(m是常数)是正比例函数,则m=.二、一次函数的图象1、在同一平面直角坐标系中,函数y=kx﹣b与y=bx+k的图象不可能是()A.B.C.D.2、如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.3、一次函数y=kx+k的图象可能是()A.B.C.D.4、如图,三个正比例函数的图象分别对应的解析式是:①y=ax,②y=bx,③y=cx,请用“>”表示a,b,c的不等关系.三、一次函数的性质1、已知直线y=kx+b过点A(﹣3,y1),B(4,y2),若k<0,则y1与y2大小关系为()A.y1>y2B.y1<y2C.y1=y2D.不能确定2、当1≤x≤10时,一次函数y=﹣3x+b的最大值为17,则b=.3、已知一次函数y=mx﹣2m(m为常数),当﹣1≤x≤3时,y有最大值6,则m的值为()A.﹣B.﹣2C.2或6D.﹣2或64、已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定5、在平面直角坐标系中,已知一次函数y=kx+b(k,b为常数且k≠0).(1)当b=3k+6时,该函数恒经过一点,则该点的坐标为;(2)当﹣2≤x≤2时,﹣8≤y≤4,则该函数的解析式为.6、一次函数y=ax﹣a+1(a为常数,且a<0).(1)若点(2,﹣3)在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,求a的值.四、一次函数图象与系数的关系1、若一次函数y=(m﹣2)x+m+1的图象经过一、二、四象限,则m的取值范围是()A.m<﹣1B.m<2C.﹣1<m<2D.m>﹣12、一次函数y=(2k﹣1)x+k的图象不经过第三象限,则k的取值范围是()A.k>0B.C.k≥0D.3、关于x的一次函数y=(k﹣2)x+k2﹣4k+4,若﹣1≤x≤1时,y>0总成立,则k的取值范围是()A.k<1或k>3B.k>1C.k<3D.1<k<34、一次函数y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简:﹣|2﹣b|=.5、关于x的一次函数y=(2a+1)x+a﹣2,若y随x的增大而增大,且图象与y轴的交点在原点下方,则实数a的取值范围是.6、函数y=3x+k﹣2的图象不经过第二象限,则k的取值范围是.7、设,则一次函数y=kx﹣k的图象一定过第_________象限.五、一次函数图象与几何变换1、直线y=﹣5x向上平移2个单位长度,得到的直线的解析式为()A.y=5x+2B.y=﹣5x+2C.y=5x﹣2D.y=﹣5x﹣2 2、在平面直角坐标系中,将正比例函数y=﹣2x的图象向右平移3个单位长度得到一次函数y=kx+b(k≠0)的图象,则该一次函数的解析式为()A.y=﹣2x+3B.y=﹣2x+6C.y=﹣2x﹣3D.y=﹣2x﹣63、若直线l1:y=kx+b(k≠0)是由直线l2:y=4x+2向左平移m(m>0)个单位得到,则下列各点中,可能在直线l1上的是()A.(0,1)B.(2,﹣1)C.(﹣1,2)D.(3,0)4、在平面直角坐标系中,将函数y=x的图象绕坐标原点逆时针旋转90°,再向上平移1个单位长度,所得直线的函数表达式为()A.y=﹣x+1B.y=x+1C.y=﹣x﹣1D.y=x﹣15、若一次函数y=kx+b与y=﹣2x+1的图象关于y轴对称,则k、b的值分别等于.六、待定系数法求一次函数解析式1、P(8,m),A(2,4),B(﹣2,﹣2)三点在同一直线上,则m的值为.2、已知y﹣2与x成正比例,且当x=﹣1时y=5,则y与x的函数关系式是.3、已知y﹣1与x成正比例,当x=﹣2时,y=4.(1)求出y与x的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a的值.4、已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.5、已知y﹣3与2x+4成正比例,且当x=﹣1时,y=7.(1)求y与x的函数关系式;(2)求此函数图象与坐标轴围成的面积.七、一次函数与一元一次方程1、如图,直线y=x+5和直线y=ax+b相交于点P,观察其图象可知方程x+5=ax+b的解()A.x=15B.x=25B.C.x=10D.x=202、如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=4的解是()A.x=1B.x=2C.x=3D.x=43、如图,一次函数y=ax+b与正比例函数y=kx的图象交于点P(﹣2,﹣1),则关于x的方程ax+b=kx的解是.4、根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=﹣3的解.八、一次函数中的面积问题1、若一次函数y=2x+b与坐标轴围成的三角形面积为9,则这个一次函数的解析式为.2、直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则k为.3、如图,一次函数y=x﹣4的图象与x轴,y轴分别交于点A,点B,过点A作直线l将△ABO分成周长相等的两部分,则直线l的函数解析式为.4、如图,在平面直角坐标系xOy中,A(2,0),B(2,4),C(0,4).若直线y=kx﹣2k+1(k是常数)将四边形OABC分成面积相等的两部分,则k的值为.5、如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.6、如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.九、一次函数的应用1、甲乙两人骑自行车分别从A,B两地同时出发相向而行,甲匀速骑行到B地,乙匀速骑行到A地,甲的速度大于乙的速度,两人分别到达目的地后停止骑行.两人之间的距离y(米)和骑行的时间x(秒)之间的函数关系图象如图所示,现给出下列结论:①a=450;②b=150;③甲的速度为10米/秒;④当甲、乙相距50米时,甲出发了55秒或65秒.其中正确的结论有()A.①②B.①③C.②④D.③④2、甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示.(1)a的值是,甲的速度是km/h.(2)求线段EF所表示的y与x的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?十、一次函数综合题1、如图,直线与x轴,y轴分别交于点A,B,点C,D分别是AB,AO的中点,点P是y轴上一动点,则PC+PD的最小值是.2、若直线AB:y=x+4与x轴、y轴分别交于点B和点A,直线CD:y=﹣x+2与x轴、y轴分别交于点D和点C,线段AB与CD的中点分别是M,N,点P为x轴上一动点.(1)点M的坐标为;(2)当PM+PN的值最小时,点P的坐标为.3、如图,在平面直角坐标系中,一次函数的图象分别与x、y轴交于点A、B,点C在y轴上,AC平分∠OAB,则线段BC=.4、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.5、如图,一次函数y=kx+b的图象经过点A(0,3)和点B(2,0),以线段AB为边在第一象限内作等腰直角△ABC使∠BAC=90°(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PC最小时,求点P的坐标.6、如图,直线l:y=kx+b(k≠0)与坐标轴分别交于点A,B,以OA为边在y=8.轴的右侧作正方形AOBC,且S△AOB(1)求直线l的解析式;(2)如图1,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE.①当AE+CE最小时,求E点的坐标;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请求出点H的坐标.。

八年级数学一次函数提高题专项练习(含答案)

八年级数学一次函数提高题专项练习(含答案)

八年级数学一次函数提高题专项练习一、单选题1.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .2.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <03.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .4.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A.2k <B.2k >C.0k >D.k 0<5.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .二、填空题6.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_____.三、解答题7.如图,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.8.如图,把矩形OABC 放入平面直角坐标系xO 中,使OA 、OC 分别落在x 、y 轴的正半轴上,其中AB =15,对角线AC 所在直线解析式为y =﹣x +b ,将矩形OABC 沿着BE 折叠,使点A 落在边OC 上的53点D 处.(1)求点B 的坐标;(2)求EA 的长度;(3)点P 是y 轴上一动点,是否存在点P 使得△PBE 的周长最小,若存在,请求出点P 的坐标,若不存在,请说明理由.9.如图,直线l 1的函数解析式为y=﹣2x+4,且l 1与x 轴交于点D ,直线l 2经过点A 、B ,直线l 1、l 2交于点C .(1)求直线l 2的函数解析式;(2)求△ADC 的面积;(3)在直线l 2上是否存在点P ,使得△ADP 面积是△ADC 面积的2倍?如果存在,请求出P 坐标;如果不存在,请说明理由.11.如图,直线1l 的解析式为33y x =-,且1l 与x 轴交于点D ,直线2l 经过点A 、B ,直线1l ,2l 相交于点C .()1求点D 的坐标;()2求ADC 的面积.13.如图,直线l:364y x=+交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足BPQ BAO∠=∠.(1)点A坐标是 ,BC= .(2)当点P在什么位置时,APQ CBP∆≅∆,说明理由.(3)当PQB∆为等腰三角形时,求点P的坐标.17.如图,一次函数y=kx+b的图象经过点A(8,0),直线y=-3x+6与x轴交于点B,与y轴交于点D,且两直线交于点C(4,m).(1)求m的值及一次函数的解析式;(2)求△ACD的面积。

初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题(含解析)

初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题(含解析)

初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题(一)(含解析)一.选择题(共12小题)1.已知y=(m﹣3)x|m|﹣2+1是一次函数,则m的值是()A.﹣3 B.3 C.±3 D.±22.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.3.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<04.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.5.已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣46.在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.7.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.8.下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个9.直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.10.下列函数中,是一次函数但不是正比例函数的是()A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣111.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数12.当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为()A.B. C. D.二.填空题(共11小题)13.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=.14.若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=.15.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是.16.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x=3时,kx+b=x+a;④当x<3时,y1<y2中,正确的序号有.17.如图,在直角坐标系中,已知矩形ABCD的两个顶点A(3,0)、B(3,2),对角线AC 所在的直线L,那么直线L对应的解析式是.18.一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是.19.已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为.20.如图,该直线是某个一次函数的图象,则此函数的解析式为.21.若一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,且交点在x轴上,则这个函数的表达式为:.22.已知点A(3,y1)、B(2,y2)在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y1y2.(填>、=或<)23.一次函数y=kx+b,当﹣3≤x≤1时,1≤y≤9,则k+b=.三.解答题(共17小题)24.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.25.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.27.已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.28.如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP =S△DOP,求直线BD的函数解析式.29.在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A.(1)将直线y=2x向下平移2个单位后对应的解析式为;(2)求点A的坐标;(3)若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.30.已知y与x+2成正比例,且当x=1时,y=﹣6.(1)求y与x的函数关系式.(2)若点(a,2)在此函数图象上,求a的值.31.已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.32.如图,已知一条直线经过点A(5,0)、B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C?33.如图,一次函数的图象分别与x轴、y轴交于A、B,已线段AB为边在第一象限内作等腰Rt△ABC,使∠BAC=90°.(1)分别求点A、C的坐标;(2)在x轴上求一点P,使它到B、C两点的距离之和最小.34.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的坐标(8,0),点A的坐标为(6,0).点P(x,y)是第一象限内的直线上的一个动点(点P不与点E,F重合).(1)求k的值;(2)在点P运动的过程中,求出△OPA的面积S与x的函数关系式.(3)若△OPA的面积为,求此时点P的坐标.35.课本P152有段文字:把函数y=2x的图象分别沿y轴向上或向下平移3个单位长度,就得到函数y=2x+3或y=2x﹣3的图象.【阅读理解】小尧阅读这段文字后有个疑问:把函数y=﹣2x的图象沿x轴向右平移3个单位长度,如何求平移后的函数表达式?老师给了以下提示:如图1,在函数y=﹣2x的图象上任意取两个点A、B,分别向右平移3个单位长度,得到A′、B′,直线A′B′就是函数y=﹣2x的图象沿x轴向右平移3个单位长度后得到的图象.请你帮助小尧解决他的困难.(1)将函数y=﹣2x的图象沿x轴向右平移3个单位长度,平移后的函数表达式为.A.y=﹣2x+3;B.y=﹣2x﹣3;C.y=﹣2x+6;D.y=﹣2x﹣6【解决问题】(2)已知一次函数的图象与直线y=﹣2x关于x轴对称,求此一次函数的表达式.【拓展探究】(3)一次函数y=﹣2x的图象绕点(2,3)逆时针方向旋转90°后得到的图象对应的函数表达式为.(直接写结果)36.已知正比例函数y=kx的图象经过点P(1,2),如图所示.(1)求这个正比例函数的解析式;(2)将这个正比例函数的图象向右平移4个单位,求出平移后的直线的解析式.37.如图,直线y=x+2分别与x轴、y轴交于点A、B,将直线AB沿y轴向下平移至点C(0,﹣1),与x轴交于点D,过点B作BE⊥CD,垂足为E.(1)求直线CD的解析式;.(2)求S△BEC38.(1)点(0,7)向下平移2个单位后的坐标是,直线y=2x+7向下平移2个单位后的解析式是.(2)直线y=2x+7向右平移2个单位后的解析式是.(3)如图,已知点C(a,3)为直线y=x上在第一象限内一点,直线y=2x+7交y轴于点A,交x轴于点B,将直线AB沿射线OC方向平移|OC|个单位,求平移后的直线解析式.39.某人从离家18千米的地方返回,他离家的距离s(千米)与时间t(分钟)的函数图象如图所示:(1)求线段AB的解析式;(2)求此人回家用了多长时间?40.如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(3,0)、(0,5).(1)直接写出B点坐标;(2)若过点C的一条直线把矩形OABC的周长分为3:5两部分,求这条直线的解析式.初二数学一次函数正比例与一次函数基础常考题与提高练习和与压轴难题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2015春•期末)已知y=(m﹣3)x|m|﹣2+1是一次函数,则m的值是()A.﹣3 B.3 C.±3 D.±2【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.【解答】解;由y=(m﹣3)x|m|﹣2+1是一次函数,得,解得m=﹣3,m=3(不符合题意的要舍去).故选A.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为12.(2016春•昌江县校级期末)一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.【分析】由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.【解答】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选C.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.3.(2016春•期末)关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<0【分析】A、把点的坐标代入关系式,检验是否成立;B、根据系数的性质判断,或画出草图判断;C、根据一次项系数判断;D、可根据函数图象判断,亦可解不等式求解.【解答】解:A、当x=1时,y=1.所以图象不过(1,﹣1),故错误;B、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C、∵﹣2<0,∴y随x的增大而减小,故错误;D、画出草图.∵当x>时,图象在x轴下方,∴y<0,故正确.故选D.【点评】本题主要考查了一次函数的性质以及一次函数与方程、不等式的关系.常采用数形结合的方法求解.4.(2016春•十堰期末)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:B.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k >0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x 的增大而减小;图象与y轴的交点坐标为(0,b).5.(2015秋•期末)已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为()A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣4【分析】首先求出直线y=kx﹣4(k<0)与两坐标轴的交点坐标,然后根据三角形面积等于4,得到一个关于k的方程,求出此方程的解,即可得到直线的解析式.【解答】解:直线y=kx﹣4(k<0)与两坐标轴的交点坐标为(0,﹣4)(,0),∵直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,∴4×(﹣)×0.5=4,解得k=﹣2,则直线的解析式为y=﹣2x﹣4.故选B.【点评】主要考查了用待定系数法求一次函数的解析式.根据三角形面积公式及已知条件,列出方程,求出k的值,即得一次函数的解析式.6.(2015春•期末)在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.【分析】由于正比例函数的图象是一条经过原点的直线,由此即可确定选择项.【解答】解:∵k<0,∴﹣k>0,∴函数y=﹣kx(k<0)的值随自变量x的增大而增大,且函数为正比例函数,故选:C.【点评】此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.7.(2014秋•深圳期末)两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是()A.B.C.D.【分析】由于a、b的符号均不确定,故应分四种情况讨论,找出合适的选项.【解答】解:A、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b>0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b>0;由y=bx+a的图象可知,a<0,b<0,两结论相矛盾,故错误;D、如果过第二三四象限的图象是y=ax+b,由y=ax+b的图象可知,a<0,b<0;由y=bx+a的图象可知,a>0,b>0,两结论相矛盾,故错误.故选:A.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8.(2014春•临沂期末)下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个【分析】根据一次函数的定义求解.【解答】解:(1)y=3πx (2)y=8x﹣6 (4)y=﹣8x是一次函数,因为它们符合一次函数的定义;(3)y=,自变量次数不为1,而为﹣1,不是一次函数,(5)y=5x2﹣4x+1,自变量的最高次数不为1,而为2,不是一次函数.故选B.【点评】解题关键是掌握一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1.注意正比例函数是特殊的一次函数,不要漏掉(1)y=3πx,它也是一次函数.9.(2015秋•西安校级期末)直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.【分析】根据直线y=kx+b经过第一、三、四象限可以确定k、b的符号,则易求b的符号,由b,k的符号来求直线y=bx﹣k所经过的象限.【解答】解:∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴﹣k<0,∴直线y=bx﹣k经过第二、三、四象限.故选C.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.(2015春•期末)下列函数中,是一次函数但不是正比例函数的是()A.y=2x B.y=+2 C.y=﹣x D.y=2x2﹣1【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.【解答】解:A、y=2x是正比例函数,故A错误;B、y=+2是反比例函数的变换,故B错误;C、y=﹣x是一次函数,故C正确;D、y=2x2﹣1是二次函数,故D错误;故选:C.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.11.(2015秋•期末)函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数【分析】根据正比例函数的意义得出2﹣a≠0,b﹣1=0,求出即可.【解答】解:根据正比例函数的意义得出:2﹣a≠0,b﹣1=0,∴a≠2,b=1.故选C.【点评】本题主要考查对正比例函数的定义的理解和掌握,能根据正比例函数的意义得出2﹣a ≠0和b﹣1=0是解此题的关键.12.(2015春•期末)当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=﹣2x,则在同一直角坐标系中的图象大致为()A.B. C. D.【分析】利用正比例函数图象的性质结合自变量的取值范围得出符合题意的图象.【解答】解:∵当x>0时,y与x的函数解析式为y=2x,∴此时图象则第一象限,∵当x≤0时,y与x的函数解析式为y=﹣2x,∴此时图象则第二象限,故选:C.【点评】此题主要考查了正比例函数的图象,正确根据自变量取值范围得出图象是解题关键.二.填空题(共11小题)13.(2016秋•期末)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=﹣1.【分析】由正比例函数的定义可得m2﹣1=0,且m﹣1≠0.【解答】解:由正比例函数的定义可得:m2﹣1=0,且m﹣1≠0,解得:m=﹣1,故答案为:﹣1.【点评】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.14.(2016春•罗平县期末)若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a=﹣3.【分析】根据一次函数的定义得到a=±3,且a≠3即可得到答案.【解答】解:∵函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,∴a=±3,又∵a≠3,∴a=﹣3.故答案为:﹣3.【点评】本题考查了一次函数的定义:对于y=kx+b(k、b为常数,k≠0),y称为x的一次函数.15.(2011秋•期末)如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是k>m>n.【分析】根据函数图象所在象限可判断出k>0,m>0,n<0,再根据直线上升的快慢可得k>m,进而得到答案.【解答】解:∵正比例函数y=kx,y=mx的图象在一、三象限,∴k>0,m>0,∵y=kx的图象比y=mx的图象上升得快,∴k>m>0,∵y=nx的图象在二、四象限,∴n<0,∴k>m>n,故答案为:k>m>n.【点评】此题主要考查了正比例函数图象,关键是掌握正比例函数图象的性质:它是经过原点的一条直线,当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.16.(2013秋•校级期末)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a >0;③当x=3时,kx+b=x+a;④当x<3时,y1<y2中,正确的序号有①③.【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【解答】解:根据图示及数据可知:①k<0正确;②a>0错误;③方程kx+b=x+a的解是x=3,正确;④当x<3时,y1<y2错误.故正确的判断是①③.【点评】本题考查一次函数的图象,考查学生的分析能力和读图能力,次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.17.(2015春•上海校级期末)如图,在直角坐标系中,已知矩形ABCD的两个顶点A(3,0)、B(3,2),对角线AC所在的直线L,那么直线L对应的解析式是y=﹣x+2.【分析】根据矩形的性质及B点坐标可求C点坐标,设直线L的解析式为y=kx+b,根据“两点法”列方程组,可确定直线L的解析式.【解答】解:∵矩形ABCD中,B(3,2),∴C(0,2),设直线L的解析式为y=kx+b,则,解得∴直线L的解析式为:y=﹣x+2.故答案为:y=﹣x+2.【点评】本题考查用待定系数法确定函数的解析式,是常用的一种解题方法.18.(2013秋•长校级期末)一次函数y=kx+b的图象如图所示,当y<5时,x的取值范围是x>0.【分析】直接根据一次函数的图象即可得出结论.【解答】解:由函数图象可知,当y<5时,x>0.故答案为:x>0.【点评】本题考查的是一次函数的图象,能利用数形结合求出不等式的解集是解答此题的关键.19.(2016春•简阳市校级期中)已知,一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为25.【分析】根据一次函数图象上点的坐标特征,将点P(a,b)和Q(c,d)分别代入函数解析式,求得a﹣b、c﹣d的值;然后将其代入所求的代数式求值即可.【解答】解:∵一次函数y=x+5的图象经过点P(a,b)和Q(c,d),∴点P(a,b)和Q(c,d)满足一次函数解析式y=x+5,∴b=a+5,d=c+5,∴a﹣b=﹣5,c﹣d=﹣5,∴a(c﹣d)﹣b(c﹣d)=(a﹣b)(c﹣d)=(﹣5)×(﹣5)=25.故答案是:25.【点评】本题考查了一次函数图象上点的坐标特征.求代数式的值时,要先将其变形为含有a ﹣b、c﹣d的因式的形式,然后求值.20.(2014秋•源城区校级期末)如图,该直线是某个一次函数的图象,则此函数的解析式为y=2x+2.【分析】根据图象写出该直线所经过的点的坐标,然后将其代入函数的解析式y=kx+b,列出关于k、b的一元二次方程,然后解方程求得k、b的值;最后将它们代入函数解析式即为所求.【解答】解:设该直线方程是:y=kx+b(k>0).根据图象知,该直线经过点(﹣1,0)、(0,2),则,解得,,∴此函数的解析式为y=2x+2.故答案是:y=2x+2.【点评】本题考查了待定系数法求一次函数的解析式.一次函数图象上的点的坐标都满足该函数的解析式.21.(2015秋•期末)若一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,且交点在x轴上,则这个函数的表达式为:y=﹣x﹣1.【分析】先求出这两个函数的交点,然后根据一次函数y=kx+b(k≠0)与函数y=x+1的图象关于x轴对称,解答即可.【解答】解:∵两函数图象交于x轴,∴0=x+1,解得:x=﹣2,∴0=﹣2k+b,∵y=kx+b与y=x+1关于x轴对称,∴b=﹣1,∴k=﹣∴y=﹣x﹣1.故答案为:y=﹣x﹣1.【点评】本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.22.(2015秋•期末)已知点A(3,y1)、B(2,y2)在一次函数y=﹣x+3的图象上,则y1,y2的大小关系是y1<y2.(填>、=或<)【分析】首先判断一次函数一次项系数为负,然后根据一次函数的性质当k<0,y随x的增大而减小即可作出判断.【解答】解:∵一次函数y=﹣x+3中k=﹣<0,∴y随x增大而减小,∵3>2,∴y1<y2.故答案为<.【点评】本题主要考查了一次函数图象上点的坐标特征的知识,解答本题要掌握一次函数的性质当k<0,y随x的增大而减小,此题难度不大.23.(2015春•淮南期末)一次函数y=kx+b,当﹣3≤x≤1时,1≤y≤9,则k+b=1或9.【分析】因为该一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知,若该一次函数的y值随x的增大而增大,则有x=﹣3时,y=1,x=1时,y=9;若该一次函数的y值随x的增大而减小,则有x=﹣3时,y=9,x=1时,y=1;然后结合题意利用方程组解决问题.【解答】解:∵因为该一次函数y=kx+b,当﹣3≤x≤1时,对应y的值为1≤y≤9,由一次函数的增减性可知若该一次函数的y值随x的增大而增大,则有x=﹣3时,y=1,x=1时,y=9;则有,解之得,∴k+b=9.若该一次函数的y值随x的增大而减小,则有x=﹣3时,y=9,x=1时,y=1;则有,解之得,∴k+b=1,综上:k+b=9或1.故答案为1或9.【点评】本题考查了一次函数与一次不等式的关系,此类题目需利用y随x的变化规律,确定自变量与函数的对应关系,然后结合题意,利用方程组解决问题.三.解答题(共17小题)24.(2016春•期末)已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.【分析】(1)利用待定系数法把点A(5,0),B(1,4)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.【解答】解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)根据图象可得x>3.【点评】此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.25.(2015春•校级期末)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【分析】(1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;(2)根据题意可得m﹣3=﹣2,解方程即可;(3)根据两函数图象平行,k值相等可得2m+1=3;(4)根据一次函数的性质可得2m+1<0,再解不等式即可.【解答】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣.【点评】此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.26.(2016春•潮南区期末)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.=OA•y,然后把y转换成x,即可求得△OPA的面【分析】(1)根据三角形的面积公式S△OPA积S与x的函数关系式;(2)把s=10代入S=﹣4x+40,求得x的值,把x的值代入y=﹣x+10即可求得P的坐标.【解答】解(1)∵A(8,0),∴OA=8,S=OA•|y P|=×8×(﹣x+10)=﹣4x+40,(0<x<10).(2)当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为(,).【点评】本题考查了一次函数图象上点的坐标特征和一次函数的性质,把求三角形的面积和一次函数的图象结合起来,综合性比较强.27.(2014春•期末)已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.【分析】当一次函数的图象经过二、四象限可得其比例系数为负数,据此求解.【解答】解:∵正比例函数y=(m﹣1),函数图象经过第二、四象限,∴m﹣1<0,5﹣m2=1,解得:m=﹣2.【点评】此题主要考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.28.(2015春•荔城区期末)如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P (2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP =S△DOP,求直线BD的函数解析式.【分析】(1)过点P作PF⊥y轴于点F,则PF=2.求出S△COP 和S△COA,即OA×2=4,则A(﹣4,0),则|p|=3,由点P在第一象限,得p=3;(2)根据S△BOP =S△DOP,得DP=BP,即P为BD的中点,作PE⊥x轴,设直线BD的解析式为y=kx+b(k≠0),求得k,b.得出直线BD的函数解析式.【解答】解:(1)过点P作PF⊥y轴于点F,则PF=2.∵C(0,2),∴CO=2.∴S△COP=×2×2=2.∵S△AOP =6,S△COP=2,∴S△COA=4,∴OA×2=4∴OA=4,∴A(﹣4,0),∴S△AOP=×4|p|=6,∴|p|=3∵点P在第一象限,∴p=3;(2)过点O作OH⊥BD,则OH为△BOP△DOP的高,∵S△BOP =S△DOP,且这两个三角形同高,∴DP=BP,即P为BD的中点,作PE⊥x轴于点E(2,0),F(0,3).∴OB=2PF=4,OD=2PE=6,∴B(4,0),D(0,6).设直线BD的解析式为y=kx+b(k≠0),则,解得k=﹣,b=6.∴直线BD的函数解析式为y=﹣x+6.【点评】本题考查了用待定系数法求一次函数的解析式,三角形面积的求法以及相交线、平行线的性质.29.(2016春•期末)在平面直角坐标系xOy中,将直线y=2x向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A.(1)将直线y=2x向下平移2个单位后对应的解析式为y=2x﹣2;(2)求点A的坐标;(3)若P是x轴上一点,且满足△OAP是等腰直角三角形,直接写出点P的坐标.【分析】(1)根据将直线y=2x向下平移2个单位后,所以所对应的解析式为y=2x﹣2;(2)根据题意,得到方程组,求方程组的解,即可解答;(3)利用等腰直角三角形的性质得出图象,进而得出答案.【解答】解:(1)根据题意,得,y=2x﹣2;故答案为:y=2x﹣2.(2)由题意得:解得:∴点A的坐标为(2,2);(3)如图所示,∵P是x轴上一点,且满足△OAP是等腰直角三角形,P点的坐标为:(2,0)或(4,0).【点评】此题主要考查了一次函数平移变换以及等腰直角三角形的性质等知识,得出A点坐标是解题关键.30.(2015春•期末)已知y与x+2成正比例,且当x=1时,y=﹣6.(1)求y与x的函数关系式.(2)若点(a,2)在此函数图象上,求a的值.【分析】用待定系数法求出函数的关系式,再把点(a,2)代入即可求得a的值.【解答】解:(1)∵y与x+2成正比例∴可设y=k(x+2),把当x=1时,y=﹣6.代入得﹣6=k(1+2).解得:k=﹣2.故y与x的函数关系式为y=﹣2x﹣4.(2)把点(a,2)代入得:2=﹣2a﹣4,解得:a=﹣3【点评】本题要注意利用一次函数的特点,列出方程,求出未知数从而求得其解析式.把所求点代入即可求出a的值.31.(2015春•期末)已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.【分析】(1)根据题意求出平移后解析式;(2)根据解析式进而得出图象与坐标轴交点,再利用勾股定理得出斜边长,进而得出答案.【解答】解:(1)直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5,可得:直线y=kx+b的解析式为:y=﹣2x+5﹣3=﹣2x+2;(2)在直线y=﹣2x+2中,当x=0,则y=2,当y=0,则x=1,∴直线l与两条坐标轴围成的三角形的周长为:2+1+=3+.【点评】此题主要考查了一次函数图象与几何变换以及一次函数与坐标轴交点求法,得出各边。

八年级数学一次函数提高题(含答案)

八年级数学一次函数提高题(含答案)

一次函数一、选择题:1.直线y =3x +b 与坐标轴围成的三角形面积为6,求与y 轴的交点坐标 ( )A 、(0,2)B 、(0,-2) (0,2)C 、(0,6)D 、(0,6)、(0,-6)2.已知一次函数y =kx +b ,当x =0时,y <0;,当y =0时,x >0,那么下列结论正确的是( ) A 、k >0,b >0 B 、k >0,b <0 C 、k <0,b >0 D 、k <0,b <03.某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(b<a ),再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是( )。

4.在直角坐标系中,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )个。

(A )1个 (B )2个 (C )3个 (D )4个5.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( )A 、k<31B 、31 < k <1 C 、k>1 D 、k>1或k<31 6.一次函数y=ax+b (a 为整数)的图象过点(98,19),交x 轴于(p,0),交y 轴于(0,q ),若p 为质数,q 为正整数,那么满足条件的一次函数的个数为( )A. 0B.1C.2D.无数7.当-1≤x ≤2时,函数6+=ax y 满足10<y ,则常数a 的取值范围是( )A 、04<<-aB 、20<<aC 、24<<-a 且0≠aD 、24<<-a8.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x -3与y=kx+k 的交点为整数时,k 的值可以取( )(A )2个 (B )4个 (C )6个 (D )8个二、填空题:1.某市市内电话费y (元)与通话时间t (分钟)之间的函数关系图象如图所示,则通话7分钟需付电话费 元。

初二的一次函数练习题和答案

初二的一次函数练习题和答案

初二的一次函数练习题和答案1. 已知函数y = 2x + 1,求当x为2时的y的值。

解析:将x代入函数表达式中,得到y = 2 * 2 + 1 = 5。

所以当x为2时,y的值为5。

2. 某手机品牌每年销售量增长2000台,现已知2018年销售量为8000台,求2019年的销售量。

解析:设2019年销售量为x。

根据题意可得2000 = x - 8000,求解x可得x = 10000。

所以2019年的销售量为10000台。

3. 一次函数过点(1, 3),且函数图像与y轴相交于点(0, 1),求该一次函数表达式。

解析:设函数表达式为y = kx + b。

由已知条件可得:1 = 0 + b,因此b = 1;3 = k + 1,因此k = 2。

所以该一次函数表达式为y = 2x + 1。

4. 已知函数y = 3x - 2,求使得y大于等于7的x的取值范围。

解析:将y替换为7,得到7 = 3x - 2,求解x可得x = 3。

所以使得y大于等于7的x的取值范围是x ≥ 3。

5. 如果一次函数的斜率为负数,绘制其函数图像时,直线的斜率与x轴的夹角是多少?解析:一次函数的斜率为k,直线与x轴夹角θ满足tanθ = k。

由于斜率为负数,所以斜率与x轴的夹角小于180°,即θ < 180°。

具体的角度需要根据具体的斜率值计算。

6. 一条直线通过点(3, 5),并且与x轴成45°的角,求该直线的表达式。

解析:设直线的表达式为y = mx + b。

已知该直线通过点(3, 5),所以可得5 = 3m + b。

由于直线与x轴成45°的角,所以斜率m = tan45° = 1。

代入方程组可得5 = 3 + b,求解b可得b = 2。

所以该直线的表达式为y = x + 2。

7. 已知函数y = -4x + 3,求使得y小于等于0的x的取值范围。

解析:将y替换为0,得到0 = -4x + 3,求解x可得x = 3/4。

初二数学上册一次函数专项练习题

初二数学上册一次函数专项练习题

一次函数知识点总结(一)函数1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,则我们就把x称为自变量,把y称为因变量,y是x的函数。

*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,则坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值与其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(二)一次函数1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学一次函数提高练习
一,填空题
1.点B (-5,-2)到x 轴的距离是____,到y 轴的距离是____,到原点的距离是____ 2.(-3,4)关于x 轴对称的点的坐标为_____关于y 轴对称的点的坐标为___ 关于原点对称的坐标为_____ 3.以点(3,0)为圆心,半径为5的圆与x 轴交点坐标为_________与y 轴交点坐标为_____________ 4.点P (a -3,5-a )在第一象限内,则a 的取值范围是____________
5.函数y=3+x x
的自变量x 的取值范围是________
6.函数y=-2x +4的图象经过_____象限,它与两坐标轴围成的三角形面积为_______周长为_______
7.一次函数y=kx +b 的图象经过点(1,5),交y 轴于3,则k=____,b=____
8.若点(m ,m +3)在函数y=-21
x +2的图象上,则m=____
9. y 与3x 成正比例,当x=8时,y=-12,则y 与x 的函数解析式为___________
10.函数y=-23
x 的图象是一条过原点及(2,___ )的直线,这条直线经过第_____象限,
当x 增大时,y 随之________
11若函数y=4x +b 的图象与两坐标轴围成的三角形面积为6,那么b=_____ 12将直线y=3x-2向上平移4个单位,得直线_。

13.已知点P 在直线y=1
4
3x -+上,且点P 到y 轴的距离等于3个单位长度,则点P 的坐标为_。

14、 当b______时,直线y=2x+b 与y=3x -4的交点在x 轴上。

二选择题:
1、直线y=kx +b 经过一、二、四象限,则k 、b 应满足( ) A 、k>0, b<0; B 、k>0,b>0; C 、k<0, b<0; D 、k<0, b>0.
2、已知正比例函数y=kx (k ≠0),当x=-1时, y=-2,则它的图象大致是( )
A B C D 3、一次函数y=kx -b 的图象(其中k<0,b>0)大致是( )
A B C D
4、已知一次函数y=(m +2)x +m 2
-m -4的图象经过点(0,2),则m 的值是( ) A 、 2 B 、 -2 C 、 -2或3 D 、 3
5、若点A (2-a ,1-2a )关于y 轴的对称点在第三象限,则a 的取值范围是( )
A 、 a<21
B 、 a>2
C 、 21<a<2
D 、a<21
或a>2
7,已知两点M (3,5),N (1,-1),点P 是x 轴上一动点,若使PM +PN 最短,则点P 的坐标
应为A. (21,-4) B. (32,0) C. (34,0)D. (2
3
,0)
8.在函数y=
2
3x +-
,y=22x +,y=x+8中,一次函数有 ( ) A 、1个 B 、2个 C 、3个 D 、4个
9、已知直线y=2x 与直线y=kx+5互相平行,则k 的值为 ( ) A 、k=-2 B 、k=2 C 、k=±2 D 、无法确定k 的值
10、一次函数y=kx+b,若k+b=1,则它的图象必经过点 ( ) A 、(-1,-1) B 、(-1,1) C 、(1,-1) D 、(1,1) 11、若一次函数y=(1-2m)x+3的图象经过A (
1
x ,
1
y )和B(
2
x ,
2
y ),当
1
x <
2
x 时,
1
y <
2
y ,则
m 的取值范围是( )A 、m <0 B 、m >0 C 、m <12 D 、m >12 12、已知直线y=a c x b
b +
中,若ab >0,ac <0,那么这条直线不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限
17、直线y=-2x+b 与两坐标轴围成的三角形的面积为4,则b 的值为 ( ) A34 B 、-4 C 、±4 D 、±2 14.已知函数13+=x y ,当自变量增加3时,相应的函数值增加( )
A .3
B .8
C .9
D .10
三.已知一次函数的图象经过点A (-1,3)和点(2,-3),(1)求一次函数的解析式; (2)判断点C (-2,5)是否在该函数图象上。

已知2y -3与3x +1成正比例,且x=2时,y=5,(1)求y 与x 之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .
五.1.一个一次函数的图象,与直线y=2x +1的交点M 的横坐标为2,与直线y=-x +2的交点N 的纵坐标为1,求这个一次函数的解析式 2.直线
1
y =kx+b 与y 轴的交点和直线
2y =2x+3与y 轴的交点相同,直线1
y 与x 轴的交点和直线
2
y 与
x 轴的交点关于原点对称,求:直线
1
y 的关系式。

x
y
O
B
A
八年级数学《一次函数动点问题》练习题
1、如果一次函数y=-x+1的图象与x 轴、y 轴分别交于点A 点、B 点,点M 在x 轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,那么这样的点M 有( )。

A .3个
B .4个
C .5个
D .7个
2、直线与y=x-1与两坐标轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等腰三角形,则满足条件的点C 最多有( ).A .4个 B .5个 C .6个 D .7个
3、直线64
3
+-
=x y 与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O ⇒B ⇒A 运动. (1)直接写出A 、B 两点的坐标;
(2)设点Q 的运动时间为t (秒),△OPQ 的面积为S ,求出S 与t 之间的函数关系式;(3)当5
48
=S 时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.
4、如图,在平面直角坐标系xOy 中,直线1y x =+与3
34
y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点. (1)求点A B C ,,的坐标.
(2)当CBD △为等腰三角形时,求点D 的坐标. (3)在直线AB 上是否存在点E ,使得以点E D O A ,,,
为顶点的四边形是平行四边形
5、如图:直线3+=kx y 与x 轴、y 轴分别交于A 、B 两点,
4
3
=OA OB ,点C(x ,y)是直线y =kx +3上与A 、B 不重合的动点。

(1)求直线3+=kx y 的解析式;
(2)当点C 运动到什么位置时△AOC 的面积是6;
(3)过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使△BCD 与 △AOB 全等?若存在,请求出点C 的坐标;若不存在,请说明理由。

一次函数图象平移的三种类型
求一次函数图象平移后的解析式是一类重要题型,在各省市中考试题频繁亮相.在一次函数
y kx b =+中常数k 决定着直线的倾斜程度:直线111y k x b =+与直线222y k x b =+平行⇔12k k =.
A y
x
D
C
O
B
一、一次函数平移的三种方式:
⑴上下平移:在这种平移中,横坐标不变,改变的是纵坐标也就是函数值y .平移规律是上加下减. ⑵左右平移:在这种平移中,纵坐标不变,改变的是横坐标也就是自变量x .平移规律是左加右减. ⑶沿某条直线平移:这类题目稍有难度.“沿”的含义是一次函数图象在平移的过程中与沿着的那条直线的夹角不变.解题时抓住平移前后关键点坐标的变化. 二、典型例题:
(1)点(0,1)向下平移2个单位后的坐标是 ___(0,-1) 直线21y x =+向下平移2个单位后的解析式是y=2x-1 (2)直线21y x =+向右平移2个单位后的解析式是___.
(3)如图,已知点C 为直线y x =上在第一象限内一点,直线21y x =+交y 轴于点A ,交x 轴于B ,将直线AB 沿射线OC 方向平移
x。

相关文档
最新文档