2021年O型密封圈的选型设计计算参考
O型密封圈和密封圈槽尺寸选型设计计算参考
O型密封圈和密封圈槽尺寸选型设计计算参考O型密封圈是一种常用于密封装置的密封件,其截面呈O型,能够在静态或动态条件下防止液体或气体泄漏。
O型密封圈的选型设计计算是确保密封圈在应用中具有良好密封效果的关键。
本文将介绍O型密封圈和密封圈槽尺寸选型设计计计算的参考方法。
首先,我们需要了解的是O型密封圈的基本参数。
O型密封圈通常由橡胶或弹性材料制成,其内径、外径和截面直径是密封圈尺寸的关键参数。
一般来说,O型密封圈的尺寸会根据所需的密封环境和工作压力来确定。
选型设计计算的第一步是确定所需的密封效果。
这包括确定所需的密封压力、压缩量和泄漏率等参数。
例如,如果需要防止液体渗漏,需要选择能够承受所需压力的密封圈。
接下来是计算密封圈的尺寸。
一种常用的方法是根据密封圈的截面直径来选择O型密封圈的内径、外径和截面直径。
通常,截面直径是内径和外径的平均值。
例如,如果截面直径为10mm,可以选择内径为8mm、外径为12mm的O型密封圈。
选择正确的密封圈尺寸还需要考虑密封圈和密封圈槽之间的配合。
密封圈槽通常是在设计中预留的一个凹槽或沟槽,用于安装密封圈。
密封圈槽的尺寸要保证密封圈的压缩量和接触面积,以达到良好的密封效果。
密封圈槽的尺寸取决于密封圈的截面形状和材料厚度。
一般来说,密封圈与密封圈槽之间应有适当的间隙,以便密封圈在压缩时能够紧密地贴合密封圈槽的壁面。
通常,密封圈槽的宽度和深度一般都比密封圈的尺寸大一些。
在确定密封圈和密封圈槽尺寸时,还需要考虑到材料的弹性恢复率。
密封圈在安装时会被压缩,这会导致一定的变形。
因此,需要选择材料具有良好的弹性恢复率,确保密封圈在撤离压力时能够恢复到正常状态。
最后,为了确保密封效果,还需要进行一些实验和测试。
可以使用压力测试、泄漏测试等方法,来评估密封圈的性能。
如果发现泄漏或其他问题,就需要对密封圈和密封圈槽的尺寸进行调整。
总结起来,O型密封圈和密封圈槽尺寸的选型设计计算需要考虑到所需的密封效果、配合要求和材料的性能等因素。
O形橡胶密封圈的尺寸计算
10~30
6~15
1.8±0.08
10~25
6~12
2.65±0.09
10~22
5~10
3.55±0.10
10~20
4~8
5.30±0.13
10~18
4~7
7.00±0.15
10~15
4~6
2) O形圈内径伸长率的计算:
α=(d-d1)/d1×100%
式中α——O形圈的内径伸长率;
d——O形圈安装沟槽底径;
σ——O形圈断面的绝对压缩量;
H——沟槽深度;
d0——O形圈断面直径。
相对压缩量的大小,直接影响着元件的使用性能和寿命。一般地说,不论是静密封或动密封,在保证密封的前提下,相对压缩量越小越好。表1为气动密封设计中推荐的O形圈相对压缩量值。
表1 O形圈相对压缩量
断面直径mm
静密封(圆柱或平面)
动密封(往复或旋转)
6.48
活塞杆密封
1.08
1.64
2.44
3.34
5.01
6.65
静密封
0.9
1.3
2.0
2.7
4.0
5.4
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求
d1——O形圈的实际内径。
O形圈使用时,内径一般处于拉伸状态,其伸长率为5%左右,其推荐值见表2。
表2O形圈装配时的伸长率
断面直径mm
内径伸长率(%)
1.2±0.06
3~4
1.8±0.08
3~4.5
2.65±0.09
3.5~6.0
3.55±0.10
O型密封圈和密封圈槽尺寸选型设计计算参考
O形密封圈和密封圈槽尺寸选型设计计算参考O形密封圈和密封圈槽尺寸的合理匹配是延长密封圈无泄漏密封寿命的必要保证。
据此提出一种选配两者尺寸的理论计算方法,并以Y341—148注水封隔器所选密封圈的计算为例说明,根据不同的密封圈可以计算出相应的密封圈槽尺寸。
为保证密封圈长期有效地工作,还必须合理选择其压缩率、拉伸量和孔、轴配合精度等相关参数。
选取压缩率时,应考虑有足够的密封面接触压力、尽量小的摩擦力和避免密封圈的永久性变形。
顾及到一般试制车间的加工水平和井下工具主要是静密封的状况,建议密封面的轴、孔配合应优先选用H8/e8。
Selection of O-ring and calculation of O-ring groove sizeChen Aiping,Zhou Zhongya(Research Institute of Oil Production Technology,Jianghan Petroleum Administration,Qianjiand City,Hubei Province)Rational matching of O-rings and O-ringgrooves is of great importance to p[rolonging the service life of O-rings.A method for selecting O-ring was presented.The sizes of the O-ring gtoove can be calculated according to various O-rings.To ensure long-term and effective work of the ring,the compressibility,tensile dimension and bore-shaft matching accuracy should be properly selected. Subject Concept Terms:O-ring O-ring groove matching service life用O形密封圈(以下简称密封圈)密封是最常用的一种密封方式,然而至关重要的是如何正确地选择密封圈和设计密封圈槽尺寸。
密封圈设计计算表
步骤一
步骤二
步骤三
注1:填充率不得超过85%; 注2:压缩率约为20%最佳; 注3:永久伸长率不得超过10%; 注4:装配伸长率不得超过25%
汉升密封圈推荐尺寸(静态) 槽深 0.8 1.1 1.2 1.3 1.4 1.5 1.8 1.9 2 2.1 2.3 槽宽 1.3 1.9 2.1 2.3 2.4 2.6 3.1 3.2 3.4 3.5 3.9
汉升密封圈推荐尺寸静态初始尺寸轴外径密封槽深压缩率161221122002741781323191424步骤二密封圈内径永久伸长率装配伸长率152626051115241831251932步骤三密封槽宽填充率26234197752721352339o型密封圈选型计算表注1
O型密封圈选型计算表 初始尺寸 轴外径 29.0 密封槽深 1.2 密封圈内径 26.0 密封槽宽 1.9 孔内径 29.8 压缩率 20.0% 永久伸长率 5.1% 填充率 77.5% 密封圈线径 1.50 轴槽底径 27.4 装配伸长率 11.5%
汉升密封圈推荐尺寸( 线径 1 1.5 1.6 1.78 1.9 2 2.4 2.5 2.62 2.7 3
O型圈密封槽设计自动计算公式
定位内径(或外径)d0=19.00
O型圈截径压缩率K=0.25
O型圈体积溶胀率γ=0.20
O型圈内径d=19.00
O型圈直径伸缩率a=0.00
O型圈截面直径W= 2.00
O型圈沟槽深H= 1.50
径向密封沟槽宽度B径= 2.57
轴向密封内压沟槽宽度B内= 2.46
轴向密封外压沟槽宽度B外= 3.38
槽底圆角半径R<0.12
槽陵圆角半径r<0.06
备注:单位:mm
O型圈密封的截径压缩率K,一般静密封K=15-25,往复密封K=12-17,旋转密
O型槽深H=(1-K
O型槽宽(径向密封)B=γ为体积溶胀率,一般γ=0.15-0.2,静密封取大值,动密封取小
O型槽宽(轴向密封)B=沟槽小径定位d0=(a+1)d
外压时d0≥d
O型槽宽(轴向密封)B=沟槽大径定位
内压时
初步估算按B=(1.3-1.5)W取值,如果有放挤入挡圈应加上挡圈厚度,建议槽底圆角半径R<0.06W,槽陵圆角r<
旋转密封K=5-10或由试验确定,W为截面直径
密封取大值,动密封取小值,d0为定位直径
a为O型圈密封的直径伸缩率,一般a=0-0.03,d为O型圈直径沟槽大径定位d0=(-a+1)(d+2W)d0≤(d+2W)W,槽陵圆角r<0.03W。
o型圈的选择和计算方法(一)
o型圈的选择和计算方法(一)O型圈的选择和计算方法什么是O型圈?O型圈是一种常用的密封元件,通常用于静密封和动密封。
它的截面形状呈圆环状,因此得名为O型圈。
它可用于密封水、气体、油和其他液体介质。
O型圈的选择原则在选择合适的O型圈时,需要考虑以下几个因素:1.尺寸:根据应用场景的管道和孔洞尺寸,选择合适的O型圈尺寸。
常见的尺寸有内径、外径和截面直径等。
2.材料:根据介质的性质选择合适的材料。
常见的O型圈材料有橡胶(如丁腈橡胶、丙烯橡胶)、硅胶、四氟O型圈等。
3.工作压力:根据应用场景的工作压力选择合适的O型圈强度。
O型圈的强度主要由其材料和截面形状决定。
4.工作温度:根据应用场景的工作温度选择合适的O型圈材料。
不同的材料有不同的耐高温和耐低温特性。
O型圈的计算方法对于轴上O型圈的计算,可以按照以下步骤进行:1.确定密封剖面:根据密封要求和设计参数,确定O型圈的剖面形状和尺寸。
2.计算压缩量:根据O型圈的材料特性和截面形状,计算O型圈在安装过程中的压缩量。
通常需要考虑O型圈的内圈、外圈直径和截面直径等参数。
3.计算装配间隙:根据密封要求和安装方式,计算O型圈的装配间隙。
装配间隙的大小会影响O型圈的密封性能。
4.确定O型圈的材料和尺寸:根据介质的特性、工作温度和工作压力,选择合适的O型圈材料和尺寸。
5.选择合适的预压力:根据O型圈的材料和工作压力,选择合适的预压力。
预压力是指O型圈安装时所受的压力,它会对O型圈的密封性能产生影响。
O型圈的安装注意事项在安装O型圈时,需要注意以下几点:•使用专用工具或手动安装时,要避免损坏O型圈表面,防止圈口被削薄或破裂。
•在安装O型圈之前,要确保密封面干净无异物,避免杂质划伤圈口。
•安装时要保证O型圈处于正常工作状态,不应出现扭曲、变形或拉伸等异常情况。
•安装时避免使用过多的润滑剂,以免降低O型圈的密封性能。
结语O型圈是实现密封效果的重要元件,合适的选择和正确的安装方法对于保证系统的正常运行至关重要。
O形橡胶密封圈的尺寸计算
活塞杆密封
1.3.34
5.01
6.65
静密封
0.9
1.3
2.0
2.7
4.0
5.4
O形橡胶密封圈的尺寸计算
在气动中使用的O形橡胶密封圈尺寸系列及公差一般按国家标准GB3452-1液压气动用橡胶密封圈尺寸系列及公差标准选用。O形橡胶密封圈通常采用矩形沟槽密封,如图1所示。
图1 O形密封结构
1) O形圈压缩量计算
ε=σ/d×100%=(d0-H)/d0×100%
式中ε——O形圈的相对压缩量;
1.2±0.06
10~30
6~15
1.8±0.08
10~25
6~12
2.65±0.09
10~22
5~10
3.55±0.10
10~20
4~8
5.30±0.13
10~18
4~7
7.00±0.15
10~15
4~6
2) O形圈内径伸长率的计算:
α=(d-d1)/d1×100%
式中α——O形圈的内径伸长率;
d——O形圈安装沟槽底径;
d1——O形圈的实际内径。
O形圈使用时,内径一般处于拉伸状态,其伸长率为5%左右,其推荐值见表2。
表2 O形圈装配时的伸长率
断面直径mm
内径伸长率(%)
1.2±0.06
3~4
1.8±0.08
3~4.5
2.65±0.09
3.5~6.0
3.55±0.10
3.5~6.5
5.30±0.13
3.5~7.0
7.00±0.15
槽深H是O形圈安装沟槽设计的关键性尺寸,它主要取决于O形圈的相对压缩量。沟槽深度H可按表3选取。
(完整版)O型圈密封圈的选用分析
O 形密封圈的选用一、概述 特点:O 形密封圈由于它制造费用低及使用方便,因而被广泛应用在各种动、静密封场合。
标准:大部分国家对O 形密封圈都制定系列产品标准,其中美国标准(AS 568)、日本标准(JIS B 2401)、国际标准(ISO 3601/1)较为通用。
O型圈标准一览表表1标准 O 型圈截面直径W美国标准 AS 568 英国标准 BS 15161.782.623.53 5.33 7.00日本标准 JIS B 2401 1.9 2.4 3.1 3.5 5.78.4国际标准 ISO 3601/1 德国标准 DIN3771/1 中国标准 GB 3452.11.82.653.55 5.307.00优先的米制尺寸1.0 1.52.0 2.53.03.54.0 4.55.0 5.56.07.08.0 10.012.0美国标准AS 568(900系列)1.02 1.42 1.631.83 1.982.08 2.21 2.462.953.00密封机理:O形密封圈是一种自动双向作用密封元件。
安装时其径向和轴向方面的预压缩赋与O形密封圈自身的初始密封能力。
它随系统压力的提高而增大。
性能参数:静态密封动态密封工作压力无挡圈时,最高可达20MPa;有挡圈时,最高可达40MPa;用特殊挡圈时,最高可达200MPa。
无挡圈时,最高可达5MPa;有挡圈时,较高压力。
运动速最大往复速度可达0.5m/s,最大旋转速度可达2.0m/s。
度一般场合:-30℃~+110℃;特殊橡胶:-60℃~+250℃;旋温度转场合:-30℃~+80℃介质见《橡胶密封件原料特性表》。
二、O形密封圈选择应考虑的因素1、工作介质和工作条件在具体选取O形圈材料时,首先要考虑与工作介质的相容性。
还须综合考虑其密封处的压力、温度、连续工作时间、运行周期等工作条件。
若用在旋转场合,须考虑由于摩擦热引起的温升。
不同的密封件材料,其物理性能和化学性能都不一样,见《橡胶密封件原料特性表》。
O型密封圈的选型设计方案计算参考
O型密封圈的选型设计方案计算参考O型密封圈是一种常用的密封元件,广泛应用于各种机械设备和工业产品中。
在进行O型密封圈的选型设计时,需要考虑多个参数和因素,包括密封材料、尺寸、压力等,以确保密封效果和安全可靠性。
下面将介绍O型密封圈选型设计方案的计算参考。
首先,选择合适的密封材料是O型密封圈选型的基础。
常见的O型密封圈材料有橡胶、硅胶、丁腈橡胶、氟橡胶等。
不同的材料具有不同的耐温、耐腐蚀、耐油性等特性,需要根据具体的工作环境和介质选择合适的密封材料。
其次,尺寸的选取也十分重要。
O型密封圈的尺寸包括内径、外径和厚度。
内径的选取应根据密封件的要求,通常取密封零件孔直径的内径。
外径的选取应略大于密封零件孔的外径,以确保密封圈有足够的挤压变形量。
厚度的选取应根据压力、挤压量和材料的物理性质进行计算,以满足密封性能要求。
第三,压力是O型密封圈选型设计的重要参考参数之一、当压力较小时,可以选择低硬度的密封材料,以提供更好的密封性能。
当压力较大时,需要选择硬度较高的密封材料,以增加密封圈的抗压能力。
对于特殊压力要求的工作环境,需要做好弹性体结构强度的计算,以确保O型密封圈的可靠性。
最后,还需要考虑其他因素,如温度、介质特性和工作条件等。
温度对O型密封圈的弹性和硬度有很大影响,需要选择耐温性好的密封材料。
介质特性涉及到介质的腐蚀性、粘度等,需要选择具有相应抗腐蚀和耐热性能的密封材料。
工作条件包括振动、冲击、摩擦等,需要根据具体工况选择适合的密封材料和结构设计。
综上所述,O型密封圈的选型设计需要综合考虑密封材料、尺寸、压力、温度、介质特性和工作条件等多个参数和因素。
在实际应用中,需要根据具体的工况和要求进行综合分析和计算,以确保O型密封圈的选型设计能够满足密封效果和安全可靠性的要求。
O型密封圈设计计算
O型密封圈的设计计算问题O形橡胶密封圈是一种断面形状为圆形的密封元件,它广泛用于多种机械设备中,在一定温度、压力及不同的液体或气体介质中起到密封作用,与其它密封圈相比,具有如下的优越性能:①、密封部位结构简单,安装部位紧凑,而且重量较轻。
②、有自密封作用,往往只用一个密封件便能完成密封效果。
③、密封性能好,用作固定密封时几乎没有泄漏,用作运动密封时,只在速度较高时才有些泄漏。
④、运动摩擦阻力很小,对于压力交变的场合也能适应。
⑤、尺寸和沟槽已标准化,成本低,产品易得,便于使用和外购。
一、O型密封圈选型设计准则:1) O型密封圈可视为易损件,在设计时要充分考虑它的安装位置,要利于拆装,因此它往往安装在轴或孔的端部附近,且入口处往往要倒距离较长的角度处理,可倒角为20°x2,或30°x2。
2) O型密封圈的规格要与对应的沟槽深度和宽度相匹配,以保证密封圈作为动密封时,与缸体孔壁之间的摩擦力为最小,且不影响密封的耐压,防渗漏等性能与效果,否则容易出现摩擦阻力过大,寿命下降,密封圈被易挤出沟槽,撕裂或相反过于松动、出现渗漏等恶劣效果。
3) 为了增强密封效果,可以在同一位置段,采用多个密封圈满足密封要求的方法。
4) 安装密封圈的轴和孔之间间隙要合理,必要时可以在沟槽中添加挡圈以保证密封圈的安装可靠性。
二、O型密封圈安装沟槽的深度和宽度设计根据国家标准进行沟槽的深度和宽度设计:1) 当以O型密封圈的外径为公称直径做选型参数时,沟槽标准为:GB1235-1976;2) 当以O型密封圈的内径为公称直径做选型参数时,沟槽标准为:GB/T3452.1-2005;3) 这两个标准分别在什么情况下用?注:什么时候可以按“1”标准选择密封圈沟槽尺寸呢?什么时候可以按“2”标准选择沟槽尺寸呢?当做径向密封时按“1”标准选择沟槽尺寸;所谓径向密封是指缸体孔直径一定时,在活塞或传动轴上安装密封圈的方式为径向密封。
O型密封圈设计计算
O 型密封圈设计计算O 型密封圈是典型的挤压型密封。
O 型圈截面直径的压缩率和拉伸量是密封设计的主要内容,对密封性能和使用寿命有重要意义。
O 型密封圈有良好的密封效果很大程度上取决于O 型圈尺寸与沟槽尺寸的正确匹配,形成合理的密封圈压缩量与拉伸量。
1.压缩率压缩率W 通常用下式表示:W=(d 0-h)/d 0×100%式中d 0-----O 型圈在自由状态下的截面直径(mm);h------O 型圈槽底与被密封表面的距离(沟槽深度),即O 型圈压缩后的截面高度(mm)在选取O 形圈的压缩率时,应从如下3方面考虑:1.要有足够的密封接触面积;2.摩擦力尽量小;3.尽量避免永久变形。
从以上这些因素不难发现,他们相互之间存在矛盾。
压缩率大就可获得大的接触压力,但是过大的压缩率无疑就会增大滑动摩擦力和永久形。
而压缩率过小则可能由于密封沟槽的同轴度误差和O 形圈误差不符合要求,消失部分压缩量而引起泄漏。
因此,在选择O 形圈的压缩率时,要权衡各方面的因素。
一般静密封压缩率大于动密封,但其极值应小于25%,否则压缩应力明显松弛,将产生过大的永久变形,在高温工况中尤为严重。
O 型密封圈压缩率W 的选择应考虑使用条件,静密封或动密封;静密封又可分为径向密封与轴向密封;径向密封(或称圆柱静密封)的泄漏间隙是径向间隙,轴向密封(或称平面静密封)的泄漏间隙是轴向间隙。
轴向密封根据压力介质作用于O 形圈的内径还是外径又分受内压和受外压两种情况,内压增加的拉伸,外压降低O 形圈的初始拉伸。
上述不同形式的静密封,密封介质对O 形圈的作用方向是不同的,所以预压力设计也不同。
对于动密封则要区分是往复运动密封还是旋转运动密封。
1.静密封:圆柱静密封装置和往复运动式密封装置一样,一般取W=10%~15%;平面静密封装置取W=15%~30%。
2.对于动密封而言,可以分为三种情况;往复运动一般取W=10%~15%。
旋转运动密封在选取压缩率时必须要考虑焦耳热效应,一般来说,旋转运动用O 形圈的内径要比轴径大3%-5%,外径的压缩率W=3%-8%。
密封件选型计算公式
密封件选型计算公式密封件是工程领域中非常重要的一种零件,它们被广泛应用于各种机械设备和工程结构中,用于防止液体、气体和固体颗粒的泄漏。
正确选择和设计密封件对于确保设备的正常运行和延长设备的使用寿命至关重要。
在进行密封件选型时,我们需要考虑多种因素,包括工作环境、工作压力、工作温度、介质类型等,同时也需要进行一定的计算和分析。
本文将介绍一些常用的密封件选型计算公式,帮助大家更好地进行密封件选型和设计。
1. O形圈的选型计算公式。
O形圈是一种常用的密封件,它通常被用于静态密封和低压动态密封。
在选择O形圈时,我们需要考虑O形圈的尺寸、硬度、材料等因素。
下面是O形圈的选型计算公式:O形圈的截面直径计算公式:D = d + 2C。
其中,D为O形圈的截面直径,d为密封槽的直径,C为O形圈的压缩量。
O形圈的压缩量计算公式:C = (D d) / 2。
其中,C为O形圈的压缩量,D为O形圈的截面直径,d为密封槽的直径。
O形圈的压缩率计算公式:S = C / d。
其中,S为O形圈的压缩率,C为O形圈的压缩量,d为密封槽的直径。
2. 油封的选型计算公式。
油封是一种用于防止润滑油泄漏的密封件,它通常被用于高速旋转轴上。
在选择油封时,我们需要考虑油封的尺寸、硬度、材料、润滑油类型等因素。
下面是油封的选型计算公式:油封的接触压力计算公式:P = F / (D L)。
其中,P为油封的接触压力,F为封口的压力,D为油封的直径,L为油封的长度。
油封的接触应力计算公式:σ = P / 2。
其中,σ为油封的接触应力,P为油封的接触压力。
3. 波纹管的选型计算公式。
波纹管是一种用于承受高压的密封件,它通常被用于管道系统和容器中。
在选择波纹管时,我们需要考虑波纹管的尺寸、材料、波纹形状等因素。
下面是波纹管的选型计算公式:波纹管的弹性模量计算公式:E = (1 v^2) / (2 (1 + v))。
其中,E为波纹管的弹性模量,v为波纹管的泊松比。
o型密封圈压缩率标准
o型密封圈压缩率标准O型密封圈压缩率是指O型密封圈在装配过程中的压缩程度。
它是密封圈的重要参数之一,直接影响到密封圈的密封性能。
在实际应用中,O型密封圈压缩率的选择要根据具体的应用要求和密封材料的特性来确定。
以下是一些相关的参考内容。
1. O型密封圈压缩率的定义与计算方法:O型密封圈压缩率是指O型密封圈的内径和外径之间的相对差值与密封圈的外径之比。
可以通过以下公式计算:压缩率(%) = [(外径-内径)/外径] × 100%2. O型密封圈压缩率的标准范围:O型密封圈的压缩率一般在15%~30%之间,具体的标准范围可以根据密封圈的尺寸和应用要求来确定。
对于不同的密封圈材料,也有不同的推荐压缩率范围。
例如,硅橡胶密封圈的推荐压缩率一般在20%~30%之间。
3. 影响O型密封圈压缩率的因素:(1) 密封圈材料的特性:不同材料的密封圈,其回弹性和变形特性不同,因此适用的压缩率范围也不同。
(2) 密封圈尺寸和截面形状:密封圈的尺寸和形状也会对压缩率产生影响。
一般来说,较大尺寸的密封圈可以选择较低的压缩率。
(3) 密封圈的工作环境和工作压力:不同的工作环境和工作压力对密封圈的要求不同,也会影响选择合适的压缩率范围。
4. O型密封圈压缩率的选择原则:(1) 保证密封性能:选择合适的压缩率范围,能保证密封圈在工作条件下能够实现良好的密封性能。
(2) 兼顾回弹性和变形:保证密封圈具有足够的回弹性,能够适应温度、压力等变化;同时,也要避免密封圈过度变形,导致失去密封效果。
(3) 减小预紧力:合适的压缩率范围能够减小预紧力,延长密封圈的使用寿命。
5. O型密封圈压缩率的检测方法:使用压缩率检测仪或类似设备,将密封圈压缩后进行测量,根据计算公式可以得到压缩率的数值。
6. O型密封圈压缩率的质量控制:在生产过程中,应该对O型密封圈的压缩率进行质量控制。
可以采用样本抽检的方法,进行压缩率的测量和记录。
如果发现压缩率偏离标准范围,需要及时调整生产工艺,保证密封圈的质量。
o型密封圈尺寸与沟槽尺寸计算
o型密封圈尺寸与沟槽尺寸计算O型密封圈是一种常见的密封材料,用于防止液体或气体泄漏。
在工程设计和制造中,确定O型密封圈的尺寸与沟槽尺寸是非常重要的,因为它们直接影响着密封件的性能和使用寿命。
本文将从O型密封圈尺寸与沟槽尺寸的计算方法、影响因素和实际应用等方面展开深入探讨。
一、O型密封圈尺寸的计算方法1. 内径(ID)的计算O型密封圈的内径是指其横截面内圆的直径,通常采用公称线径的方式表示。
内径的计算通常根据密封圈的用途和安装环境来确定,一般可以通过以下公式进行计算:ID = 孔径直径 - (2×压缩量)2. 横截面直径(CS)的计算O型密封圈的横截面直径是指其横截面上圆形部分的直径,也是O型密封圈的公称尺寸之一。
横截面直径的计算通常采用以下公式:CS = ID + (2×压缩量)3. 压缩量的确定O型密封圈在安装后会受到挤压变形,这种变形即为压缩量。
压缩量的确定需要考虑到密封件材料的硬度、弹性模量和工作环境的温度等因素,并通过实验或经验进行确定。
二、沟槽尺寸的计算方法1. 沟槽宽度(W)的计算O型密封圈安装在沟槽中,沟槽的宽度对于密封圈的安装和工作效果至关重要。
沟槽宽度的计算通常考虑到密封圈的压缩量和安装方式,并通过以下公式进行计算:W = CS + (2×压缩量) - (2×余量)2. 沟槽深度(D)的计算沟槽深度是指沟槽的横截面厚度,其计算通常需要考虑到密封圈的横截面直径和安装方式,并通过以下公式进行计算:D = CS + (2×压缩量)三、影响因素1. 温度温度是影响O型密封圈尺寸和沟槽尺寸的重要因素之一。
在不同温度下,O型密封圈的硬度、弹性模量和压缩量都会发生变化,因此需要对其进行相应的修正和计算。
2. 压力工作环境中的压力也会对O型密封圈的尺寸和沟槽尺寸产生影响。
在高压环境下,密封圈的压缩量会增加,因此需要根据实际工作压力对其尺寸进行调整和计算。
O型密封圈压缩量和加热圈计算
影响密封性能的其它因素1)O形圈的硬度O形圈材料硬度是评定密封性能最重要的指标。
硬度决定了O形圈的压缩量和沟槽最大允许挤出间隙。
由于邵氏A70的丁晴密封都能满足大部分的使用条件,故对密封材料不作特殊说明,一般提供邵氏A70的丁晴橡胶。
2)挤出间隙最大允许挤出间隙gmax和系统压力、O形圈截面直径以及和材料的硬度有关。
通常,工作压力越高,最大允许挤出间隙gmax取值越小。
如果间隙g超过允许范围,就会导致O 形圈被挤出损坏。
最大允许挤出间隙gmax压力MPa O形圈截面直径W1.782.623.53 5.33 7.00邵氏硬度A70≤3.50 0.08 0.09 0.10 0.13 0.15≤7.00 0.05 0.07 0.08 0.09 0.10≤10.50 0.03 0.04 0.05 0.07 0.08邵氏硬度A80≤3.50 0.10 0.13 0.15 0.18 0.20≤7.00 0.08 0.09 0.10 0.13 0.15≤10.50 0.05 0.07 0.08 0.09 0.10≤14.00 0.03 0.04 0.05 0.07 0.08≤17.50 0.02 0.02 0.03 0.03 0.04邵氏硬度A90≤3.50 0.13 0.15 0.20 0.23 0.25≤7.00 0.10 0.13 0.15 0.18 0.20≤10.50 0.07 0.09 0.10 0.13 0.15≤14.00 0.05 0.07 0.08 0.09 0.10≤17.50 0.04 0.05 0.07 0.08 0.09≤21.00 0.03 0.04 0.05 0.07 0.08≤35.00 0.02 0.03 0.03 0.04 0.04注:1、当压力超过5MPa时,建议使用挡圈;2、对静密封应用场合,推荐配合为H7/g6。
3)压缩永久变形评定O形圈密封性能的另一指标,即该材料的压缩永久变形。
O-RING密封设计规范及压缩量计算模板
(inches) (inches) (inches) (inches)
CALCULATED VALUES: ST Percent of stretch of o-ring onto groove diameter(ORING延伸率百分数) Y Reduction in cross-section factor based on stretch(ORING装到槽上后受拉伸后的断面收缩率) D' effective o-ring cross sectional diameter after stretch (ORING装到槽上受拉伸后的线径) S squeeze on o-ring (0.007" is recommended minimum) (ORING压缩量,建议静态时大于0.007″) 孔径 装ORING槽的轴 A ID B
最小压缩量 Calculations for Min. Squeeze: ST = [(Bmax - ID min)/ID min]*100 Y = 1 - 10 / sqrt(100+ST) D'min = Dmin - Y*Dmin Smin = D'min - ((Amax-Bmin)/2) Minimum Squeeze = 0.5690
155.885 t 0.37486 1.06899 0.56899
ቤተ መጻሕፍቲ ባይዱ
Dave Chestnut
Page 1
2014-8-13
228252517.xls
Dave Chestnut
Page 2
2014-8-13
Design min 26.000 25.100 1.710 9.770
Design max 26.100 25.000 1.850 10.030
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【论文摘要】O形密封圈和密封圈槽尺寸的合理匹配是延长密封圈无泄漏密封寿命的必要保证。
据此提出一种选配两者尺寸的理论计算方法,并以Y341—148注水封隔器所选密封圈的计算为例说明,根据不同的密封圈可以计算出相应的密封圈槽尺寸。
为保证密封圈长期有效地工作,还必须合理选择其压缩率、拉伸量和孔、轴配合精度等相关参数。
选取压缩率时,应考虑有足够的密封面接触压力、尽量小的摩擦力和避免密封圈的永久性变形。
顾及到一般试制车间的加工水平和井下工具主要是静密封的状况,建议密封面的轴、孔配合应优先选用H8/e8。
欧阳光明(2021.03.07)Selection of O-ring and calculation of O-ring groove sizeChen Aiping,Zhou Zhongya(Research Institute of Oil Production Technology,Jianghan Petroleum Administration,Qianjiand City,Hubei Province)Rational matching of O-rings and O-ringgrooves is of great importance to p[rolonging the service life of O-rings.A method for selecting O-ring was presented.The sizes of the O-ring gtoove can be calculated according to various O-rings.To ensure long-term and effective work of the ring,the compressibility,tensile dimension and bore-shaft matching accuracy should be properly selected.Subject Concept Terms:O-ring O-ring groove matching service life 用O形密封圈(以下简称密封圈)密封是最常用的一种密封方式,然而至关重要的是如何正确地选择密封圈和设计密封圈槽尺寸。
常规的方法是将密封圈套在宝塔上用游标卡尺测量外径,再确定其相应尺寸。
这种方法的弊端是:(1)密封圈是弹性体,外径测量不准确;(2)在设计新工具时,往往没有现成的密封圈,难以确定尺寸,其过盈量往往掌握不准。
过盈量太大时密封圈易被剪切损坏,太小时又容易失封。
针对这种状况,笔者提出一种选配密封圈的理论计算方法(指外密封圈),以供参考、讨论。
密封圈的密封机理[1]密封圈密封属于挤压弹性体密封,是靠密封环预先被挤压由弹性变形产生预紧力,同时工作介质压力也挤压密封环,使之产生自紧力。
也就是说,挤压弹性体密封属于自紧式密封。
密封圈在介质压力p1作用下,其受力状况如图1所示,产生的接触压力为pc=pco+Δpc(1)式中pc——介质压力下的总接触压力,MPa;pco——密封圈初始压力,称之为预接触压力,MPa;Δpc——介质压力经密封圈传递给接触面的接触压力,称为介质作用接触压力,Δpc=κp1,MPa,其中κ为侧压系数,κ=υ/(1-υ),对于橡胶密封件κ≈0.9~0.985;υ为密封圈材料的泊松比,对于橡胶密封件,υ=0.48~0.496。
图1密封圈接触压力分布要保持密封,必须保证pc>p1,而Δpc永远小于p1,故应保持足够的预接触压力pco,即密封圈要有足够的预压缩率,才能保证密封。
但如果预压缩率太大,又会影响密封圈的工作寿命,因此密封圈和密封圈槽尺寸的合理匹配是延长密封圈无泄漏密封寿命的必要保证。
密封圈及密封圈槽的选配方法内密封圈的选配比较简单,不再赘述,这里只介绍一种外密封圈的选配方法。
假定孔、轴直径分别为D、d,所选密封圈为D0×d0,问题是如何确定密封圈槽的底径D1,如图2所示。
图2密封圈及密封圈槽尺寸密封圈被套在密封圈槽上之后,一般都有一定的拉伸量,其断面直径d0变小了,假定变为d1,根据体积不变原理,则密封圈安装前后的体积相等,即(2)式中D0——密封圈外径,mm;d0——密封圈断面直径,mm;D——孔直径,mm;δ——密封圈过盈量,mm;d1——拉伸后的密封圈断面直径,mm。
式(2)中,δ值可根据D值从表1中选取,D0、d0为已知值,则可计算出d1。
为了简化计算,用D+δ-d0代替D+δ-d1计算,则式(2)可简化为(3)简化后计算出的d1值有一定的误差,将d1再回归到式(3)中计算,求出d2,即(4)式中d2——拉伸后的密封圈断面直径,mm。
如此类推,可计算出d3、d4……,一般来说,d2值就已达到要求,则密封圈槽底径D1为D1=D+δ-2d2(5)现举例说明以上计算,如Y341—148注水封隔器活塞孔、轴尺寸为136H9/d9(孔为136 +0.10mm),所选密封圈为135mm×5mm,过盈量δ选为1.3mm,则变形后的密封圈断面直径为取d2=4.96mm,则D1=D+δ-2d2=127.38mm结合孔径φ136+0.1 +0配上公差后,则槽底径D1为。
φ127+0.4 +0.5假定没有135mm×5mm的密封圈,只有132mm×5mm的密封圈,则密封圈槽底径可用同样方法算得,即配上公差后D1为φ127+0.4 +0.5。
由以上计算可知,根据不同的密封圈,可以计算出不同的密封圈槽尺寸,可见这种方法比较简单、灵活。
但是为保证密封长期有效地工作,还必须合理选择其压缩率、拉伸量和孔轴配合精度等相关参数。
相关参数的确定与应用1.压缩率ε或过盈量δ密封圈是典型的挤压型密封。
如图3所示,其压缩率ε通常由下式表示式中h0——密封圈槽底至被密封面的距离,mm。
图3密封圈压缩率对于圆柱面静密封和往复动密封,ε=10%~15%;对于平面静密封,ε=15%~30%;旋转动密封ε=3%~8%;低摩擦密封ε=5%~8%。
选取密封圈压缩率时主要应考虑的因素,一是要有足够的密封面接触压力;二是摩擦力应尽量小;三是应尽量避免永久性变形。
与压缩率ε相对应的是过盈量δ,过盈量δ表示密封圈的预压缩情况,其推荐值见表1。
表1基本尺寸与过盈量关系推荐值 mm过盈量δ孔直径D尺寸范围静密封动密封0.3~0.4<30 0.25~0.330.4~0.630~50 0.35~0.500.6~0.850~80 0.50~0.700.8~1.280~120 0.70~1.001.2~1.6>120 1.00~1.40注:井下工具用密封圈多为静密封,δ值应从静密封栏中选取。
2.拉伸量密封圈装入密封圈槽后,一般都会有一定的拉伸量。
但据所查阅的资料可知,尚未对拉伸量有明确的定义。
根据笔者的理解,拉伸量应是拉伸后的密封圈中径与自然状态时的中径之比,即a=(D1+d2)/(D0-d0)(6)式中a——密封圈的拉伸量,mm。
a的通常推荐值为 1.01~1.05。
笔者一般取值为 1.05,特殊情况下,甚至取为 1.1。
为了保证密封圈装入密封圈槽后不至太松,a 值取得稍大。
3.密封圈槽的宽度与形状一般推荐的密封圈槽尺寸见表2,其形状如图4所示。
槽宽大致为密封圈断面直径的 1.3倍,而平时设计中往往是密封圈槽宽度与密封圈断面直径相等,或者不论密封圈断面直径多大,密封圈比槽宽0.5mm。
采用这种尺寸设计的弊端是:(1)用起子或铁钎撬密封圈时,容易损坏密封圈槽,尤其是内密封圈槽,这将降低其耐压差能力;(2)孔、轴相套时,由于密封圈有预过盈量,槽太窄易剪切密封圈。
因此,今后在设计密封圈槽宽时应规范尺寸。
在加工r为0.1~0.2和R为0.2~0.5的圆弧时,要特别注意r处,如果太尖,在承受高压时易损坏密封圈,需用砂布将其稍稍打钝。
表2密封圈槽的尺寸[1]mm密封圈断面直径d0 槽宽B R r1.92.5 0.2 0.12.43.2 0.2 0.13.14.0 0.3 0.13.54.5 0.3 0.14.6 6.1 0.4 0.25.7 7.5 0.4 0.28.6 11.0 0.5 0.2图4密封圈槽的标准形状4.轴孔配合公差在承受大于16MPa以上压差时,孔、轴配合一般推荐为H8/f8或H8/f7,在承受高压情况下,还要安装密封挡环[1]。
而井下工具工作压力一般超过16MPa,所用孔、轴配合常常采用H9/d9、H10/d10、H10/c10,甚至H11/c11,一方面精度等级较低,另一方面轴、孔间隙太大。
这就要求密封圈的过盈量也要大。
如Y241—150酸化压裂封隔器的轴、孔配合采用H8/e8,Y341—148堵水封隔器采用H9/d9,轴、孔基本尺寸相同的酸化压裂封隔器密封圈的过盈量比堵水封隔器的小,密封效果就好。
相同精度等级轴、孔的配合间隙不同,其受力状况是有区别的,如H10/c10的轴、孔间隙比H10/d10大,密封圈在相同压力p1作用下,其受剪切力的面积大,则总作用力就大,密封圈损坏的可能性加大,但如果轴、孔间隙过小,则轴、孔的同轴度要求更高,加工难度增大。
如果片面追求高精度,势必增加加工难度和成本。
考虑到试制车间的加工水平及井下工具的实际工作状况(主要是静密封),笔者建议密封圈密封面的轴、孔配合应优先选用H8/e8,在使用要求不高的情况下,也可选用H9/e9。
5.橡胶硬度在工作压力8~16MPa范围内,橡胶推荐硬度为70~80HS;16~32MPa范围内,推荐硬度为80~90HS。
应加强密封圈进货质量检验。
建议(1)密封圈槽的尺寸和形状应规范设计,不可随心所欲。
(2)为保证密封圈长期有效地工作,必须合理选择压缩率(或过盈量)、拉伸量和孔轴配合精度等。
(3)密封圈及密封圈槽的选配可由计算求得。