函数与极限知识点
各类极限知识点总结

各类极限知识点总结一、函数的极限1. 定义:给定函数f(x),当x趋近于某一点a时,如果函数值f(x)无论怎么接近a都会趋于一个确定的值L,则称L为函数f(x)当x趋于a时的极限,记作lim(x→a)f(x)=L。
通常情况下,我们也会将x趋近于a的这一过程称为x趋近于a时的极限,即x→a。
2. 性质:函数的极限有一些基本的性质,这些性质有助于我们计算和理解函数的极限。
比如极限的唯一性、极限的局部有界性、函数的连续性等。
3. 一些特殊函数的极限:(1)常数函数的极限;(2)幂函数的极限;(3)指数函数和对数函数的极限;(4)三角函数的极限;(5)复合函数的极限等。
二、无穷大和无穷小1. 定义:在极限的理论中,无穷大和无穷小是两个非常重要的概念。
当x趋近于某一点a 时,如果函数值f(x)可以任意增大,并且没有上界,则称f(x)是当x趋近于a时的无穷大。
反之,如果函数值f(x)可以任意接近于0,并且没有下界,则称f(x)是当x趋近于a时的无穷小。
2. 性质:无穷大和无穷小也有一些基本的性质,包括无穷大和无穷小的性质、无穷大与有界性的关系、无穷小的运算规律等。
3. 一些特殊函数的无穷大和无穷小:(1)常数函数的无穷大和无穷小;(2)幂函数的无穷大和无穷小;(3)指数函数和对数函数的无穷大和无穷小;(4)三角函数的无穷大和无穷小;(5)复合函数的无穷大和无穷小等。
三、极限的运算规律1. 四则运算的极限性质:加减乘除都有着相应的极限运算规律。
比如两个函数的极限之和等于它们的极限之和、两个函数的极限之积等于它们的极限之积等。
2. 复合函数的极限性质:当函数与另一个函数进行复合时,它们的极限也满足一定的规律。
比如复合函数的极限等于内函数的极限等。
3. 一些特殊函数的极限运算:(1)三角函数的加减角极限性质;(2)指数函数和对数函数的极限性质;(3)特殊组合函数的极限性质等。
四、常见的极限形式1. 0/0型:在计算函数的极限时,经常会遇到0/0型的不定式形式。
函数的极限知识点总结

函数的极限知识点总结一、函数极限的定义1. 函数的极限定义:设函数f(x)在点x0的某一去心邻域内有定义。
如果对于任意给定的正数ε,总存在正数δ,使得当0<|x-x0|<δ时,总有|f(x)-A|<ε成立,则称当x自变量趋于x0时,函数f(x)以A为极限(或者以A收敛),记作lim(x→x0)f(x)=A。
2. 函数极限概念解释:函数的极限就是描述了当自变量趋于某一特定的常数时,函数的值随之趋于的一个确定的常数。
3. 极限的图像解释:函数f(x)的极限lim(x→x0)f(x)=A,表示当x自变量在点x0的邻域内取值时,函数图像与直线y=A的距离可以任意小。
即对于任意小的正数ε,总存在正数δ,使得当0<|x-x0|<δ时,总有|f(x)-A|<ε成立。
二、函数极限的性质1. 唯一性:若函数f(x)的极限存在,那么它的极限值是唯一的。
即如果lim(x→x0)f(x)=A1,又有lim(x→x0)f(x)=A2,那么A1=A2。
2. 有界性:若函数f(x)在x0附近有极限,那么它在x0附近是有界的。
即存在一个正数M>0,使得当x自变量在点x0的邻域内取值时,总有|f(x)|<M。
3. 保序性:若函数f(x)的极限存在,那么它的极限值保持不变。
即如果lim(x→x0)f(x)=A,且f(x)≤g(x),那么lim(x→x0)g(x)也存在,并且lim(x→x0)g(x)≤A。
4. 逼近性:如果函数f(x)的极限存在,那么函数f(x)在x0附近与它的极限可以任意接近。
即对于任意小的正数ε,总存在正数δ,使得当0<|x-x0|<δ时,总有|f(x)-A|<ε成立。
三、函数极限的运算规律1. 四则运算法则:设lim(x→x0)f(x)=A,lim(x→x0)g(x)=B,且A,B存在,那么有lim(x→x0)[f(x)± g(x)]=A±B,lim(x→x0)[f(x)·g(x)]=A·B,lim(x→x0)[f(x)/g(x)]=A/B(B≠0)。
函数和极限知识点总结

函数和极限知识点总结一、函数1. 函数的定义函数是一个映射,它将一个或多个输入值映射到一个输出值。
函数通常用f(x)来表示,其中x是输入变量,f(x)是输出变量。
函数可以有不同的定义域和值域,通常用来描述输入和输出之间的关系。
2. 函数的性质函数有以下性质:- 一一对应性:如果一个函数的每一个输入值对应唯一的输出值,则该函数是一一对应的。
- 奇偶性:如果f(-x) = f(x),则该函数是偶函数;如果f(-x) = -f(x),则该函数是奇函数。
- 增减性:如果对于任意的x1 < x2,有f(x1) < f(x2),则该函数是增函数;如果f(x1) >f(x2),则该函数是减函数。
3. 常见的函数类型常见的函数类型包括:- 多项式函数:f(x) = ax^n + bx^(n-1) + ... + c,其中a、b、c为常数,n为自然数。
- 指数函数:f(x) = a^x,其中a为大于0且不等于1的常数。
- 对数函数:f(x) = log_a(x),其中a为大于0且不等于1的常数。
- 三角函数:包括sin(x)、cos(x)、tan(x)等。
4. 函数的图像函数的图像通过将输入值和输出值构成的点在坐标系中连接起来得到。
函数的图像可以用来表示函数的性质和特征,如增减性、奇偶性等。
5. 复合函数复合函数是将一个函数作为另一个函数的输入。
如果f(x)和g(x)都是函数,那么f(g(x))就是一个复合函数。
复合函数可以用来描述多个函数之间的复杂关系。
6. 反函数如果一个函数f(x)满足f(f^(-1)(x)) = x,则f^(-1)(x)称为f(x)的反函数。
反函数可以用来描述函数的逆关系。
二、极限1. 极限的定义设函数f(x)在点x=a的邻域内有定义,若对于任意给定的正数ε,总存在正数δ,使得当0 < |x-a| < δ时,对应的函数值f(x)满足|f(x)-L| < ε,那么称函数f(x)当x趋向于a时的极限为L,记作lim(f(x),x->a) = L。
函数极限连续知识点总结

函数极限连续知识点总结一、函数极限的定义1.1 函数的极限概念首先,我们先来了解一下函数的极限概念。
对于给定的函数$f(x)$和实数$a$,如果当$x$趋于$a$时,函数$f(x)$的取值无限接近某个确定的实数$L$,那么我们称$L$为函数$f(x)$在$x$趋于$a$时的极限,记作$\lim_{x \to a}f(x) = L$,并称函数$f(x)$在$x$趋于$a$时收敛于$L$。
1.2 函数极限的定义根据上面的概念,我们可以得到函数极限的严格定义:设函数$f(x)$在点$a$的某个去心邻域内有定义,如果对于任意给定的正数$\varepsilon$,总存在正数$\delta$,使得当$0 <|x - a| < \delta$时,就有$|f(x) - L| < \varepsilon$成立,那么就称函数$f(x)$在$x$趋于$a$时的极限为$L$,记作$\lim_{x \to a}f(x) = L$。
上述定义可以用符号表示为:对于任意给定的$\varepsilon > 0$,总存在$\delta > 0$,使得当$0 < |x - a| < \delta$时就有$|f(x) - L| < \varepsilon$成立。
1.3 函数极限的几何意义函数极限的定义反映了函数在某一点附近的变化趋势。
通过函数图像可以直观地理解函数极限的几何意义:当$x$在点$a$的邻域内时,函数$f(x)$的图像逐渐接近直线$y=L$,并且可以任意地靠近直线$y=L$。
这也就意味着函数在$x$趋于$a$时,其值可以无限接近于$L$。
1.4 函数极限存在的充分条件函数极限的存在需要满足一定的条件,下面给出函数极限存在的充分条件:(1)函数$f(x)$在点$a$的某个邻域内有定义;(2)存在实数$L$,使得对任意给定的$\varepsilon > 0$,总存在$\delta > 0$,使得当$0 < |x - a| < \delta$时就有$|f(x) - L| < \varepsilon$成立。
专升本数学函数与极限知识点

专升本数学函数与极限知识点在专升本数学的学习中,函数与极限是非常重要的基础知识。
理解和掌握这些知识点对于后续的学习和解题至关重要。
下面就让我们一起来详细了解一下函数与极限的相关内容。
一、函数的概念函数是数学中一个非常基本的概念。
简单来说,函数就是一种对应关系,它将一个集合(定义域)中的每个元素按照一定的规则对应到另一个集合(值域)中的唯一元素。
我们通常用 y = f(x) 来表示一个函数,其中 x 是自变量,y 是因变量,f 则表示对应关系。
例如,y = 2x + 1 就是一个函数,表示当 x 取一个值时,y 可以通过 2x + 1 这个式子计算出来。
函数的定义域是指自变量 x 能够取值的范围,而值域则是因变量 y 的取值范围。
在确定定义域时,需要考虑分式的分母不为零、偶次根式下的式子大于等于零等限制条件。
二、函数的性质1、单调性函数的单调性是指函数在定义域内的增减情况。
如果对于定义域内的任意两个自变量 x1 和 x2,当 x1 < x2 时,都有 f(x1) < f(x2),那么函数 f(x) 在该区间上是单调递增的;反之,如果 f(x1) > f(x2),则函数是单调递减的。
2、奇偶性如果对于函数 f(x) 的定义域内任意一个 x,都有 f(x) = f(x),那么函数 f(x) 就是偶函数;如果都有 f(x) = f(x),则函数是奇函数。
3、周期性若存在一个非零常数 T,使得对于定义域内的任意 x,都有 f(x + T) = f(x),则函数 f(x) 是周期函数,T 为其周期。
三、常见函数1、一次函数形如 y = kx + b(k、b 为常数,k ≠ 0)的函数称为一次函数。
其图像是一条直线。
2、二次函数一般式为 y = ax²+ bx + c(a ≠ 0),其图像是一条抛物线。
3、反比例函数形如 y = k/x(k 为常数,k ≠ 0)的函数是反比例函数,图像是双曲线。
4、指数函数形如 y = a^x(a > 0 且a ≠ 1)的函数是指数函数。
函数极限相关知识点总结

函数极限相关知识点总结一、函数极限的定义1. 函数极限的定义在数学中,函数极限是描述函数在某一点附近的行为的概念。
具体来说,对于给定的函数f(x),当自变量x趋于某一点a时,如果函数值f(x)无限接近某个确定的数L,那么我们就称函数f(x)在点a处的极限为L,记作lim_{x→a}f(x) = L。
换句话说,当x在逼近a时,f(x)的取值会趋于L。
这一定义可以用数学符号严格表述为:对于任意正数ε,存在一个正数δ,使得当0< |x-a| <δ时,都有 |f(x)-L| <ε成立。
2. 函数极限的右极限和左极限如果函数f(x)在点a的左侧和右侧分别有极限,则称这两个极限为函数f(x)在点a处的左极限和右极限。
左极限记作lim_{x→a^-}f(x),右极限记作lim_{x→a^+}f(x)。
当左极限、右极限和函数值在点a处都存在且相等时,我们称函数f(x)在点a处存在极限,且极限为此值。
3. 函数极限的无穷极限当自变量x趋于无穷大时,函数f(x)的极限称为无穷极限。
具体来说,若对于任意正数M,存在一个正数N,使得当|x|>N时,都有|f(x)|>M成立,则我们称lim_{x→∞}f(x) = ∞。
类似地,若对于任意正数M,存在一个正数N,使得当|x|>N时,都有|f(x)|<M成立,则我们称lim_{x→∞}f(x) = -∞。
4. 函数极限的存在性函数极限在很多情况下是存在的,但也有一些特殊的函数,它们在某些点处的极限并不一定存在。
比如,当函数在某一点的左右极限不相等时,该点处的极限可能不存在;当函数在某一点的极限为无穷大时,该点处的极限也可能不存在。
因此,在研究函数极限时,我们需要考虑函数在极限点处的性质,以确定函数极限是否存在。
二、函数极限的求解方法1. 用极限的定义求解函数极限函数极限的定义是要求对任意给定的ε>0,存在一个δ>0,使得当0<|x-a|<δ时,都有|f(x)-L|<ε成立。
函数极限知识点

在 内有定义,若 ,则称 在 点连续
在 定义中不要求 ,是要求函数在点 有定义。
在 内有定义,若
,则称 在 点连续
当 时,有
,则称 在 点连续
在
内连续
在 内每一点都连续
连续函数的图形是一条连续而不间断的曲线。
在 内连续
在 内每一点都连续,且在 点右连续,即 ,且在 点左连续,即
八、函数间断点的定义、分类
2.
3.
必须保证:
形式上一定要统一
五、无穷小的比较
前提条件
定义
记号
在
内有定义
( 可为 ),
, ,
且 ,
,则称 是比 高阶的无穷小
,则称 是比 低阶的无穷小
,则称 是与 同阶无穷小
,则称 与 是等价无穷小
,则称 是关于 的 阶无穷小
六、几个常见的等价无穷小( )
( )
七、连续函数的定义和性质
定义
补充说明
夹逼准则
给定数列 ,满足
且 ( 有限或为 )
单调有界性判别法
单调上升有上界的函数必有极限
单调下降有下界的函数必有极限
函数
极限
存在准则
夹逼准则
当 (或 )时,有 ,且
( 有限或为 )
单侧极限判别法
设 在 内有定义,则
四、两个重要极限
基本形式
变形
注意
必须保证:
分子、分母中
必须统一,包括系数和正负号
1.
必ห้องสมุดไป่ตู้保证:
条件中,闭区间的要求是本质的,不可轻易替换
有界性定理
在区间上一定有界
零值定理
,
,使得
介
高数大一知识点总结基础

高数大一知识点总结基础一、函数与极限1. 函数的定义与性质:函数是一种对应关系,将一个自变量的取值映射到一个因变量的取值上。
函数具有定义域、值域、奇偶性、周期性等性质。
2. 极限的概念与性质:极限是函数在某一点或无穷远处的趋近值。
极限的存在性与唯一性可以通过数列极限的定义来判定。
3. 函数的连续性:连续性是指函数在定义域内没有突变、间断点的性质。
连续函数具有局部性质及整体性质。
4. 导数与函数的凸凹性:导数是函数在某一点的切线斜率,可以表示函数的变化率。
凸凹性指函数图像在某一区间上的弯曲程度。
二、微分学1. 微分的定义与性质:微分是函数局部线性逼近的结果,是函数在某一点的变化量。
微分的计算可以使用导数。
2. 高阶导数:高阶导数是导数的导数,表示函数变化的快慢程度。
高阶导数的计算可以使用导数的性质和公式。
3. 微分中值定理:微分中值定理包括拉格朗日中值定理、柯西中值定理等,用于描述函数在某一区间的特性。
4. 泰勒展开:泰勒展开是将函数在某一点附近用无穷多项式逼近的结果,用于求函数的近似值。
三、积分学1. 定积分的定义与性质:定积分是函数在某一区间上的面积或有向长度,可以用无穷小分割与极限的思想进行计算。
2. 不定积分与积分常数:不定积分是求解函数的原函数过程,不定积分的结果存在积分常数。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式将定积分与不定积分联系起来,描述了两者的关系。
4. 微积分基本定理:微积分基本定理包括第一类与第二类,用于计算定积分与不定积分。
四、级数1. 数项级数的收敛性:数项级数是由无穷多个数相加而成的表达式,根据其通项的性质可以判断级数的收敛性。
2. 常用级数:常用级数包括等比级数、调和级数等,可以通过特定的方法求解其和。
3. 幂级数:幂级数是一种特殊的级数,具有收敛域与求解方法。
幂级数常用于函数展开与近似计算。
五、常微分方程1. 常微分方程的基本概念:常微分方程是描述未知函数的导数与自变量之间关系的方程。
函数极限的知识点总结

函数极限的知识点总结一、函数极限的定义在介绍函数极限的定义之前,我们先来了解一下“极限”的概念。
在数学中,极限是指当自变量趋于某一特定的值时,函数的取值趋于的值。
如果函数f(x)在x趋于a的过程中,它的取值趋于一个确定的常数L,那么我们就称L是函数f(x)在点x=a处的极限,记作lim (x→a)f(x)=L。
这个定义可以用符号来表示为:对于任意的ε>0,存在一个δ>0,当0<|x-a|<δ时,有|f(x)-L|<ε,那么我们就称lim(x→a)f(x)=L。
根据极限的定义,我们可以得到一些结论:1. 如果一个函数在点x=a处的极限存在,那么它只有一个极限值。
2. 如果一个函数在点x=a处的极限不存在,那么它没有极限值。
3. 如果一个函数在点x=a处的极限存在且等于L,那么在点x=a的邻域内,函数的取值都趋于L。
函数极限的定义为我们提供了计算函数在某一点处的极限的依据,下面我们将介绍一些常见的计算方法。
二、函数极限的计算方法1. 代入法代入法是最直接的计算函数极限的方法,当函数的极限存在时,我们可以直接将自变量的值代入函数中计算即可。
例如,计算lim(x→2)(3x+1),我们只需要将x=2代入函数中得到lim(x→2)(3x+1)=3*2+1=7。
2. 分式的极限对于分式函数的极限计算,我们通常采用有理化或者分子分母同除等方法,将分式转化为更简单的形式进行计算。
例如,计算lim(x→1)(x^2-1)/(x+1),我们可以将分式有理化为(x-1)(x+1)/(x+1),然后可以进行约分化简得到lim(x→1)(x-1)=0。
3. 夹逼定理夹逼定理也是一种常见的计算函数极限的方法,它适用于一些复杂函数的极限计算。
夹逼定理的原理是,如果函数f(x)在x=a的邻域内被另外两个函数g(x)和h(x)夹在中间,并且lim(x→a)g(x)=lim(x→a)h(x)=L,那么函数f(x)在x=a处的极限也存在且等于L。
高数函数的极限知识点

高数函数的极限知识点一、极限的定义1. 数列极限数列 $\{a_n\}$ 极限为 $L$,记作 $\lim_{n \to \infty} a_n = L$,如果对于任意给定的正数 $\epsilon$,总存在一个正整数 $N$,使得当 $n > N$ 时,不等式 $|a_n - L| < \epsilon$ 成立。
2. 函数极限函数 $f(x)$ 当 $x \to c$ 时的极限为 $L$,记作 $\lim_{x \to c} f(x) = L$,如果对于任意给定的正数 $\epsilon$,总存在一个正数 $\delta$,使得当 $0 < |x - c| < \delta$ 时,不等式 $|f(x) - L| < \epsilon$ 成立。
二、极限的性质1. 唯一性如果 $\lim_{x \to c} f(x) = L$ 和 $\lim_{x \to c} f(x) = M$ 都成立,则 $L = M$。
2. 局部有界性如果 $\lim_{x \to c} f(x) = L$,则 $f(x)$ 在 $c$ 的某个邻域内有界。
3. 局部保号性如果 $\lim_{x \to c} f(x) = L$ 且 $L > 0$,则存在 $c$ 的一个邻域,使得在这个邻域内 $f(x) > 0$。
三、极限的计算1. 极限的四则运算如果 $\lim_{x \to c} f(x) = L$ 和 $\lim_{x \to c} g(x) = M$ 都存在,则:- $\lim_{x \to c} [f(x) + g(x)] = L + M$- $\lim_{x \to c} [f(x) - g(x)] = L - M$- $\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot M$- $\lim_{x \to c} [f(x) / g(x)] = L / M$,当 $M \neq 0$。
高等数学函数与极限知识点总结

高等数学函数与极限知识点总结高等数学是数学的重要分支之一,其中包括了函数与极限的内容。
函数与极限是高等数学的基础,也是数学建模和应用的重要工具。
本文将从函数的定义、性质和分类、极限的定义和性质等方面进行总结。
1. 函数的定义函数是一种映射关系,它将一个集合中的每个元素唯一地对应到另一个集合中的元素。
函数可以用数学表达式、图像或图表等形式来表示。
在高等数学中,常见的函数有多项式函数、指数函数、对数函数、三角函数等。
2. 函数的性质和分类函数具有很多性质,其中包括定义域、值域、奇偶性、周期性等。
定义域是函数自变量的取值范围,而值域是函数因变量的取值范围。
函数的奇偶性是指函数图像关于y轴对称或关于原点对称的性质。
周期性是指函数在一定范围内的取值具有重复性。
根据函数的性质和表达式的特点,可以将函数分为多项式函数、有理函数、指数函数、对数函数、三角函数等不同类型。
多项式函数是由常数和自变量的幂组成的函数,有理函数是两个多项式函数的比值,指数函数是以常数e为底的幂函数,对数函数是指数函数的反函数,三角函数是以角度或弧度为自变量的函数。
3. 极限的定义和性质极限是函数与自变量趋于某一值时函数取值的稳定性。
当自变量无限接近某一值时,函数的取值也趋于某一值,这个值就是函数的极限。
极限可以用数列、函数或图像的趋势来描述。
函数的极限有以下性质:- 唯一性:函数的极限只有一个唯一值。
- 保序性:如果函数在某一点左侧的极限小于右侧的极限,则函数在该点不存在极限。
- 有界性:如果函数在某一点的左侧和右侧都有极限,则函数在该点存在极限。
- 代数运算性质:如果函数的极限存在,则函数的和、差、积、商的极限也存在。
4. 极限的计算方法极限的计算方法有很多种,常见的方法包括代入法、夹逼法、无穷小量法、洛必达法则等。
- 代入法是将自变量的值代入函数中,计算函数在该点的取值。
- 夹逼法是通过找到两个函数,一个上面界和一个下面界,夹逼自变量的值,确定函数的极限。
函数极限知识点总结

函数极限知识点总结一、函数极限的定义和符号表示1. 函数极限的定义设函数y=f(x),当自变量x在某一点a的某个邻域内变化时,如果函数值y=f(x)随着x在a附近取值的变化而不断地趋近于某个确定的常数L,那么我们就说函数y=f(x)当x趋于a 时的极限为L,记作lim(x→a)f(x)=L。
上述定义可以用以下式子表示:lim(x→a)f(x)=L,表示当x趋于a时,函数f(x)的极限为L。
2. 函数极限的符号表示在表示函数极限时,我们通常还需要使用一些特殊的符号,如:lim(x→a)f(x)=L,表示当x趋于a时,函数f(x)的极限为L。
lim(x→∞)f(x)=L,表示当x趋于无穷大时,函数f(x)的极限为L。
lim(x→-∞)f(x)=L,表示当x趋于负无穷大时,函数f(x)的极限为L。
lim(x→a+0)f(x)=L,表示当x从右侧趋于a时,函数f(x)的极限为L。
lim(x→a-0)f(x)=L,表示当x从左侧趋于a时,函数f(x)的极限为L。
以上是函数极限的定义和常见符号表示,接下来我们将讨论函数极限的性质和计算方法。
二、函数极限的性质和计算方法在计算函数极限时,我们需要了解一些函数极限的性质和计算方法。
这些性质和计算方法对于求解函数极限的问题非常重要。
下面我们来逐一介绍这些性质和计算方法:1. 函数极限存在的必要条件设函数y=f(x),如果lim(x→a)f(x)存在,则f(x)在点x=a处必须有定义。
也就是说,只有在函数在某一点的邻域内有定义,我们才能讨论该点处的极限是否存在。
2. 函数极限的唯一性如果lim(x→a)f(x)存在,且为有限数L,则该极限是唯一的,即只有一个确定的极限值。
3. 函数极限的保号性若当x在某一点的某一邻域内,有f(x)≥g(x),且lim(x→a)f(x)=L,lim(x→a)g(x)=M,则L≥M。
4. 两个函数极限之和的性质如果lim(x→a)f(x)=L,lim(x→a)g(x)=M,那么lim(x→a)(f(x)+g(x))=L+M。
函数与极限知识点

x2
x2
8811
例2.求 lim 5x x1 x 2 1
解
: 原式
lim 5x
x1
lim(x 2
1)
5 2
x1
例3.求 lim x3 1 x1 x 1
解 : (当x 1时, 分母的极限为0,故不能用极限的商定理)
原式 lim (x 1)(x 2 x 1) 3
x1
x 1
例5
:
定理: 设在某变化过程中有 lim f (x)=A , lim g (x)=B ,则有: ① lim [ f (x)±g (x)]=lim f (x) ±lim g (x) =A±B、 ② lim [f (x) g (x)] =lim f (x) lim g (x) =AB ③ lim f (x) / g(x) =lim f (x) / lim g (x) =A / B (B≠0)
x→x0+0 时,函数得极限
2 、 自变量 x →∞ 时函数得极限、
x→-∞ 时,函数得极限 x→+∞时,函数得极限
1 、 x →x0 时函数得极限:
⑴定义: 设函数 f (x) 在点 x0 附近有定义 (但在 x0 处可以没有定义) , 当自变量 x 以任何方式无限趋近于定值 x0 时 , 若函数 f (x) 无限趋近于一个常数 A ,就说当 x 趋近于 x0时 , 函数 f (x)以
右极限: x从右侧趋近于x0时产生得极限、
记作 : lim f (x) A xx0 0
▲. 极限 lim f (x) A存在的充要条件 : (当且仅当) x x0
lim f (x) lim f (x) A
xx0 0
xx0 0
即左极限与右极限都存在并且相等时,才能说函数得极限存在
极限分析知识点总结归纳

极限分析知识点总结归纳一、函数的极限1. 从直观上理解函数的极限:当自变量x趋近于某一点a时,函数f(x)的取值趋近于一个常数L,那么我们称L为函数f(x)在点a的极限,记作lim(x→a)f(x)=L。
直观上,当x接近a时,f(x)的取值趋近于L,但并不一定等于L。
2. 函数在无穷远处的极限:当自变量x趋近于无穷大时,函数f(x)的极限的讨论就变得更加复杂。
我们通常分为正无穷大和负无穷大两种情况来讨论函数的无穷远处的极限。
3. 函数不存在极限的情况:有些函数在某些点上可能并不存在极限,这是因为函数在该点附近可能出现振荡、趋于无穷大或者没有确定的趋势。
这时我们称函数在该点上不存在极限。
二、极限的性质1. 极限的唯一性:若函数f(x)在点a有极限L,则该极限是唯一的。
即不管自变量x是从哪个方向趋近于a,都会得到相同的极限值L。
2. 极限的有界性:若函数f(x)在点a有极限L,则存在一个以a为中心的邻域,使得在这个邻域内,函数f(x)的取值都处于一个有界的范围内。
3. 极限的保号性:若函数f(x)在点a的某个邻域内始终保持大于(或小于)一个常数M,那么在这个邻域内,函数f(x)的极限也将大于(或小于)M。
4. 极限的四则运算:若函数f(x)和g(x)在点a都存在极限,则它们的和、差、乘积和商也都存在极限,并且有一些运算规则可以帮助我们计算极限。
5. 极限的复合函数性质:若函数f(x)在点a处有极限L,函数g(x)在点L处有极限M,则复合函数g(f(x))在点a处也有极限M。
三、无穷小与无穷大1. 无穷小的定义:在点a处,如果对于任意ε>0,都存在一个δ>0,使得当0<|x-a|<δ时,有|f(x)|<ε成立,那么我们称函数f(x)在点a处是一个无穷小。
2. 无穷小的性质:一些常用的无穷小性质包括无穷小的加法性、乘法性、有限个无穷小的和还是无穷小、无穷小与有界函数的乘积还是无穷小等。
396数学函数极限详细知识点

396数学函数极限详细知识点摘要:一、引言二、数学函数极限的概念1.极限的定义2.极限的性质三、常见数学函数的极限1.指数函数的极限2.对数函数的极限3.三角函数的极限4.反三角函数的极限5.复合函数的极限四、极限的计算方法1.夹逼定理2.单调有界定理3.极限的求和与积分的性质五、极限的应用1.连续函数2.导数与微分3.级数六、结论正文:一、引言数学函数极限是数学中的一个基本概念,它在微积分、级数等众多领域有着广泛的应用。
理解并掌握函数极限的知识,对于深入学习高等数学有着至关重要的作用。
本文将对数学函数极限的详细知识点进行介绍。
二、数学函数极限的概念1.极限的定义当自变量趋近某个值时,函数值的变化趋势可以描述为极限。
极限是一个比较概念,通常用“lim”表示。
给定一个函数f(x),如果存在一个数a,使得当x 趋近于a 时,f(x) 的变化趋势可以用一个确定的数L 来表示,那么我们可以说f(x) 在x 趋近于a 时极限为L,记作lim(x→a)f(x)=L。
2.极限的性质极限具有保号性、可加性、可乘性等性质。
三、常见数学函数的极限1.指数函数的极限对于任意实数a>0,有lim(x→0)a^x=1。
2.对数函数的极限对于任意正实数a,有lim(x→0)log_a(x)=0。
3.三角函数的极限正弦函数和余弦函数的极限分别为:lim(x→0)sin(x)=0,lim(x→0)cos(x)=1。
4.反三角函数的极限反正弦函数和反余弦函数的极限分别为:lim(x→0)arcsin(x)=0,lim(x→0)arccos(x)=π/2。
5.复合函数的极限设函数f(x) 和g(x) 都在x 趋近于a 时极限存在,那么复合函数f(g(x)) 在x 趋近于a 时极限存在,且满足lim(x→a)f(g(x))=f(lim(x→a)g(x))。
四、极限的计算方法1.夹逼定理设函数f(x) 在x 趋近于a 时极限存在,且函数g(x) 在x 趋近于a 时极限为L,那么当|f(x)-L|<ε时,存在一个正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
高数第一章函数与极限知识点总结

1.2.1 数列极限的定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2
数列的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.7.2
...................................... 5
1.7.3
定 ......................................... 5
1.8 函数的
与
...................................... 5
1.8.1 函数的
映射的定义
映射 g
映射的
g 的值域 Rg
f f 的定
1
义域
Rg ∈ D f
则
映射 g f 的
义
g◦ f
义
义
映射 f ◦ g 与 g ◦ f
映射 的 f ◦g f ◦g 与 g◦ f
1.1.2 函数
函数的概念
定义 1.4. 设数集 D ∈ R,则称映射 f : D → R 为定 义在 D 上的函数,通常简记为 y = f (x),x ∈ D, 其中 x 称为自变量,y 称为因变量,D 称为定义 域,记作 D f , 即 D f = D。
). 如果
lim f (x) = a
x→x0
且 a > 0(或 a < 0), 所以 ∃(正整数 N), 当 n > N, 都有 xn > 0(或 xn < 0).
函数极限和连续知识点总结

函数极限和连续知识点总结一、函数极限1.1 函数极限的定义在数学中,我们常常要研究函数在某一点的“趋于”某一值的情况。
这种趋向的性质称为函数的极限。
在正式介绍函数极限的定义之前,我们先来看一个例子。
例:设函数f(x)=2x+3,当x趋于2时,f(x)的取值如下:当x向2的左侧靠近时,f(x)的取值逐渐减小,但始终没有超过7;当x向2的右侧靠近时,f(x)的取值逐渐增加,但始终没有超过7。
这种情况下,我们会说f(x)当x趋近2时“趋近7”,即f(x)的极限是7。
现在,我们来正式介绍函数极限的定义。
定义:设函数f(x)在点x=a的某个去心邻域内有定义,如果存在常数A,对于任意给定的正实数ε,总存在另一正实数δ,使得当0<|x-a|<δ时,都有|f(x)-A|<ε成立。
那么常数A 叫做函数f(x)当x趋于a时的极限,记作lim┬(x→a)〖f(x)〗=A1.2 函数极限的性质在函数极限的研究中,我们需要了解一些极限的性质,其中最重要的包括以下几点:(1)唯一性:如果极限存在,那么这个极限是唯一的;(2)有界性:如果函数在某点的极限存在,那么该函数在该点附近必定有界;(3)性态:如果一个函数在某点的左极限和右极限都存在,且相等,那么函数在该点一定有极限;(4)夹逼准则:如果函数在某点的左右两极限都趋于同一值L,且有另外一个函数g(x)与f(x)相夹,且g(x)的极限也趋于L,那么f(x)的极限也趋于L。
1.3 常见函数的极限在函数极限的研究中,有一些常见的函数的极限是需要我们掌握的。
这些函数包括:(1)多项式函数的极限:当x趋于某个常数时,多项式函数的极限等于该常数的某个幂次的项系数;(2)指数函数和对数函数的极限:当x趋于正无穷时,指数函数的极限为正无穷;当x 趋于0时,对数函数的极限为负无穷;(3)三角函数的极限:当x趋于某些特定值时,三角函数的极限存在,且具有特定的值。
1.4 函数极限的求解方法在求解函数极限的过程中,可以使用以下几种方法:(1)直接代入法:即直接将x的值代入函数中,求出随着x的变化,函数的取值情况;(2)因子分解法:将一个不定式进行因式分解,从而更好地求出函数的极限;(3)洛必达法则:在求解不定式极限问题时,可以使用洛必达法则来简化问题,从而更好地求解函数的极限;(4)泰勒展开法:对于一些复杂的函数,可以使用泰勒展开公式来求解函数的极限。
数学 函数极限知识点总结

数学函数极限知识点总结一、基本概念1.1 函数极限的概念函数极限是指当自变量趋于某个特定值时,函数的取值趋于某个确定的值。
具体地说,设函数f(x)在点x=a的某个邻域内有定义,如果存在一个常数A,对于任意给定的正数ε,总存在另一个正数δ,使得当0<|x-a|<δ时,就有|f(x)-A|<ε成立,那么称函数f(x)当x趋于a时的极限为A,记为lim(x→a)f(x)=A。
1.2 函数极限的图像解释在图像上,函数f(x)在点x=a处的极限为A,就是指当x趋于a时,函数曲线逐渐接近点(x,A)。
特别地,如果对于任意给定的ε,总存在一个正数δ,使得当0<|x-a|<δ时,函数曲线都在点(x,A)的ε-邻域内,那么称函数f(x)在点x=a处的极限存在,并且等于A。
1.3 函数极限的表达方式函数极限通常有三种表达方式,分别是极限右侧、极限左侧和双侧极限。
其中,当x趋于a时,如果函数f(x)的极限只依赖于x大于a时的情况,那么记为lim(x→a+)f(x)=A;如果函数f(x)的极限只依赖于x小于a时的情况,那么记为lim(x→a-)f(x)=A;如果函数f(x)的极限既依赖于x大于a时的情况,又依赖于x小于a时的情况,那么记为lim(x→a)f(x)=A。
1.4 无穷大与无穷小当函数f(x)在点x=a处的极限为无穷大时,即lim(x→a)f(x)=∞或lim(x→a)f(x)=-∞,就称函数f(x)在点x=a处的极限为无穷大;当函数f(x)在点x=a处的极限为0时,即lim(x→a)f(x)=0,就称函数f(x)在点x=a处的极限为无穷小。
二、求解方法2.1 用极限定义求解对于一般的函数极限问题,可以使用极限的定义求解。
具体地说,通过设定ε-δ的方式,利用函数的性质和运算规则,逐步推导出函数在特定点的极限。
通常包括利用夹挤定理、利用三角不等式、利用数列极限等方法来求解函数极限。
高数学公式和知识点笔记

高数学公式和知识点笔记高等数学是一门重要的基础学科,包含了众多的公式和知识点。
以下是我为大家整理的一份较为全面的高数学公式和知识点笔记,希望能对大家的学习有所帮助。
一、函数与极限(一)函数函数的概念:设 x 和 y 是两个变量,D 是给定的数集,如果对于每个 x∈D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,则称 y 是 x 的函数,记作 y = f(x),x∈D。
函数的性质:1、单调性:若对于定义域内的任意 x₁< x₂,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),则称函数 f(x)在该区间上单调递增(或单调递减)。
2、奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数f(x)为偶函数;若 f(x) = f(x),则称函数 f(x)为奇函数。
(二)极限极限的定义:设函数 f(x)在点 x₀的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当 x 满足 0 <|x x₀| <δ 时,对应的函数值 f(x)都满足|f(x) A|<ε,那么常数 A 就叫做函数 f(x)当x→x₀时的极限,记作lim(x→x₀) f(x) = A。
极限的运算:1、四则运算:若lim(x→x₀) f(x) = A,lim(x→x₀) g(x) = B,则lim(x→x₀) f(x) ± g(x) = A ± B;lim(x→x₀) f(x) × g(x) = A × B;lim(x→x₀) f(x) / g(x) = A / B(B ≠ 0)。
2、两个重要极限:lim(x→0) (sin x / x) = 1;lim(x→∞)(1 +1 / x)ⁿ = e(n 为常数)。
二、导数与微分(一)导数导数的定义:函数 y = f(x)在点 x₀处的导数 f'(x₀) =lim(Δx→0) f(x₀+Δx) f(x₀) /Δx。
高数复习知识点

高等数学上册知识点一、 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、 函数的连续性与间断点;(重点)函数)(x f 在0x 连续)()(lim 00x f x f xx =→第一类:左右极限均存在.间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理(重点)、介值定理及其推论.(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量1) 定义:若lim 0α=则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:(重点)a) 1sin lim 0=→x x x b) e xx xx xx =+=++∞→→)11(lim )1(lim 15) 无穷小代换:(0→x )(重点)a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c)x e x ~1- (a x a x ln ~1-)d) x x ~)1ln(+ (axx a ln ~)1(log +)e)x x αα~1)1(-+二、 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率.3、 可导与连续的关系:4、 求导的方法1) 导数定义;(重点) 2) 基本公式; 3) 四则运算;4) 复合函数求导(链式法则);(重点) 5) 隐函数求导数;(重点) 6) 参数方程求导;(重点)7) 对数求导法. (重点) 5、 高阶导数1) 定义:⎪⎭⎫⎝⎛=dx dy dx d dx y d 22 2)Leibniz 公式:()∑=-=nk k n k k n n v u C uv 0)()()( (二) 微分1) 定义:)()()(00x o x A x f x x f y ∆+∆=-∆+=∆,其中A 与x ∆无关.2) 可微与可导的关系:可微⇔可导,且dx x f x x f dy )()(00'=∆'=三、 微分中值定理与导数的应用 (一) 中值定理1、 Rolle 定理:(重点)若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈; 3))()(b f a f =;则0)(),,(='∈∃ξξf b a 使.2、 Lagrange 中值定理:若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈;则))(()()(),,(a b f a f b f b a -'=-∈∃ξξ使.3、 Cauchy 中值定理:若函数)(),(x F x f 满足:1)],[)(),(b a C x F x f ∈; 2)),()(),(b a D x F x f ∈;3)),(,0)(b a x x F ∈≠'则)()()()()()(),,(ξξξF f a F b F a f b f b a ''=--∈∃使(二) 洛必达法则(重点) (三) T aylor 公式(不考) (四) 单调性及极值1、 单调性判别法:(重点)],[)(b a C x f ∈,),()(b a D x f ∈,则若0)(>'x f ,则)(x f 单调增加;则若0)(<'x f ,则)(x f 单调减少.2、 极值及其判定定理:a) 必要条件:)(x f 在0x 可导,若0x 为)(x f 的极值点,则0)(0='x f . b) 第一充分条件:(重点))(x f 在0x 的邻域内可导,且0)(0='x f ,c) 则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.d) 第二充分条件:(重点))(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,e) 则①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.3、 凹凸性及其判断,拐点1))(x f 在区间I 上连续,若2)()()2(,,212121x f x f x x f I x x +<+∈∀,则称)(x f 在区间I 上的图形是凹的;若2)()()2( ,,212121x f x f x x f I x x +>+∈∀,则称)(x f 在区间I 上的图形是凸的.2)判定定理(重点):)(x f 在],[b a 上连续,在),(b a 上有一阶、二阶导数,则 a) 若0)(),,(>''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凹的;b) 若0)(),,(<''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凸的.3)拐点:设)(x f y =在区间I 上连续,0x 是)(x f 的内点,如果曲线)(x f y =经过点))(,(00x f x 时,曲线的凹凸性改变了,则称点))(,(00x f x 为曲线的拐点.(五) 不等式证明1、 利用微分中值定理;2、 利用函数单调性;(重点)3、 利用极值(最值). (六) 方程根的讨论1、 连续函数的介值定理;2、 Rolle 定理;3、 函数的单调性;4、 极值、最值;5、 凹凸性. (七) 渐近线1、 铅直渐近线:∞=→)(lim x f ax ,则a x =为一条铅直渐近线; 2、 水平渐近线:b x f x =∞→)(lim ,则b y =为一条水平渐近线; 3、 斜渐近线:k xx f x =∞→)(lim b kx x f x =-∞→])([lim 存在,则b kx y +=为一条斜 渐近线.(八) 图形描绘四、 不定积分 (一) 概念和性质1、 原函数:在区间I 上,若函数)(x F 可导,且)()(x f x F =',则)(x F 称为)(x f 的一个原函数. (重点)2、 不定积分:在区间I 上,函数)(x f 的带有任意常数的原函数称为)(x f 在区间I 上的不定积分.3、 基本积分表(P188,13个公式);(重点)4、 性质(线性性).(二) 换元积分法(重点)1、 第一类换元法(凑微分):[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2、 第二类换元法(变量代换):[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ(三) 分部积分法:⎰⎰-=vdu uv udv (重点)(四) 有理函数积分 1、“拆”;2、变量代换(三角代换、倒代换、根式代换等).五、 定积分 (一) 概念与性质:1、 定义:∑⎰=→∆=ni i i bax f dx x f 1)(lim )(ξλ2、 性质:(7条)性质7 (积分中值定理) 函数)(x f 在区间],[b a 上连续,则],[b a ∈∃ξ,使))(()(a b f dx x f ba-=⎰ξ (平均值:ab dx x f f ba-=⎰)()(ξ)(二) 微积分基本公式(N —L 公式)(重点)1、 变上限积分:设⎰=Φxadt t f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dx d x x ααβββα'-'=⎰ 2、 N —L 公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰(三) 换元法和分部积分(重点)1、 换元法:⎰⎰'=βαϕϕt t t f dx x f bad )()]([)(2、 分部积分法:[]⎰⎰-=babab a vdu uv udv (四) 反常积分1、 无穷积分:⎰⎰+∞→+∞=tat a dx x f dx x f )(lim )( ⎰⎰-∞→∞-=btt bdx x f dx x f )(lim)(⎰⎰⎰+∞∞-+∞∞-+=0)()()(dx x f dx x f dx x f2、 瑕积分:⎰⎰+→=btat ba dx x f dx x f )(lim )((a 为瑕点) ⎰⎰-→=tabt badx x f dx x f )(lim )((b 为瑕点)两个重要的反常积分:1) ⎪⎩⎪⎨⎧>-≤∞+=-∞+⎰1 ,11,d 1p p a p x x p a p 2) ⎪⎩⎪⎨⎧≥∞+<--=-=--⎰⎰1,1 ,1)()(d )(d 1q q q a b x b x a x x qb a q b a q六、 定积分的应用 (一) 平面图形的面积1、 直角坐标:⎰-=badx x f x fA )]()([12(重点)2、 极坐标:⎰-=βαθθϕθϕd A )]()([212122(二) 体积1、 旋转体体积:(重点)a)曲边梯形x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的体积:⎰=bax dx x f V )(2πb)曲边梯形x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的体积:⎰=bay dx x xf V )(2π (柱壳法)2、 平行截面面积已知的立体:⎰=badx x A V )((三) 弧长1、 直角坐标:[]⎰'+=badx x f s 2)(12、 参数方程:[][]⎰'+'=βαφϕdt t t s 22)()(3、 极坐标:[][]⎰'+=βαθθρθρd s 22)()(七、 微分方程 (一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程. 阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同. 特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程(重点)dx x f dy y g )()(=,两边积分⎰⎰=dx x f dy y g )()((三) 齐次型方程)(x y dx dy ϕ=,设x y u =,则dxdu x u dx dy +=; 或)(y x dy dx φ=,设y x v =,则dydv y v dy dx += (四) 一阶线性微分方程(重点))()(x Q y x P dxdy =+ 用常数变易法或用公式:⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dx x P )()()( (五) 可降阶的高阶微分方程1、)()(x f y n =,两边积分n 次;2、),(y x f y '=''(不显含有y ),令p y =',则p y '='';3、),(y y f y '=''(不显含有x ),令p y =',则dy dp p y =''(六) 线性微分方程解的结构1、21,y y 是齐次线性方程的解,则2211y C y C +也是;2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通解;3、*2211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*y 非齐次方程的特解.(七) 常系数齐次线性微分方程(重点)二阶常系数齐次线性方程:0=+'+''qy y p y特征方程:02=++q pr r ,特征根: 21,r r(八) 常系数非齐次线性微分方程)(x f qy y p y =+'+''1、)()(x P e x f m x λ=(重点)设特解)(*x Q e x y m x k λ=,其中 ⎪⎪⎩⎪⎪⎨⎧=是重根是一个单根不是特征根, λ, λ, λk 210 2、()x x P x x P e x f n l x ωωλsin )(cos )()(+=设特解[]x x R x x R e x y m m x k ωωλsin )(cos )()2()1(*+=,其中 } ,max{n l m =,⎪⎩⎪⎨⎧++=是特征根不是特征根i i k ωλωλ ,1 ,0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:求lim(x3 2x2 1) x2
解 : 原式 lim x3 lim 2x2 lim 1
x2
x2
x2
(lim x)3 2(lim x)2 1
第一章函数与极限
函数与极限——微积分中的二个重要基本概念 函数——高等数学研究的基本对象. 极限——是否采用极限的运算方法,是高等数学与
初等数学的根本区别.
第一节 函 数
一.函数概念:
1.常量与变量: 常量:某一变化过程中保持数值不变的量.
例:同一地点的g=9.8米/秒2 (初等数学研究的主要对象) 变量:在某一变化过程中取不同数值的量.
②若 lim α/ β= k≠0 , 则称α与β是同阶无穷小 . 特别地若 lim α/ β=1 ,则称α与β是等价无穷小 . 记作 : α∽β
即 lim α/ β=
0
α是比β高阶的无穷小.
∞ α是比β低阶的无穷小 .
k≠0 α与β是同阶无穷小 .
1 α与β是等价无穷小.
三 . 极限的四则运算法则 :
y = f [φ(x)]
( y—因变量 , u—中间变量 ( 既是自变量又是因变量 ) , x—自变量 )
注:①函数u=Φ(x)的值域不能超过函数y=f(u)的定义域. ②形成复合函数的中间变量可以不止一个,如: y=f{φ[ω(x)]}
将复合函数拆成简单函数:(重点)
例:y = cos (2t+π/3) 可分解为 : y = cosx , x =2t+π/3.
例:自由落体S=gt2/2中的S与t都是变量. 一个量是常量还是变量只是相对而言的.
2.函数的概念:
函数关系——变量之间的依赖关系 函数定义: 设x与y是两个变量,如果对于x在数集X中所取的 每一个值,通过x与y之间的某一对应律f, 都有一个 (或多个)确定的 y 值与之对应 , 则称 f 是X上的函数.
(无穷大量的变化趋势和无穷小的变化趋势相反) 例 : 当 x → 0 时 , 1/x 的值无限增大 ;
当 x → π/2 时 , y = tgx 的绝对值 │y│无限增大 . 注 : ① 称一个函数是无穷大量时 , 必须指出其自变量的变化趋势.
②无穷大量是变量 , 而不是一个很大的量 . ▲ . 无穷大量 , 无穷小量是变量 , 而不是一个确定的量 .
函数也有一增量:△y=f (x0+△x)-f (x0),
若
lim y
x0
lim [
x0
f
(x0
x)
f
(x0 )]
0
则称函数y=f (x)在点x0处连续(并称x0为函数的连续点)
若以x=x0+△x代入上式,则有△x→0.则有
lim
xx0
f (x)
f (x0 )
于是函数的连续性定义可用以下三种不同的形式给出:
例 : 当 x → +∞ 时 , 1/x 的极限为零 ; 当 x → 1时 , x-1 的极限也是零 .
注 : ① 称一个函数是无穷小量时 , 必须指出其自变量的变化趋势. ②无穷小量是变量而不是常数 0 , 也不是很小的数 ( 如 10-10000) 但0可以看成是无穷小量。
2 . 无穷大定义 : 在变化过程中其绝对值无限变大 ,
记作:y=f(x),x X.
x称为自变量,y称为因变量.X称为函数的定义
而所有对应的y值组成的数集Y则称为函数的值域.
3.函数的表示方法:
√ 解析法 (如 y = f (x))
函数的表示法
列表法 图象法
其他 解析法可用一个式子表示也可用多个式子表示.例如:
cosx -π≤x≤0
f (x) =
1
0<x<1
B—上界). 例:lim sin x 0 x x
推论1. 常数与无穷小量之积仍为无穷小量 . 推论2. 有限个无穷小量的乘积仍为无穷小量 .
5 . 无穷小的比较 : 设α,β为两个无穷小 .
① 若 lim α/ β= 0 (或 lim β / α=∞) , 则称α是比β高阶的无穷小 或称β是比α低阶的无穷小 .
①
lim y 0
x0
(其中△x=x-x0 , △y=f(x)-f(x0)=f(x0+△x)-f(x0)
②
lim
x0
f
( x0
x)
f (x0 )
③
lim
xx0
f (x)
f (x0 )
连
续
x→x0-0 时,函数的极限 x→x0+0 时,函数的极限
x→-∞ 时,函数的极限 x→+∞时,函数的极限
1 . x →x0 时函数的极限:
⑴定义: 设函数 f (x) 在点 x0 附近有定义 (但在 x0 处可以没有定义) , 当自变量 x 以任何方式无限趋近于定值 x0 时 , 若函数 f (x) 无限趋近于一个常数 A ,就说当 x 趋近于 x0时 , 函数 f (x)以
1
.
x
3.初等函数
定义:由基本初等函数经过有限次加,减,乘,除四则运算和
有限次复合运算而构成的仅用一个解析式表达的函数,
称为初等函数. 问:分段函数是否是初等函数? 不是初等函数,但它是一个函数.
(注:不用一个式子表示的函数就不是初等函数)
例: y ln cos2 x,y 1 a2 x ,y arcsin x tgx .
例 : lim 1 1 lim(1 1) 0 x2 x 2 x2 x 2
定理2 .有限个无穷小的代数和仍为无穷小量 . 定理3 . 有界函数与无穷小的乘积仍为无穷小量 .
(有界函数 : 若函数 f(x) 在某个区间 X内满足 : A≤f(x)≤B , 其中 A , B 是两个定数 , 则称 f (x)在区间X内有界 , A—下界 ,
π
当 x →-∞时 , f (x) = arctgx →-π/2 .
π/2
lim f (x) lim f (x)
x
x
∴函数极限不存在 (当 x→∞ 时).
O
x
-π/2
π
极限不存在的几种情形式 :
1 . 当 x→ x0 (x →∞) 时 , f (x) →∞ , 极限不存在 . 这时虽然 f (x) 的极限不存在 , 但也可记作 :
x2
x2
8811
例2.求 lim x1
5x x2 1
解
:
原式
lim 5x
x1
lim(x 2
1)
5 2
x1
例3.求 lim x3 1 x1 x 1
解 : (当x 1时, 分母的极限为0,故不能用极限的商定理)
原式 lim (x 1)(x 2 x 1) 3
x1
x 1
例5
:
求
lim
定理: 设在某变化过程中有 lim f (x)=A , lim g (x)=B ,则有: ① lim [ f (x)±g (x)]=lim f (x) ±lim g (x) =A±B. ② lim [f (x) g (x)] =lim f (x) lim g (x) =AB ③ lim f (x) / g(x) =lim f (x) / lim g (x) =A / B (B≠0)
3 . 无穷小与无穷大的关系 : 互为倒数关系
例:当x→0时,
(在同一变化过程中).
1/x 为无穷大量 ,
而 x 为无穷小量 .
4 . 无穷小定理 :
定理1 . 函数 f (x) 以A为极限的充分必要条件是函数 f (x)与常数A 之差是一个无穷小量 . 即 lim f (x) =A 成立的充要条件是 : lim [ f (x) -A] = 0 亦即 , 若函数 f (x)以A为极限 , 若设 f (x) -A =α, 则α为该极限过程中的无穷小量 .
右极限: x从右侧趋近于x0时产生的极限.
记作 : lim f (x) A xx0 0
▲. 极限 lim f (x) A存在的充要条件 : (当且仅当) x x0
lim f (x) lim f (x) A
xx0 0
xx0 0
即左极限和右极限都存在并且相等时,才能说函数的极限存在
x 例 : 右图中的函数f(x) (分段函数)
A 为极限 . 记作 : xlimx0 f (x) A
注: ①仅要求函数在点x0 附近有定义 ,但在 x0 处可以没有定义. ②“自变量 x 以任何方式无限趋近于定值 x0”是指左趋近和 右趋近 (对于一元函数) .
⑵ . 函数的单侧极限 :
左极限 :x从左侧趋近于x0时产生的极限.
记作 : lim f (x) A xx0 0
lim f (x) A lim f (x) B A
xx0 0
xx0 0
∵A≠B, 即左极限≠右极限
B
∴此函数 f (x)在 x0处的极限不存在. o
x0
y
2 . x →∞ 时函数的极限 :
⑴函数在正无限处极限:
lim f (x) A
x
⑵函数在负无限处极限:
lim f (x) A
x
⑶函数在正负无限处极限:
那么拆成什么形式好呢?
或: y = cos2x , x =t+π/6
▲.一般复合函数拆开的结果应使拆成的每一个函数都是基本初等
函数或是它们的和,差,积,商.
例: y asin(3x21)可分解为:y au,u sin v,v 3x2 1.
例:
y
sin2
2
1 x
可分解为:y
2u,u
v2,v