竖管降膜吸收反应器结构设计分析

竖管降膜吸收反应器结构设计分析
竖管降膜吸收反应器结构设计分析

浓酸水解技术的原理及其工艺简述

目录 1.浓酸水解方法简介 (2) 2.生产工艺流程 (2) 2.1水解反应系统 (3) 2.2稀酸洗调系统 (3) 2.3碱中和系统 (4) 2.4水煮系统 (4) 2.5氯化氢处理系统 (4) 2.6碳酸钠溶液系统 (4) 2.7放空系统 (5) 3.操作方法 (5) 3.1开车操作 (5) 3.1.1反应系统开车操作: (5) 3.1.2稀酸水洗系统操作: (7) 3.1.3碱洗系统操作: (7) 3.1.4三级水洗系统操作: (8) 3.1.5氯化氢处理系统操作: (8) 3.2停车操作 (9)

3.2.1正常停车操作 (9) 3.2.2水解反应系统停车操作: (10) 3.2.3稀酸水洗系统停车操作: (10) 3.2.4碱洗系统停车: (11) 3.2.5三级水洗系统停车操作: (12) 3.3紧急停车操作: (12) 3.4停车操作步骤操作 (12) 4.机泵操作 (14) 4.1机泵启动 (14) 4.2泵的停运操作: (15) 5设备的维护及保养 (15) 6安全技术及注意事项 (16) 7.总结 (16) 8.致谢 (17) 9.参考文献 (18)

浓酸水解技术的原理及其工艺简述 李y (黄石理工学院,应用化工技术, 435000) 摘要: 关键词:氯化氢;二甲基二氯硅烷:浓酸:水解工艺;硅氧烷;第二环路Concentrated acid hydrolysis technology, principles and processes outlined Liao Jun (Huangshi institute of technology,Application chemical technology, 435000) Abstract: Keywords:Hydrogen chloride; Dichlorodimethylsilane: concentrated acid: hydrolysis process; siloxane; Second Circle 引言 有机氯硅烷是整个有机硅化学的支柱,大部分的有机硅产品(如硅油、硅橡胶、硅树脂)是由二甲基二氯硅烷水解制得的聚二甲基硅氧烷(基础聚合物),再与调节剂、交联剂、封头剂等加工制成,被认为是有机硅的正规产品。聚硅氧烷具有很多优异的物理、化学性能,如耐高低温性能、耐辐射性、耐氧化性、高透气性、耐候

微通道反应器的分类介绍

微反应器,即微通道反应器,利用精密加工技术制造的特征尺寸在10到300微米(或者1000微米)之间的微型反应器,微反应器的“微”表示工艺流体的通道在微米级别,而不是指微反应设备的外形尺寸小或产品的产量小。微反应器中可以包含有成百万上千万的微型通道,因此也实现很高的产量。 微反应器又可分为气固相催化微反应器、液液相微反应器、气液相微反应器和气液固三相催化微反应器等。 1.气固相催化微反应器 由于微反应器的特点适合于气固相催化反应,迄今为止微反应器的研究主要集中于气固相催化反应,因而气固相催化微反应器的种类最多。最简单的气固相催化微反应器莫过于壁面固定有催化剂的微通道。复杂的气固相催化微反应器一般都耦合了混合、换热、传感和分离等某一功能或多项功能。运用最广的甲苯气-固催化氧化。 2.液液相反应器 到目前为止,与气固相催化微反应器相比较,液相微反应器的种类非常少。液液相反应的一个关键影响因素是充分混合,因而液液相微反应器或者与微混合器耦合在一起,或者本身就是一个微混合器。专为液液相反应而设计的与微混合器等其他功能单元耦合在一起的微反应器案例为数不多。主要有BASF设计的维生素前体合成微反应器和麻省理工学院设计的用于完成Dushman化学反应的微反应器。 3.气液相微反应器 一类是气液分别从两根微通道汇流进一根微通道,整个结构呈T

字形。由于在气液两相液中,流体的流动状态与泡罩塔类似,随着气体和液体的流速变化出现了气泡流、节涌流、环状流和喷射流等典型的流型,这一类气液相微反应器被称做微泡罩塔。 另一类是沉降膜式微反应器,液相自上而下呈膜状流动,气液两相在膜表面充分接触。气液反应的速率和转化率等往往取决于气液两相的接触面积。这两类气液相反应器气液相接触面积都非常大,其内表面积均接近20000m2/m3,比传统的气液相反应器大一个数量级。4.气液固三相催化微反应器 气液固三相反应在化学反应中也比较常见,种类较多,在大多数情况下固体为催化剂,气体和液体为反应物或产物,美国麻省理工学院发展了一种用于气液固三相催化反应的微填充床反应器,其结构类似于固定床反应器,在反应室(微通道)中填充了催化剂固定颗粒,气相和液相被分成若干流股,再经管汇到反应室中混合进行催化反应。 上海惠和化德生物科技有限公司,是一家专注于微反应器连续工艺开发及工业化的创新性高科技公司。公司于2015年6月在中国(上海)自由贸易试验区内成立,随着业务的发展,公司于2019年10月整体搬迁至上海化学工业园内。公司上海本部实验室配备十余套微反应器,并与梅特勒托利多共建化学过程联合实验室、与沈阳化工研究院和上海化工研究院共建过程安全联合体、与南大淮安高新技术研究院共建特殊反应实验室等。公司主要服务于国内外精细化工企业,帮助客户进行微反应器连续流工艺咨询与评估、工艺开发、工业化项目投资和管理等。公司立足于客户具体项目,以“以终为始”的项目

3.2.4工艺条件与反应器的选择

3.2.4 工艺条件与反应器的选择 前已述及,小型工艺试验的任务是:确定工艺条件框架(含最优工艺条件)、优选反应器型式,确定设计、放大依据。上述三项任务的基础是开发对象的特征,即反应类型(简单反应,复杂反应,串联副反应,并联副反应等)、热力学行为(可逆反应、不可逆反应、放热反应、吸热反应、平衡常数与平衡组成等)、动力学行为(快反应、侵反应、与传递过程的相对关系、相态等)以及工程环境(材质、杂质、寿命、加热、冷却、惰性组分、上下游工况变化范围等)。上述三项任务的目标是:经济效益、社会效益、环境保护、安全等。鉴于化工过程的原料一般占产品成本的70%一80%,所以衡量经济效益时往往以转化率、选择性为指标,而社会效益、环境、安全则难以定量表达。 换言之,小型工艺试验这种科学、技术行为有其特定的前提和出发点,也有其特定的追求目标,只能在给出的约束领域内工作。而三项任务虽全都立足于开发对象特征,但彼此并不独立,而是相互交联与协同的,不过有程度强弱之分。 (1)工艺条件选择 工艺条件主要指温度、压力、浓度、进料组成、空速(流量)、循环(返回)比、放空(排放)量与组成等,工艺学对特定过程的工艺条件选择均有详细的论述,本文仅从开发角度笼统地介绍一般原则。 a 在上述工艺条件中,以温度、浓度最为重要。从微观看,是反应场所(反应发生处)的温度、浓度;从较大尺度看是催化剂颗内、滴内、泡内、膜内、孔内、界面的温度与浓度分布;从宏观的角度看,就是反应器内、塔内、炉内、床内的温度与浓度分布。①上述三级(反应场所级,滴、粒、膜级,反应器级)温度分布与浓度分布,与反应特征有关,更主要的是与工程因素(由反应器型式、尺寸、操作方式、工艺条件综合生成)有关。所以小试优选的工艺条件,在不同级别的模试与工业反应器中,未必还是最优。原因很简单,上述三个级别的温度与浓度分布变了。②就本征反应速率而论,其值仅与催化剂(或理解为反应自身特征——涉及频率因子与活化能)、浓度、温度有关,而且一般情况下,它们是相互独立的。但如果因其中之一变化引起反应机理变化(例如,催化剂的催化机理变化;由反应控制转化为扩散控制等);温度变化,除自身通过阿累尼斯关系影响反应速率外,还通过物性一传递一浓度分布,影响反应结果;浓度变化,除自身通过反应级数影响反应速率外,还通过物性(热容)一传递一温度分布,影响反应结果,则产生协同效应的。还应指出,在多数情况下,这种协同效应可以略而不计。 b 以反应结果最优为目标,工艺条件、反应器型式、几何尺寸、操作方式应相互补充、彼此匹配,以体现综合效果。通过反应器的加热、冷却,催化剂的粒度、原料固体的粒度尺寸、液体原料的雾化与分布,填充床的结构与流体分布,塔式反应器结构,搅拌反应器的桨叶结构等等,有可能营造出满意的第二、第三层次因素。因此,在选择工艺条件时,应充分考虑第一层次因素之间既独立、又联合的效果。 c 在选择工艺条件时,应进行热力学计算,以掌握反应进行的极限。如果某组工艺条件预示的平衡状态与技术目标不符,则应设法改变工艺条件或反应器型式。有时候,希望反应在新的工艺条件下达到或趋近平衡;也有时候,则希望新的工艺条件能通过反应动力学抑制平衡出现。 d 选择工艺条件时还必须考虑材质等因素的约束。如果开发对象为吸热反应,提高温度对热力学和动力学都是有利的。处于工艺上的要求、有的为了防止或减缓副反应;有的为了提高设备生产强度,希望反应在高温下进行。此时,必须考虑材质承受能力,在材质的约束下选择工艺条件。 e 在系统工程观点指导下选择工艺条件。选择工艺条件既要着眼于具体的化工过程,又要立足于全系统最优,必要时要牺牲局部,保证全局。压力,特别是对大系统气体为原料过程而言是全局性因素。系统压力不可能时高、时低,多次起伏。因此,在选择系统压力时,一定要立足于系统,不仅要考虑一个反应过程,而是要考虑全部反应过程;还要考虑净化、分离过程,在发生矛盾时,要以系统最优(投资、成本、单耗、效益)决定弃取。

微反应器介绍及其研究进展

化工学术讲座课程论文 题目微反应器介绍及其研究进展 学号 姓名 成绩 老师签名 定稿日期:2015 年12 月20 日

微反应器介绍及其研究进展 摘要:近年来,随着微尺度下“三传一反”研究的进展,微尺度流体的性能得到了深入揭示,微反应器技术也被广泛应用于科学研究和工业生产领域。本文系统介绍了微反应器的结构特点、性能优势、研究进展,进而分析了微反应器的发展方向。 关键字:微反应器;微反应技术 1 引言 进入21世纪,化工过程向着更为绿色、安全、高效的方向发展,而新工艺、新设备、新技术的开发对于化工过程的进步是十分重要的。在这样的背景下,微化工系统的出现吸引了研究者和生产者的极大关注。微化工系统并非简单的微小型化工系统,而是指带有微反应或微分离单元的新型化工系统。在微化工系统中,微反应器是重要的核心之一。 “微反应器(microreactor)” 最初是指一种用于催化剂评价和动力学研究的小型管式反应器,其尺寸约为10 mm。随着本来发展用于电路集成的微制造技术逐渐推广应用于各种化学领域,前缀“micro”含义发生变化,专门修饰用微加工技术制造的化学系统。此时的“微反应器”是指用微加工技术制造的一种新型的微型化的化学反应器,但由小型化到微型化并不仅仅是尺寸上的变化,更重要的是它具有一系列新特性,随着微加工技术在化学领域的推广应用而发展并为人所重视。 现在所说的微反应器一般是指通过微加工技术制造的带有微结构的反应设备,微反应器内的流体通道或者分散尺度在微米量级[1],而微反应器的处理量则依据其应用目的的不同达到从数微升/分钟到数万立方米/年的规模。近年来与微反应器相关的流动、混合、反应等方向的研究工作发展十分迅速,带动了微反应器技术的快速发展。 微反应器内流体的存在状态不同于传统的反应器,其内部流体的流动或分散尺度在1μm到1mm之间,这种流体被称为微流体。微流体相对于常规尺度的流体具有一定的特殊性, 主要体现在流体力学规律的变化、传递过程的强化、固有的安全性以及良好的可控性等。目前,微反应器已经被广泛应用于化学、化工、

氯苯的工艺流程

5.工艺路线叙述从上述生产机理知工艺路线:苯与氯气在FeCl催化下连续氯化得氯化液,再经水洗、3中和、,粗馏、精馏除去过量苯和多氯苯而得到成品氯化苯。反应放出的氯化氢用水吸收制成盐酸;多氯苯回收为邻,对位二氯苯。 具体工艺流程为: A:原料的干燥 氯气由氯干燥系统(或液氯液化后的废气)送来,经氯气缓冲器,并跨过一定的高度经阀门控制从下部进入氯化反应器。氯气缓冲器的作用有①缓冲作用,可减少氯压的波动,保证氯气平稳进塔;②分离作用,氯气进入系统常带有一定杂质,缓冲器内设挡板,可使氯气系统中的分散的细微颗粒受撞击而被捕集下来,达到净化氯气消除杂质的作用,确保氯气质量和管道畅通。 纯苯首先进入原苯计量槽,经苯干燥器脱去其中水分进入干苯贮槽,由干苯泵打入干苯高位槽,利用位差,经转子流量计控制从下部进入氯化反应器。 苯的干燥曾使用过两种方法:①共沸蒸馏法;②食盐﹑氯化钙,固碱干燥法,共沸蒸馏法,即利用苯中少量水可在沸腾同时汽化蒸出釜内存留物中含苯较低的原理进行脱水干燥的。此法可加苯后进行间断蒸馏,也可中部进料连续蒸馏,预馏出的苯水混合物经过冷凝后进入苯水分离器沉降分离,苯返回原苯贮槽,干苯含水可达0.02%以下,此法所得干苯质量好,其特点是耗蒸汽,需一套设备,操作麻烦,而且回收苯不能进行干燥。因此现同行均采用食盐,氯化钙,固碱干燥法,利用某些无机盐及金属氧化物有从苯中回收水分的能力,它是根据干燥剂只溶于水不溶于苯的性质,将需要干燥的苯按序从充满干燥剂的容器中通过,苯的含水被干燥剂表面吸附,干燥剂溶解后聚积成盐水颗粒,盐水颗粒比重远大于苯,沉降至容器底部被间断排放,使经干燥后的苯中含水显著降低。 B:苯的氯化 苯的氯化为高温沸腾连续氯化,自苯高位槽下来的干苯,经苯转子流量计进入氯化器之底部;通过缓冲器的氯气,经π型管进入氯化器底部与苯并流而上,通过铁环层,进行氯化反应。氯化器内苯和氯气有三氯化铁催化剂(苯中的三氯化铁浓度达到0.01%,就可达到氯化反应的需要)的催化作用发生取代反应生成氯化液含苯,氯苯,氯化氢和少量的多氯苯,保持苯过量以使氯化反应完全并抑制多氯苯的生成。氯化器为钢制,内衬瓷砖,装带铁环作触媒(约7m),氯化为放热反应,氯化器自下而上,温度逐渐升高,液相温度控制在70~ 85oC 之间,反应温度的调节,借助于干苯流量的调节而实现,热量由蒸发出苯的汽化潜热带出,从而实现温度的控制,生成物氯化液由氯化器上部侧面溢流出来,进入液封(此液封高度约5m)。其目的是阻止盐酸气体随氯化液带出,一般情况下,氯化液的密度控制在0.03~0.95/15oC范围内,重量组成约含氯化苯25~35%,每班并定期从氯化器底部放酸水至缓冲器。生成的氯化氢气体连同蒸汽从氯化器顶部的升气管引出,经过一段,二段,三段石墨冷凝器,冷凝下来的苯经酸苯分离器返回氯化器重新反应,为使苯完全脱除,进一步使用深冷降膜吸收脱去气相中的苯,最后尾气中氯化氢气体经水吸收转化为盐酸,其余气体经水流喷射泵抽吸放空。 :尾气的吸收C.

降膜吸收法制次氯酸钠溶液岗位操作法

目次 1 主题内容与适用范围 (1) 2 操作目的和意义 (1) 3 生产工艺流程及叙述 (2) 4 开车操作程序 (3) 5 不正常现象及处理方法 (4) 6 工艺控制条件一览表 (4) 7 安全技术与劳动保护 (4) 8 设备一览表 (5)

降膜吸收法制次氯酸钠溶液岗位操作法 1主题内容与适用范围 1.1主题内容 本操作法规定了尾气氯和15~17%NaOH在降膜反应器中反应吸收生产次氯酸钠的工艺条件和要求,以及其操作要点与事项。 1.2 适用范围 本操作法仅适用于降膜法制造次氯酸钠的生产过程。 2 操作目的和意义 本操作法是根据生产工艺规程所指定的工艺参数指标,用15~17%NaOH在降膜反应器中反应吸收尾氯,生成合格的成品次氯酸钠。 2.1 原辅材料 2.2 原辅材料特性 2.2.1 氯气:氯属卤族元素,化学性质十分活泼,除惰性元素外,几乎可以同各种元素直接化合,其也可以和许多化合物起反应,自然界中常以化合物形态存在。 氯在常温下为黄绿色气体,液态氯是黄色透明液体。 2.2.2 烧碱:易溶于水,其吸湿性很强,其水溶液对动植物组织(如皮肤,织物,纸张等)有机物质有强烈的腐蚀作用。 2.3 工艺指标及操作指标 2.3.1 工艺指标 2003-07-30批准 2003-07-30实施 1 QJ/SG 04010704-2003

2.3.2 操作指标 反应温度:≤40°C 原料成份:尾氯≥65%(体积比) NaOH:15~17% 成品:有效氯≥10.0% 内控:夏季≥11%其余时间≥10.5% 3 生产工艺流程图及叙述 3.1 工艺流程图 2 QJ/SG 04010704-2003

气液相反应器基本类型与结构

6.1.2 气液相反应器基本类型与结构 1.气液相反应器的基本类型 气液相反应器按气液相接触形态可分为: (1)气体以气泡形态分散在液相中的鼓泡塔反应器、搅拌鼓泡釜式反应器和板式反应器; (2)液体以液滴状分散在气相中的喷雾、喷射和文氏反应器等; (3)液体以膜状运动与气相进行接触的填料塔反应器和降膜反应器等。 (a) (b) (c) (d) (e) (f) (g) 气液相反应器的主要类型示意图 (a)填料塔反应器;(b)板式塔反应器;(c)降膜反应器;(d)喷雾塔反应器;(e)鼓泡塔反应器;(f)搅拌鼓泡釜式反应器;(g)喷射或文氏反应器 2.气液相反应器的特点 (1)鼓泡塔反应器(图片) 特点:a.气相既与液相接触进行反应同时搅动液体以增加传质速率; b.鼓泡塔反应器结构简单、造价低、易控制、易维修、防腐问题易解决,用于高压时也无困难。 c.鼓泡塔内液体返混严重,气泡易产生聚并,故效率较低。 应用:这类反应器适用于液体相也参与反应的中速、慢速反应和放热量大的反应。

(2)填料塔反应器(图片) 特点:a.液体沿填料表面下流,在填料表面形成液膜而与气相接触进行反应,故液相主体量较少。 b.填料塔反应器气体压降很小,液体返混极小,是一种比较好的气液相反应器。 应用:适用于瞬间、界面和快速反应。 (3)板式塔反应器(图片) 特点:a.板式塔反应器中的液体是连续相而气体是分散相,借助于气相通过塔板分散成小气泡而与板上液体相接触进行化学反应; b.能在单塔中直接获得极高的液相转化率; c.板式塔反应器的气液传质系数较大,可以在板上安置冷却或加热元件,以适应维持所需温度的要求; d.但是板式塔反应器具有气相流动压降较大和传质表面较小等缺点。 应用:板式塔反应器适用于快速及中速反应。 (4)膜反应器(图片) 特点:a.通常借助管内的流动液膜进行气液反应,管外使用载热流体导入或导出反应热。 b.降膜反应器还具有压降小和无轴向返混的优点。 c.由于降膜反应器中液体停留时间很短, d.降膜管的安装垂直度要求较高,液体成膜和均匀分布是降膜反应器的关键,工程使用时必须注意。 应用:降膜反应器可用于瞬间、界面和快速反应,它特别适用于较大热效应的气液反应过程;不适用于慢反应;也不适用于处理含固体物质或能析出固体物质及粘性很大的液体。 (5)喷雾塔反应器(图片) 特点:a.液体以细小液滴的方式分散于气体中,气体为连续相,液体为分散相, b.具有相接触面积大和气相压降小等优点。

化工进展-微反应器综述

化工进展-微反应器综述 微反应器研究进展与应用 龙立S141101059 摘要:微反应器作为微化工系统的核心设备,是实现化工过程强化的重要技术基础,近年来逐渐成为国际化工技术领域研究的热点。本文介绍了微反应器的原理及其研究进展,阐明了微反应器技术的特点,列举微反应器的应用范围与实例,说明了微反应器的发展前景。 关键词:微反应器,微反应系统。 1绪论 微化工技术是20世纪90年代初顺应可持续发展与高技术发展的需要而兴起的多学科交叉的科技前沿领域。它是集微机电系统设计思想和化学化工基本原理于一体并移植集成电路和微传感器制造技术的一种高新技术,涉及化学、材料、物理、化工、机械、电子、控制学等各种工程技术和学科。主要研究对象为特征尺度在微米到数百微米间的微化工系统,常贵尺度的化工过程通常依靠大型化来达到降低产品成本的目的,而微化工过程则注重于高效、快速、灵活、轻便、易装卸、易控制、易直接放大及咼度集成等方面⑴。 将部分核心化工装备小型化、微型化的方法是促进化工过程强化的有效手段,它是实现化工过程安全、高效和绿色的重要方法之一[2]。化工设备的微小型化是现代化工技术发展的一种新理念,它以微尺度流动、分散和传递的基本原理为核心,能够有效强化反应和分离过程,提升生产效率并且大幅缩小设备的体积,有利于化

工新过程的快速开发和产业转化。微型化工器件已成为微型设备的重要组成部分,主要包括微混合器、微型反应器、微型换热器、微化学分析、微型萃取器、微型泵和微型阀门等。 作为微化工技术核心部件的微反应器,其内部通道特征尺度在微尺度范围 (10-500卩m),远小于传统反应器的特征尺寸,但对分子水平而言已然非常大, 故利用微反应器并不能改变反应机理和本征动力学特性,而是通过改变流体的传热、传质及流动特性来强化化工工程的。 2微反应器 微结构反应器(简称微反应器)是重要的微化工设备之一,是实现化工 过程微小型化的核心装备。在微化工过程中微反应器担负起了完成反应过程、提高反应收率、控制产物形貌以及提升过程安分离回收难度和成本、减少过程污染等具有重要的意义。针对不同过程特点开发出的微反应器不仅形式多样,其配套的工艺技术也与传统化工过程存在一定区别,利用集成化的微反应系统可以实现过程的耦合,因此微反应技术的发展也同时带动了化工工艺的进步。 微反应器起源于20世纪90年代,21世纪初叶是微尺度反应技术的快速发展 期。在基础研究方面,随着对微尺度多相流动、分散、聚并研究的不断深入,微反应器内多相流型,分散尺度调控机制以及微分散体系的大批量制备规律等问题逐渐被人们深入理解。基于微反应器内微小的流体分散尺度、极大的相间接触面积等特点可以有效强化相间传质和混合过程,从而为反应过程的强化奠定基础。 研究结果表明,利用微反应器能够有效强化受传递或混合控制的化学反应过程,而这类过程在传统的反应装置内往往难以精确控制,极易产生局部热点、浓度分布不均、短路流和流动死区等问题,微反应器具有的高效混合和快速传递性能是解决这些问题的重要手段。 微反应器的分类。对于不同相态的反应过程,微反应器可以分为气固催化微反应器、液液催化微反应器、气液微反应器和气液固三相催化微反应器等。根据输入能量的不同,可分为非动力式微反应器和动力式微反应器。按照微结构的不同可分为:微通道反应器、毛细管微反应器、降膜式微反应器、多股并流式微反应器、微孔阵列和膜分散式微反应器以及外场强化式微反应器等⑷。 2.1微反应器的微混合机理 微反应器具有与大反应器完全不同的几何特性:狭窄规整的微通道、非常小的

微通道反应器 -刘辉

北京化工大学研究生课程论文 课程名称:化学反应器理论 课程代号:ChE540 任课教师:文利雄 完成日期:2014 年 3 月24 日专业:化学工程技术 学号:2014202224 姓名:mongmong 成绩:

微通道反应器发展及应用 摘要 微化工技术作为化学工程学科中一个新的发展方向是实现化工过程绿色、安全、高效的重要方法,微反应器作为微化工系统的核心已经成为科学研究的热点之一。近年来,随着微尺度下“三传一反”研究的进展,微尺度流体的性能得到了深入揭示,微反应器技术也被广泛应用于科学研究和工业生产领域。本文综合概括了微通道反应器的基本概念及主要优点,讲述了微通道反应器的发展及演变历程,详细介绍了微通道反应器的分类及结构,重点讲述微通道反应器的流体力学和混合特性,接着介绍了微通道反应器所适用的反应体系和目前微通道反应器的工业应用实例,最后又针对微通道反应器的一系列问题的研究现状进行了总结和概括,并对它的应用前景进行了展望。

Abstact As a new chemical process development direction, The micro chemical engineering system is an important technology to make the chemical engineering process green, safe and highly efficient . Microchannel Reactor-the core of micro-chemical systems has become a hot topic of scientific research. During recent years, many kinds of microreactors have been designed and the transport performance of fluid at a microscale has been widely investigated. Furthermore , the microreactor has been widely used in the research and industrial process. This paper summarizes the basic concepts of microchannel reactor and it’s main advantages ,talks about the development of microchannel reactor and evolution process. it introduces the classification and structure of Microchannel Reactor in deatails, which forcusing on its hydrodynamics performance and mixing features, then introduces the industrial application examples and the reaction system applied currently. and finally, A range of issues for the research status of microchannel reactors were summarized and described, and its application was prospected too. Keywords:Microchannel Reactor; microscale ; micro chemical engineering

典型的光催化反应器

典型的光催化反应器 光催化是废水净化的一个很有前途的技术,因而引起了国内外的重视,已经有了二十多年的经验积累,在光催化降解有机污染物、光催化剂的改性等方面受到了广泛的关注,有关光催化氧化法在水污染治理方面应用研究的报道很多,而在反应器的设计和选材也有一些相关的报道,但涉及到光反应器应用的报道较少。在光催化反应中,反应器的材料、结构、形状、光源的几何位置等很多因素对光催化反应速率有很大的影响。气相光催化反应器的设计有静态配气和动态配气的两种,种类和相关的研究较少,所以下面着重介绍液相光催化反应器的结构、种类和影响因素。 影响光催化反应器效率的因素很多,如光源(光源强度、波段与光照方式)、催化剂性质(催化剂粒径、类型与载体)、废液的外加氧化剂(如O2 ,H2O2,O3等)、待处理废水性质(废液的初始浓度组成、pH值、抑制物含量)、温度、废液的流动力学特征、停留时间等因素对反应器的最佳运行都有影响,反应器的整体设计要综合考虑这些因素。 1.光源 用于光催化的光源有电光源和太阳光源。电光源有高压汞灯、荧光灯、黑光灯、氨灯等。光源的选择、布置及使用既要考虑效能又必须考虑经济性,因此,在设计光催化反应器时,要综合考虑各方面的影响因素。过去,更多研究放在电光源上,使用的光波多限于光谱紫外区。太阳光源是经济又环保的光源,开发出利用太阳能的光催化反应器一直是研究者追求的目标,但是由于在光催化反应中,太阳光的利用率很低,因此这类反应器的成功开发和真正实现工业应用目前还有很大难度,需要解决催化剂改性等许多方面的技术问题。 光源波长、光强及光源几何位置对催化反应有至关重要的影响,一般情况下,光源波长越短,效率越高;在同等波长的条件下,光强越高,效率越高,但并非线性相关的。一般在低光强时,有机物降解速度与光强呈线性关系,高光强时,降解速度与光强的平方根存在线性关系。 光线的照射方式可分为直接照射和直接一反光结合照射,后者的使用更能充分利用光能。光源与废水、催化剂的位置对光转化效果有重要的影响,研究结果表明,催化剂处在废水中时,在光源与催化剂之间的液层会吸收光、散射光,从而使催化剂的光吸收减弱。因此,浸在液体中的负载催化剂应尽量靠近液体的近光面,减少光吸收障碍。 2.催化剂在应用中的存在形态 催化剂在光催化反应器中有两种存在形式,即悬浮态和固定态。在悬浮相光催化过程中,催化剂以悬浮态存在于水溶液中,与污染物接触面积大,但催化剂在溶液中容易凝聚且回收困难,不适合规模操作。催化剂以固定态存在时,负载在载体上,这样虽然可避免催化剂的分离和回收过程,但仅部分催化剂的面积有效地与液相接触,活性降低。催化剂制备或选择载体要考虑多种因素影响,应尽量满足(1)吸光性能强。(2)催化剂粒径小,比表面积大。(3)不易中毒,能保持催化剂有高活性。(4)吸附反应物及反应后易于固液分离。(5)载体与催化剂结合牢固,抗冲击、耐腐蚀。 负载型催化剂所使用的载体要求透光性好,与催化剂结合较牢固,易于分散,不影响传质等。可选形状有颗粒型、管型、丝网、平板型和转盘型等。颗粒型载体一般有玻璃球、硅胶、砂石、活性炭、沸石等。 3. 光催化反应器材料 要保证光催化反应的顺利进行,最首要的条件之一是光催化反应器的材料必须透光性能好,尤其是对催化反应所需波长范围的光的透过率要好。一般光催化反应利用紫外光,所以要使用对紫外光不吸收或吸收很少的材料,很多人选用石英玻璃。石英玻璃是高纯单组分玻璃,具有优良的热,光,电和机械性能,耐腐蚀,对大多数物质是稳定的,包括除氢氟酸以

对甲苯磺酸生产工艺设计-磺化

对甲苯磺酸生产工艺设计 甲苯+硫酸,磺化结晶,就会得到对甲苯磺酸和母液,下面详细介绍对甲苯磺酸的主要合成方法 合成对甲苯硫酸主要有一下集中方法: 磺化反应中使用的磺化剂主要有:发烟硫酸、硫酸、三氧化硫、二氧化硫、氯磺酸、硫酰氯、亚硫酸盐等。甲苯磺化成对甲苯磺酸采用的磺化剂主要有硫酸、三氧化硫、氯磺酸三种。合成对甲苯磺酸的主要方法有:硫酸磺化法、三氧化硫磺化法、氯磺酸磺化法、对甲苯磺酰氨水解法,它们各有自己的特点。 1、硫酸磺化法 用硫酸磺化甲苯,是采用最多且历史最长的工艺。磺化反应过程如下: 磺化反应速度与甲苯浓度成正比,与硫酸含水量的平方成反比,所以需使用含水少的硫酸和纯度高的甲苯,但磺化反应是可逆反应,每消耗lmol的硫酸就生成lmol的水,水的浓度随反应的进行而逐渐升高,最后达到平衡,产生大量的废酸。 工业生产中,一般采用分压蒸馏法来除掉磺化反应生成的水,使磺化反应进行完全。 用硫酸作磺化剂,其优点是:由于硫酸价格低而具有一定的市场竞争力,且生产工艺简单、设备投资低、易操作等,适用于小规模生产装置。但此工艺的反应收率低、产品纯度低,反应进行时随着水的生成,硫酸浓度下降,当达到95%时(π值为75%),反应停止,产生大量的废酸,严重污染环境。最新的研究表明,采用添加助剂的方法可适当提高产品质量和反应收率。 2、三氧化硫磺化法 理论上,三氧化硫是最有效的磺化剂,因为只是直接的加成而不用脱除反应生成的水。在适宜的条件下,产品几乎全部是对甲苯磺酸。 以气相三氧化硫磺化剂磺化甲苯,宜选择降膜吸收反应器,采用1%的有机酸(如加入醋酸可抑制砜的产生)作为定位剂,温度控制在17℃-2O℃之间,SO3气体浓度6%一9%,反应得到的对甲苯磺酸纯度高。 1

化学反应工程名词解释与简答题

1.反应动力学主要研究化学反应进行的机理和速率,以获得进行工业反应器的设计和操作所必需的动力学知识,如反应模式、速率方程及反应活化能等等。包含宏观反应动力学和本征反应动力学。 2.化学反应工程化学反应工程是一门研究化学反应的工程问题的学科,即以 化学反应为研究对象,又以工程问题为研究对象的学科体系。 3.小试,中试小试:从事探索、开发性的工作,化学小试解决了所定课题的反应、分离过程和所涉及物料的分析认定,拿出合格试样,且收率等经济技术指标达到预期要求。中试:要解决的问题是:如何釆用工业手段、装备,完成小试的全流程,并基本达到小试的各项经济技术指标,规模扩大。 4.三传一反三传为动量传递(流体输送、过滤、沉降、固体流态化等,遵循流体动力学基本规律)、热量传递(加热、冷却、蒸发、冷凝等,遵循热量传递基本规律)和质量传递(蒸馏、吸收、萃取、干燥等,遵循质量传递基本规律),“一反”为化学反应过程(反应动力学)。 5催化剂在化学反应中能改变反应物的化学反应速率(提高或降低)而不改变化学平衡,且本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂。 6催化剂的特征(1).催化剂只能加速热力学上可以进行的反应。 (2).催化剂只能加速反应趋于平衡,不能改变反应的平衡位置(平衡常数)。 (3)催化剂对反应具有选择性,当反应可能有一不同方向时,催化剂仅加速其中一种。 (4).催化剂具有寿命,由正常运转到更换所延续时间。 7活化组份活性组分是催化剂的主要成分,是真正起摧化作用的组分。常用的催化剂活性组分是金属和金属氧化物。 8.载体催化剂活性组分的分散剂、粘合物或支撑体,是负载活性组分的骨架。 9助催化剂本身没有活性,但能改善催化剂效能。助催化剂是加入催化剂中的少量物质,是催化剂的辅助成分,其本身没有活性或活性很小,但是他们加入到催化剂中后,可以改变催化剂的化学组成,化学结构,离子价态、酸碱性、晶格结构、表面结构,孔结构分散状态,机械强度等,从而提高催化剂的活性,选择性,稳定性和寿命。 10平推流反应器理想平推流反应器是指通过反应器的物料沿同一方向以相 同速度向前流动,像活塞一样在反应器中向前平推, 11全混流反应器流入反应器的物料,在瞬间与反应器内的物料混合均匀,即在反应器中各处物料的温度、浓度都是相同的。

磺化装置工艺原理

1.1 装置概况 1.1.1 装置简介 洗化厂磺化装置于2005年1月通过装置验收。2005年3月正式投产,设计规模是5吨/小时直链烷基苯磺酸钠,磺酸的生产规模为4.66吨/小时,年设计生产7200小时。 洗化厂5吨/小时SO 3 磺化装置是引进意大利Ballestra公司的技术,以直链烷基苯、硫磺为主要生产原料,生产直链烷基苯磺酸。装置核心设备是Ballestra公司的多管降膜式磺化器。该膜式磺化器的主要特点是气、液分配均匀,能够充分接触反应,转化率高,游离油含量低;该装置的检测仪表和控制阀门自动化程度高,监控系统采用PLC控制系统。整套装置工艺先进,设备精良,具有适应原料品种广、消耗指标低、产品质量好等特点。 该装置由以下几个部分组成:空气压缩与干燥单元、熔硫与计量单元、燃硫和SO 3 生成 单元、膜式磺化单元、SO 3 吸收/LABS老化和水解单元、尾气处理单元、亚硫酸盐氧化单元。 1.1.2 工艺原理 1.1. 2.1原理叙述 熔硫与干燥的空气燃烧生成SO 2,SO 2 在催化剂的作用下生成SO 3 ;SO 3 和有机物料(烷基 苯)在多管膜式反应器中发生磺化反应,生成磺酸。尾气使用碱液吸收,生成亚硫酸盐,之后通入空气氧化,生成硫酸盐,达到排放标准。 1.1. 2.2反应方程式: (1)烷基苯磺化反应 磺化反应机理: 在磺化反应器中,气体三氧化硫和液体烷基苯顺流接触,发生磺化反应,生成烷基苯磺酸。 磺化反应的特性如下: a、三氧化硫与烷基苯之间的反应几乎是瞬间反应; b、发生平行反应或连续反应,特别是在温度较高时; c、反应为强放热反应; d、烷基苯磺酸的粘度远高于烷基苯的粘度。 用气体三氧化硫作磺化剂磺化烷基苯生成烷基苯磺酸,反应式如下: RC 6H 5 + 2SO 3 → RC 6 H 4 SO 2 OSO 3 H(快) (烷基苯)(焦磺酸) RC 6H 4 SO 2 OSO 3 H + RC 6 H 5 → 2RC 6 H 4 SO 3 H(慢ΔH=-170kJ/mol)

氯苯的工艺流程

5.工艺路线叙述 从上述生产机理知工艺路线:苯与氯气在FeCl3催化下连续氯化得氯化液,再经水洗、中和、,粗馏、精馏除去过量苯和多氯苯而得到成品氯化苯。反应放出的氯化氢用水吸收制成盐酸;多氯苯回收为邻,对位二氯苯。 具体工艺流程为: A:原料的干燥 氯气由氯干燥系统(或液氯液化后的废气)送来,经氯气缓冲器,并跨过一定的高度经阀门控制从下部进入氯化反应器。氯气缓冲器的作用有①缓冲作用,可减少氯压的波动,保证氯气平稳进塔;②分离作用,氯气进入系统常带有一定杂质,缓冲器内设挡板,可使氯气系统中的分散的细微颗粒受撞击而被捕集下来,达到净化氯气消除杂质的作用,确保氯气质量和管道畅通。 纯苯首先进入原苯计量槽,经苯干燥器脱去其中水分进入干苯贮槽,由干苯泵打入干苯高位槽,利用位差,经转子流量计控制从下部进入氯化反应器。 苯的干燥曾使用过两种方法:①共沸蒸馏法;②食盐﹑氯化钙,固碱干燥法,共沸蒸馏法,即利用苯中少量水可在沸腾同时汽化蒸出釜内存留物中含苯较低的原理进行脱水干燥的。此法可加苯后进行间断蒸馏,也可中部进料连续蒸馏,预馏出的苯水混合物经过冷凝后进入苯水分离器沉降分离,苯返回原苯贮槽,干苯含水可达0.02%以下,此法所得干苯质量好,其特点是耗蒸汽,需一套设备,操作麻烦,而且回收苯不能进行干燥。因此现同行均采用食盐,氯化钙,固碱干燥法,利用某些无机盐及金属氧化物有从苯中回收水分的能力,它是根据干燥剂只溶于水不溶于苯的性质,将需要干燥的苯按序从充满干燥剂的容器中通过,苯的含水被干燥剂表面吸附,干燥剂溶解后聚积成盐水颗粒,盐水颗粒比重远大于苯,沉降至容器底部被间断排放,使经干燥后的苯中含水显著降低。 B:苯的氯化 苯的氯化为高温沸腾连续氯化,自苯高位槽下来的干苯,经苯转子流量计进入氯化器之底部;通过缓冲器的氯气,经π型管进入氯化器底部与苯并流而上,通过铁环层,进行氯化反应。氯化器内苯和氯气有三氯化铁催化剂(苯中的三氯化铁浓度达到0.01%,就可达到氯化反应的需要)的催化作用发生取代反应生成氯化液含苯,氯苯,氯化氢和少量的多氯苯,保持苯过量以使氯化反应完全并抑制多氯苯的生成。氯化器为钢制,内衬瓷砖,装带铁环作触媒(约7m),氯化为放热反应,氯化器自下而上,温度逐渐升高,液相温度控制在70~85oC 之间,反应温度的调节,借助于干苯流量的调节而实现,热量由蒸发出苯的汽化潜热带出,从而实现温度的控制,生成物氯化液由氯化器上部侧面溢流出来,进入液封(此液封高度约5m)。其目的是阻止盐酸气体随氯化液带出,一般情况下,氯化液的密度控制在0.03~0.95/15oC范围内,重量组成约含氯化苯25~35%,每班并定期从氯化器底部放酸水至缓冲器。生成的氯化氢气体连同蒸汽从氯化器顶部的升气管引出,经过一段,二段,三段石墨冷凝器,冷凝下来的苯经酸苯分离器返回氯化器重新反应,为使苯完全脱除,进一步使用深冷降膜吸收脱去气相中的苯,最后尾气中氯化氢气体经水吸收转化为盐酸,其余气体经水流喷射泵抽吸放空。 C:尾气的吸收

相关文档
最新文档