三年高考两年模拟(浙江版)2017届高考数学一轮复习 第八章 平面解析几何 8.8 圆锥曲线的综合问题知能训练

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§8.8圆锥曲线的综合问题

A组基础题组

1.(2016超级中学原创预测卷十,18,15分)已知椭圆C的中心在坐标原点,焦点在x轴上,一个顶点为B(0,-1),且右焦点到直线x-y+3=0的距离为

2.

(1)求椭圆C的标准方程;

(2)若P1,P2是椭圆C上不同的两点,P1P2⊥x轴,圆E过P1,P2,且椭圆C上任意一点都不在圆E 内,则称圆E为该椭圆的一个内切圆.试问:椭圆C是否存在过左焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.

2.(2015浙江新高考研究卷一(镇海中学),18)设焦点在x轴上的椭圆C:+y2=1的左,右焦点分别为F1,F2,C上存在点M,使·=0.

(1)设直线y=x+2与椭圆的一个公共点为P,若|PF1|+|PF2|取得最小值,求此时椭圆的方程;

(2)对于(1)中的椭圆,是否存在斜率为k(k≠0)的直线,与椭圆交于不同的两点A,B,且AB的垂直平分线过椭圆的下顶点?若存在,求出k的取值范围;若不存在,说明理由.

3.(2015北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.

(1)求椭圆C的方程,并求点M的坐标(用m,n表示);

(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,说明理由.

4.(2014安徽,19,13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O 的两条直线l1和l2,l1与E1,E2分别交于A1,A2两点,l2与E1,E2分别交于B1,B2两点.

(1)证明:A1B1∥A2B2;

(2)过O作直线l(异于l1,l2)与E1,E2分别交于C1,C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.

5.(2015课标Ⅱ,20,12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.

(1)证明:直线OM的斜率与l的斜率的乘积为定值;

(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.

6.(2015浙江冲刺卷四,18)设椭圆C:+=1(a>b>0)过点M(1,1),离心率e=,O为坐标原点.

(1)求椭圆C的方程;

(2)若直线l是圆O:x2+y2=1的任意一条切线,且直线l与椭圆C相交于A,B两点.

①求·的值;

②求△OAB的面积S的最小值.

7.(2015湖南,20,13分)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2.

(1)求C2的方程;

(2)过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.

(i)若|AC|=|BD|,求直线l的斜率;

(ii)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.

8.(2015浙江模拟训练冲刺卷一,18)已知椭圆C:+y2=1的上顶点为A(0,1),与x轴不垂直的直线l交椭圆C于不同的两点M, N(点M,N不同于椭圆的四个顶点).

(1)当直线l过点(0,-3)时,求△AMN的面积S的最大值;

(2)是否存在不过原点O的直线l,使得直线OM,MN,ON的斜率依次成等比数列?若存在,试求出直线l的斜率;若不存在,请说明理由.

B组提升题组

1.(2013安徽,18,12分)设椭圆E:+=1的焦点在x轴上.

(1)若椭圆E的焦距为1,求椭圆E的方程;

(2)设F1,F2分别是椭圆E的左,右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q.证明:当a变化时,点P在某定直线上.

2.(2016金丽衢一联,19,15分)已知点M(0,)是椭圆C:+=1(a>b>0)的一个顶点,椭圆C的离心率为.

(1)求椭圆C的方程;

(2)已知点P(x0,y0)是定点,直线l:y=x+m(m∈R)交椭圆C于不同的两点A,B,记直线PA,PB的斜率分别为k1,k2.求点P的坐标,使得k1+k2恒为0.

3.(2014课标Ⅰ,20,12分)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.

(1)求E的方程;

(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.

4.(2015浙江衢州二中期中,21)椭圆的中心在坐标原点,长轴的端点为A,B,右焦点为F,且·=1,||=1.

(1)求椭圆的标准方程;

(2)过椭圆的右焦点F作直线l1,l2,直线l1与椭圆分别交于点M,N,直线l2与椭圆分别交于点P,Q,且l1⊥l2,求四边形MPNQ的面积S的最小值以及此时直线l1,l2的方程.

5.(2015浙江模拟训练冲刺卷四,18)已知点F是抛物线C1:x2=4y的焦点,过抛物线上一点P 作抛物线的切线l,切点P在第一象限,如图.切线l与椭圆C2:+=1相交于不同的两点A、B.

(1)若|FA|,|FP|,|FB|依次成等差数列,求直线l的方程;

(2)设定点M,求△MAB的面积S的最大值.

6.(2015浙江冲刺卷六,18)已知椭圆E1:+=1(a>b>0)的一个焦点与抛物线E2:x2=4y的焦点F 重合,点M是两曲线的一个公共点,且|MF|=.

(1)求椭圆E1的方程;

(2)过点F作斜率为k(k≠0)的直线l交抛物线E2于A,C两点,交椭圆E1于B,D两点,如图.设=m,=λ,当≤m≤时,求λ的取值范围.

7.(2015金丽衢一联,21,15分)已知抛物线Γ:y2=2px的焦点到准线的距离为2.

(1)求p的值;

(2)如图所示,直线l1与抛物线Γ相交于A,B两点,C为抛物线Γ上异于A,B的一点,且AC

相关文档
最新文档