2015年新课标全国卷高考数学答题卡

合集下载

2015高考数学全国卷(精美word版)

2015高考数学全国卷(精美word版)

绝密★启封并使用完毕前试题类型:A2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足1+z1-z=i ,则|z |=A .1B . 2C . 3D .22.sin 20°cos 10°-cos 160°sin 10°=A .-32B .32C .-12D .123.设命题P :∃n ∈N ,n 2>2n ,则¬P 为A .∀n ∈N , n 2>2nB .∃n ∈N , n 2≤2nC .∀n ∈N , n 2≤2nD .∃n ∈N , n 2=2n4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为A .0.648B .0.432C .0.36D .0.3125.已知M (x 0,y 0)是双曲线C :x 22-y 2=1 上的一点,F 1、F 2是C 上的两个焦点,若 MF 1→· MF 2→<0 ,则y 0的取值范围是A .⎝⎛⎭⎫-33,33B .⎝⎛⎭⎫-36,36C .⎝⎛⎭⎫-223,223 D .⎝⎛⎭⎫-233,2336.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有 A .14斛 B .22斛 C .36斛 D .66斛7.设D 为△ABC 所在平面内一点BC →=3CD →,则A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC → C .AD →=43AB →+13AC → D .AD →=43AB →-13AC →8.函数f (x )=cos (ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为A .⎝⎛⎭⎫k π-14,k π+34 (k ∈Z )B .⎝⎛⎭⎫2k π-14,2k π+34 (k ∈Z )C .⎝⎛⎭⎫k -14,k +34 (k ∈Z )D .⎝⎛⎭⎫2k -14,2k +34 (k ∈Z )9.执行右面的程序框图,如果输入的t =0.01,则输出的n =A .5B .6C .7D .810.(x 2+x +y )5的展开式中,x 5y 2的系数为A .10B .20C .30D .60 (第11题图)11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =A .1B .2C .4D .812.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是A .⎣⎡⎭⎫-32e ,1B . ⎣⎡⎭⎫-32e ,34C . ⎣⎡⎭⎫32e ,34D . ⎣⎡⎭⎫32e ,12rr正视图俯视图 r2r第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分13.若函数f (x )=xln (x +a +x 2)为偶函数,则a =______.14.一个圆经过椭圆 x 216+y 24=1 的三个顶点,且圆心在x 轴上,则该圆的标准方程为 .15.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0 (1)x -y ≤0 (2)x +y -4≤0 (3) ,则 yx的最大值为 .16.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +4.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,求数列{b n }的前n 项和.18.如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w 1 =x 1, ,w - =18∑x +1w 1A BC F ED 年宣传费/千元(Ⅰ)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2),……,(u n v n ),其回归线v =αβ+u 的斜率和截距的最小二乘估计分别为:β=∑i =1n(u i -u -)(v i -v -) ∑i =1n(u i -u -)2α=v --βu -20.(本小题满分12分)在直角坐标系xoy 中,曲线C :y =x 24与直线y =kx +a (a >0)交于M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数f (x )=x 3+ax +14,g (x )=-lnx .(Ⅰ)当a 为何值时,x 轴为曲线y =f (x ) 的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )} (x >0),讨论h (x )零点的个数.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做第一个题目计分,做答时,请用2B22.(本题满分10分)选修4-1:几何证明选讲 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线; (Ⅱ)若OA =3CE ,求∠ACB 的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求C 1,C 2的极坐标方程;(Ⅱ)若直线C 3的极坐标方程为 θ=π4(ρ∈R ),设C 2与C 3的交点为M 、N ,求△C 2MN 的面积.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f (x )=|x +1|-2|x -a |,a >0.(Ⅰ)当a =1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.。

新课标全国卷高考数学答题卡模板word版精编版.doc

新课标全国卷高考数学答题卡模板word版精编版.doc

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 最新资料推荐⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯数学试题答题卡 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请19、(本小题满分 12 分)姓 名 ________________________号 考 生 条处 考生禁填: 缺考考填涂右 边的缺考标记. 正确填涂 填 例 涂 填涂 样 √ × ○ 1.答题前,考生先将自己的姓名、准考证号填写清楚,并 的; 注 用 笔填涂,用 0.5 毫米黑 意 写,字体工整,笔迹清楚; 事 序目区域内作答, 超出答题 项写的答案无效;在题卷无效。

● 4.保持卡,不要折叠、不要弄破。

18、( 12 分)(5 分,共 60 分) 1 A B C D 5 A B C D 9 A B CD 2 A B C D 6 A B C D 10A B C D3 A B C D 11 A B CD 7A B C D 4 A B C D 12 AB C D 8 A B C D 二、填空题(每小题5 分,共 20 分)13、______ _____ ___ 14、 _______ _______ 15、________ ______ 16、 三、(共 70 分, 写出程17、(12 分) 请目区域内作答,超出黑色框限定区域的答案无效1⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 料推荐⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 请目区域内作答,超出黑色框限定区域的答案目区域内作答,超出黑色框限定区域的答案目区域内作答,超出黑色框限定区域的答案无效 22、( 12 分) 20、( 12 分) 21、( 12 分) A B C 请目区域内作答,超出黑色框限定区域的答案无效 请目区域作答,超出黑色框限定区域的答案无效 内 2。

2015年高考全国新课标1卷理科数学试题(含答案)

2015年高考全国新课标1卷理科数学试题(含答案)

-共 13 页,当前页是第- 2 -页-
(7)设 D 为 ABC 所在平面内一点 =3 ,则
( A)
=
+
(B)
=
(C)
=
+
(D)
=
【解析】本题考查平面向量,画出图形,
1 1 1 4 AD AC CD AC BC AC ( AC AB) AB AC 3 3 3 3
y y 可以看做是与原点连线的斜率,因此如果 最大值,也就是求斜率的最大值,通过图形观察可知在(1,3) x x
处有最大值是 3,因此
x 的最大值是 3. y
(16)在平面四边形 ABCD 中,∠A=∠B=∠C=75°,BC=2,则 AB 的取值范围是
【解析】如下图所示,延长 BA,CD 交于点 E,则可知
1 1 1 1 1 Tn ( 2 3 5 5 7
(18)如图, ,四边形 ABCD 为菱形,∠ABC=120°,E,F 是平面 ABCD 同一侧的两点,BE⊥平 面 ABCD,DF⊥平面 ABCD,BE=2DF,AE⊥EC。 (1)证明:平面 AEC⊥平面 AFC (2)求直线 AE 与直线 CF 所成角的余弦值
(3)设命题 P: n N, n 2 > 2 n ,则 P 为 (A) n N, n 2 > 2 n (C) n N, n 2 ≤ 2 n (B) n N, n 2 ≤ 2 n (D) n N, n 2 = 2 n
【解析】本题考查命题的否定,条件和结论都需要否定,因此选择 C.
在 RtEBG 中,可得 BE = 2 故 DF =
2 2
在 RtFDG 中,可得 FG =
6 2 3 2 2

高考数学答题卡

高考数学答题卡

21.(本题满分 12 分)
选考题(本题满分 10 分) 请考生在第 22、23、24 题中任选一题作答,如果多做,则按所做 的第一题记分。作答时请写清题号。 我选择第 [22] [23] [24] 题
请在各题目的答题区内作答,超出黑色矩形限定区的答案无效
请在各题目的答题区内作答,超出黑色矩形限定区的答案无效
2015 年普通高等学校招生全国统一考试
数学答题卡
姓 名
贴条形码区
正确填涂
请在各题目的答题区内作答,超
准考证号
缺考标记(考生禁止填写)
填涂样例
注 意 事 项
1、 答题前,考生先将自己的姓名,准考证号填写清楚,并认真核准条形 码上的姓名、准考证号,在规定位置贴好条形码。 2、 选择题必须用 2B 铅笔填涂;填空题和解答题必须用 0.5mm 黑色签字 笔答题,不得用铅笔或圆珠笔答题;字体工整、笔迹清晰。 3、 请按题号顺序在各题目的答题区域内作答,超出区域书写的答案无效; 在草稿纸、试题卷上答题无效。 4、 保持卡面清洁,不要折叠、不要弄破。
18.(本题满分 12 分)
选择题(共 60 分,请用 2B 铅笔将选择题的答案填涂在以下方框内)
1 2 3 4 [A] [B] [C] [D] [A] [B] [C] [D] [A] [B] [C] [D] [A] [B] [C] [D] 5 [A] [B] [C] [D] 6 [A] [B] [C] [D] 7 [A] [B] [C] [D] 8 [A] [B] [C] [D] 9 [A] [B] [C] [D] 10 [A] [B] [C] [D] 11 [A] [B] [C] [D] 12 [A] [B] [C] [D]
请在各题目的答题区内作答,超出黑色矩形限定区的答案无效

2015年高考理科数学全国卷(新课标II卷)含答案

2015年高考理科数学全国卷(新课标II卷)含答案

1 2
3 . 2
y
B D
1 2 3 4
O
–1 –2 –3 –4
x
C
15. (a x)(1 x) 的展开式中 x 的奇数次幂项的系数之和为 32,则 a __________.
4
【答案】 3 【解析】 试题分析:由已知得 (1 x) 1 4 x 6 x 4 x x ,故 (a x)(1 x) 的展开式中 x 的奇数次幂项分别
x A O B
【答案】B 【解析】
考点:函数的图象和性质. 11.已知 A,B 为双曲线 E 的左,右顶点,点 M 在 E 上,∆ABM 为等腰三角形,且顶角为 120° ,则 E 的离 心率为( ) A. 5 【答案】D 【解析】 B. 2 C. 3 D. 2
x2 y 2 2 1(a 0, b 0) ,如图所示, AB BM ,ABM 1200 ,过点 M 2 a b 作 MN x 轴,垂足为 N ,在 RtBMN 中, BN a , MN 3a ,故点 M 的坐标为 M (2a, 3a ) ,
4 2 3 4
4
为 4ax , 4ax3 , x , 6 x 3 , x 5 ,其系数之和为 4a 4a 1+6+1=32 ,解得 a 3 . 考点:二项式定理. 16.设 S n 是数列 an 的前 n 项和,且 a1 1 , an1 Sn Sn1 ,则 Sn ________. 【答案】 【解析】 试题分析:由已知得 an1 Sn1 Sn Sn1 Sn ,两边同时除以 Sn 1 Sn ,得 是以 1 为首项, 1 为公差的等差数列,则
1 1 2 1 R R R3 36 , 故 R 6 , 则 球 O 的 表 面 积 为 3 2 6

2015年全国统一高考数学试卷(理科)(新课标ⅰ)

2015年全国统一高考数学试卷(理科)(新课标ⅰ)
21.(12 分)已知函数 f(x)=x3+ax+ ,g(x)=﹣lnx (i)当 a 为何值时,x 轴为曲线 y=f(x)的切线; (ii)用 min{m,n}表示 m,n 中的最小值,设函数 h(x)=min{f(x),g(x)}(x>0),讨论 h(Fra bibliotek)零点的个数.
选修 4 一 1:几何证明选讲 22.(10 分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点 E. (Ⅰ)若 D 为 AC 的中点,证明:DE 是⊙O 的切线; (Ⅱ)若 OA= CE,求∠ACB 的大小.
A.14 斛
B.22 斛
C.36 斛
第 1页(共 7页)
D.66 斛
7.(5 分)设 D 为△ABC 所在平面内一点,
A.
B.
,则( )
C.
D.
8.(5 分)函数 f(x)=cos(ωx+φ)的部分图象如图所示,则 f(x)的单调递减 区间为( )
A.(kπ﹣ ,kπ+ ),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立 y 关于 x 的回归方程; (Ⅲ)已知这种产品的年利润 z 与 x、y 的关系为 z=0.2y﹣x.根据(Ⅱ)的结果
回答下列问题: (i)年宣传费 x=49 时,年销售量及年利润的预报值是多少? (ii)年宣传费 x 为何值时,年利润的预报值最大? 附:对于一组数据(u1 v1),(u2 v2)…..(un vn),其回归线 v=α+βu 的斜率和截距
C.0.36
D.0.312
5.(5 分)已知 M(x0,y0)是双曲线 C:
=1 上的一点,F1,F2 是 C 的左、

2015年全国统一高考数学试卷(理科)(新课标Ⅰ)

2015年全国统一高考数学试卷(理科)(新课标Ⅰ)

2015年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1. 设复数z满足1+z1−z=i,则|z|=( )A.√2B.1C.2D.√32. sin20∘cos10∘−cos160∘sin10∘=()A.√32B.−√32C.12D.−123. 设命题p:∃n∈N,n2>2n,则¬p为()A.∃n∈N,n2≤2nB.∀n∈N,n2>2nC.∃n∈N,n2=2nD.∀n∈N,n2≤2n4. 投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.432B.0.648C.0.312D.0.365. 已知M(x0, y0)是双曲线C:x22−y2=1上的一点,F1,F2是C的左、右两个焦点,若MF1→⋅MF2→<0,则y0的取值范围是()A.(−√36,√36) B.(−√33,√33) C.(−2√33,2√33) D.(−2√23,2√23)6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.22斛B.14斛C.66斛D.36斛7. 设D为△ABC所在平面内一点,BC→=3CD→,则( )A.AD→=13AB→−43AC→B.AD→=−13AB→+43AC→C.AD→=43AB→−13AC→D.AD→=43AB→+13AC→8. 函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()A.(2kπ−14, 2kπ+34),k∈Z B.(kπ−14, kπ+34,),k∈ZC.(k−14, k+34),k∈Z D.(2k−14, 2k+34),k∈Z9. 执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.6B.5C.7D.810. (x2+x+y)5的展开式中,x5y2的系数为()A.20B.10C.60D.3011. 圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.2B.1C.8D.412. 设函数f(x)=e x(2x−1)−ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是( )A.[−32e ,34) B.[−32e,1) C.[32e,1) D.[32e,34)二、填空题(本大题共有4小题,每小题5分)13. 若函数f(x)=x ln(x+√a+x2)为偶函数.则a=________.14. 一个圆经过椭圆x216+y24=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为________.15. 若x,y满足约束条件{x−1≥0x−y≤0x+y−4≤0,则yx的最大值为________.16. 在平面四边形ABCD中,∠A=∠B=∠C=75∘,BC=2,则AB的取值范围是________.三、解答题:17. S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=1a n a n+1,求数列{b n}的前n项和.18. 如图,四边形ABCD为菱形,∠ABC=120∘,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19. 某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1, 2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =√x 1,w →=18∑w 18i=1(1)根据散点图判断,y =a +bx 与y =c +d √x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(I)的判断结果及表中数据,建立y 关于x 的回归方程;(3)以知这种产品的年利率z 与x 、y 的关系为z =0.2y −x .根据(II)的结果回答下列问题: (I)年宣传费x =49时,年销售量及年利润的预报值是多少? (II)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2)…..(u n v n ),其回归线v =α+βu 的斜率和截距的最小二乘估计分别为:β̂=∑n ∑(n i=1u 1−u ¯)2,α̂=v ¯−β̂u ¯.20. 在直角坐标系xOy 中,曲线C:y =x 24与直线l:y =kx +a(a >0)交于M ,N 两点.(1)当k =0时,分別求C 在点M 和N 处的切线方程.(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?(说明理由)21. 已知函数f(x)=x 3+ax +14,g(x)=−ln x . 当a 为何值时,x 轴为曲线y =f(x)的切线;用min {m, n}表示m ,n 中的最小值,设函数ℎ(x)=min {f(x), g(x)}(x >0),讨论ℎ(x)零点的个数. 选修4一1:几何证明选讲22. 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线; (Ⅱ)若OA =√3CE ,求∠ACB 的大小.选修4一4:坐标系与参数方程23. 在直角坐标系xOy 中,直线C 1:x =−2,圆C 2:(x −1)2+(y −2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 选修4一5:不等式选讲24. 已知函数f(x)=|x +1|−2|x −a|,a >0. (1)当a =1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x 轴围成的三角形面积大于6,求a 的取值范围.参考答案与试题解析2015年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.【答案】此题暂无答案【考点】复根的务复验热数术式工乘除运算【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】两角和与表擦正弦公式诱三公定求两角因与差顿正弦【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】命正算否定【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】相互常立事簧的车号乘法公式相互因立事似【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】双曲根气离心率【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】柱体三锥州、台到的体建计算【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】向量因滤性线算性吨及几何意义平行三度的性质向量验我何表示【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】由y=于si械(ωx+美)的部分角象六定其解断式余弦函验库单调性【解析】此题暂无解析【解答】此题暂无解答9.此题暂无答案【考点】程正然图【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】二项正开形的来定恰与特定系数二项式射理的应题【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【考点】由三都问求体积【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【考点】函验立零点【解析】此题暂无解析【解答】此题暂无解答二、填空题(本大题共有4小题,每小题5分)13.【答案】此题暂无答案【考点】函数奇明性研性质【解析】此题暂无解析此题暂无解答14.【答案】此题暂无答案【考点】圆的射纳方程【解析】此题暂无解析【解答】此题暂无解答15.【答案】此题暂无答案【考点】求解非三性目标州数球最值-描关斜率简单因性规斯【解析】此题暂无解析【解答】此题暂无解答16.【答案】此题暂无答案【考点】三角形射面积公放解都还形【解析】此题暂无解析【解答】此题暂无解答三、解答题:17.【答案】此题暂无答案【考点】数于术推式数使的种和【解析】此题暂无解析【解答】此题暂无解答18.此题暂无答案【考点】异面直线表烧所成的角平面因平面京直【解析】此题暂无解析【解答】此题暂无解答19.【答案】此题暂无答案【考点】求解线都接归方程【解析】此题暂无解析【解答】此题暂无解答20.【答案】此题暂无答案【考点】圆锥来线中雨配点缺定值问题根与三程的关系利用三数定究曲纵上迹点切线方程【解析】此题暂无解析【解答】此题暂无解答21.【答案】此题暂无答案【考点】利验热数技究女数的最值利用三数定究曲纵上迹点切线方程【解析】此题暂无解析【解答】此题暂无解答选修4一1:几何证明选讲22.【答案】此题暂无答案圆的射线纳判秒定锰的证明【解析】此题暂无解析【解答】此题暂无解答选修4一4:坐标系与参数方程23.【答案】此题暂无答案【考点】圆的极常标按素与直延坐标方程的互化圆的较坐标停程直线的三坐标方实与直沉造标方程的互化【解析】此题暂无解析【解答】此题暂无解答选修4一5:不等式选讲24.【答案】此题暂无答案【考点】绝对常不等至的保法与目明【解析】此题暂无解析【解答】此题暂无解答。

2015年普通高等学校招生全国统一考试(新课标Ⅰ)理科数学(打印版含答案)

2015年普通高等学校招生全国统一考试(新课标Ⅰ)理科数学(打印版含答案)


4
R ,设 C2 与 C3 的交点为 M , N
,求 C2 MN 的面积
(24) (本小题满分 10 分)选修 4—5:不等式选讲 已知函数 f ( x) x 1 2 x a , a 0 . (Ⅰ)当 a=1 时,求不等式 f ( x) 1 的解集; (Ⅱ)若 f ( x) 的图像与 x 轴围成的三角形面积大于 6,求 a 的取值范围
B. (7)答案 A 解析:如图 1, AD AC CD AC
A
1 BC 3
B
图1
1 1 4 AC (AC AB) AB AC ,故选 A. 3 3 3
(8) 答案 D
6 / 17 广州市第四中学数学科整理
C
D
解析: 利用图像,由三角函数,对称性与周期性 则 f ( x) 的单调递减区间为 [2k (9)答案 C 解析:开始 S 1 ,n=0,m=
8 i 1 i i i 1 i i
8
289.8
1.6
1469
108.8
表中 wi
xi , w
1 8 wi 8 i 1
(Ⅰ)根据散点图判断, y a bx 与 y c d x 哪一个适宜作为年销售量 y 关于年宣传费 x 的回 归方程类型?(给出判断即可,不必说明理由) (Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立 y 关于 x 的回归方程; (Ⅲ)已知这种产品的年利润 z 与 x 、 y 的关系为 z 0.2 y x .根据(Ⅱ)的结果回答下列问题: (ⅰ)年宣传费 x=49 时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费 x 为何值时,年利润的预报值最大? 附:对于一组数据(u1 v1),(u2 v2)…….. (un vn),其回归线 v= u 的斜率和截距的最

2015年全国高考理科数学试题与答案-新课标2

2015年全国高考理科数学试题与答案-新课标2

2015 年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分。

答卷前,考生务必将自己的姓名、 准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改 动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

1 已知全集U {1,2,3,4}, 集合 A {1,2} , B {2,3} ,求 C U (AB)A.{1 , 3, 4}B.{3 , 4}C.{3}D.{4}2.函数f ( x)11)1 x2 的定义域为ln( xA. 1,0 0,1B.1,0 0,1C.[-1, 1]D.1,13.命题p :“xR ,2x 1 0 ”,命题 q :“函数f (x)x 1 是奇函数” .则下列命题x 正确的是A .命题 “q ”是真命题B .命题 “p)q ”是真命题p(C .命题 “(q) ”是真命题D .命题 “( q) ”是真命题p( p)4.函数f ( x)A sin( x)(其中A 0,0 , | |)的图象的一部分如图所示,2则函数解析式为A. f ( x)sin(2 x) B . f ( x)sin(2 x)36C . f ( x)sin(4 x)D . f ( x)sin(4 x)365.曲线 f ( x)x1在点 (3, f (3)) 处的切线方程为x 1A . x 2 y 1 0B . x 2 y 7 0C . 2x y 4 0D . 2x y 8 0本卷第 1 页(共 13 页)6.20(4 x 21)dxA .7.下列四个图中,函数yB .C .2yln x 1的图象大致为x 1yyD .2y-1 Ox-1 Ox-1 OABC8.若 tan1 3 , 则 sin 2=2tan2A .12B .3 C .313559. “”是 “sin 2x acos2x的一条对称轴是xa 1f ( x)A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件x-1O xD12D .”的810.在△ABC 中,内角A, B,C 对应的边分别是a,b, c ,已知 c2, C,SABC3,3则△ ABC 周长为A .6B .5C . 4D .423111.已知函数f ( x)x 3x 3,若不等式 f (4 x m 2x 1 ) f (4 xm 2 x 1 )0 恒成立,则实数 m 的取值范围是A .m1 1C .m 1D .m 12B .m212.设f ( x) | xe x |,若关于x 的方程(1 t) f2( x) f (x)t 0 有四个不同的实数解, 则实数 t 的取值范围为A .(,0)B .(0, 1 )C .(2e ,1) D .(1,)e1e 1第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分,共 20 分 .13.已知为锐角,化简4cos 22 2sin;2sin()cos(1)14.已知△ABC 中,sin A5 ,则 tan Acos A5本卷第 2 页(共 13 页)15.已知函数f (x) sin x, g( x)x2ax 2 ,如果对于任意的 x1[0, 2 ] ,都存在 x2R 使得 f ( x1 ) g( x2 ) 成立,则 a 的取值范围是x2ax a( x0) ,下列说法正确的是16.关于函数f ( x)x①函数 f ( x) 有两个极值点x a ;②函数 f ( x) 的值域为 (,2 a a] [2 a a,) ;③当 a 1 时,函数f ( x)在[1,) 是增函数;④函数 f ( x) 的图象与x轴有两个公共点的充要条件是 a 4 或 a 0 .三、解答题:17.数列 {a n}的前 n 项和为 S n, a n是 S n和1的等差中项,等差数列{ b n } 满足b1S40 ,b9a1.[]( 1)求数列 { a n } , { b n } 的通项公式;( 2)若c n1,求数列c n的前 n 项和 W n.(b n16) b n 18本卷第 3 页(共 13 页)18.某厂生产一种内径为105 mm的零件,为了检查该生产流水线的质量情况,随机抽取该流水线上50 个零件作为样本测出它们的内径长度(单位 : mm ),长度的分组区间为[90,95),[95 ,100), [100 , 105), [105 ,110)[110 , 115),由此得到样本的频率分布直方图,如下图所示 . 已知内径长度在[100 ,110)之间的零件被认定为一等品,在 [95,100)或 [110 ,115)之间的零件被认定为二等品,否则认定为次品.( Ⅰ ) 从上述样品中随机抽取1 个零件,求恰好是一个次品的概率;( Ⅱ ) 以上述样本数据来估计该流水线的总体数据,若从流水线上(产品众多)任意抽取3个零件,设一等品的数量为X ,求 X 的分布列及数学期望.频率 /组距0.080.060.0320.020.00890 95 100 105 110 115长度19.(本小题满分 12 分)如图 ,四棱锥P ABCD 中,PD 平面ABCD,AB //CD,ADC90 且CD2, AD2, AB PD1, E 在线段PC上移动,且PE PC .(Ⅰ)当1时 ,证明 : 直线PA //平面EBD 3( Ⅱ) 是否存在, 使面EBD与面PBC所成二面角为直二面角?若存在,求出的值;若不存在,说明理由 .PDCAB本卷第 4 页(共 13 页)x 2 y 2 1(ab 0) 的右顶点和上顶点分别为A,B ,| AB| 5 ,离心率20.已知椭圆b 2a 2 y为3.( Ⅰ) 求椭圆的标准方程;( Ⅱ ) 过点A 作斜率为k(k0) 的直线lB2O A x与椭圆交于另外一点C ,求△ ABC 面积的最大值,并求此时直线 l 的方程.21.(本小题满分12 分)已知常数 a 0 ,函数 f ( x) ln(1 x)a x 2 x ( x 0) .f (x) 的单调性;2(Ⅰ)讨论函数n(Ⅱ)设 n N ,求证:ln( n 1)k 11ln( n 1)2n 1 . k2n本卷第 5 页(共 13 页)23.(本小题满分10 分)选修4-4:坐标系与参数方程已知曲线 C1的参数方程为x a tx 轴的正半轴y( t为参数 ),以坐标原点为极点,3t为极轴建立极坐标系,曲线C2的极坐标方程为 2 . ( Ⅰ ) 求曲线C1 ,C2的普通方程;( Ⅱ ) 若曲线C1 , C2有公共点,求a 的取值范围.本卷第 6 页(共 13 页)24.(本小题满分 10 分)选修 4-5:不等式选讲已知定义在 R 上的函数f ( x)| x 1| | x 2 | 的最小值为a.( Ⅰ ) 求a的值;( Ⅱ ) 若m, n是正实数 , 且m n a ,求12的最小值 . m n本卷第 7 页(共 13 页)二、填空题:本大题共4 小题,每小题5 分,共 20 分.(13)2cos;( 14) 2 ;(15)a或2 3;( 16)③④2 3 a三、解答题:解答题应写出文字说明,证明过程或演算步骤。

2015年全国统一高考数学试卷(理科)(新课标ⅱ)

2015年全国统一高考数学试卷(理科)(新课标ⅱ)

2015年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0} B.{0,1} C.{﹣1,0,1} D.{0,1,2}2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.23.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)已知等比数列{an }满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.845.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8 C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.149.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= .16.(5分)设数列{an }的前n项和为Sn,且a1=﹣1,an+1=Sn+1Sn,则Sn= .三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0} B.{0,1} C.{﹣1,0,1} D.{0,1,2}【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.2【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{an }满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.84【分析】由已知,a 1=3,a 1+a 3+a 5=21,利用等比数列的通项公式可求q ,然后在代入等比数列通项公式即可求. 【解答】解:∵a 1=3,a 1+a 3+a 5=21, ∴,∴q 4+q 2+1=7, ∴q 4+q 2﹣6=0, ∴q 2=2, ∴a 3+a 5+a 7==3×(2+4+8)=42.故选:B .【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f (x )=,则f (﹣2)+f (log 212)=( ) A .3B .6C .9D .12【分析】先求f (﹣2)=1+log 2(2+2)=1+2=3,再由对数恒等式,求得f (log 212)=6,进而得到所求和. 【解答】解:函数f (x )=,即有f (﹣2)=1+log 2(2+2)=1+2=3, f (log 212)==2×=12×=6,则有f (﹣2)+f (log 212)=3+6=9. 故选:C .【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.B.C.D.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8 C.4D.10【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.14【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时VO﹣ABC =VC﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= 3 .【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设数列{an }的前n项和为Sn,且a1=﹣1,an+1=Sn+1Sn,则Sn= ﹣.【分析】通过Sn+1﹣Sn=an+1可知Sn+1﹣Sn=Sn+1Sn,两边同时除以Sn+1Sn可知﹣=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论.【解答】解:∵an+1=Sn+1Sn,∴Sn+1﹣Sn=Sn+1Sn,∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴Sn=﹣,故答案为:﹣.【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD 平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记CA1表示事件“A地区用户满意度等级为满意或非常满意”,记CA2表示事件“A地区用户满意度等级为非常满意”,记CB1表示事件“B地区用户满意度等级为不满意”,记CB2表示事件“B地区用户满意度等级为满意”,则CA1与CB1独立,CA2与CB2独立,CB1与CB2互斥,则C=CA1CB1∪CA2CB2,P(C)=P(CA1CB1)+P(CA2CB2)=P(CA1)P(CB1)+P(CA2)P(CB2),由所给的数据CA1,CA2,CB1,CB2,发生的频率为,,,,所以P(CA1)=,P(CA2)=,P(CB1)=,P(CB2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP =2xM,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM ,yM),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则xM==,yM=kxM+b=,于是直线OM的斜率kOM==,即kOM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为xP,由得,即xP=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得xM=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP =2xM,于是=2×,解得k1=4﹣或k2=4+,∵ki >0,ki≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S计算即可.△AEF【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。

精编2015年高考真题理科高中数学新课标ⅰ卷试卷和答案

精编2015年高考真题理科高中数学新课标ⅰ卷试卷和答案

绝密★启封并使用完毕前试题类型:A2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

=i,则|z|=(1)设复数z满足1+z1z(A)1 (B(C)(D)2【答案】A(2)sin20°cos10°-con160°sin10°=(A ) (B (C )12- (D )12【答案】D【解析】原式=sin20°cos10°+cos20°sin10°=sin30°=12,故选D.(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n【答案】C【解析】p ⌝:2,2n n N n ∀∈≤,故选C.(4)投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A )0.648 (B )0.432(C )0.36(D )0.312【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.(5)已知M (x 0,y 0)是双曲线C :2212x y -= 上的一点,F 1、F 2是C 上的两个焦点,若1MF ∙2MF <0,则y 0的取值范围是(A )(-3,3(B )(-66)(C )(3-,3) (D )(【答案】A(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

2015年新课标全国卷Ⅰ高考数学(理科)试题及答案(完整版)

2015年新课标全国卷Ⅰ高考数学(理科)试题及答案(完整版)

2015 年新课标全国卷Ⅰ高考数学 (理科) 试 题及答案(完整版)第Ⅰ卷 一.选择题:共 12 小题,每小题 5 分,共 60 分。

在每个小题给出的四个选项中,只有一项 是符合题目要求的一项。

5.4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公 益活动的概率7.执行下图的程序框图,若输入的 a,b,k 分别为 1,2,3,则输出的 M=9.不等式组的解集记为 D.有下面四个命题:其中真命题是第Ⅱ卷 本卷包括必考题和选考题两个部分。

第(13)题-第(21)题为必考题,每个考生都必须作 答。

第(22)题-第(24)题为选考题,考生根据要求作答。

二.填空题:本大题共四小题,每小题 5 分。

14.甲、乙、丙三位同学被问到是否去过 A,B,C 三个城市时, 甲说:我去过的城市比乙多,但没去过 B 城市; 乙说:我没去过 C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 .2015 年大学生就业的形势越来越严峻,大学生就业不如自己创业,没资金,没 经验, 没背景, 我们如何才能实现创业的梦想呢! 给你推荐一位非常优秀的老师, 网上老火了,还帮助了很多普通人实现了梦想,百度---振远老师 QQ 2909079022 希望能帮到你!15.三.解答题:解答应写出文字说明,证明过程或演算步骤。

18. (本小题满分 12 分)从某企业的某种产品中抽取 500 件, 测量这些产品的一项质量指标值, 由测量结果得如下频率分布直方图:(i)利用该正态分布,求 P(187.8<Z<212.2); (ii)某用户从该企业购买了 100 件这种产品,记 X 表示这 100 件产品中质量指标值为于区 间(187.8,212.2)的产品件数,利用(i)的结果,求 EX.(Ⅰ) 求 a3+b3 的最小值; (Ⅱ)是否存在 a,b,使得 2a+3b=6?并说明理由2015 年最新普通高等学校招生全国统一考试(课标 I 文科卷) 数学(文科) 一、选择题:本大题共 10 小题,每小题 5 分,共 50 分. 在每小题给出的四个选项中,只有 一项是符合题目要求的。

2015年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2015年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2015年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2} 2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.23.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.845.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C 3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.2【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.12【考点】3T:函数的值.【专题】11:计算题;51:函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==2×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.10【考点】IR:两点间的距离公式.【专题】11:计算题;5B:直线与圆.【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】96:平行向量(共线).【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z 最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= 3.【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.【解答】解:设f (x )=(a +x )(1+x )4=a 0+a 1x +a 2x 2+…+a 5x 5,令x=1,则a 0+a 1+a 2+…+a 5=f (1)=16(a +1),①令x=﹣1,则a 0﹣a 1+a 2﹣…﹣a 5=f (﹣1)=0.②①﹣②得,2(a 1+a 3+a 5)=16(a +1),所以2×32=16(a +1),所以a=3.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设数列{a n }的前n 项和为S n ,且a 1=﹣1,a n +1=S n +1S n ,则S n =﹣.【考点】8H :数列递推式.【专题】54:等差数列与等比数列.【分析】通过S n +1﹣S n =a n +1可知S n +1﹣S n =S n +1S n ,两边同时除以S n +1S n 可知﹣=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论.【解答】解:∵a n +1=S n +1S n ,∴S n +1﹣S n =S n +1S n ,∴﹣=1,又∵a 1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n ,∴S n =﹣,故答案为:﹣.【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【考点】HP:正弦定理;HT:三角形中的几何计算.【专题】58:解三角形.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】5G:空间角;5H:空间向量及应用.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】2:创新题型;52:导数的概念及应用.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F :空间位置关系与距离.【分析】(1)通过AD 是∠CAB 的角平分线及圆O 分别与AB 、AC 相切于点E 、F ,利用相似的性质即得结论;(2)通过(1)知AD 是EF 的垂直平分线,连结OE 、OM ,则OE ⊥AE ,利用S△ABC﹣S △AEF 计算即可.【解答】(1)证明:∵△ABC 为等腰三角形,AD ⊥BC ,∴AD 是∠CAB 的角平分线,又∵圆O 分别与AB 、AC 相切于点E 、F ,∴AE=AF ,∴AD ⊥EF ,∴EF ∥BC ;(2)解:由(1)知AE=AF ,AD ⊥EF ,∴AD 是EF 的垂直平分线,又∵EF 为圆O 的弦,∴O 在AD 上,连结OE 、OM ,则OE ⊥AE ,由AG 等于圆O 的半径可得AO=2OE ,∴∠OAE=30°,∴△ABC 与△AEF 都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF 的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C 3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年普通高等学校招生全国统一考试
数学试题答题卡
姓 名 ________________________
准考证号
考生禁填: 缺考考生由监考员填涂右
边的缺考标记. 填 涂 样 例 注意事项 1.答题前,考生先将自己的姓名、准考证号填写清楚,并认真检查监考员所粘贴的条形码; 2.选择题必须用2B 铅笔填涂,解答题必须用0.5毫米黑色签字笔书写,字体工整,笔迹清楚; 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠、不要弄破。

正确填涂 错误填涂 √ × ○ ● 一、选择题(每小题5分,共60分) A B C D 1 A B C D 2 A B C D 3 A B C D 4 A B C D 5 A B C D 6 A C D B 7 A C D B 8 A C D B 9 A C D B 10 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 13、______ ___ __ ___ 14、_______ _______ 15、______ __ ______ 16、 二、填空题(每小题5分,共20分) 三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 A C D B 11 A C D B 12
考 生 条 形 码 粘 贴 处 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 18、(本小题满分12分) 19、(本小题满分12分) 17、(本小题满分12分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 20、(本小题满分12分)
21、(本小题满分12分) 22、(本小题满分12分)。

相关文档
最新文档