高考数学压轴专题2020-2021备战高考《计数原理与概率统计》难题汇编及答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《计数原理与概率统计》复习知识点

一、选择题

1.河图是上古时代神话传说中伏羲通过黄河中浮出龙马身上的图案,与自己的观察,画出的“八卦”,而龙马身上的图案就叫做“河图”.把一到十分成五组,如图,其口诀:一六共宗,为水居北;二七同道,为火居南;三八为朋,为木居东;四九为友,为金居西;五十同途,为土居中.“河图”将一到十分成五行属性分别为金,木,水,火,土的五组,在五行的五种属性中,五行相克的规律为:金克木,木克土,土克水,水克火,火克金;五行相生的规律为:木生火,火生土,土生金,金生水,水生木.现从这十个数中随机抽取3个数,则这3个数字的属性互不相克的条件下,取到属性为土的数字的概率为( )

A .

110

B .

15

C .

25

D .

12

【答案】C 【解析】 【分析】

从这十个数中随机抽取3个数,这3个数字的属性互不相克,包含的基本事件个数

11221

52222()20n C C C C C =+=,这3个数字的属性互不相克的条件下,取到属性为土的数字包含的基本事件个数为:11221

22222()8,m C C C C C =+=,由此能求出这3个数字的属性互不

相克的条件下,取到属性为土的数字的概率. 【详解】

由题意得数字4,9属性为金,3,8属性为木,1,6属性为水, 2,7属性为火,5,10属性为土,

从这十个数中随机抽取3个数,这3个数字的属性互不相克,

包含的基本事件个数11221

52222()20n C C C C C =+=,

这3个数字的属性互不相克的条件下,取到属性为土的数字包含的基本事件个数为:

11221

22222()8,m C C C C C =+=,

∴这3个数字的属性互不相克的条件下,取到属性为土的数字的概率82

205

m p n ===. 故选:C . 【点睛】

此题考查古典概型,关键在于根据计数原理准确求解基本事件总数和某一事件包含的基本事件个数.

2.若1路、2路公交车均途经泉港一中校门口,其中1路公交车每10分钟一趟,2路公交车每20分钟一趟,某生去坐这2趟公交车回家,则等车不超过5分钟的概率是()

A.1

8

B.

3

5

C.

5

8

D.

7

8

【答案】C

【解析】

【分析】

设1路车到达时间为x和2路到达时间为y.(x,y)可以看做平面中的点,利用几何概型即可得到结果.

【详解】

设1路车到达时间为x和2路到达时间为y.(x,y)可以看做平面中的点,

试验的全部结果所构成的区域为Ω={(x,y)|0≤x≤10且0≤y≤20},这是一个长方形区域,面积为S=10×20=200

A表示某生等车时间不超过5分钟,

所构成的区域为a={(x,y)|0≤x≤5或0≤y≤5},

即图中的阴影部分,面积为S′=125,

代入几何概型概率公式,可得

P(A)

'1255

2008 S

S

===

故选C

【点睛】

解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.

3.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则同学甲单独去一个社区不同的安排方式有( ) A .100种 B .60种 C .42种 D .25种

【答案】C 【解析】 【分析】

给三个社区编号分别为1,2,3,则甲可有3种安排方法,剩下的两个再进行分步计数,从而求得所有安排方式的总数. 【详解】

甲可有3种安排方法, 若甲先安排第1社区,

则第2社区可安排1个、第3社区安排3个,共1

3

43C C ⋅;

第2社区2个、第3社区安排2个,共22

42C C ⋅;

第2社区3个,第3社区安排1个,共11

41C C ⋅;

故所有安排总数为132211

4342413()42C C C C C C ⨯⋅+⋅+⋅=.

故选:C. 【点睛】

本题考查分类与分步计数原理、组合数的计算,考查分类讨论思想,考查逻辑推理能力和运算求解能力.

4.下列四个结论中正确的个数是

(1)对于命题0:p x R ∃∈使得2

010x -≤,则:p x R ⌝∃∈都有210x ->;

(2)已知2(2,)X

N σ,则 (2)0.5P X >=

(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为

ˆ23y

x =-; (4)“1x ≥”是“1

2x x

+≥”的充分不必要条件. A .1 B .2

C .3

D .4

【答案】C 【解析】 【分析】

由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【详解】

由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得

2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的;

相关文档
最新文档