系统辨识作业(全)

合集下载

西安科技大学系统辨识作业资料

西安科技大学系统辨识作业资料

电控学院系统辨识作业题目:系统辨识作业院(系):电气与控制工程学院专业班级:姓名:学号:题目用乘同余法产生(0-1)之间的随机数,并就产生的结果进行分析。

原理乘同余法的原理如下图所示:步骤⑴使用PPT上的程序时,令M=256时产生如下随机数:①程序为如下所示:•A=179;x0=11;M=256;N=100;•for k=1:N•x2=A*x0;•x1=mod (x2,M);•v1=x1/M;•v(:,k)=v1;•x0=x1;•end•v2=v•k=1:N;•plot(k,v,'r');•xlabel('k'), ylabel('v');title('(0,1)均匀分布的随机序列') •u=mean(v),c=cov(v,u)②随机数产生的结果所下图所示:③在程序中加入u=mean(v),c=cov(v,u),可以同时把平均值和协方差表示出来,由上图可以看出u=0.5078,c=0.0756,与理论值 相差不大。

产生的随机序列图如下图所示:⎩⎨⎧====12/1}{2/1}{2i i Var E ξσξμξξ⑵使用书上的程序时,令M=255时产生如下随机数:①程序为如下所示:•A=179;x0=11;M=255;N=100;•for k=1:N•x2=A*x0;•x1=mod (x2,M);•v1=x1/M;•v(:,k)=v1;•x0=x1;•end•v2=v•k=1:N;•plot(k,v,'r');•xlabel('k'), ylabel('v');title('(0,1)均匀分布的随机序列') •u=mean(v),c=cov(v,u)②随机数产生的结果所下图所示:③产生的随机序列图如下图所示:通过仿真所得数列的平均值u=0.5124,协方差c=0.0818,与理论值相差不大。

系统辨识试卷A参考答案

系统辨识试卷A参考答案

襄樊学院2008-2009学年度上学期《系统辨识》试题A卷参考答案及评分标准一、选择题:(从下列各题的备选答案中选出一个或几个正确答案,并将其代号写在题干后面的括号内。

答案选错或未选全者,该题不得分。

每空2分,共12分)1、(C)2、(D)3、(ACD)4、(D)5、(A)6、(ABC)二、填空题:(每空2分,共14分)1、计算。

2、阶次和时滞3、极大似然法和预报误差法4、渐消记忆的最小二乘递推算法和限定记忆的最小二乘递推算法三、判断题(下列命题你认为正确的在题后括号内打“√”;错误的打“×”并改正;每小题2分,共20分)(注:正确的题目括号内打“√”得2分,打“×”得0分;错误的题目括号内打“×”得1分,改正正确再得1分,错误的题目括号内打“√”得0分;)1、(√)2、(×)参数型→非参数型3、(√)4、(×)没有→有5、(√)6、(×)考虑→基本不考虑7、(√)8、(√)9、(×)完全相同→不完全相同 10、(×)不需要→需要四、简答题:(回答要点,并简明扼要作解释,每小题6分,共18分)1、答:相关分析法的主要优点是由于M序列信号近似于白噪声,噪声功率均匀分布于整个频带,从而对系统的扰动甚微,保证系统能正常工作(1.5分)。

此外。

因为相关函数的计算是一种统计平均的方法,具有信息滤波的功能,因此,在有噪声污染下,仍可提取有用信息,准确地求出系统的脉冲响应(1.5分)。

相关辨识技术在工程中的应用、可归结为下述几个方面:(1)系统动态特性的在线测试。

包括机、炉、电等一次设备,风机、水泵等辅机以及二次自动控制系统;(1分)(2)对控制系统进行在线调试,使调节系统参数优化;(1分)(3)自适应控制中的非参数型模型辨识等。

(1分)2、答:计算中用一个数值来表示对观测数据的相对的“信任程度”,这就是权。

(2分)对于时变参数系统,其当前的观测数据最能反映被识对象当前的动态特性,数据愈“老”,它偏离当前对象特性的可能性愈大。

系统辨识考试题最终

系统辨识考试题最终

系统辨识考试题最终2009-2010 学年第二学期研究生课程考核(读书报告、研究报告)考核科目:系统辨识理论及应用学生所在院:电信学院学生所在学科:信号与信息系统姓名:学号:1. 简述系统辨识的基本概念、定义和主要步骤(15分)答:系统辨识的概念:根据系统的输入输出时间函数来确定描述系统行为的数学模型。

对系统分析大的主要问题是根据输入时间函数和系统的特性来确定输出信号。

对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。

而系统辨识所研究的问题恰好是这些问题的逆问题。

系统辨识的定义:根据系统的输入输出时间函数来确定描述系统行为的数学模型,是现代控制理论中的一个分支。

对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。

对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。

系统辨识的主要步骤:系统辩识包括结构辩识和参数估计两个主要内容。

辩识的一般步骤如下:(1)明确目的和获取先验知识首先要尽可能多的获取关于辨识对象的先验知识和明确辩识的目的。

明确目的和掌握尽可能多的先验知识往往是辨识结果好坏的重要先决条件。

(2)实验设计实验设计主要包括以下六个方面内容:a.选择观测点;b.输入信号的形状和幅度(可持续激励条件);c.采样间隔T0 ;d.开环和闭环辩识(闭环可辩识条件);e.在线和离线辩识;f.测量数据的存储和预处理。

(3)模型结构的确定(4)参数估计(Parameter Estimation)(5)模型验证模型精度是否可以接受?否则需要重复实验,重复辩识。

系统辩识的内容和步骤见后示意框图。

辩识目的与先知识验实验设计模型结构的确定输入/输出数据获取参数估计模型验证最终模型2. 简述相关辨识的基本原理和基于二进制伪随机序列的相关辩识方法。

(15分)答:相关辨识的基本原理如下图所示。

g(t)延时τ1/Tπ×x(t)w(τ)x(t-τ)y(t) ×(t-τ)kg(t)x(t) —输入(白噪声); y(t) —测量输出;w(τ) ω(t )—随机干扰(不可测)基于二进制伪随机序列的相关辩识方法:x(t)用二位式周期性伪随机信号,积分时间大大缩短()()xy 0R () 1/T x t y(t )dt g()Tτττ=+?? ()s T T >二位式信号使得乘法运算简化。

自动化2011级系统辨识大作业-王万秋

自动化2011级系统辨识大作业-王万秋

系统辨识大作业班级:自动化1101班姓名:王万秋学号:11052204第一题模仿index3,搭建如下的单输入-单输出系统的差分方程)()2()1()2()1()(2121k V k u b k u b k z a k z a k z +-+-=-+-+)2()1()()(321-+-+=k v c k v c k v c k V取真值1 1.4a =、20.8a =、0.11=b 、20.5b =、10.6c =、2.12=c 和3.03=c ,输入信号采用4阶M 序列,幅值为1。

当)(k v 的均值为0,方差分别为0.1和0.5的高斯噪声时,分别用一般最小二乘法、递推最小二乘法和增广递推最小二乘法估计参数θ。

并通过对三种方法的辨识结果的分析和比较,说明上述三种参数辨识方法的优缺点。

(15分) 利用simulink 搭建的模型框图如下:一般最小二乘法程序:u=UY(1:450,1)'; %输入矩阵 z=UY(1:450,2)'; %输出矩阵 H=zeros(400,4); for i=1:400 H(i,1)=-z(i+1);H(i,2)=-z(i);H(i,3)=u(i+1);H(i,4)=u(i);endtheta=inv(H'*H)*H'*(z(3:402))'递推最小二乘法程序代码:u=UY(1:450,1)'; %输入矩阵z=UY(1:450,2)'; %输出矩阵P=100*eye(4); %估计方差Pstore=zeros(4,401);Pstore(:,1)=[P(1,1),P(2,2),P(3,3),P(4,4)];Theta=zeros(4,401); %参数的估计值,存放中间过程估值Theta(:,1)=[3;3;3;3];K=[10;10;10;10];for i=3:402h=[-z(i-1);-z(i-2);u(i-1);u(i-2)];K=P*h*inv(h'*P*h+1);Theta(:,i-1)=Theta(:,i-2)+K*(z(i)-h'*Theta(:,i-2));P=(eye(4)-K*h')*P;Pstore(:,i-1)=[P(1,1),P(2,2),P(3,3),P(4,4)];endi=1:401;theta = Theta(:,length(Theta(1,:)))subplot(2,1,1)plot(i,Theta(1,:),i,Theta(2,:),i,Theta(3,:),i,Theta(4,:))title('递推最小二乘的估计值过度情况')legend('a1','a2','b1','b2')subplot(2,1,2)plot(i,Pstore(1,:),i,Pstore(2,:),i,Pstore(3,:),i,Pstore(4,:)) title('递推最小二乘估计方差过度情况')legend('a1','a2','b1','b2')增广递推最小二乘法程序代码:u=UY(1:450,1)'; %输入矩阵z=UY(1:450,2)'; %输出矩阵v=UY(1:450,3)'; %噪声矩阵P=100*eye(6); %估计方差Pstore=zeros(6,300);Pstore(:,1)=[P(1,1),P(2,2),P(3,3),P(4,4),P(5,5),P(6,6)]; Theta=zeros(6,300); %参数的估计值,存放中间过程估值Theta(:,1)=[3;3;3;3;3;3];K=[10;10;10;10;10;10];for i=3:300h=[-z(i-1);-z(i-2);u(i-1);u(i-2);v(i-1);v(i-2)];K=P*h*inv(h'*P*h+1);Theta(:,i-1)=Theta(:,i-2)+K*(z(i)-h'*Theta(:,i-2));P=(eye(6)-K*h')*P;Pstore(:,i-1)=[P(1,1),P(2,2),P(3,3),P(4,4),P(5,5),P(6,6)];endi=1:300;theta=Theta(:,length(Theta(1,:))-10)subplot(2,1,1)plot(i,Theta(1,:),i,Theta(2,:),i,Theta(3,:),i,Theta(4,:),i,Theta(5,:) ,i,Theta(6,:))title('增广递推最小二乘估计值过渡情况')legend('a1','a2','b1','b2')subplot(2,1,2)plot(i,Pstore(1,:),i,Pstore(2,:),i,Pstore(3,:),i,Pstore(4,:),i,Pstore (5,:),i,Pstore(6,:))title('增广递推最小二乘估计方差过度情况')legend('a1','a2','b1','b2')辨识结果:噪声方差为0.1噪声方差为0.5由图表可得:一般最小二乘法和递推最小二乘法的辨识结果很接近,而增广递推最小二乘法的辨识结果和其他两种方法差距较大,尤其a1和b2。

系统辨识结课大作业

系统辨识结课大作业
Page 10
PDF 文件使用 "pdfFactory Pro" 试用版本创建
模型辨识
m3=pem(dat1e,‘p2zd’,‘td’,{‘max’,5}); 1+Tz*s G(s) = K * ------------------ * exp(-Td*s) (1+Tp1*s)(1+Tp2*s) Estimated using PEM from data set dat1e Loss function 0.00864915 and FPE 0.00894234
1)获取数据:
Page
3
PDF 文件使用 "pdfFactory Pro" 试用版本创建
2)数据预处理
Page
4
PDF 文件使用 "pdfFactory Pro" 试用版本创建
模型辨识 (ARX)
建立几个低阶且不同时延的ARX模型,并找出最合适 的模型阶次
结果分析
从仿真的结果来看,除了一阶无迟延模型外,其余几种辨识模型 与原吹风机的实际模型都有一定的可比性,也具有一定的跟踪能 力,在有效性校验的比较中,可以看出二阶迟延模型为88.13%, 显然二阶迟延模型的匹配度要高一点,而且二阶迟延模型的残差 均值近似为零,但仍需要进一步的优化。
Page
18
PDF 文件使用 "pdfFactory Pro" 试用版本创建
Page 13
PDF 文件使用 "pdfFactory Pro" 试用版本创建
辨识模型分析
用后300个样本值进行验证,对所取的6种模型的有效性进行比较。
二阶延迟模型的拟 合度最高
Page

系统辩识作业题

系统辩识作业题

系统辨识大作业
一.设SlSO系统差分方程为
y(k)=—α1y(k-1)-a2y(k-2)+bλu(k-1)+b2u(k-2)+ξ{k)
辨识参数向量为θ=[q a2b l b2]r,输入输出数据详见数据文件UyLtXt—uy3.txtoξ(k)为噪声方差各异的白噪声或有色噪声。

试求解:
1)用n元一次方程解析法,再求其平均值方法估计。

2)用最小二乘及递推最小二乘法估计。


3)用辅助变量法及其递推算法估计
4)用广义最小二乘法及其递推算法估计
5)用夏氏偏差修正法、夏氏改良法及其递推算法估计
6)用增广矩阵法估计
7)分析噪声父攵)特性;
二.用极大似然法估计6。

三.以上题的结果为例,进行:
1.分析比较各种方法估计的精度;
2.分析其计算量;
3.分析噪声方差的影响;
4.比较白噪声和有色噪声对辨识的影响。

四.系统模型阶次的辨识:
1.用三种方法确定系统的阶次并辨识;
2.分析噪声对定阶的影响;
3.比较所用三种方法的优劣及有效性;
五.给出由正弦输入求取系统开环频率响应特性曲线的辨识方法。

六.提出一种自己创造的辨识新方法,并用所给数据进行辨识验证。

注:闭卷考试时提交大作业报告。

系统辨识大作业

系统辨识大作业

系统辨识大作业专业班级:自动化09-3学号:09051325姓名:吴恩作业一:设某物理量Y与X满足关系式2=++,实验获得一批数据Y aX bX c如下表,试辨识模型参数,,a b c。

(15分)解答:问题描述:由题意知,这是一个已知模型为Y=aX2+bX+c,给出了10组实验输入输出数据,要求对模型参数a,b,c进行辨识。

问题求解:这里对该模型参数辨识采用最小二乘法的一次算法(LS)求解。

2=++可以写成矩阵形式Y=AE+e;其中A=[X^2,X,1]构成, Y aX bX c利用matlab不难求解出结果。

运行结果:利用所求的的参数,求出给定的X对应的YE值,列表如下做出上表的图形如下12345678910xyy=ax 2+bx+c 参数求解结果分析:根据运行结果可以看出,拟合的曲线与真是观测的数据有误差,有出入,但是误差较小,可以接受。

出现误差的原因,一方面是由于给出的数据只有十个点,数据量太少,难以真正的充分的计算出其参数,另外,该问题求解采用的是LS 一次算法,因此计算方法本身也会造成相应的误差。

作业二:模仿实验二,搭建对象,由相关分析法,获得脉冲相应序列()g k,由()G z;和传递函数g k,参照讲义,获得系统的脉冲传递函数()G s及应用相关最小二乘法,拟合对象的差分方程模型;加阶跃()扰动,用最小二乘法和带遗忘因子的最小二乘法,辨识二阶差分方程的参数,比较两种方法的辨识差异;采用不少于两种定阶方法,确定对象的阶次。

对象模型如图:利用相关分析法,得到对象的脉冲相应序列。

如下图:(1).由脉冲相应序列,求解系统的脉冲传递函数G(z)Transfer function:0.006072 z^2 + 0.288 z + 0.1671-------------------------------z^2 + 0.1018 z - 0.7509Sampling time: 2(2).由脉冲相应序列求解系统的传递函数G(s)Transfer function:(0.04849+2.494e-018i)-----------------------s^2 + 0.1315 s + 0.6048(3).利用相关最小二乘法拟合系统的差分方程模型如下:(4).在t=100,加入一个0.5的阶跃扰动,,利用RLS求解差分方程模型:RLS加入遗忘因子之后与未加之前的曲线情况如下:未加遗忘因子之前参数以及残差的计算过程加入0.99的遗忘因子得到的参数辨识过程与残差的变化过程根据上面两种方法所得到的误差曲线和参数过渡过程曲线,我们可以看出来利用最小二乘法得到的参数最终趋于稳定,为利用带遗忘因子的最小二乘算法,曲线参数最终还是有小幅度震荡。

系统辨识大作业.

系统辨识大作业.

一、 问题描述考虑仿真对象:()0.9(1)0.15(2)0.02(3)0.7(1)0.15(2)()z k z k z k z k u k u k e k +-+-+-=---+ e() 1.0e(1)0.41e(2)(),~(0,1)k k k v k v N λ+-+-=式中,u(k)和z(k)是输入输出数据,v(k)是零均值、方差为1的不相关的随机噪声;u(k)采用与e(k)不相关的随机序列。

1. 设计实验,产生输入输出数据;2. 使用基本最小二乘法估计参数;3. 考虑其他适用于有色噪声的辨识方法估计参数;4. 模型验证。

二、 问题分析对于单输入单输出系统(Single Input Single Output, SISO ),如图 1所示,将待辨识的系统看作“灰箱”,它只考虑系统的输入输出特性,而不强调系统的内部机理。

图 1中,输入u(k)和输出z(k)是可以测量的,1()G z -是系统模型,用来描述系统的输入输出特性,y(k)是系统的实际输出。

1()N z -是噪声模型,v(k)是均值为零的不相关随机噪声,e(k)是有色噪声。

图 1 SISO 系统的“灰箱”结构对于SISO 随机系统,被辨识模型()G z 为:12121212()()()1n n nn b z b z b z y z G z u z a z a z a z ------+++==++++ 其相应的差分方程为11()()()n ni i i i y k a y k i b u k i ===--+-∑∑若考虑被辨识系统或观测信息中含有噪声,被辨识模型可改写为11()()()()n ni i i i z k a y k i b u k i v k ===--+-+∑∑式中,z(k)为系统输出量的第k 次观测值;y(k)为系统输出量的第k 次真值,y(k-1)为系统输出量的第k-1次真值,以此类推;u(k)为系统的第k 个输入值,u(k-1)为系统的第k-1个输入值;v(k)为均值为0的不相关随机噪声。

(完整word版)2003版系统辨识最小二乘法大作业

(完整word版)2003版系统辨识最小二乘法大作业

西北工业大学系统辩识大作业题目:最小二乘法系统辨识一、 问题重述:用递推最小二乘法、加权最小二乘法、遗忘因子法、增广最小二乘法、广义最小二乘法、辅助变量法辨识如下模型的参数离散化有z^4 - 3.935 z^3 + 5.806 z^2 - 3.807 z + 0.9362---------------------------------------------- =z^4 - 3.808 z^3 + 5.434 z^2 - 3.445 z + 0.8187噪声的成形滤波器离散化有4.004e-010 z^3 + 4.232e-009 z^2 + 4.066e-009 z + 3.551e-010-----------------------------------------------------------------------------=z^4 - 3.808 z^3 + 5.434 z^2 - 3.445 z + 0.8187采样时间0.01s要求:1.用Matlab 写出程序代码;2.画出实际模型和辨识得到模型的误差曲线;3.画出递推算法迭代时各辨识参数的变化曲线;最小二乘法:在系统辨识领域中 ,最小二乘法是一种得到广泛应用的估计方法 ,可用于动态 ,静态 , 线性 ,非线性系统。

在使用最小二乘法进行参数估计时 ,为了实现实时控制 ,必须优化成参数递推算法 ,即最小二乘递推算法。

这种辨识方法主要用于在线辨识。

MATLAB 是一套高性能数字计算和可视化软件 ,它集成概念设计 ,算法开发 ,建模仿真 ,实时实现于一体 ,构成了一个使用方便、界面友好的用户环境 ,其强大的扩展功能为各领域的应用提供了基础。

对于一个简单的系统 ,可以通过分析其过程的运动规律 ,应用一些已知的定理和原理,建立数学模型 ,即所谓的“白箱建模 ”。

但对于比较复杂的生产过程 ,该建模方法有很大的局限性。

由于过程的输入输出信号一般总是可以测量的 ,而且过程的动态特性必然表现在这些输入输出数据中 ,那么就可以利用输入输出数据所提供的信息来建立过程的数学模型。

(完整)系统辨识大作业汇总,推荐文档

(完整)系统辨识大作业汇总,推荐文档

参数递推估计是指被辨识的系统,每取得一次新的测量数据后,就在前一 次估计结果的基础上,利用新引入的测量数据对前一次估计的结果进行修正, 从而递推地得出新的参数估计值。这样,随着新测量数据的引入,一次接一次 地进行参数估计,直到估计值达到满意的精确程度为止。最小二乘递推算法的 基本思想可以概括为:
当前的估计值ˆ(k) =上次估计值ˆ(k 1) +修正项 即新的估计值ˆ(k) 是在旧的估计值ˆ(k 1) 的基础上,利用新的观测数据对旧的 估计值进行修正而成的。
可以看出,取 (k) 1的时候,加权最小二乘估计就退化成了最小二乘参数 估计的递推算法(Recursive Least Squares, RLS)。加权参数 1 可以在
(0,1]范围内选择,如果选 1 1,所有的采样数据都是等同加权的,如果
(k)
1 1,则表示对新近获得的数据给予充分大的加权因子,而削弱历史观测 (k)
可以根据生成的白噪声序列和输入序列,以及必要的 0 初始值,带入表 达式即可得到采样输出数据。
2. 差分模型阶检验 在实际场景中,辨识模型的阶数和纯时延往往是未知的,在很多情况下仅
仅依靠猜测。在模型的阶数和纯时延不确定时,设系统模型为
n
n
y(t) ai y(t i) bj y(t i) (t)
数据的影响。 实际计算时,需要首先确定初始参数ˆ(0) 和 P(0) 。
P(0) 2I 为充分大实数
一般说来选取
(0)
为充分小的向量
对于这样的系统,使用最小二乘法参数估计的递推算法进行辨识可以得到 无偏估计,但是如果噪声模型必须用 C(z1)v(k) 表示时,此时就无法得到无偏估 计了,因为该方法没有把噪声模型考虑进去。
K (k) P(k 1)h(k)[hT (k) p(k 1)h(k) 1 ]1

系统辨识大作业

系统辨识大作业

北京信息科技大学系统辨识大作业姓名:刘新菊班级:研1206学号:2012020176专业:模式识别与智能系统2012年—2013年第二学期大作业1.实验目的通过实验掌握辅助变量法辨识过程参数, AIC 准则和F 检验法辨识结构参数。

2.实验描述给出一个模型(图6.4),观测数据受有色噪声污染。

3.实验要求编制程序,辨识出该模型的结构参数及过程参数,噪声模型可以辨识也可以不辨识,对精度无要求。

4.实验原理AIC 准则定阶法来定阶,所用公式:n n n n Z H V θ=+[](1),(2),(3),...,()Tn Z z z z z L =1212,,...,,,...aTn n n a a a b b b θ⎡⎤=---⎣⎦(0)(1)...(1)(0)(1)...(1)(1)(0)...(2)(1)(0)...(2).........................(1)(2)...()(1)(2)...()n z z z n u u u n z z z n u u u n H z L z L z L n u L u L u L n ----⎡⎤⎢⎥--⎢⎥=⎢⎥⎢⎥------⎣⎦其中模型参数n θ和 噪声()V k 方差的极大似然估计值为ML θ ,2v σ12()1()()MLML ML T T n n n nT v n n n n H H H Z Z H Z H L θσθθ-==--AIC 的定阶公式写成2()log 4v AIC n L n σ=+取1,2,3,4;n =分别计算()AIC n ,找到使()AIC n 最小的那个n 作为模型的阶次。

一般说来,这样得到的模型阶次都能比较接近实际过程的真实阶次。

5.实验内容仿真对象如图1传递函数()()120()8.31 6.21G ss s=++离散化为2118.07.110.2---+-zzz,故其仿真对象如下图1:U(k) 取6级M序列,幅度为1,v(k) 为服从N(0,1)分布的不相关随机噪声。

系统辨识作业及答案解析

系统辨识作业及答案解析

一. 问答题1. 介绍系统辨识的步骤。

答:(1)先验知识和建模目的的依据:(2)实验设计:(3)结构辨识:(4)参数估计;(5) 模型适用性检验。

2. 考虑单输入单输岀随机系统,状态空间模型yW = [1小•伙)+咻)转换成ARMA 模型。

答:ARMA 模型的特点是u(k)=O.1 0x(k + 1) =x 伙).2 0. y 伙)=[1 \]x(k) + v(k)3. 设有一个五级移位寄存器,反馈取自第2级和第3级输出的模2加法和匚试说明:(1)其输出序列是什么? (2)是否是M 序列? (3)它与反馈取自第4级与第3级输出模2加法和所得的序列有何不同? (4) 其逆M 序列是什么?答:(1)设设输入序列1 1111(1) 11111(9)01110 (17)00111(25)10011(2) 01111 (10)00111 (18)10011(26)01001(3) 00111 (11)10011 (19)01001(27)10100(4) 10011 (12)01001(20)10100(28)11010(5) 01001 (13)10100(21)11010(29)00111(6) 10100 (14)11010(22)11101(30)01110(7) 11010 (15)11101 (23)01110(31)00111(8) 11101 (16)01110(24)00111(32)10011其输出序列为:1 1 1 1 1 0 0 1 0 1(2) 不是M 序列⑶第4级与第3级模2相加结果(1) 11111(9)11001 (17)01111(25)01100皿+沪20 。

心)+ "伙)(2)01111 (10)01100(18)00111(26)10110(3)00111 (11)10110 (19)00011(27)01011(4)00011 (12)01011(20)10001(28)10101(5)10001 (13)10101(21)01000(29)11010(6)01000 (14)11010(22)00100(30)11101(7)00100 (15)11101 (23)10010(31)11110(8)10010 (16)11110(24)11001(32)01111不同点:第2级和第3级模二相加产生的序列,是从第4时刻开始,每隔7个时刻重复一次:第4级与第3级模2相加产生的,序列,是从第2时刻开始每隔15个时刻重复一次。

系统辨识期末作业

系统辨识期末作业

系统辨识期末作业一、系统辨识“系统辨识”是研究如何利用系统试验或运行的、含有噪声的输入输出数据来建立被研究对象数学模型的一种理论和方法。

系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。

从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。

辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。

当然也可以有另外的描述,辨识有三个要素:数据,模型类和准则。

辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。

总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。

通过系统辨识建立对象数学模型的依据是:研究表明,从外部对一个系统的认识,是通过其输入输出数据来实现的,既然数学模型是表述一个系统动态特性的一种描述方式,而系统的动态特性的表现必然蕴含在它变化的输入输出数据中。

所以,通过记录系统在正常运行时系统的输入输出数据,或者通过测量系统在人为输入作用下的输出响应,然后对这些数据进行适当的系统处理、数学计算和归纳整理,提取数据中蕴含的系统信息,从而建立被控对象的数学描述,这就是系统辨识。

即系统辨识就是一种利用数学的方法从输入输出数据序列中提取对象数学模型的方法。

下面从三个方面来对系统辨识进行介绍:1、统辨识的方法(1)、经典的系统辨识办法在经典控制理论中,所分析研究的是单输入单输出系统,经常用到的系统模型是频率响应、权函数和传递函数。

所以早期系统辨识工作的主要内容也就是寻求描述单变量系统的频率特性、权函数和系统的传递函数。

早期的系统辨识所用的方法大多是在一定的连续时间性的输入信号下(非周期的或周期的),观测被识对象对这种输入作用的响应,例如频率响应或阶跃响应。

根据需要,再由这些响应特性求出系统的参数模型。

这些方法有阶跃响应法、频率特性法和相关分析法。

合工大系统辨识作业及答案

合工大系统辨识作业及答案

系统辨识作业一、 简答题1 系统辨识的实验设计应包含那些内容?答:系统辨识实验设计应包含选择实验信号、采样时间、辨识时间、输入输出数据长度等。

2 判断下列是否为一个正确周期的M 序列,并说明原因。

111100010011011 111100********* 答:不是M 序列,因为M 序列的周期为15,由M 序列的性质知序列中“1”的状态应为8个 而第一个中有9个 所以不是M 序列3证明加权最小二乘估计的无偏性。

证明:加权最小二乘估计的解为:()1ˆTT WLSW WY θ-=ΦΦΦ 其中Φ为输入矩阵 W 为加权矩阵 Y 为输出矩阵。

()()11ˆ()T T WLS T TE W W e E W We θθθ--⎡⎤⎡⎤=ΦΦΦΦ+⎣⎦⎢⎥⎣⎦⎡⎤=+ΦΦΦ⎢⎥⎣⎦由于Φ与e 统计独立,则()10T T E W We -⎡⎤ΦΦΦ=⎢⎥⎣⎦即ˆWLS E θθ⎡⎤=⎣⎦所以ˆWLSθ是无偏估计量,命题得证。

4比较最小二乘法、广义最小二乘法和辅助变量法的优缺点。

答:基本最小二乘对低噪声有效,参数估计值可很快收敛到真值,所需计算量相对较少,但对实际噪声估计有偏。

广义最小二乘法:计算量大,可能不收敛,可能是有偏估计。

但如果对噪声模型用随机逼近法,而对过程模型采取最小二乘法则获得较好形式的广义最小二乘法。

辅助变量法可以一次性完成计算,但是计算量也大,对初值选择很敏感。

5答:对于n 阶系统与n+1阶系统参数估计之间有如下的关系:对于n+1阶系统 ()()()11()()A z y k B z u k e k --=+设其待估参数为()011111...(1)(2)T T Tn n n n n b a b a b a b θθθ++⎡⎤⎡⎤+==⎣⎦⎣⎦ 则(1)()[()]T n A Y n θθθ=-Φ-Φ由题目知n=2时系统参数为准确值,则n=3时按照上式去计算,估算出的系数必远远偏离系统模型参数值。

系统辨识作业

系统辨识作业

系统辨识作业考虑如下系统:y(k)-1.5y(k-1)+0.7y(k-2)=u(k-3)+0.5u(k-4)+ε(k)-ε(k-1)+0.2ε(k-2) 式中,ε(k )为方差为0.1的白噪声。

取初值P(0)=610I 、0)0(ˆ=θ。

选择方差为1的白噪声作为输入信号u(k),采用RELS 算法进行参数估计,仿真结果如图所示。

当k=1000时,参数估计值为1552.0ˆ,97635.0ˆ,5066.0ˆ,0101.1ˆ,6934.0ˆ,4932.1ˆ211021=-====-=c c b b αα。

对比图a,b,c 可以看出,参数21ˆ,ˆc c收敛相对较慢,这是由于白噪声估计不准确造成的。

为提高参数估计精度,可适当增加仿真步数。

仿真程序:%递推增广最小二乘参数估计(RELS )clear all; close all;a=[1 -1.5 0.7]'; b=[1 0.5]'; c=[1 -1 0.2]'; d=3; %对象参数na=length(a)-1; nb=length(b)-1; nc=length(c)-1; %na 、nb 、nc 为A 、B 、C 阶次L=1000; %仿真长度uk=zeros(d+nb,1); %输入初值:uk(i)表示u(k-i)yk=zeros(na,1); %输出初值xik=zeros(nc,1); %噪声初值xiek=zeros(nc,1); %噪声估计初值u=randn(L,1); %输入采用白噪声序列xi=sqrt(0.1)*randn(L,1); %白噪声序列theta=[a(2:na+1);b;c(2:nc+1)]; %对象参数thetae_1=zeros(na+nb+1+nc,1); %na+nb+1+nc 为辨识参数个数P=10^6*eye(na+nb+1+nc);for k=1:Lphi=[-yk;uk(d:d+nb);xik];y(k)=phi'*theta+xi(k); %采集输出数据phie=[-yk;uk(d:d+nb);xiek]; %组建phie%递推增广最小二乘法K=P*phie/(1+phie'*P*phie);thetae(:,k)=thetae_1+K*(y(k)-phie'*thetae_1); P=(eye(na+nb+1+nc)-K*phie')*P;xie=y(k)-phie'*thetae(:,k); %白噪声的估计值%更新数据thetae_1=thetae(:,k);for i=d+nb:-1:2uk(i)=uk(i-1);enduk(1)=u(k);for i=na:-1:2yk(i)=yk(i-1);endyk(1)=y(k);for i=nc:-1:2xik(i)=xik(i-1);xiek(i)=xiek(i-1);endxik(1)=xi(k);xiek(1)=xie;endfigure(1)plot([1:L],thetae(1:na,:));xlabel('k'); ylabel('参数估计a');legend('a_1','a_2'); axis([0 L -2 2]);figure(2)plot([1:L],thetae(na+1:na+nb+1,:));xlabel('k'); ylabel('参数估计b');legend('b_0','b_1'); axis([0 L 0 1.5]);figure(3)plot([1:L],thetae(na+nb+2:na+nb+nc+1,:));xlabel('k'); ylabel('参数估计c');legend('c_1','c_2'); axis([0 L -2 2]);以下是仿真图形:(a ) 参数21,a a 的估计结果(b )参数10,b b 的估计结果(a )参数21,c c 的估计结果。

江南大学《系统辨识》试卷部分答案

江南大学《系统辨识》试卷部分答案

江南大学《系统辨识》实体部分参考答案一、【每小题2分,其中10小题,共计20分】假设a ,b ,c ,d ,i θ是未知参数,υ 是噪声,写出下列系统的辨识模型(1) 12()t y t t e θθ=++解答:12()()()[1,][,]t T T Te y t t t t ϕθϕθθθ⎧-+=⎪=⎨⎪=⎩(2) 12()2cos()t y t t e t θθ=+++解答:122cos()()()()[1,][,]t T T T e t y t t t t ϕθϕθθθ⎧--+=⎪=⎨⎪=⎩(3) 21231()()y t t t t θθυθ=+++解答: 2123()()()()[1,,]1[,,]T T Ty t t t t t t ϕθυϕθθθθ⎧⎪=+⎪⎪=⎨⎪⎪=⎪⎩(4) 123()()t y t t e t θθθυ=++++解答:132()()()()[1,][,]t T T T y t e t t t t ϕθυϕθθθθ⎧-=+⎪=⎨⎪=+⎩(5) ()()()()()()()()1212......n n y t ax t bx t cx t dx t x t x t t υ=+++++ 解答:()()()()()()()1212()()()[,,...,,...][,,...,,]T T n n T y t t v t t x t x t x t x t x t x t a b c d ϕθϕθ⎧=+⎪=⎨⎪=⎩二、【每个2分,共计20分】假设i θ是未知参数,υ是噪声,写出下列系统辨识模型(1) 123()1t y t t e θθθ=+++解答: 1231()()()[1,,][,,]T T t T y t t t t e ϕθϕθθθθ⎧-+=⎪=⎨⎪=⎩(2) 212()()()...()()m m y t u t u t u t t θθθυ=++++解答:212()()()()[(),(),...,()][,,...,]T T m T m y t t t t u t u t u t ϕθυϕθθθθ⎧=+⎪=⎨⎪=⎩(3) 1234()()(1)(2)(1)(2)()y t t y t y t u t u t t θθθθυ+-+-=-+-+ 解答:()12341234()()(1)(2)(1)(2)()()()()[(1),(2),1,(2)][,,,]T T T y t t y t y t u t u t t t t t y t y t u t u t θθθθυϕθυϕθθθθθ⎧=----+-+-+=+⎪=------⎨⎪=⎩(4) 123()sin(/)(1)(1)cos()()y t t y t u t t t θπθθυ+-=-++解答:()123123()()s i n (/)(1)(1)c o s ()()()()()[s i n (/)(1),1,c o s ()][,,]T T T y t t t y t u t t t t t t t y t u t t θπθθυϕθυϕπθθθθ⎧=--+-++=+⎪=---⎨⎪=⎩ (5) 2()()()2s i n (/)y t a u t b u t c d t π=+++ 解答: 2()()()[(),(),2,sin(/)][,,,]T T T y t t t u t u t t a b c d ϕθϕπθ⎧=⎪=⎨⎪=⎩三、【10分】设三阶MA 模型为)3()2()1()()(321-+-+-+=t v d t v d t v d t v t y .其中,{})(t y 是已知观测序列,{})(t v 是零均值方差为2σ的随机白噪声序列,其便是模型为 )()()(t v t t y T +=θϕ● 写出信息向量)(t ϕ和参数向量θ的表达式● 写出θ的递推增广最小二乘(RELS)辨识算法.解答:)()()(t v t t y T +=θϕ)]3(),2(),1([)(---=t v t v t v t T θ其中,T d d d ],,[321=θ算法如下:的RELS R -θ)(ˆ)1()(ˆ1)(ˆ)1()(ˆ)()()]1(ˆ)(ˆ)()[()1(ˆ)(ˆt t p t t t p t t p t L t t t y t L t t T ϕϕϕϕθϕθθ-+-==--+-= )1()](ˆ)(1[)(--=t p t t L t p T ϕI p p 0)0(= T T T T d d d t t t t t v t v t v t v t ]ˆˆˆ[)(ˆ)(ˆ)(ˆ)()()]3(ˆ),2(ˆ),1(ˆ[)(ˆ321=-=---=θθϕϕϕ四、证明题【每小题2分,其中5题,计10分】设n T R t t t t t p t p ∈≥+-=--)(,0)(),()()1()(211ϕϕϕϕ格式阶单位矩阵,证明以下为n I I p n n ,)0(=(1))()(t t p ϕ )()1()(1)()1(t t p t t t p T ϕϕϕ-+-= (2)1)()()(≤t t p t T ϕϕ(3) )()()(1)()()()1(t t p t t t p t t p T ϕϕϕϕ-=-(4) )()1()()()()()(2t t p t p t t t p t T T ϕϕϕϕ-≤(5) 1()()(1)()T t t p t p t t ϕϕ∞=-∞∑(6) )()()(21t t p t t T ϕϕ∑∞=∞解答:(1)11()(1)()()T p t p t t t ϕϕ--=-+ ①对①式用矩阵求逆引理,则1()(1)(1)()[()(1)()]()(1)T T p t p t p t t I t p t t t p t ϕϕϕϕ-=---+-- 对上式两边乘)(t ϕ,可得)()1()(1)()1()()()1()()1()()(t t p t t t p t t t p t t p t t p T T ϕϕϕϕϕϕϕ-+----= )()1()(1)()1(t t p t t t p T ϕϕϕ-+-= (2)∵ )()1()(1)()1()()(t t p t t t p t t p T ϕϕϕϕ-+-=② 对②式左乘)(t Tϕ,可得)()1()(1)()1()()()()(t t p t t t p t t t p t T T T ϕϕϕϕϕϕ-+-= ∵0)1(≥-t p ∴1)()()(≤t t p t T ϕϕ (3)对①右乘p(t),可得)()()()()1(1t p t t t p t p IT ϕϕ+-=- ③ 面对③左乘)1(-t p ,右乘)(t ϕ,则有)()()()()1()()()()1(t t p t t t p t t p t t p T ϕϕϕϕϕ-+=- ④ 移向合并,可得)()()(1)()()()1(t t p t t t p t t p T ϕϕϕϕ-=-④对②式左乘(t)p(t) T ϕ,得)()1()(1)()1()()()()()(t t p t t t p t p t t t p t T T TT ϕϕϕϕϕϕ-+-= ∵0)1(≥-t p ∴0)()1()(≥-t t p t T ϕϕ∴)()1()()()()()(t t p t p t t t p t T T T ϕϕϕϕ-≤(1)()(1)()()()T p t p t p t t t p t ϕϕ-=+-∴11(1)()()()()(0)()T t i p t t t p t p t p p ϕϕ∞∞==-=∆=-∞∑∑ ⑤ ∵)()()1()(11t t t p t p T ϕϕ+-=--11(0)()()T t p t t ϕϕ∞-==+∑ ∴)0()(11--≥p t p∴when ∞→t ,则)()0(∞≥p p对⑤式两队取迹,得)]()1()()([)]()()()1([11t t p t p t tr t p t t t p tr i T i Tϕϕϕϕ-=-∑∑∞=∞= [(0)()]tr p p =-∞∞⑥∵)()1()()()()()(t t p t p t t t p t T T T ϕϕϕϕ-≤∴∞-≤∑∑∞=∞= )]()1()()()()()(11t t p t p t t t p t t T T t T ϕϕϕϕ。

系统辨识作业

系统辨识作业

3.考虑如下SISO 系统作为仿真对象)()2(5.0)1()2(7.0)1(5.1)(k e k u k u k z k z k z +-+-=-+--其中,{})(k e 为服从N(0,1)分布的白噪声序列;输入信号)(k u 采用4阶逆重复m 序列,其幅值为1;数据的信噪比β=14.3%。

选择的辨识模型为)()2()1()2()1()(2121k k u b k u b k z a k z a k z ε+-+-=-+-+用最小二乘估计的一次完成算法和最小二乘估计的递推算法分别估计参数。

选择数据长l =480;选取初始值P 0=2*2610I , Q 0=0.001(要过程)解:>> %最小二乘估计的一次完成算法clear all;a=[1 -1.5 0.7]'; b=[1 0.5]'; d=3; %对象参数na=length(a)-1; nb=length(b)-1; %na 、nb 为A 、B 阶次L=480; %数据长度uk=[0.001 0.001 0.001 0.001]'; %输入初值:uk(i)表示u(k-i)yk=zeros(na,1); %输出初值x1=1; x2=1; x3=1; x4=0; S=1; %移位寄存器初值、方波初值xi=rand(L,1); %白噪声序列theta=[a(2:na+1);b]; %对象参数真值for k=1:Lphi(k,:)=[-yk;uk(d:d+nb)]'; %此处phi(k,:)为行向量,便于组成phi 矩阵 y(k)=phi(k,:)*theta+xi(k); %采集输出数据IM=xor(S,x4); %产生逆M 序列if IM==0u(k)=-1;elseu(k)=1;endS=not(S); M=xor(x3,x4); %产生M 序列%更新数据x4=x3; x3=x2; x2=x1; x1=M;for i=d+nb:-1:2uk(i)=uk(i-1);enduk(1)=u(k);for i=na:-1:2yk(i)=yk(i-1);endyk(1)=y(k);endthetae=inv(phi'*phi)*phi'*y' %计算参数估计值thetae thetae =-1.54530.69531.00320.4566>> %最小二乘估计的递推算法clear all; close all;a=[1 -1.5 0.7]'; b=[1 0.5]'; d=3; %对象参数na=length(a)-1; nb=length(b)-1; %na、nb为A、B阶次L=480; %仿真长度uk=[0.001 0.001 0.001 0.001]'; %输入初值yk=zeros(na,1); %输出初值u=rand(L,1); %输入采用白噪声序列xi=sqrt(0.1)*rand(L,1); %白噪声序列theta=[a(2:na+1);b]; %对象参数真值thetae_1=zeros(na+nb+1,1); %thetae初值P=10^6*eye(4);for k=1:Lphi=[-yk;uk(d:d+nb)]; %此处phi为列向量y(k)=phi'*theta+xi(k); %采集输出数据%递推最小二乘法K=P*phi/(1+phi'*P*phi);thetae(:,k)=thetae_1+K*(y(k)-phi'*thetae_1); P=(eye(4)-K*phi')*P;%更新数据thetae_1=thetae(:,k);for i=d+nb:-1:2uk(i)=uk(i-1);enduk(1)=u(k);for i=na:-1:2yk(i)=yk(i-1);endyk(1)=y(k);endplot([1:L],thetae); %line([1,L],[theta,theta]); xlabel('k'); ylabel('参数估计a、b');title('参数估计曲线图')legend('a_1','a_2','b_0','b_1'); axis([0 L -2 2]);图1 参数估计曲线图1.设有二阶系统1)(122++=s a s a s D ,1)(=s N⑴试用MIT 规则设计自适应控制系统;⑵取112==a a ,⎪⎩⎪⎨⎧===5.30.11.0,1.0,1r m y K μ 进行仿真,并给出结论; ⑶采用修正的梯度法, 自适应律采用),(2βαμmm y ey sat c K +=∙ 取112==a a ,2,01.0,1.0,1====βαμm K ,⎪⎩⎪⎨⎧=5.30.11.0r y 进行仿真,并给出结论;⑷增大μ,通过仿真说明μ增大对系统的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 0
N
W(k)是过程噪声,(1)写出脉冲响应序列{g(i)},i=1,2,3, …,N的最小二乘估 计格式及其最小二乘估计值。
(2)讨论估计量的性质 (3)对观测数据组数的要求 10在第四章利用相关分析法辨识系统的脉冲响应函数公式中.证明: (1)式(4.18)中的常数 c
N p 1 0
y(k ) a1 y(k 1) bu (k 1) (k )
k
y(k)
1
0
2
1
3
-1
4
0
5
1
6
-1
7
1
u(k) 1
-1
1
0
-1
1
0
5.根据下列试验数据,选用适当的非线性函数拟合输入输出 量之间的关系。并用变量代换法化为线性模型,求该线性模 型参数的最小二乘估计量及其非线性函数中的参数估计量。
K
1 2 3 4 5 6
U(k)
0.05 0.1 0.2 0.3 0.4 0.6
Y(k)
0.02 0.038 0.074 0.108 0.140 0.198
k
7 8 9 10 11
U(k)
0.8 1 2 3 4
Y(k)
0.251 0.3 0.48 0.61 0.7
6证明:设A,C,(A+BCD)都是非奇异方阵,则有
k e E / RT , 与催化剂活性有关的参数, E - -参数,表示活化能
R—通用气体常数(已知) (3)
y(k ) a bx(k ) cx 2 (k ), a, b, c待辨识参数
(4)给定质量气体,不同体积V对应着不同压力P PV r C,r , C为待定常数,P,V是可观测的。
问:对上述各种模型,能否写出辨识参数的最小二乘格式?
(2)若能,给出其最小二乘格式,(给出输出向量组成, 观测数据矩阵组成,参数向量组成)并求出参数的最小二乘 估计值。
8.
对确定性状态 进行了 3 次测量,量测方程为
z (1) 3 1 1 v(1) z (2) 1 1 0 v(2) z (1) 2 0 1 v(3)
第七章作业:140页7.1
作业1:最小二乘辨识方法的基本概念
通过试验确定热敏电阻阻值和温度间的关系
t (C ) R ()
t1 R1
t2 R2

t N 1 R N 1
tN
RN
R a bt
• 当测量没有任何误差时,仅需2个测量值。 • 每次测量总是存在随机误差。
yi Ri vi 或 yi a bt vi
A BCD
1
A
1
A BC
1
1

1
DA 1B



1
DA
1
当D=BT时,有
A BCB
T 1
A
1
A BC

1
B A 1B
T

1 T
B A
1
且又有C=I时
A BB
T 1
A
1
A BIB A B
T
1

1

1 T
B A
1
并利用此公式计算
(3) y(k ) b0 u (k 2) u (k 3) * u (k 4)
(4) R
a bT
(5) y (k ) a bx1 (k ) dx2 (k ), a, b, d 待辨识参数
第三章作业:51页3.1(初值取1010)
第四章作业:66页4.1,4.3
73 942
80 980
88 1010
95.7 1032
3.求下列静态模型的最小二乘估计量
y b0 b1u
k 1
2
3
4
5
y(k) 2.086 2.09 -0.0099 0.0246 2.0635
u(k)
1
1
ቤተ መጻሕፍቲ ባይዱ
-1
-1
1
4.求下列动态模型参加数的最小二乘估计量, (k ) 并计算残差平均值与残差平方和。其中 是白噪声
vi yi Ri或vi=yi a bti
根据最小二乘的准则有
J min vi2 [ yi (a bti )]2
i 1 i 1 N N
根据求极值的方法,对上式求导
N J 2 ( yi a bti ) 0 a i 1 ˆ aa N J 2 ( yi a bti )ti 0 b b bˆ i 1
R
ym
( )
(2)如果输入量m(k)与过程噪声e(k)是遍历性平稳随机过程,且二 者不相关,则式(4.19)给出的估计量是无偏估计量。即: E g ( ) g ( ) (3)在(2)的条件下,进一步证明式(4.19)给出的估计量是一致估计 量,证明 E [ g ( ) Eg ( )]2 0


2 1 1 1 2 1 1 1 1 2 N N
的逆矩阵。
7.下面给出四种模型:
(1)经济学中Cobb-Douglas生产关系模型。
Y AL K , a1 0, a2 0
a1 a2
Y-输出,表示产值;L-输入,表示劳动力;K-输入,表示资本 (2)描述化学反应速度系数k与绝对温度T之间的关系式
请根据此给出求解a,b 的通用表达式
作业 2: 1 中是在不同温度下测量同一热敏电阻的阻值, 表 根据测量值确定该电阻的数学模型, 并求出当温度在 70C
时的电阻值。
表 1 热敏电阻的测量值
t (C ) R ()
20.5 765
26 790
32.7 826
40 850
51 873
61 910
已知量测误差的均值为 0,方差为 r 的白噪声,当
Wm I 时,用加权最小二乘法求出 ,并计算估计的
均方误差。
9.设线性过程的输出Z(k)用输入序列{u(k)}与脉冲响应序列{g(i)},i=1,2,3, …, N的卷积形式表示。
z (k ) g i u (k i ) w(k )
第一章作业
1.按照数学模型的分类方法,指出下列模型的类别。(按照确定 性/随机,静态/动态,连续/离散,定常/时变,线性/非线性分类)
x(t ) Ax(t ) Bu (t ) (1) y (t ) Cx(t )
(2) y(k ) b1u1 (k ) b2u2 (k ) (k )
相关文档
最新文档