数控技术第七章 高速切削加工实例
数控机床中高速切削加工技术的运用探讨工作内容
数控机床中高速切削加工技术的运用探讨工作内容
数控机床是现代科技发展的重要体现,其应用范围广泛,尤其是在制造业中
扮演着重要的角色。
高速切削加工技术是数控机床中的一种重要加工方式,其能够提高加工精度和速度,降低生产成本。
本文将探讨数控机床中高速切削加工技术的运用,以及其工作内容。
一、高速切削加工技术的特点
高速切削加工技术是指使用高速切削工具对材料进行切削加工的方法。
其主要特点包括:
1. 高速度:高速切削工具的速度通常在数百至数千公里每小时之间,能够提高加工速度,降低加工成本。
2. 高精度:高速切削工具能够提高加工精度,达到纳米级别的精度。
3. 高效率:高速切削工具能够在较短的时间内完成加工任务,提高工作效率。
4. 环保节能:高速切削工具具有环保节能的特点,能够在减少能源消耗的同时,提高生产效率。
二、高速切削加工技术在数控机床中的应用
1. 制造精密零部件
数控机床采用高速切削技术可以制造精密的零部件,如航空航天部件、汽车发动机零件、电子零部件等。
这些零部件的精度和表面质量要求高,而高速切削技术能够满足这些要求。
2. 制造高速切削刀具
高速切削技术可以制造高速切削刀具,如刀具、切削工具等。
这些刀具能够用于加工高硬度、高精度的材料,如钛合金、硬质合金等。
3. 加工金属合金
金属合金的加工是高速切削技术的重要应用之一。
金属合金通常具有高强度、高硬度和高韧性,而高速切削技术能够满足这些要求。
《高速切削加工》课件
3
高速切削加工技术的新发展
高速切削加工技术的新发展是智能化、高效化、多功能化等方向的发展。
总结
1 高速切削加工的重要性
在现代先进制造业中,高速切削加工已成为最先进的加工工艺之一。
2 发展前景
高速切削加工将朝着更高精度、更稳定、更智能的方向发展。
刀具
高速切削加工用的刀具有硬质合金刀具和普通高速钢刀具。
2
夹具
用于夹紧加工件,保证加工件的位置和尺寸的准确度。
3
加工中心机床
高速切削加工的核心设备,一般配备自动换刀库,可实现多种工序的加工。
高速切削加工的原理
四角切削
四角切削是刀具在加工过程 中所受力的主要方向,也是 影响刀具切削稳定的主要因 素。
பைடு நூலகம்
机械制造
高速车削、高速铣削、高速钻削 等机械制造领域。
电子信息
如手机、笔记本电脑金属外壳、 DVD机零部件、各类光学仪器等。
高速切削加工的挑战与未来
1
超细加工
针对非金属的加工,要求精度更高,应考虑空气轴承、颤动反馈控制、非触变形 传感控制等。
2
超硬材料加工
超硬材料的加工,如石墨、硬质合金、陶瓷等,已成为高速切削加工的一个重要 领域。
精密加工
精密高速切削加工广泛应用 于航空航天、汽车、电子和 精密机械制造等领域,如模 具、光学部件、超声波探头 和燃烧室等零部件。
表面质量
高速切削加工能够获得极高 的表面质量,如挤出铝合金 管、铜合金输入输出端子, 铜轴套、石英晶体等产品的 光洁度达到镜面级。
高速切削加工的应用
航空航天
航空航天零部件,如高压涡轮叶 片、大型钛合金零件等。
加工效率高
高速切削加工速度快,可以完成 较长时间处理不完的工作。
《高速切削》课件
本PPT课件将介绍高速切削的定义、原理、分类、技术、应用、注意事项以及 未来发展,为您展示全面的高速切削知识。
什么是高速切削?
高速切削的定义
高速切削是指在高速运动下切削金属材料的加工方 法。
高速切削的优点
高速切削具有高效率、高精度和优质表面等优点。
高速切削的原理
1 原理介绍
高速切削技术的趋势 和前景
高速切削技术正朝着更高效率、 更高精度和更环保的方向发展。
ቤተ መጻሕፍቲ ባይዱ
高速切削的未来发展
高速切削未来将在各行各业中得 到更广泛的应用和进一步的优化。
高速切削注意事项
1 高速切削的注意事项
高速切削过程中需注意刀具选择、润滑和安全等方面。
2 如何安全进行高速切削
安全进行高速切削需遵循正确的操作规程和戴好个人防护装备。
3 如何保证高速切削的质量
保证高速切削质量需要注意刀具磨损和加工参数等关键因素。
高速切削发展前景
高速切削的发展历程
高速切削技术经历了多年的发展 与创新。
高速切削利用切削工具对工件进行高速运动切削,实现金属材料的加工。
2 高速切削的工作过程
高速切削的工作过程包括进给运动、主轴转动和切削速度等因素。
3 高速切削的工作原理
高速切削通过防振、刀具材料和润滑等措施,提高切削效率和质量。
高速切削的分类
高速切削分类介绍
高速切削可分为铣削加工和车削 加工两种主要类型。
CNC技术在高速切削加工中起到关 键作用,实现自动化加工。
高速切削的应用
1
高速切削在现代制造中的应用
高速切削广泛应用于航空、汽车、船舶等
高速切削的优势和局限性
2
铝合金模锻件高速切削加工实用案例
铝合金模锻件高速切削加工实用案例随着加工制造业的飞速发展,铝合金高速切削成为企业的首选。
一直以来,高速切削往往局限于铝板类毛料,由于铝合金模锻件余量不均匀经常会导致高速加工切削不连续,继而形成断续切削,对刀具磨损十分严重,同时会引起刀具折断从而打伤零件的现象。
由于航空类铝合金零件生产中模锻件仍然是设计的首选毛料,为保证数控加工产能翻倍的目标,此类零件采用高速铣切加工势在必行。
本文将以某机零件加工方案为例分析论证模锻件高速铣加工的可行性。
零件介绍举例,该零件为某机翼内骨架重要组成部分,在机翼内起龙骨作用,是重要受力件。
该零件材料牌号状态为7B04 T74,外廓尺寸为2430mm×236mm×42mm ;零件上有2 个φ 12H9 工艺孔用于加工及装配时定位;腹板厚度为3~5mm,腹板上有10 个φ76~116大小不等的通孔;缘条厚度尺寸为4.5mm ;整个零件中间13 根(厚度为3mm)加强筋。
零件工艺性分析零件材料属于高强度超硬形变铝合金,为Al-Zn-Mg-Cu 系合金,是一种可热处理强化的铝合金。
它具有比强度高、断裂韧性好、工艺性能优良等特点,其相应的化学成分( 重量百分比) 为:5.7%Zn,2.3%Mg,1.43%Cu,0.2%Cr。
其加热模锻的工艺特点是塑性较差、流动性差、粘附性大、模锻不易成形;并且对变形速度和变形程度十分敏感,随着变形速度的增加而急剧下降;锻造温度范围窄,始、终锻温度要求严格。
锻件经过淬火及人工时效处理后σ b =450~540MPa ;由于金属晶体间的各向异性,锻造过程中由于各部分冷热收缩不均匀以及金相组织转变的体积变化,使毛坯内部产生了相当大的内应力。
毛坯内应力暂时处于相对平衡状态,切削去除一些表面材料后就打破了这种平衡,内应力重新分布,此时加工后的零件就明显地发生变形。
内应力指的是当外部的载荷去除后,仍残存在工件内部的应力。
内应力因金属内部宏观的或微观的组织发生了不均匀的体积变化而产生,其外界因素就来自热加工和冷加工。
高速切削简介ppt课件
加工精度。
减少残余应力
高速切削可以减少切削过程中产生 的残余应力,降低工件变形的可能 性。
提高表面质量
高速切削能够获得更光滑的表面质 量,减少后续研磨和抛光的工作量 。
降低加工成本
减少刀具消耗
高速切削的切削速度高, 可以减少刀具的磨损和消 耗,降低刀具成本。
随着技术的进步,高速切削的 加工效率也在不断提高,单位 时间内能够完成的切削量增加 。
智能化发展
高速切削设备正在与人工智能 、物联网等技术结合,实现加 工过程的智能化控制。
环保与节能
随着环保意识的提高,高速切 削技术也在朝着更加环保和节
能的方向发展。
高速切削技术的未来展望
更高的速度
随着材料科学和机械制造技术的发展,高速 切削的速度会进一步提高。
高速切削的物理模型
高速切削是利用高速度的切削刀 具对工件进行加工的一种先进制
造技术。
在高速切削过程中,切削速度、 进给速度和切深等参数对加工效
果产生显著影响。
高速切削的物理模型涉及弹性力 学、流体力学等多个学科领域。
高速切削的刀具系统
高速切削的刀具系统是实现高 效加工的关键之一。
刀具料、刀具几何形状和刀 具夹持系统等是高速切削刀具 系统的核心要素。
高速切削技术通常是指在机床主轴转 速超过10,000 rpm的情况下进行的切 削加工,具有高速度、高精度、高效 率和高自动化的特点。
高速切削技术的应用范围
01
高速切削技术广泛应用于航空航 天、汽车、模具、机床等领域, 用于加工各种高精度、高质量、 高要求的零件。
02
高速切削技术可以加工各种材料 ,包括铝、镁、钛等轻质材料和 钢、铸铁等重质材料,以及钛合 金、镍合金等难加工材料。
《高速切削加工》课件
03 高速切削加工的关键技术
高速切削加工的刀具技术
刀具材料
01
高速切削加工需要使用高硬度、高耐磨性的刀具材料,如硬质
合金、陶瓷和金刚石等。
刀具涂层技术
02
涂层技术能够提高刀具表面的硬度和耐磨性,降低摩擦系数,
提高切削效率。
刀具几何形状
03
高速切削加工需要采用特殊的刀具几何形状,如小前角、大后
角和短刀刃等,以减小切削力、切削热和刀具磨损。
在高速切削加工中,降低能耗、减少废弃 物排放和提高资源利用效率成为重要的发 展趋势,符合可持续发展的要求。
高速切削加工面临的挑战与对策
高温与热变形
高速切削加工过程中产生的高温可能导致 刀具磨损、工件热变形等问题,需采用新 型刀具材料、强化冷却技术等手段解决。
振动与稳定性
高速切削加工过程中的振动可能影响加工 精度和表面质量,应优化机床结构、提高 刚性和阻尼性能。
模具型腔加工
高速切削加工技术在模具制造业 中广泛应用于模具型腔的加工, 如注塑模、压铸模等,能够快速 准确地完成复杂型面的加工。
模具钢材料加工
高速切削加工技术能够高效地加 工各种模具钢材料,如H13、 SKD61等,提高加工效率,减少 热量的产生和材料的变形。
高速切削加工在航空航天制造业的应用
航空发动机制造
高速切削加工的工艺参数
1 2 3
切削速度
提高切削速度可以提高加工效率,但同时也需要 选择合适的刀具和材料,以避免刀具磨损和工件 热变形。
进给速度
进给速度的提高可以增加材料去除率,但过高的 进给速度可能导致刀具磨损和工件表面质量下降 。
切削深度
适当的切削深度可以提高加工效率,但过大的切 削深度可能导致刀具磨损和工件表面质量下降。
高速切削加工技术ppt课件.pptx
我国高速切削加工技术最早应用于轿车工业,二十世纪八十年 代后期,相继从德国、美国、法国、日本等国引进了多条具有先进 水平的轿车数控自动化生产线,如从德国引进的具有九十年代中期 水平的一汽大众捷达轿车和上海大众桑塔纳轿车自动生产线,其中 大量应用了高速切削加工技术。生产线所用刀具材料以超硬刀具为 主,依靠进口。
近年来,我国航天、航空、汽轮机、模具等制造行业引进了 大量加工中心和数控镗铣床,都不同程度地开始推广应用高速切 削加工技术,其中模具行业应用较多。
例如上海某模具厂,高速铣削高精度铝合金模具型腔,半精 铣采用主轴转速18000rpm,切削深度2mm,进给速度5m/min; 精铣采用20000rpm,切削深度0.2mm,进给速度8m/min,加工 周期为6h,质量完全满足客户要求。
➢ 高速切削已成为当今制造业中一项快速发展 的新技术,在工业发达国家,高速切削正成 为一种新的切削加工理念。
➢ 人们逐渐认识到高速切削是提高加工效率的 关键技术。
高速切削的特点
➢ 随切削速度提高,单位时间内材料切除率增加,切削加工时间减 少,切削效率提高3~5倍。加工成本可降低20%-40%。
➢ 在高速切削加工范围,随切削速度提高,切削力可减少30%以上, 减少工件变形。对大型框架件、刚性差的薄壁件和薄壁槽形零件 的高精度高效加工,高速铣削是目前最有效的加工方法。
高速切削的加工工艺方法
目前高速切削工艺主要在车削和铣削,各类高速切削机床 的发展将使高速切削工艺范围进一步扩大,从粗加工到精加工 ,从车削、铣削到镗削、钻削、拉削、铰削、攻丝、磨削等。
随着市场竞争的进一步加剧,世界各国的制造业都将更加积 极地应用高速切削技术完成高效高精度生产。
高速切削加工在国内的研究与应用
第七章数控铣床加工中心零件加工综合实例课件
2.工艺处理
1)工件的装夹。本例工件毛坯的外形为长方 体,为使定位和装夹准确、可靠,选择机用虎 钳来进行装夹。
2)刀具的选择。该工件的材料为硬铝,切削 性能较好,选用高速钢立铣刀即可满足工艺要 求。工件上表面铣削用φ60mm端铣刀(T01) ,凸台轮廓选用φ12mm立铣刀(T02),凹槽 加工用8mm键槽铣刀(T03),孔加工用φ9.7 麻花钻(T04)和φ10H8铰刀(T05)。
精铣凹槽:用φ10mm键槽铣刀,主轴转速为 1000r/min ,进给速度为80mm/min。
钻孔:用φ9.7麻花钻,主轴转速为1000r/min ,进给速 度为100mm/min。
铰孔:用φ10H8铰刀,主轴转速为1200r/min ,进给速 度为80mm/min。
3.数学处理
建立工件坐标系:原点设在工件表面中 心点位置。工件各坐标计算简单,五边 形各坐标如下:A(-23.512,-31.944) 、B(-37.82,12.6)、C(0,40)、D (37.82,12.36)、E(23.512,31.944)。
N100 X34 Y29; N110 Y10; N120 G03 X34 Y-10 R10; N130 G01 X34 Y-29; N140 G02 X29 Y-34 R5; N150 G01 X0 Y-34; N160 G03 X-16 Y-50 R16; N170 G40 G01 X0 Y-50; N180 M99;
第七章 数控铣床加工中心 零件加工综合实例
数控铣床加工中心零件加工综合实例
教学目标
1. 学会数控铣床程序编制的方法 2. 学会在数控仿真软件上校验程序的方
法 3.了解在数控铣床上加工零件的方法与
步骤
教学重点难点
第7章数控铣削编程与加工应用实例
这种情况下,若用同一把刀进行挖槽加工,则要求刀具在轮 廓边界1上连续切削时,使用一次刀具半径补偿;当刀具在轮廓边界2 上连续切削时,要撤消前次刀具半径补偿,重新建立新的刀具半径补 偿值,粗加工后,根据实测及各自公差的要求对刀补值作不同的修改, 调整后再进行精加工。
上一页 下一页 返回
7.2 挖槽加工实例
4)铣削图7-4(c)所示的凸台轮廓时,亦可看作挖槽加工的特例。 但此时不能用图纸所示的外轮廓作为加工边界,因为将这轮廓作为边 界时,角上的部分材料可能铣不掉,见图7-9(a)所示,1、2、3、4分别 为4个角残留的材料。此时可改为以边界2作为挖槽加工边界,4个角上 就不会留下残余材料。见图7-9(b)所示。
铣削工件外轮廓,通常采用高速钢或硬质合金的立铣刀,下刀点 选择在工件实体外,并使切入点位置和方向尽可能沿工件轮廓切向延 长线方向。刀具切入和切出时要注意避让夹具,并要避免碰到工件上 不该切削的部位。切出工件时仍要尽可能沿工件轮廓切向延长线方向 切出工件,以利于刀具受力平稳同时尽可能保证工件轮廓过度处无明 显接痕。
2)选择加工机床:用立式三坐标数控铣床较为合适 3)加工工序与工步的划分及走刀路线的确定 根据图样分析,凸台加工时材料的切削量不大,而且材料的切削 性能较好,选择φ20的圆柱形直柄立铣刀,材料为高速钢(HSS),沿 轮廓铣削一周即可去处余量,考虑实习用机床主轴刚性不够,深度 6mm,采用分层加工每次切深3mm。
(1)图7-3中基点A的坐标计算
在Rt△O1CD中,
《高速切削》课件
高速切削技术面临的挑战
高成本
高速切削技术需要高精度 和高性能的机床、刀具等 设备,成本较高。
技术门槛高
高速切削技术需要操作者 具备较高的技能水平和经 验,技术门槛较高。
加工过程不稳定
高速切削过程中的振动、 热变形等因素可能导致加 工过程不稳定,影响加工 精度和表面质量。
高速切削技术的发展前景
广泛应用
高速切削过程中产生的热量较 少,减少了工件的热变形和热 损伤,有利于加工质量的稳定 。
适合难加工材料
对于一些硬、韧、耐磨等难加 工材料,高速切削可以有效地
提高切削效率和加工质量。
高速切削的应用领域
航空航天
汽车制造
高速切削在航空航天领域广泛应用于加工 高强度、轻质材料,如钛合金和复合材料 等。
汽车制造过程中需要大量切削加工,高速 切削可以提高生产效率和加工质量,尤其 在汽车零部件的制造中得到广泛应用。
02
高速切削通常采用非常锋利的刀 具,并在高转速的机床条件下进 行加工,以实现高效率、高质量 的切削。
高速切削的特点
高效率
高速切削的切削速度远高于常 规切削,因此可以在短时间内 完成大量切削,提高生产效率
。
高质量
高速切削产生的切削力较小, 减少了工件的变形和振动,提 高了加工精度和表面质量。
减少热影响
高速切削时,应使用高质量的刀具和合适的切削液,以减小刀具磨损和提高加工精 度。
CHAPTER 03
高速切削的关键技术
高速切削的刀具技术
刀具材料
选用高硬度、高耐磨性的刀具材 料,如硬质合金、陶瓷和金刚石 等,以提高刀具的耐用度和切削
效率。
刀具几何形状
设计合理的刀具几何形状,如采用 较大的前角和后角,以减小切削力 和切削热,提高刀具的切削性能。
模具高速铣削加工技术及数控编程实例
模具高速铣削加工技术及数控编程实例一、前言模具作为模压产品生产的关键工装,其设计与生产周期日益成为决定新产品开发周期的决定因素。
目前工业发达家的航空航天、汽车、机械、模具、机床等行业首先得益于该项新技术,使上述行业的产品质量明显提高,成本大幅度降低,获得了市场竞争优势。
在汽车工业中,过去新车型的开发周期一般为10年,现在缩短为2~3年。
福特、通用、丰田等公司的新车型开发周期仅为1年半,一切都得益于企业模具设计与制造手段的现代化水平的提高。
高速切削技术逐渐应用于加工铸铁和硬铝合金,尤其加工大型覆盖件冲压模、锻模、压铸模和注射模,目的是在减少加工时间和研制时间的同时提高尺寸公差和表面一致性。
目前国际上高速切削加工技术主要应用于汽车工业、模具行业、航空航天行业,尤其是在加工复杂曲面的领域,工件本身或刀具系统刚性要求较高的加工领域,显示了强大的功能。
国内高速切削加工技术的研究与应用始于20世纪90年代,也是主要应用于模具、航空、航天和汽车工业,但采用的高速切削CNC机床、高速切削刀具和CAD/CAM软件等以进口为主。
二、高速切削加工应用的关键技术数控高速切削加工作为模具制造中最为重要的一项先进制造技术,是集高效、优质、低耗于一身的先进制造技术。
在常规切削加工中备受困扰的一系列问题,通过高速切削加工的应用得到了解决。
其切削速度、进给速度相对于传统的切削加工,以级数级提高,切削机理也发生了根本的变化。
与传统切削加工相比,切削加工发生了本质性的飞跃,其单位功率的金属切除率提高了30%~40%,切削力降低了30%,刀具的切削寿命提高了70%,留于工件的切削热大幅度降低,低阶切削振动几乎消失。
随着切削速度的提高,单位时间毛坯材料的去除率增加,切削时间减少,加工效率提高,从而缩短了产品的制造周期,提高了产品的市场竞争力。
同时,高速加工的小量快进使切削力减少,切屑的高速排除,减少了工件的切削力和热应力变形,提高了刚性差和薄壁零件切削加工的可能性。
立式数控加工中心的高速切削技术及应用
立式数控加工中心的高速切削技术及应用高速切削技术在立式数控加工中心的应用立式数控加工中心是一种先进的数控加工设备,广泛应用于机械制造、航空航天、汽车制造等行业。
有效地利用高速切削技术,能够提高加工效率、减少加工时间、提高产品质量。
本文将重点讨论立式数控加工中心的高速切削技术及其应用。
一、高速切削技术的基本原理及特点高速切削技术是指在较高的切削速度下进行切削加工的一种技术。
与传统的切削加工相比,高速切削技术具有以下几个特点:1. 切削速度高:高速切削技术通常要求切削速度大于1000m/min,甚至可以达到5000m/min以上。
高速切削技术利用了材料切削的特性,通过高速运动的刀具与工件的碰撞摩擦,迅速将材料切削掉,从而提高了加工效率。
2. 加工精度高:高速切削技术能够有效控制加工过程中的热变形和振动,从而提高了加工精度。
同时,高速切削技术还可以减少切削刀具的切削阻力和切削力,使加工过程更加稳定,从而提高了产品的表面质量。
3. 切削力小:高速切削技术采用了特殊的刀具材料和刀具几何形状,使切削力得到有效控制。
切削力小不仅可以减少加工过程中的能耗,还可以减少刀具的磨损,延长切削刀具的使用寿命。
4. 刀具寿命长:高速切削技术一般采用硬质合金或陶瓷刀具,这些材料具有较高的硬度和耐磨性,能够在高切削速度下保持较好的切削效果。
相比之下,传统的刀具材料往往因为切削速度过慢而导致刀具磨损加剧,从而降低了刀具的寿命。
二、立式数控加工中心的高速切削技术立式数控加工中心是一种主轴立卧方向垂直的数控加工设备,其主要特点是可以进行多轴联动控制,实现复杂零件的加工。
在立式数控加工中心中应用高速切削技术,不仅可以提高加工效率,还可以提高产品质量。
1. 切削速度的提高:立式数控加工中心可以通过提高主轴转速和切削进给速度来增加切削速度。
此外,采用高速切削技术所需的刀具材料和刀具几何形状,也可以进一步提高切削速度。
2. 刀具选择的优化:在立式数控加工中心中,根据不同的加工要求选择合适的刀具是提高切削效率的关键。
数控高速切削加工技术在机械制造中的应用
数控高速切削加工技术在机械制造中的应用摘要:随着科技的快速发展,机械制造行业正面临着前所未有的挑战和机遇。
传统的加工方法已无法满足现代机械制造的高效、高质量和低成本的需求。
因此,数控高速切削加工技术作为一种先进的加工技术,在机械制造领域的应用日益受到关注。
本文将深入探讨数控高速切削加工技术在机械制造中的应用,分析其优势和存在的问题,并提出相应的解决方案。
关键词:数控高速切削加工;机械制造;技术应用引言:为了满足现代机械制造的高效、高质量和低成本的需求,各种先进的加工技术不断涌现。
其中,数控高速切削加工技术作为一种具有显著优势的加工技术,在机械制造领域的应用日益受到关注。
数控高速切削加工技术是一种先进的制造技术,它结合了计算机数控(CNC)技术、高速主轴系统、高速进给系统、高性能刀具等先进技术,实现了高效率、高质量的切削加工。
1数控高速切削加工技术概述1.1概念数控高速切削加工技术的基本原理是通过计算机数控技术控制切削工具的切削参数,如切削速度、进给速度和切削深度等,以实现最优化的切削过程。
在切削加工过程中,通过采用超硬材料的刀具和磨具,以及优化后的高速主轴系统、快速进给系统和高性能CNC控制系统,实现对工件材料的高效切除和高质量加工。
具体工作步骤如下:编程与设定:首先,根据工件的加工要求和材料特性,编写相应的数控程序。
这个程序会设定切削工具的进给速度、切削深度、切削速度等关键参数。
刀具与主轴:高速切削加工需要高速旋转的刀具和主轴。
刀具通常采用超硬材料,如硬质合金或陶瓷,以增加其耐磨性和寿命。
主轴则通过电力或液压方式驱动,以实现高速旋转。
切削过程:当刀具与工件接触时,刀具的高速旋转会带动切削刃对工件进行切削。
同时,进给系统按照数控程序设定的速度和深度,控制刀具的进给,实现连续的切削过程。
冷却与润滑:在切削过程中,为了降低切削温度和减少刀具磨损,通常会使用冷却液和润滑剂。
这些流体可以有效地带走切削热,并减少摩擦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图7-8 粗加工刀具路径
第一节 螺旋薄壁零件加工实例
6)单击“接受”按钮。
图7-9 粗加工仿真
第一节 螺旋薄壁零件加工实例
3.精加工 1)在窗口左侧PowerMILL资源管理器中,右击“刀具”→“产生 刀具”→“端铣刀”,设置铣刀直径为4mm,长度为20mm。 2)在主工具栏中单击刀具路径策略按钮,打开“新的”对话框, 选择“精加工”选项卡,如图7-10所示,然后选择“等高精加 工”,在“等高精加工”对话框中作如图7-11所示的设置。
图7-10 “精加工”选项卡
第一节 螺旋薄壁零件加工实例
图7-11 “等高精加工”对话框
3)在主工具栏中单击进给和转速按钮,
第一节 螺旋薄壁零件加工实例
打开“进给和转速”对话框,设置如图7-12所示参数后,单击 “接受”按钮,退出该对话框。
图7-12 精加工“进给和转速”对话框
第一节 螺旋薄壁零件加工实例
第一节 螺旋薄壁零件加工实例
2)在主工具栏中单击毛坯按钮,打开“毛坯”对话框,在“限界” 选项中输入其长、宽、高3个方向的极限坐标,如图7-2所示。
图7-2 “毛坯”对话框
第一节 螺旋薄壁零件加工实例
2.粗加工
图7-3 “端铣刀”对话框
第一节 螺旋薄壁零件加工实例
1)在刀具工具栏中单击按钮,显示出所有刀具图标,单击按钮, 打开“端铣刀”㊀对话框,选择“刀尖”选项卡,设置参数如图73所示,单击“关闭”退出。 2)在主工具栏中单击刀具路径策略按钮,打开“新的”对话框, 选择“三维区域清除”选项卡,选择“偏置区域清除”,如图7-4 所示,“偏置区域清除”对话框中的设置如图7-5所示。 3)在主工具栏中单击“进给和转速”按钮,打开“进给和转速” 对话框,设置参数如图7-6所示,单击“接受”按钮,退出该对话 框。 4)在主工具栏中单击按钮,打开“快进高度”对话框,按图7-7所 示设置参数后,单击“接受”按钮,退出对话框。
第二节 深槽大去除余量零件的加工实例
第一节 螺旋薄壁零件加工实例
图7-4 “新的”对话框
第一节 螺旋薄壁零件加工实例
图7-5 “偏置区域清除”对话框
第一节 螺旋薄壁零件加工实例
图7-6 粗加工“进给和转速”对话框
第一节 螺旋薄壁零件加工实例
图7-7 “快进高度”对话框
5)在“偏置区域清除模型”对话框中单击“应用”按钮,
第一节 螺旋薄壁零件加工实例
2.工艺方案 (1)粗加工 ϕ20mm、R3mm的刀尖圆角立铣刀,采用“偏置区域 清除模型”的刀具路径,去除该零件内的大部分余量。 (2)二次开粗加工 ϕ10mm的球头刀,采用“偏置区域清除模型” 的刀具路径,加工出三个锥形深槽。 (3)清角精加工 ϕ6mm、R0.5mm的刀尖圆角立铣刀,采用“交叉 等高精加工”的刀具路径,对电吹风凹模进行清角精加工。 二、利用PowerMILL软件生成加工程序 1.输入深槽零件并进行初步设置
4)在“等高精加工”对话框中,单击“应用”按钮,得到如图7-13 所示的刀具路径,单击“接受”按钮。
图7-13 精加工刀具路径
第一节 螺旋薄壁零件加工实例
4.利用PowerMILL软件生成加工程序 1)在窗口左侧PowerMILL资源管理器中,右击“NC程序”,在弹 出的快捷菜单中,选择“产生NC程序”,如图7-14所示。
图7-ቤተ መጻሕፍቲ ባይዱ7 各刀具路径的NC程序
第一节 螺旋薄壁零件加工实例
图7-18 对NC程序进行后处理
第一节 螺旋薄壁零件加工实例
图7-19 后处理信息
第二节 深槽大去除余量零件的加工实例
一、深槽大去除余量零件的加工工艺分析 1.零件特性分析
图7-20 深槽大去除余量零件的三维图
第二节 深槽大去除余量零件的加工实例
第七章 高速切削加工实例
第七章 高速切削加工实例
第一节 螺旋薄壁零件加工实例 第二节 深槽大去除余量零件的加工实例 第三节 兔子凸模加工实例
第一节 螺旋薄壁零件加工实例
一、螺旋薄壁零件加工工艺分析 1.零件特性分析
图7-1 螺旋薄壁零件的三维图
第一节 螺旋薄壁零件加工实例
2.工艺方案 (1)粗加工 ϕ10mm的面铣刀,采用“偏置区域清除模型”的刀具 路径,去除螺旋形薄壁零件的外面、内壁大部分余量。 (2)精加工 ϕ4mm的面铣刀,采用“等高精加工”的刀具路径,切 掉剩余余量。 二、利用PowerMILL软件生成加工程序 1.输入螺旋薄壁零件并定义毛坯 1)打开PowerMILL操作界面,单击菜单“文件”→“输入模型”, 打开“输入模型”对话框,文件类型选择“Unigraphics(*.prt)”, 文件名选择光盘“chapter7\luoxuanblade.prt”,单击“打开”按 钮,即可输入如图7-1所示的螺旋薄壁零件模型。
第二节 深槽大去除余量零件的加工实例
1)打开PowerMILL操作界面,单击菜单“文件”→“输入模型”, 打开“输入模型”对话框,文件类型选择“Unigraphics(*.prt)”, 文件名选择光盘“chapter7\shencao.prt”,单击“打开”按钮, 即可输入如图7-20所示的零件模型。 2)分析模型。
图7-14 NC程序快捷菜单
第一节 螺旋薄壁零件加工实例
图7-15 “NC程序”对话框
第一节 螺旋薄壁零件加工实例
图7-16 增加各刀具路径的NC程序
2)单击“产生NC程序”后,弹出“NC程序”对话框,
第一节 螺旋薄壁零件加工实例
如图7-15所示。 3)单击“应用”并“接受”后,右键单击各刀具路径,在弹出的 快捷菜单中选择“增加到”→“NC程序”,如图7-16所示。 4)粗、精加工刀具路径的NC程序都被增加到NC程序1的子目录下, 如图7-17所示。 5)后处理结束后显示信息如图7-19所示。
图7-21 查看阴影工具条
第二节 深槽大去除余量零件的加工实例
图7-22 显示最小半径阴影
第二节 深槽大去除余量零件的加工实例
图7-23 “模型显示选项”对话框
第二节 深槽大去除余量零件的加工实例
图7-24 修改半径后无阴影
第二节 深槽大去除余量零件的加工实例
3)创建用户坐标系。
图7-25 产生用户坐标系