华师大版初中数学知识点总结

合集下载

华师大版八年级数学知识点归纳

华师大版八年级数学知识点归纳

华师大版八年级数学知识点归纳天才就是勤奋曾经有人这样说过。

假如这话不完全正确,那至少在很大程度上是正确的。

学习,就算是天才,也是需要不断练习与记忆的。

下面是我给大家整理的一些〔〔八年级〕数学〕的学问点,希望对大家有所关怀。

八年级数学学问点〔总结〕函数及其相关概念1、变量与常量在某一转变过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一转变过程中有两个变量x与y,假如对于x的每一个值,y 都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法用图像表示函数关系的〔方法〕叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:依据自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

初二下册数学学问点总结【解一元一次方程】1.等式与等量:用=号连接而成的式子叫等式.留意:等量就能代入!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;留意:方程的解就能代入!5.移项:转变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合1/ 3并同类项……系数化为1……(检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:…………多用于和,差,倍,分问题仔细读题,找出表示相等关系的关键字,例如:大,小,多,少,是,共,合,为,完成,增加,削减,配套-----,利用这些关键字列出文字等式,并且据题意设出未知数,最终利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于行程问题利用图形分析数学问题是数形结合思想在数学中的表达,仔细读题,根据题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最终利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

九年级华师大版数学知识点

九年级华师大版数学知识点

九年级华师大版数学知识点详解九年级数学学科是中学数学学科的重要阶段之一,学生将进一步巩固和拓展初中数学的基础知识,并学习一些高中数学的初步内容。

下面将重点介绍九年级华师大版数学的主要知识点,帮助同学们更好地理解和掌握这些内容。

一、代数运算代数运算是数学学科中非常重要的一个部分,它涉及到数字和符号的组合及其运算规则。

在九年级的代数运算中,包括乘法法则、因式分解、代数式的展开与因式分解等内容。

其中,乘法法则是代数运算的基础,学生需要熟练掌握乘法法则,并能够运用到实际问题中。

而因式分解则是将一个多项式拆分成几个较简单的乘积的过程,也是九年级代数运算的重点之一。

二、平面几何在九年级华师大版数学中,平面几何是一个重要的内容。

它主要包括三角形、平行线、相似形和勾股定理等知识点。

在学习这些知识点时,同学们需要了解三角形的定义和性质,并能够应用到解决实际问题中。

平行线的学习中,需要掌握平行线的定义以及平行线的性质,例如平行线间的角和、平行线的判定方法等。

相似形是指形状相似但大小不同的两个图形,学生需要学习相似形的定义、性质以及相似比的计算方法。

勾股定理是解决直角三角形问题的重要定理,同学们需要了解勾股定理的定义和证明过程,并能够熟练应用到解题中。

三、数列与函数数列是由一列数字按照一定规律排列而成的一组数,数列中的每个数字称为项。

在九年级华师大版数学中,学生需要学习数列的概念、性质以及求解数列的问题。

在数列的学习中,同学们需要了解等差数列和等比数列的定义,并能够计算其通项、前n项和等差(比)等相关内容。

函数是数学中的一种基本概念,是将一个数集的每个元素都对应到另一个数集中的元素的关系。

在九年级数学中,学生将进一步学习函数的概念以及函数的性质和运算。

此外,同学们还需要学习函数的图像、函数关系的表示和函数的应用等内容。

四、概率与统计概率与统计是应用数学的重要分支,它涉及到随机事件和数据的收集与分析。

在九年级华师大版数学中,学生将学习概率的基本概念和性质,以及概率的计算方法和应用。

华东师大版初中数学同步知识框架

华东师大版初中数学同步知识框架
3、图形的中心对称作图
4、判断两个图形是否全等
旋转的综合应用
好:2次
中:3次
差:4次
第十六章 平行四边形的认识
1、平行四边形的性质
2、矩形的性质
3、菱形的性质
4、正方形的性质
5、梯形的性质
1、平行四边形的性质
2、矩形的性质
3、菱形的性质
4、正方形的性质
5、梯形的性质
1、平行四边形、矩形、菱形、正方形性质的综合应用
2、梯形的性质的应用以及常见辅助线的应用
好:4次
中:5次
差:6次




第十七章 分式
1、分式及其根本性质
2、分式的运算
3、可化为一元一次方程的分式方程
4、分式方程与实际运用
5、零指数幂与负整指数幂
1、分式的运算
2、解分式方程
3、分式方程与实际运用
分式方程与实际运用
好:2次
中:3次
差:4次
第十八章 函数及其图形
2、多边形的角和与外角和
1、三角形的分类与性质
2、多边形角和公式和外角和的应用
多边形的角和公式和外角和公式
好:1次
中:1.5次
差:2次
第十章 轴对称
1、轴对称的认识
2、等腰三角形
1、正确判断轴对称图形
2、会画轴对称图形
3、等腰三角形的性质及其应用
1、轴对称的综合应用
2、等腰三角形性质的应用
好:2次
中:3次
2、用树状图或表格法表示概率
用树状图或表格法表示随机事件与概率
好:1次
中:1.5次
差:2次




第二十七章

华师大版初中数学知识点总结doc资料

华师大版初中数学知识点总结doc资料

华师大版初中数学知识点总结华师大版初中数学知识点总结七年级上第二章有理数1.相反意义的量向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。

2.正数和负数像+,+12,1.3,258等大于0的数(“+”通常不写)叫正数。

像-5,-2.8,-等在正数前面加“—”(读负)的数叫负数。

【注】0既不是正数也不是负数。

3.有理数(1)整数:正整数、零和负整数统称为整数。

分数:正分数和负分数统称为分数。

有理数:整数和分数统称为有理数。

(2)有理数分类1)按有理数的定义分类2)按正负分类正整数正整数整数0 正有理数有理数负整数有理数正分数正分数0 负整数分数负有理数负分数负分数【注】有限循环小数叫做分数。

(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。

所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。

4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。

【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。

2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。

2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。

(几何意义)(3)0的相反数是0。

也只有0的相反数是它的本身。

(4)相反数是表示两个数的相互关系,不能单独存在。

(5)数a的相反数是—a。

(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。

如果“-”号是奇数个,则结果为负;如果是偶数个,则结果为正。

可简写为“奇负偶正”。

华师大版八年级下册数学初中数学知识点总结

华师大版八年级下册数学初中数学知识点总结

知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。

2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 21-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。

华师大版初中数学知识点总结材料

华师大版初中数学知识点总结材料

数学知识点总结七年级上第二章 有理数1.相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。

2.正数和负数像+12,1.3,258等大于0的数(“+”通常不写)叫正数。

像-5,-2.8,等在正数前面加“—”(读负)的数叫负数。

【注】0既不是正数也不是负数。

3.有理数(1)整数:正整数、零和负整数统称为整数。

分数:正分数和负分数统称为分数。

有理数:整数和分数统称为有理数。

(2)有理数分类1) 按有理数的定义分类 2)按正负分类正整数 正整数 整数 0 正有理数有理数 负整数 有理数 正分数 正分数 0 负整数分数 负有理数负分数 负分数【注】有限循环小数叫做分数。

(3)数集 把一些数组合在一起,就组成了一个数的集合,简称数集。

所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。

4.数轴 (1)规定了原点、正方向和单位长度的直线叫做数轴。

【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。

2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数. (2)在数轴上比较有理数的大小 1)在数轴上表示的两个数,右边的数总比左边的数大。

2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

5.相反数 (1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。

(几何意义) (3)0的相反数是0。

也只有0的相反数是它的本身。

(4)相反数是表示两个数的相互关系,不能单独存在。

(5)数a 的相反数是—a 。

(6)多重符号化简 多重符号化简的结果是由“-”号的个数决定的。

如果“-”号是奇数个,则结果为负; 如果是偶数个,则结果为正。

最新华师大版七年级数学知识点汇总

最新华师大版七年级数学知识点汇总

华师大版七年级数学主要包括整数、分数、小数、代数、平面几何、统计与概率等内容。

下面是对每个知识点的简要概述。

一、整数1.自然数及其扩展:自然数、非负整数、绝对值等概念的引入。

2.正负数及其相反数:正数、负数、相反数的概念及性质。

3.整数的加法与减法:同号相加、异号相减、有运算律等基本操作法则。

4.整数的乘法:同号相乘得正、异号相乘得负、乘法运算法则。

5.整数的除法:除法运算规则、余数、商的概念及规律。

二、分数1.分数与整数的关系:分数的定义及分数与整数之间的关系。

2.分数的大小比较:通分比较、化简比较、带分数比较等方法。

3.分数的加法与减法:同分母相加减、异分母相加减、化简等操作法则。

三、小数1.有限小数与无限小数:有限小数、循环小数、无限不循环小数的区分与性质。

2.小数的大小比较:相同小数位比较、小数与分数比较等方法。

3.小数的加法与减法:按位对齐相加减、借位压位等运算法则。

四、代数1.字母代数式:字母及常数用数字代替,字母代表一类数、代数式的加减运算等。

2.一元一次方程:方程的定义、等式的性质、解方程的基本方法。

3.一元一次方程组:方程组的定义、解方程组的基本方法。

五、平面几何1.图形的分类:点、线、面等几何基本概念。

2.线段与角度:线段的长度、角度的度量、角度的分类等。

3.三角形与四边形:三角形的分类、四边形的分类及性质。

4.相似与全等:相似图形、全等图形的定义及判定方法。

5.平行线与垂直线:平行线的判定、平行线性质、垂直线的判定等。

六、统计与概率1.统计图与统计量:条形图、折线图、统计量的计算等。

2.概率的概念:基本概率、事件概率、互斥事件、相对频率等。

华师大版初中数学知识点总结材料

华师大版初中数学知识点总结材料

数学知识点总结七年级上第二章 有理数1.相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。

2.正数和负数像+12,1.3,258等大于0的数(“+”通常不写)叫正数。

像-5,-2.8,等在正数前面加“—”(读负)的数叫负数。

【注】0既不是正数也不是负数。

3.有理数(1)整数:正整数、零和负整数统称为整数。

分数:正分数和负分数统称为分数。

有理数:整数和分数统称为有理数。

(2)有理数分类1) 按有理数的定义分类 2)按正负分类正整数 正整数 整数 0 正有理数有理数 负整数 有理数 正分数 正分数 0 负整数分数 负有理数负分数 负分数【注】有限循环小数叫做分数。

(3)数集 把一些数组合在一起,就组成了一个数的集合,简称数集。

所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。

4.数轴 (1)规定了原点、正方向和单位长度的直线叫做数轴。

【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。

2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数. (2)在数轴上比较有理数的大小 1)在数轴上表示的两个数,右边的数总比左边的数大。

2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

5.相反数 (1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。

(几何意义) (3)0的相反数是0。

也只有0的相反数是它的本身。

(4)相反数是表示两个数的相互关系,不能单独存在。

(5)数a 的相反数是—a 。

(6)多重符号化简 多重符号化简的结果是由“-”号的个数决定的。

如果“-”号是奇数个,则结果为负; 如果是偶数个,则结果为正。

八年级华师大版数学知识点

八年级华师大版数学知识点

八年级华师大版数学知识点随着教育的不断深入推进,中学数学已经成为教育中的重要一环。

其中八年级华师大版数学是数学中一个很具特点的方面,掌握八年级华师大版数学是实现中学知识系统化、有机化、全面化的必要手段。

下面,我们将详细介绍八年级华师大版数学中的重要知识点。

1.整式的加减
整式的加减是数学中一个非常基础的知识点,也是解决多项式问题的关键。

在八年级华师大版数学中,我们需要通过掌握整式的加减,来解决一些涉及到多项式的题目,例如多项式的因式分解等。

2.方程的解法
方程是中学数学中重要的一环,对于八年级华师大版数学来说也是不可或缺的。

在八年级华师大版数学中,我们需要学习和掌握一元二次方程的解法、解二元一次方程的方法等内容。

3.圆的相关知识
圆在中学数学中也是一个比较重要的知识点。

在八年级华师大版数学中,我们需要学习并掌握圆的相关知识,如圆周长、扇形面积的计算、相交弧等。

4.三角形的性质和计算
三角形是中学数学中的一个难点,也是八年级华师大版数学的一个重点。

学生需要掌握三角形的性质、倍角公式、三角函数等内容。

此外,还需要掌握三角形的计算方法,如三边求面积、海龙公式等。

5.平面坐标系与直线
平面坐标系与直线也是八年级华师大版数学的一个重要内容。

学生需学习掌握平面直角坐标系的基本概念、直线的一般式、点斜式等知识点,并能熟练运用这些知识点解决相关问题。

总之,八年级华师大版数学中存在许多重要的知识点。

了解、理解并掌握这些知识点,是中学数学学习的核心要素。

希望每一位同学都能够认真学习、认真掌握数学中的各项知识点,切实提高自己的数学水平。

华师初中数学知识点总结

华师初中数学知识点总结

华师初中数学知识点总结一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。

- 有理数的分类:正有理数、负有理数和零。

- 有理数的运算:加法、减法、乘法、除法、乘方、开方。

2. 整数- 整数的性质:奇数与偶数、质数与合数。

- 整数的运算:加法交换律、结合律;减法、乘法、除法的性质。

3. 分数与小数- 分数的基本性质:分数的基本线、通分与约分。

- 小数与分数的互化:小数转化为分数的方法,分数转化为小数的方法。

- 四则运算:分数与小数的加、减、乘、除运算。

4. 代数表达式- 代数式的概念:用字母表示数的式子。

- 单项式与多项式:单项式的定义、多项式的定义及它们的运算。

- 代数式的简化:合并同类项、分配律等。

5. 一元一次方程- 方程的概念:含有未知数的等式。

- 解方程的方法:移项、合并同类项、系数化为1。

- 实际问题的建模:根据实际情况建立一元一次方程。

6. 二元一次方程组- 方程组的概念:含有两个未知数的一元一次方程的集合。

- 解方程组的方法:代入法、消元法。

- 三元一次方程组:解法及转化思想。

7. 不等式与不等式组- 不等式的概念:表示大小关系的式子。

- 不等式的解法:移项、合并同类项、不等式的性质。

- 不等式组的解集:求解不等式组的解集。

二、几何1. 平面图形- 点、线、面的基本性质。

- 角的概念:邻角、对角、同位角等。

- 三角形的分类与性质:等边、等腰、直角三角形的性质。

- 四边形的分类与性质:矩形、菱形、正方形、平行四边形、梯形。

2. 图形的变换- 平移:图形沿直线移动。

- 旋转:图形绕一点旋转一定角度。

- 轴对称:图形关于某条直线对称。

3. 圆的性质- 圆的定义:平面上所有与定点等距离的点的集合。

- 圆的要素:圆心、半径、直径、弦、弧、切线。

- 圆的性质:圆周角、圆心角、切线长定理。

4. 圆的相关计算- 圆的周长与面积公式。

- 扇形的弧长与面积计算。

- 圆锥与圆柱的侧面积与体积。

华师大版初中数学考点总结

华师大版初中数学考点总结

华师大版初中数学考点总结数学家也研究纯数学,也就是数学本身,而不以任何实际运用为目标。

虽然有许多工作以研究纯数学为开端,但之后也许会发觉合适的运用。

就纵度而言,在数学各自领域上的探索亦更加深入。

今天作者在这给大家整理了一些华师大版初中数学考点总结,我们一起来看看吧!华师大版初中数学考点总结一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。

2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。

二、类似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。

三、类似三角形:1.定义:对应角相等,对应边成比例的三角形叫做类似三角形。

2.性质:(1)类似三角形的对应角相等;(2)类似三角形的对应线段(边、高、中线、角平分线)成比例;(3)类似三角形的周长比等于类似比,面积比等于类似比的平方。

说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。

3.判定定理:(1)两角对应相等,两三角形类似;(2)两边对应成比例,且夹角相等,两三角形类似;(3)三边对应成比例,两三角形类似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形类似。

初中数学考点总结一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及运算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相干元素,初中数学复习提纲、初中数学复习提纲等)六、一组运算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的运算方法6.圆柱、圆锥的侧面展开图及相干运算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、重要辅助线1.作半径2.见弦常常作弦心距3.见直径常常作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦初中数学考点知识点1.概念把形状相同的图形叫做类似图形。

华师大版初中数学知识点总结

华师大版初中数学知识点总结

华师大版初中数学知识点总结
初中数学(华师大版)知识点总结:
一、代数:
1、定义:代数是学习数的一个重要分支,通过讨论各种各样的数量
的静态变化,记号法,定义,性质,运算,解决实际问题的技术,来把数
学研究的内容概括为一个整体。

2、术语:代数术语包括:变量、常数、基本运算、表达式、方程和
不等式、根、函数、因式和因子、和、积、分式、幂和指数、比率、比值、百分数、数列和级数、立体几何体等。

3、类型:代数中常见的几种题型有:简单方程组、一元二次方程、
分式、幂指数与根式、比值等。

4、思想:代数是通过思维推理,综合运用符号表达式、数学公式和
算法,来解决问题和实践领域中的应用问题。

二、几何:
1、定义:几何是以形体的几何特性,以及相关的空间几何关系来研
究实物形状、大小和位置的数学学科。

2、类型:几何问题可以分为:图形结构类、运动类、测量类和计算
类问题。

3、概念:常见的几何性质和概念有:
(1)图形的属性:角、平行线、平行四边形、锐角三角形等;
(2)图形大小关系:直角和锐角三角形、正方形等;
(3)空间图形关系:棱和面、相交、相切等;。

华师大版数学八年级上册知识点汇总

华师大版数学八年级上册知识点汇总

华师大版数学八年级上册知识点汇总第一章数的开方重点知识点知识点一:平方根和立方根类型项目平方根立方根被开方数非负数任意实数符号表示a±3a 性质一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a 333333)(aa aa a a -=-==知识点二:实数有理数和无理数统称为实数.1.实数的分类按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数知识点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点的对应关系数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应,即实数与数轴上的点一一对应.3.实数的三个非负性及性质在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式:(1)任何一个实数a 的绝对值是非负数,即|a |≥0;(2)任何一个实数a 的平方是非负数,即2a ≥0;0≥(0a ≥).非负数具有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1.实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3.两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.第二章整式的乘除重点知识点知识点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0,m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.知识点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.知识点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.知识点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c++÷=÷+÷+÷=++知识点三、乘法公式1.平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.22()()a b a b a b +-=-知识点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.()2222a b a ab b +=++;2222)(b ab a b a +-=-知识点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.知识点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有:提公因式法,公式法等.知识点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.第三章全等三角形重点知识点知识点一、全等三角形的性质和判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).全等三角形判定2——“边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).全等三角形判定3——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).全等三角形判定4——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).知识点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等.(2)可以从已知出发,看已知条件确定证哪两个三角形全等.(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等.(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.3.判定直角三角形全等的特殊方法——斜边直角边定理斜边直角边定理(或简记为HL):斜边和一条直角边分别相等的两个直角三角形全等.知识点诠释:判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.知识点二、等腰三角形1.等腰三角形的性质及其作用性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质1用之证明同一个三角形中的两角相等,是证明角相等的一个重要依据.性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).性质2用来证明线段相等,角相等,垂直关系等.2.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).知识点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.3.等边三角形的性质和判定:性质:等边三角形三个内角都相等,并且每一个内角都等于60°.判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.知识点诠释:由等边三角形的“三线合一”可得:在直角三角形中,30°所对的直角边等于斜边的一半.知识点三、尺规作图、命题、定理与逆命题、逆定理1.尺规作图只能使用圆规和没有刻度的直尺这两种工具作几何图形的方法称为尺规作图.知识点诠释:(1)要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.(2)掌握五种基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知角的平分线;经过一已知点作已知直线的垂线;作已知线段的垂直平分线.并能利用本章的知识理解这些基本作图的方法.2.命题与逆命题判断一件事件的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.知识点诠释:(1)对于命题的定义要正确理解,也即是通过这句话可以确定一件事是发生了还是没发生,如果这句话不能对于结果给予肯定或者否定的回答,那它就不是命题.(2)每一个命题都可以写成“如果…,那么…”的形式,“如果”后面为题设部分,“那么”后面为结论部分.(3)所有的命题都有逆命题.原命题正确,它的逆命题不一定正确.3.定理与逆定理数学中,有些命题可以从基本事实或者其他真命题出发,用逻用推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.如果一个定理的逆命题也是真命题,那就称它为原定理的逆定理.知识点诠释:(1)定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.(2)一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理.知识点四、角平分线、线段垂直平分线的性质定理及其逆定理1.角平分线性质定理及其逆定理角平分线上的点到角两边的距离相等;逆定理:角的内部到角两边的距离相等的点在角的平分线上.知识点诠释:性质定理的前提条件是已经有角平分线了,即角被平分了;逆定理则是在结论中确定角被平分,一定要注意着两者的区别,在使用这两个定理时不要混淆了.2.线段垂直平分线(也称中垂线)的性质定理及其逆定理线段的垂直平分线上的点到线段两端的距离相等;逆定理:到线段两端距离相等的点在线段的垂直平分线上.知识点诠释:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理则是在结论中确定线段被垂直平分,一定要注意着两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.第四章勾股定理重点知识点知识点一、勾股定理1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)求作长度为的线段.知识点二、勾股定理的逆定理1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形.应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为c ;(2)验证2c 与22a b +是否具有相等关系,若222a b c +=,则△ABC 是以∠C 为直角的直角三角形,反之,则不是直角三角形.3.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.常见的勾股数:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)知识点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.第五章数据的收集与表示重点知识点知识点一、数据的收集1.收集数据的步骤(1)明确调查问题;(2)确定调查对象;(3)选择调查方法;(4)展开调查;(5)记录结果;(6)分析结果,得出结论.2.频数与频率频数表示每个对象出现的次数;频率表示每个对象出现的次数与总次数的比值.频数与频率都能够反映每个对象出现的频繁程度.但在总次数不相等时,应比较频率而不是频数.知识点诠释:收集数据时,通常采用画“正”字的方法记录数据出现的频数.知识点二、数据的表示1.统计表和统计图:统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据;统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.2.三种统计图(1)条形统计图是用宽度相同的条形的高低或长短来表示数据的统计图,它可以很直观地反映出数据的数量特征,便于比较大小,但不能清楚地反映各部分占总体的百分比.如果有两个研究对象,常常把这两个对象的相应数据并列表示在同一幅条形统计图中.(2)扇形统计图是用整个圆代表所研究的总体,用圆中各个扇形代表组成总体的各个部分,扇形圆心角的大小反映出各组成部分的数量在总数量中所占份额的大小.从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.(3)折线统计图是用折线表示数量变化规律的统计图.如果关注的是某种现象随时间变化而发生的变化,常常以时间为水平放置的数轴,以折线的起伏直观地反映出数量随时间所发生的相应变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.知识点诠释:三种统计图都有各自的优缺点,在实际生活中我们常常将它们结合起来使用.。

华师大版初中数学知识点总结

华师大版初中数学知识点总结

华师大版初中数学知识点总结
一、基本运算
1.加减乘除的计算
2.带分数与假分数的计算
3.整数的加减乘除
二、数表达式与代数运算
1.代数式的基本概念
2.同类项与合并同类项
3.一元一次方程及其解法
4.一元一次不等式及其解法
5.一元一次方程组及其解法
三、平面图形
1.点、线、面的基本概念
2.四边形的性质与分类
3.三角形的性质与分类
4.直角三角形及其性质
5.平面直角坐标系
6.圆的性质与相关计算
四、空间图形
1.立体图形的基本概念
2.立体图形的展开图与图形变换
3.直角坐标系中点与向量的运算
4.空间图形的投影与相关计算
五、数据与统计
1.数据的收集与整理
2.数据的图表表示与分析
3.概率与统计
六、函数与方程
1.函数的概念与性质
2.一元一次函数与相关计算
3.一元二次函数与相关计算
4.一元一次不等式与一元二次不等式的解法
七、数的综合应用
1.数字运用与推理
2.运算的应用问题
3.算数平方根与应用
4.核数问题
5.等速变化问题
以上是华师大版初中数学的主要知识点总结。

华师大版初中数学注重培养学生的数学思维和解决实际问题的能力,并通过各种实例和题目来帮助学生理解和应用知识。

掌握了这些知识点,学生将能够更好地应对数学考试,并能够应用数学知识解决实际生活中的问题。

华师大版初中数学考点总结

华师大版初中数学考点总结

华师大版初中数学考点总结一、数的四则运算1.整数四则运算:包括加减乘除的运算。

2.分数的四则运算:包括分数的加减乘除的运算。

3.小数的四则运算:包括小数的加减乘除的运算。

4.保留小数计算:要求学生掌握小数精确到一定位数的计算方法。

二、代数与方程1.提取公因式:学生需要学会提取公因式的方法,简化计算。

2.合并同类项:学生需要学会合并同类项的方法,简化计算。

3.方程的解:学生需要学会解一元一次方程、一元一次方程组、一元二次方程等。

4.代数式与方程式的计算:包括根据给定的条件计算代数式和方程式的值,以及根据代数式和方程式的值计算未知数的值。

三、几何1.角的概念:学生需要理解角的概念,包括角的度量和角的种类。

2.图形的性质:学生需要了解各种图形的性质,包括线段、角、三角形、四边形等。

3.面积与体积的计算:学生需要学会计算平行四边形、三角形、矩形等图形的面积,以及长方体、正方体等立体图形的体积。

4.相似与全等:学生需要了解相似与全等的概念,以及相似与全等的判定方法。

四、数据与概率1.统计量与频率分布表:学生需要学会计算统计量,包括众数、中位数、均值等。

2.折线图与条形图:学生需要学会制作折线图和条形图,并能够从图中读取信息。

3.概率计算:学生需要学会计算概率,包括事件的概率和多个事件的概率。

五、函数与图像1.函数的表示与性质:学生需要了解函数的概念,包括函数的表示方法和函数的性质。

2.函数的图像:学生需要学会根据函数的表达式绘制函数的图像。

3.函数的应用:学生需要学会应用函数解决实际问题,包括线性函数和比例函数的应用。

六、解决实际问题1.解决实际问题:学生需要学会将数学知识应用到实际问题中,进行问题分析和解决。

2.数学建模:学生需要学会利用数学方法对实际问题进行建模,并给出解决方案。

通过对华师大版初中数学教材考点的总结,我们可以看出,该教材注重基础知识的学习和应用,涵盖了数学的各个方面。

学生需要通过对这些考点的学习和掌握,培养自己的数学思维和解决问题的能力,为更高层次的学习打下坚实的基础。

初中数学考点华师大版

初中数学考点华师大版

初中数学考点华师大版对初中学生的指导更多的应侧重于学习方法和学习意志品质的培养进入初中以后,学生在学习上的独立性逐渐增强。

知识点是网络课程中信息传递的基本单元,研究知识点的表示与关联对提高网络课程的学习导航具有重要的作用。

今天作者在这给大家整理了一些初中数学考点华师大版,我们一起来看看吧!初中数学考点华师大版11、定义:顶点在圆上,角的两边都与圆相交的角。

(两条件缺一不可)2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

3、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。

(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)4、圆内接四边形的性质定理:圆内接四边形的对角互补。

(任意一个外角等于它的内对角)补充:1、两条平行弦所夹的弧相等。

2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。

2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

3、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。

初中数学考点华师大版21.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转进程中旋转中心始终保持不动.(3)旋转进程中旋转的方向是相同的.(4)旋转进程静止时,图形上一个点的旋转角度是一样的.⑤旋转不改变图形的大小和形状.2.性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.3.旋转作图的步骤和方法:(1)肯定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形.说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角.初中数学考点华师大版3①直线和圆无公共点,称相离。

华师大版初中数学知识点总结(K12教育文档)

华师大版初中数学知识点总结(K12教育文档)

华师大版初中数学知识点总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(华师大版初中数学知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为华师大版初中数学知识点总结(word版可编辑修改)的全部内容。

华师大版初中数学知识点总结七年级上第二章有理数1.相反意义的量向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。

2.正数和负数像+,+12,1。

3,258等大于0的数(“+”通常不写)叫正数.像—5,—2。

8,—等在正数前面加“-"(读负)的数叫负数。

【注】0既不是正数也不是负数.3.有理数(1)整数:正整数、零和负整数统称为整数。

分数:正分数和负分数统称为分数。

有理数:整数和分数统称为有理数。

(2)有理数分类1)按有理数的定义分类 2)按正负分类正整数正整数整数 0 正有理数有理数负整数有理数正分数正分数 0 负整数分数负有理数负分数负分数【注】有限循环小数叫做分数.(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。

所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。

4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴.【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。

2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大.2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学知识点总结12像+12(2 1)有理数(34(1)【注】(2 1)2)5(15(几何意义)不能单独存在。

如果是偶数个,叫做数(3(4)(5)(6123)7(1)12)34(28. 9-8+6,负4的和”(2(313(1(2数法。

(3)14(1(2(315(1(2(3(4)212(1)(21)234)5)3.单项式(1)如100t、6a、2.5x、vt、- n,它们都是数或字母的积,像这样的式子叫做单项式,单独的一个数或一个字母也是单项式。

(2)单项式的系数:单项式中的数字因数叫做这个单1时,“1”通常x7(1(2(3)1面的“2(41(1(212(312(42(1)、“一三二Zn边a。

a(3(42(5做法:(67.角(1(2)无关。

(31)用数字表示单独的一个角。

如∠1,∠2等2)用小写的希腊字母表示单独的一个角。

如∠,∠等3)用一个大写的英文字母表示独立(在一个顶点处只4等。

(4交前(直角),就说(平角),就(2(39直线l截直线a、b得到八个角。

∠6与∠510.平行线(1)在同一平面内,不相交的两条直线叫做平行线。

若直线【注】行。

(2(3画(4明确调查对确定调查对象选择调查方法展开调查记录结果得出结论2.频数:表示每个对象出现的次数方程从方程的一这样的方程叫1(5知数1.是2.3.4.(1关系式中,求出另一个未知数的值。

把求得的未知数的值联立写成的形式。

(2)加减消元法1.【注】五种。

2.同一个数或同-c。

不等号需要改10列1. (1)(2(3)(42(1(2形3(1(2(3这两个取一个相加,得到的和成为三角形的外角和。

(5)三角形的外角和是。

5.三角形的三边关系边形,又称为各内角也相等,n -3)。

1.2.3(1(2(3(4)4(1(2)等。

(3)线。

(4(55(112)(2126(1。

(正三角都等于。

2)等边三角形是特殊的等腰三角形,有三条对称轴。

2)三个角都相等的三角形是等边三角形。

3)有一个角是的等腰三角形是等边三角形。

100%。

0到100%之、“不大可能发我们就用平1(1(2记作数,即a 0(32(1(2)求一个数的立方根的运算,叫做开立方。

(3)数a 的立方根,记作,读作“三次根号a ”,其中a 称为被开方数,3称为根指数。

(4)任何数(正数、负数、0)都有立方根,并且只 04. 5. 6.1(1a (2)(a (3)(4) 等于这两个数的平方差。

(2) 完全平方公式:两数和(或差)的平方,等于它们的平方和加上(或减去)这两数积的2倍。

4.整式的除法叫做多出来,多项式和(a+b+c )的 2)一次项系数是1为a 、平方。

2关系,1方向和距离所决定。

如下图:把点A 与点叫做对应点,把线段AB 与线段叫做对应线段,∠A 与叫做对应角。

△ABC 平移的方向就是由点B 到点的方向,平移的距离就是线段的长度。

2.平移的特征 (1)【注】(23.旋转 (1)在平面内,一个图形绕着中心点旋转后,与自身重合,我们把这种图形叫做中心对称图形。

这个中心点叫做对称中心。

【注】中心对称图形是旋转角度为的旋转对称图形。

(2)把一个图形绕着某一点旋转,如果它能够和另一个图形重合,那么,我们就说这两个图形成中心对称。

,这个点叫做对称中心,这两个图形的对应点,叫做关于中心的对称点。

7.中心对称的特征12(1(2(3(4交点。

(43(1(21234(1(21235(1(2126(1(2)123)B叫做,因此,1。

10其中n1(1)(2如x 和是x (3123(4(5) 12(11)2)是m ,称为点为点P 3)HL (44(1(2(31随x2随x56.一次函数与一元一次不等式使一次函数y=kx+b(k0)的函数值y>0的自变量的所有的值,就是一元一次不等式k x+b>0的解集。

123公理。

(2(3(44(1(2(3)5(1(2(3第1.算术平均数若一组数据为,它们的平均数为,则。

平均数反映了这组数据中个数据的平均大小或者是集中趋势。

2.加权平均数的权重后所得的平均数就是加权平均数。

3.扇形统计图的制作(1(2(3(4)56”表示一组数据数。

1.二次根式表示非负数a的算术平方根,也就是说,是一个非负数,它的平方等于a,即有:(1)(2)7式。

8(1(2)9.同类二次根式像与,、与这样的几个二次根式,称为同类二次根式。

二次根式的加减,先把各个二次根式化简,再将1这样的整式方程叫做一元二次方程。

一般形式:是已知数,。

其中分别叫做二次项的系数,一次项的系数,常数项。

2.一元二次方程的解法(1(2(3(43当当对于四条线段如果其中两条线段的长度的比等于另外两条线段的比,如,那么这四条线段叫做成比例线段。

简称比例线段,此时也称这四条线段成比例。

3.比例的基本性质(1)如果,那么ad=bc。

(2)如果ad=bc,(a,b,c,d都不等于零),那么。

,那么这7(1(2(38(1(2(3(49(1的一半。

(2)三角形三条边上的中线交于一点,这个点就是三角形的重心,重心与一边中点的线段的长是对应中线长的。

(3)梯形的中位线平行于两底边,并且等于两底边和101(1∠A∠A∠A∠A(2)(3)11时,y减小。

3.(1)(2(3x=0时,yx=0时,y4.(1)(2(3x=h时,yx=h时,y随x的增大而减小。

5.+k(a0)的图像与性质(1)(a0)由(a0)先向右(或向左)平移h个单位,再向上(或向下)平移k个单位得到的。

(2)对称轴是x=h,顶点坐标是(h,k)。

(3x=h时,yx=h时,y(4)影响h6.形式,即)时,y随x的增大而减小,当x>时,y随x的增大而增大。

当a<o时,图像开口向下,函数有最大值, 即当x=时,y=。

当x<时,y随x的增大而增大,当x>时,y随x的增大而减小。

7.最大值或最小值的求法,第一步确定a的符号,a,给出三点坐,给出两点,,给出三、时与二次函数点。

点。

10(1二次(2若,抛物线与x轴有两个交点,方程有两个不等的实根,这两个与x轴交点的横坐标就是一元二次方程的两个实根。

若,抛物线与x轴有一个交点,方程有两个相等的实根,此时一元二次方程的根就是抛物线顶点的横坐标。

若,抛物线与x轴没有交点,方程无实根,抛物线在x轴上方,,抛物线在x轴下方。

11.二次函数与一元二次不若若的无解。

x可取的无解。

O在平面内旋O为圆AC为直径。

AB、BC、BACBC︵这,这样的大于4(1周角。

(2)角)。

(3(45设⊙O在圆上(3)点在圆内6.(1)过一点可以画无数个圆;(2(37(1(2(3l的距离为O相离;O相切;O相交;其中(1)3)中两圆的圆(5)(2(3(4(57(1)弧长的计算公式为:(2)扇形:由组成圆心角的两条半径和圆心角所对的(3(4。

相关文档
最新文档