初三数学月考试题
2024—2025学年九年级上学期11月月考数学试题[含答案]
桂江一中初三上学期第二次质量检测本试卷共4页,23小题,满分120分.考试用时120分钟.一、选择题(每题3分,共30分)1.一个矩形木框在太阳光的照射下,在地面上的投影不可能是( )A .B .C .D .2.方程2104x x -+=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根3.矩形、菱形都具有的性质是( )A .对角线互相平分B .对角线互相垂直且相等C .对角线相等D .对角线互相垂直4.如图,两个菱形,两个等边三角形,两个矩形,两个等腰直角三角形各成一组.每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,则两个图形对应边不成比例的一组是( )A .B .C .D .5.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x+6.如图所示,电路连接完好,且各元件工作正常.随机闭合开关123,,S S S 中的两个,能让两个小灯泡同时发光的概率是( )A .13B .23C .12D .07.如图在ABC V 中,90ACB Ð=°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且BE BF =,为了使四边形BECF 是正方形.可以添加一个条件( )A .CE CF =B .DE DF =C .45A Ð=°D .E 为AB 的中点8.下列关系中,两个变量之间为反比例函数关系的是( )A .圆的周长C 与圆的半径r B .在等腰三角形中,顶角y 与底角x 之间的关系C .正方形的面积为S ,边长为aD .菱形的面积为20,对角线的长分别为x 、y9.如图,在ABCD Y 中,E 为边AB 上一点,连结DE 、AC 交于点.F 若14AF CF =,则下列说法错误的是()A .14AE CD =B .AEF △与CDF V 的周长比为1:4C .AEF △与CDF V 的面积比为1:4D .ADF △与CDF V 的面积比为1:410.如图,在直角坐标系中,点()22P ,是一个光源.木杆AB 两端的坐标分别为()01,、()31, .则木杆AB 在x 轴上的投影长为( )A .3B .5C .6D .7二、填空题(每题3分,共15分)11.已知()304a cb d b d ==+¹,则a cb d ++的值为 .12.池塘中放养了鲤鱼8000条,鲢鱼若干.在几次随机捕捞中,共抓到鲤鱼320条,鲢鱼400条.估计池塘中原来放养了鲢鱼 条.13.如图,矩形ABCD 中,对角线AC 的垂直平分线EF 分别交BC AD 、于点E 、F ,若3,5BE AF ==,则矩形ABCD 的周长为 .14.已知两个连续整数的积为132,则这两个数是 .15.在平面直角坐标系xOy 中,过点()1,4P 的一次函数()0y kx b k =+>的图象与x 轴、y 轴分别交于A 、B 点,若2PA AB =,则k 的值为 .三.解答题一(每小题7分,共21分)16.计算:()22930x x --=17.如图,小明在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB 的影长不全落在水平地面上,有一部分落在楼房的墙上,他测得落在地面上影长为9.6BD =米,留在墙上的影长2CD =米,求旗杆的高度.18.在平面直角坐标系中,ABC V 的位置如图所示,每个小正方形的边长为1.(1)在图(1)的第一象限内,对ABC V 进行位似变换,以原点O 为位似中心画出DEF V (点A ,B ,C 分别应点D ,E ,F ),且ABC V 与DEF V 的相似比为2:1,线段AC 上一点()5,3G 经过变换后对应的点的坐标为______.(2)在图(2)画出一个格点三角形(所画的两个三角形不全等),使其同时符合下列两个条件:①与ABC V 有公共角;②与ABC V 相似但不全等.四、解答题二(每小题9分,共27分)19.为落实中小学生五项管理中的手机管理,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A 表示“一等奖”,B 表示“二等奖”,C 表示“三等奖”,D 表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为______人,m =______;(2)请将条形统计图补充完整;(3)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.AD=,20.社区利用一块矩形空地ABCD建了一个小型停车场,其布局如图所示.已知52m AB=,阴影部分设计为停车位,要铺花砖,其余部分均为宽度为x米的道路.已知铺28m花砖的面积为2640m.(1)求道路的宽是多少米?(2)该停车场共有车位50个,据调查分析,当每个车位的月租金为200元时;可全部租出;若每个车位的月租金每上涨5元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为10125元21.在数学活动课中,老师组织学生开展“如何通过折,剪、叠得到一个菱形”的探究活动.【动手操作】第一小组:如图,将一张矩形的纸片对折,再对折,然后沿着虚线剪下,打开,即可得一个菱形.、剪下两个三角形,第二小组:如图,把矩形纸片ABCD沿着对角线AC折叠,沿着边AB CD展开后得四边形AECF.第三小组:如图,将两块矩形纸片叠在一起,其中重叠的部分为菱形.【过程思考】(1)第一小组得到的四边形是菱形的理由是____________;(2)第二小组经过上述的操作,认为四边形AECF即为菱形,请你判断第二小组的结论是否正确,并说明理由;【拓展探究】(3)第三小组通过操作还发现,将两张矩形纸片沿着对角线按如图2的方式叠放,得到的菱形面积最大,已知矩形卡片的长为8,宽为6,请求出此时菱形的面积.五.解答题三(第22题13分,第23题14分)22.综合与实践问题背景数学小组发现国旗上五角星的五个角都是顶角为36°的等腰三角形,对此三角形产生了极大兴趣并展开探究.探究发现如图1,在ABC V 中,36A Ð=°,AB AC =.(1)操作发现:将ABC V 折叠,使边BC 落在边BA 上,点C 的对应点是点E ,折痕交AC 于点D ,连接DE ,DB ,则BDE Ð=_______°,设1AC =,BC x =,那么AE =______(用含x 的式子表示);(2)进一步探究发现:BC AC =底腰1)的条件下试证明:BC AC =底腰 拓展应用:当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的ABC V 是黄金三角形.如图2,在菱形ABCD 中,72BAD Ð=°,1AB =.求这个菱形较长对角线的长.23.已知菱形ABCD 中ADC 60Ð=o ,点F 是射线DC 上一动点(不与C 、D 重合),连接AF 并延长交直线BC 于点E ,交BD 于H ,连接CH .(1)若点F 在边CD 上,且12CF CD <,过点C 按如图所示作60HCG Ð=o 并交AE 于点.G ①证明:DAH DCH Ð=Ð;②猜想GEC V 的形状并说明理由.(2)若菱形ABCD 边长为4,当BC H V 为等腰三角形时,求BE 的长.1.B【分析】根据平行投影的性质求解可得.【详解】解:一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:B .【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.2.B【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=¹,若240b ac D =->,则方程有两个不相等的实数根,若240b ac D =-=,则方程有两个相等的实数根,若240b ac D =-<,则方程没有实数根,据此求解即可.【详解】解:由题意得,()211411104D =--´´=-=,∴原方程有两个相等的实数根,故选:B .3.A【分析】本题考查了矩形的性质,菱形的性质.由矩形的性质和菱形的性质可直接求解.【详解】解:∵菱形的对角线互相垂直平分,矩形的对角线互相平分且相等,∴矩形、菱形都具有的性质是对角线互相平分,故选:A .4.D【分析】本题主要考查了相似多边形的性质及判定,根据相似多边形的性质及判定:对应角相等,对应边成比例,即可判断.【详解】解:由题意得,B 、C 中三角形对应角相等,对应边成比例,两三角形相似;A 中菱形四条边均相等,所以对应边成比例,又角也相等,所以正方形,菱形相似;而D 中矩形四个角相等,但对应边不一定成比例,所以D 中矩形不是相似多边形故选:D .5.A【分析】由主视图和左视图的宽为x ,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S 主=x 2+2x =x (x +2),S 左=x 2+x =x (x +1),∴俯视图的长为x +2,宽为x +1,则俯视图的面积S 俯=(x +2)(x +1)=x 2+3x +2.故选A .【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.6.A【分析】画树状图,共有6种等可能的结果,能让两个小灯泡同时发光的结果有2种,再由概率公式求解即可.【详解】解:把开关1S ,2S ,3S 分别记为A 、B 、C ,画树状图如图:共有6种等可能的结果,能让两个小灯泡同时发光的结果有2种,\能让两个小灯泡同时发光的概率为2163=.故选:A .【点睛】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7.C【分析】根据菱形的判定定理,正方形的判定定理解答即可.本题考查了菱形的判定,正方形的判定,熟练掌握判定定理是解题的关键.【详解】解:∵BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,∴BD DC =,EF BC ^,,EB EC FB FC ==,∵CE CF =,∴BE BF EC FC ===,∴四边形BECF 是菱形,故A 不符合题意;当添加DE DF =时,则四边形BECF 是平行四边形,∵BE BF =,∴四边形BECF 是菱形,故B 不符合题意;当45A Ð=°时,∵90ACB Ð=°,∴45ABC ECB Ð=Ð=°,∴90BEC Ð=°,∴菱形BECF 是正方形,故C 符合题意;当E 为AB 的中点时,得到BE CE=无法判定菱形BECF 是正方形,故D 不符合题意;故选:C .8.D【分析】本题主要考查了反比例关系的识别,等边对等角,三角形内角和定理,菱形的性质,若两个量的乘积一定,那么这两个量成反比例关系,据此求解即可.【详解】解:A 、圆的周长等于半径的2倍乘以圆周率,则圆的周长C 与圆的半径r 的乘积不一定,二者不成反比例关系,不符合题意;B 、等腰三角形中,顶角的度数等于180度减去底角度数的2倍,则顶角y 与底角x 之间不成比例,不符合题意;C 、正方形的面积等于边长的平方,则正方形的面积S 与边长a 不成反比例关系,不符合题意;D 、菱形的面积等于其对角线乘积的一半,当菱形的面积为20,两条对角线的长的乘积一定,二者成反比例关系,符合题意;故选:D .9.C【分析】通过证明AEF CDF ∽△△,由相似三角形的性质依次判断可求解.【详解】解:14AF CF =Q ,ADF \V 与CDF V 的面积比为1:4,Q 四边形ABCD 是平行四边形,AB CD \∥,AEF CDF \V V ∽,14AF AE CF CD \==,211416AEF AEF CDF CDF C S AF AF C CF S CF æö\====ç÷èø,V V V V ,故选:C .【点睛】本题考查了相似三角形的判定和性质,平行四边形的性质,证明三角形相似是解题的关键.10.C【分析】本题考查了相似三角形的判定与性质、中心投影;利用中心投影,延长PA 、PB 分别交x 轴于A B ¢¢,,作PE x ^轴于E ,交AB 于D ,如图,证明PAB PA B ¢¢∽V V ,然后利用相似比可求出A B ¢¢的长.【详解】解:延长PA PB 、 分别交x 轴于A B ¢¢, ,作PE x ^ 轴于E ,交AB 于D ,如图∵()()()2,20,13,1P A B ,, .∴1PD =,2PE =,3AB =,∵AB A B ¢¢∥ ,∴PAB PA B ¢¢∽V V ,∴AB AD A B AE =¢¢,即312A B =¢¢∴6A B ¢¢=,故选:C .11.34##0.75【分析】本题主要考查了比例的性质,设()34340a m b m c n d n mn ====¹,,,,再把a 、b 、c 、d代入所求式子中求解即可得到答案.【详解】解:∵34a cb d ==,∴可设()34340a m b mc nd n mn ====¹,,,,∴333444a c m nb d m n ++==++,故答案为:34.12.10000【分析】本题考查利用样本估计总体,设鲢鱼x 条,根据抓到鲤鱼320条,鲢鱼400条,列出比例式,进行求解即可.【详解】解:设鲢鱼x 条,则8000:320:400x =,解之得,10000x =.故答案为10000.13.24【分析】本题主要考查了矩形的性质,勾股定理,全等三角形的性质与判定,线段垂直平分线的性质,连接CF ,根据线段垂直平分线的性质得到5CF AF OA OC ===,,再证明()AAS AOF COE V V ≌得到5CE AF ==,进而可求出AD DF ,的长,再利用勾股定理求出CD 的长即可得到答案.【详解】解:如图所示,连接CF ,∵四边形ABCD 是矩形,∴90D AB CD AD BC AF CE =°==∠,,,∥,∴OAF OCE OFA OEC ==∠∠,∠∠,∵对角线AC 的垂直平分线EF 分别交BC AD 、于点E 、F ,∴5CF AF OA OC ===,,∴()AAS AOF COE V V ≌,∴5CE AF ==,∴8AD BC CE BF ==+=,∴3DF =,∴4CD ==,∴矩形ABCD 的周长为884424AD CD AB BC +++=+++=,故答案为:24.14.12-和11-或11和12【分析】本题考查用一元二次方程解决数字问题,正确表示两个连续整数并列出方程是解题的关键.设较小的整数为x ,则较大的整数为1x +,根据积为132建立一元二次方程,求解即可.【详解】解:设较小的整数为x ,依题意有(1)132x x +=,解得:112x =-,或211x =.当12x =-时,111x +=-;当11x =时,112x +=;.故这两个数是12-和11-或11和12.故答案为:12-和11-或11和12.15.2或6##6或2【分析】此题考查一次函数及其图象的综合应用,相似三角形的判定与性质,解此题的关键是分类讨论各种情形.先确定4k b +=,考虑直线的位置两种情形画图解答即可.【详解】解:∵y kx b =+图象过点()1,4P ,∴4k b +=,如图,∵2PA AB =,∴B 为AP 的中点,∴2b =,∴422k =-=,如图,过P 作PQ x ^轴于Q ,则PQ y ∥轴,∴PAQ BAO V V ∽,而2PA AB =,∴2QP PA OB AB==,而()1,4P ,∴2OB =,∴2b =-,∴()426k =--=;综上分析可知:k 的值为2或6.故答案为:2或6.16.123324x x =-=,【分析】本题主要考查了解一元二次方程,把方程左边利用平方差公式分解因式,再解方程即可得到答案.【详解】解:∵()22930x x --=,∴()()33330x x x x +--+=,∴430x -=或230x +=,解得123324x x =-=,.17.旗杆的高度为10米【分析】此题考查相似三角形的应用;根据三个角是直角的四边形是矩形,可得四边形BDCE 为矩形,利用矩形的对边相等,可得9.6CE BD ==米,2BE CD ==米,利用“在同一时刻物高与影长的比相等”,可得11.2AE CE =,从而求出AE 的长,继而求出AB 的长.【详解】解:如图,过点C 作CE AB ^于点E ,可得四边形BDCE 为矩形,9.6CE BD \==米,2BE CD ==米,由题意可得:11.2AE CE =,8(AE \=米),8210(AB AE BE \=+=+=米) .答:旗杆的高度为10米.18.(1)图见解析,53,22æöç÷èø(2)见解析【分析】本题主要考查了画位似图形,相似三角形的判定,勾股定理,:(1)把A 、B 、C 的横纵坐标分别除以2得到其对应点D ,E ,F 的坐标,描出D ,E ,F ,再顺次连接D ,E ,F 即可;把G 的横纵坐标都除以2,即可得到其对应点坐标;(2)取格点D ,则ABD △即为所求.【详解】(1)解:如图所示,DEF V 即为所求;线段AC 上一点()5,3G 经过变换后对应的点的坐标为53,22æöç÷èø;(2)解:如图所示,ABD △即为所求;可证明AB AC AD AB==,再由BAD CAB Ð=Ð,可证明BAD CAB ∽△△.19.(1)40;30;(2)见解析(3)12【分析】(1)用“二等奖”人数除以它所占的百分比得到获奖总人数,然后计算“三等奖”人数所占的百分比得到m 的值;(2)求出获“三等奖”人数为12人,补全条形统计图即可;(3)画树状图,共有12种等可能的结果,其中抽取同学中恰有一名男生和一名女生的结果为6种,然后根据概率公式求解即可.【详解】(1)解:)获奖总人数为820%40¸=(人).404816%100%30%40m ---=´=,即30m =;故答案为40;30;(2)解:“三等奖”人数为40481612---=(人),条形统计图补充为:(3)解:画树状图为:共有12种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为6,所以抽取同学中恰有一名男生和一名女生的概率61122==.【点睛】本题考查了条形统计图和扇形统计图、及用树状图法求概率,树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率一所求情况数与总情况数之比.牢固掌握画树状图列出所以可能结果是解题的关键.20.(1)道路的宽为6米(2)每个车位的月租金上涨25元时,停车场的月租金收入为10125元【分析】本题考查了一元二次方程的应用,读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程是解题关键.(1)由题意知,道路的宽为x 米,根据矩形的面积公式列出方程并解答即可;(2)设车位的月租金上涨a 元,则租出的车位数量是505a æö-ç÷èø个,根据:月租金=每个车位的月租金´车位数,列出方程并解答即可;【详解】(1)解:根据道路的宽为x 米,(522)(282)640x x --=,整理得:2402040x x -+=,解得:134x =(舍去),26x =,答:道路的宽为6米.(2)解:设月租金上涨a 元,停车场月租金收入为10125元,根据题意得:()200(50a +-5a )10125=,整理得:2506250a a -+=,解得25a =,答:每个车位的月租金上涨25元时,停车场的月租金收入为10125元.21.(1)四条边都相等的四边形是菱形;(2)正确,见解析;(3)37.5ANCM S =菱形【分析】本题考查了菱形的判定与性质,全等三角形的判定与性质,勾股定理解三角形,熟练掌握知识点是解题的关键.(1)裁剪后展开可知四边相等,故理由为四条边都相等的四边形是菱形;(2)先证明AED CEB V V ≌,则AE CE =,在图③中,由折叠重合可得,,AE AF CE CF ==,故AE AF CE CF ===,因此四边形AECF 是菱形;(3)由四边形AMCN 是菱形,可设AN CN x ==, 在Rt CBN V 中, 由勾股定理得2226(8)x x +-=,解得 6.25x =,则 6.25637.5ANCM S AN BC =×=´=菱形.【详解】解:(1)四条边都相等的四边形是菱形,故答案为:四条边都相等的四边形是菱形;(2)证明:如图:Q 四边形ABCD 是矩形,90,D B AD BC \Ð=Ð=°=,又∵AED CEB Ð=Ð,()AAS AED CEB \V V ≌AE CE \=,在图③中,由折叠重合可得,,AE AF CE CF ==,AE AF CE CF \===,\四边形AECF 是菱形.(3)如图:Q 四边形AMCN 是菱形,AN CN \=,设AN CN x ==,则8BN x =-,在Rt CBN V 中,222CB BN CN +=,2226(8)x x \+-=,解得 6.25x =,6.25637.5ANCM S AN BC \=×=´=菱形.22.(1)72,1x °-(2【分析】(1)利用等边对等角求出,ABC ACB ÐÐ的长,翻折得到12ABD CBD ABC Ð=Ð=Ð,,BDC BDE BC BE Ð=Ð=,利用三角形内角和定理求出,BDC Ð,AE AB BE AB BC =-=-,表示出AE 即可;(2)证明BDC ABC V V ∽,利用相似比进行求解即可得出BC AC =底腰拓展应用:连接AC ,延长AD 至点E ,使AE AC =,连接CE ,得到ACE △为黄金三角形,进而得到CE AC =AC 的长即可.【详解】解:(1)∵36A Ð=°,AB AC =,∴()180236721ABC C Ð=Ð=°-°=°,∵将ABC V 折叠,使边BC 落在边BA 上,∴1362ABD CBD ABC Ð=Ð=Ð=°,,BDC BDE BC BE x Ð=Ð==,∴18072BDC BDE CBD C Ð=Ð=°-Ð-Ð=°,1AE AB BE AB BC x =-=-=-;故答案为:72,1x °-;(2)证明:∵72BDC C Ð=°=Ð,∴BD BC x ==,∵36,A CBD C C Ð=Ð=°Ð=Ð,∴BDC ABC V V ∽,∴BC CD AC BC=,∵36ABD CBD A Ð=Ð=Ð=°,∴AD BD BC x ===,∴1CD x =-,∴11x x x-=,整理,得:210x x +-=,解得:x ;经检验x∴BC AC =底腰拓展应用:如图,连接AC ,延长AD 至点E ,使AE AC =,连接CE ,∵在菱形ABCD 中,72BAD Ð=°,1AB =,∴36,1CAD ACD CD AD Ð=Ð=°==,∴()172,180722EDC DAC ACD ACE AEC DAC Ð=Ð+Ð=°Ð=Ð=°-Ð=°,∴EDC AEC Ð=Ð,∴1CE CD ==,∴ACE △∴CE AC =∴AC ==.【点睛】本题考查等腰三角形的判定和性质,菱形的性质,相似三角形的判定和性质.解题的关键是理解并掌握黄金三角形的定义,利用相似三角形的判定和性质,得到黄金三角形的23.(1)①见解析;②等腰三角形,理由见解析(2)2或2【分析】(1)①根据SAS 证明ADH CDH △≌△可得结论;②证明E DAH DCH ECG Ð=Ð=Ð=Ð,可知:GEC V 是等腰三角形;(2)分两种情况:①如图1,4BC BH ==,过点H 作HM BC ^于M ,则90BMH EMH Ð=Ð=°;②如图2,BH CH =,根据等腰三角形的性质和勾股定理可解答.【详解】(1)①证明:Q 四边形ABCD 是菱形,AD CD \=,ADH CDH Ð=Ð,DH DH =Q ,\(SAS)ADH CDH V V ≌,DAH DCH \Ð=Ð;②解:GEC V 是等腰三角形,理由如下:Q 四边形ABCD 是菱形,AD BC \∥,DAH E \Ð=Ð,60ADC DCE Ð=Ð=°,60DCG ECG \Ð+Ð=°,60HCG DCH DCG Ð=Ð+Ð=°Q ,ECG DCH \Ð=Ð,由①知:DAH DCH Ð=Ð,ECG E \Ð=Ð,CG EG \=,\GEC V 是等腰三角形;(2)解:分两种情况:①如图1,当4BC BH ==时,过点H 作HM BC ^于M ,则90BMH EMH Ð=Ð=°,Q 四边形ABCD 是菱形,60ADC Ð=°,1302CBD ABC \Ð=Ð=°,BC BH =Q ,75BCH BHC \Ð=Ð=°,60DCE Ð=°Q ,180756045DCH DAH E \Ð=Ð=Ð=°-°-°=°,HM EM \=,Rt BHM △中,30CBH Ð=°,122HM BH EM \===,BM \==2BE BM EM \=+=+;②如图2,当BH CH =时,∵Q 四边形ABCD 是菱形,60ADC Ð=°,∴1302ABH CBH ADC Ð=Ð=Ð=°,AB BC =,∵BH CH =,30CBH HCB \Ð=Ð=°,∵BH BH =,AB BC =,ABH CBH Ð=Ð,∴()SAS ABH CBH V V ≌,30BAH BCH \Ð=Ð=°,60ABC Ð=°Q ,90AEB \Ð=°,114222BE AB \==´=;综上,BE 的长为2+或2.【点睛】本题是四边形综合题,考查了菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,含30°角的直角三角形的性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
2024-2025学年初中九年级数学上册第一次月考模拟卷含答案解析
重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90°,∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴矩形AMEN为正方形,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∵不等式组有且只有2个整数解,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2=0,移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=0,∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,过E作EF⊥BC于F,如图1,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。
浙江省宁波市第七中学2024-2025学年九年级上学期第一次月考(期中)数学试卷(含答案)
宁波七中教育集团2024学年第一学期初三数学第一次月考试卷(2024.11)全卷共6页,满分为120分,考试时间为120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色笔迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.一、选择题(每小题3分,共30分)1.下列事件中,是必然事件的是( )A .三角形任意两边之和大于第三边B .过马路时恰好遇到红灯C .明天太阳从西边出来D .抛掷一枚硬币,正面朝上2.若,则 ( )A .B .1C .D .3.的半径为5cm ,点A 到圆心的距离cm ,则点A 与的位置关系是( )A .点A 在圆上B .点A 在圆内C.点A 在圆外D .无法确定4.两个相似三角形的相似比为,则它们的面积比为( )A .B .C .D 5.将抛物线绕顶点旋转,再向上平移2个单位,则平移后的抛物线解析式为( )A .B .C .D .6.抛物线 (m 为常数)上三点分别为,,,则,,的大小关系为()A .B .C .D .7.如图,如果,那么添加下列任何一个条件:(1)(2) (3) (4) 其中能判定的个数为( )A .1B .2C .3D .412b a =b a b=-121-12-O e 4OA =O e 4:94:92:316:812y x =-180︒22y x =+22y x =-()22y x =-+()22y x =+()21y x m =++()12,y -()21,y ()33,y 1y 2y 3y 123y y y >>231y y y >>312y y y >>321y y y >>12∠=∠AB AC AD AE =AB BCAD DE=B D ∠=∠C AED ∠=∠ABC ADE ∽△△8.如图,的直径CD 垂直弦AB 于E ,且cm ,cm ,则AB 的长为()(第8题)AB .cmC .cmD .cm9.如图,为等边三角形,点D ,E 分别在边BC ,AB 上,,若,,则AD 的长为( )(第9题)A .3.2B .3C .2.4D .1.810.二次函数的图象如图所示,下列结论①,②,③,④.其中正确的是( )(第10题)A .①②B .①③C .①④D .①③④二、填空题(每小题3分,共18分)11.正五边形的内角和的度数是______.12.一个路口的交通信号灯按红、绿、黄三种颜色顺序循环切换,其中红灯、绿灯、黄灯每次持续时间分别为60秒,57秒,3秒,则经过这个路口时刚好是红灯的概率是______.13.抛物线的顶点坐标是______.14.如图,在中,半径OA ,OB 互相垂直,点C 在劣弧AB 上,若,则______.O e 1OE =4DE =ABC △60ADE ∠=︒4BD DC =2.4DE =()20y ax bx c a =++≠24b ac >0abc <20a b c +->0a b c ++<()232y x =+-O e 21ABC ∠=︒BAC ∠=(第14题)15.如图,E 为的边AD 延长线上一点,且D 为AE 的黄金分割点,BE 交DC 于点F ,若,且,则CF 的长为______.(第15题)16.当时,函数的最小值为4,则a 的值______.三、解答题(本大题有8小题,第17~21小题每小题8分,第22~23小题每小题10分.第24小题12分,共72分)17.在一个不透明的口袋里有3个完全相同的小球,把它们分别标号1、2、3.求下列事件的概率.(1)随机地摸出一个小球是奇数;(2)随机地摸出一个小球后放回,再随机地摸出一个小球,两次摸出的小球标号的和为4.18.如图,在网格中,点A ,B ,C ,O 都在格点上,用无刻度直尺作图并保留作图痕迹.(1)以O 为位似中心,在网格中作,且与的位似比为.(2)在线段BC 上作点P ,使.19.二次函数的部分图象如图所示,对称轴是直线,与y 轴的交点为,与x 轴的一个交点为.(1)求这个二次函数的解析式;(2)求该图象与x 轴的另一个交点坐标;(3)观察图象,当时,求自变量x的取值范围.ABCDY 1AB =AD DE >1a x a ≤≤+221y x x =-+111A B C △ABC △111A B C △1:22PC PB =1x =-()0,3()1,00y >20.如图,已知在中,点D ,F 在AB 上,点E 在AC 上,,,,.(1)求AC 的长;(2)当时,求证.21.如图,是的外接圆,AB 是直径,D 为上一点,,垂足为E ,连结BD .(1)求证BD 平分;(2)当时,求证.22.为了测量路灯(OS )的高度,把一根长1.5米的竹竿(AB )竖直立在水平地面上,测得竹竿的影子(BC )长为1米,然后拿竹竿向远离路灯方向走了4米(),再把竹竿竖立在地面上,测得竹竿的影长()为1.8米,求路灯离地面的高度(OS ).23.根据以下素材,探索完成任务.问题的提出根据以下提供的素材,在总费用(新墙的建筑费用)不高于5800元的情况下,如何设计最大饲养室面积的方案?素材1:图是某农场拟建两间矩形饲养室,饲养室的一面靠现有墙,中间用一道墙隔开,计划中建筑材料可ABC △EF CD ∥3AF =5AD =4AE =253AB =DE BC ∥O e ABC △O e O e OD AC ⊥ABC ∠30ODB ∠=︒BC OD =BB 'B C ''建围墙的总长为20m ,开2个门,且门宽均为1m .素材2:与现有墙平行方向的墙建筑费用为400元/米,与现有墙垂直方向的墙建筑费用为200元/米.问题的解决任务1确定饲养室的形状设,矩形ABCD 的面积为S ,求S 关于x 的函数表达式.任务2探究自变量x 的取值范围.任务3确定设计方案当______m ,______m ,S 的最大值为______.24.如图,点C 是以AB 为直径的上一点,过AC 中点D 作于点E ,延长DE 交于点F ,连结CF交AB 于点G ,连结AF ,BF .【认识图形】(1)求证:.【探索关系】(2)①求CF 与DF 的数量关系.②设,,求y 关于x 的函数关系.【解决问题】(3)若,,求AE 的长.ABx =AB =BC =2m O e DE AB ⊥O e AFD ACF ∽△△CG x FG =DEy EF=CG =FG =宁波七中教育集团2024学年第一学期初三数学第一次月考答案(2024.11)一、选择题(每小题3分,共30分)题号12345678910答案ABBCADCDBC二、填空题(每小题3分,共18分)11.12.13.14.15.216.或3三.解答题(本大题有8小题,第17~21小题每小题8分,第22、23小题每小题10分,第24小题12分,共72分)17.(1) (2)树状图或列表略18.(1)如图:(2)答案不唯一19.(1) ,(2) ,(3) 20.(1)∵,∴.即,∴.(2)∵,,∴.又,∴,∴.∴.21.(1)∵,∴弧CD =弧AD .540︒12()3,2--24︒2-23P =13P =111A B C △()214y x =-++()3,0-31x -<<EF CD ∥AF AE AD AC =345AC =203AC =532553AD AB ==432053AE AC ==AD AEAB AC=A A ∠=∠ADE ABC ∽△△ADE B ∠=∠DE BC ∥OD AC ⊥∴.即BD 平分.(2)∵,∴,∴,∵AB 是直径,∴,∴.∴.22.∵,∴,即.∵,∴,即.∴.23.(1) .(2) ,,∴.(3) ,∵不在范围内,且,∴当时,y 随x 的增大而减小.∴当时,.即m ,m ,.24.(1)证明:∵AB 是直径,∴,∵,∴,∴.又∵,∴.①∵,∴.∵,∴,即.∴.②过C 作CH 垂直AB 于H ,则,∴,,∴.CBD ABD ∠=∠ABC ∠OD OB =30ABD ODB ∠=∠=︒260ABC ABD ∠=∠=︒90ACB ∠=︒9030BAC ABC ∠=︒-∠=︒12BC AB OD ==AB SO ∥AB BC SO OC = 1.51SO OC=A B SO ''∥A B B C SO OC ''''= 1.5 1.84.8SO OC =+9SO =()22023322S x x x x =+-=-+122316x <-≤()()200314002135800x x -+-≤47x ≤<2322S x x =-+()2211233x =-=⨯-47x ≤<30-<47x ≤<4x =2max 3422440S =-⨯+⨯=4AB =22310BC x =-=2max 40m S =90AFB ∠=︒DE AB ⊥90AFE EFB B EFB ∠+∠=∠+∠=︒AFB B C ∠=∠=∠DAF FAC ∠=∠AFD ACF ∽△△AFD ACF ∽△△AD AF DFAF AC FC==2AC AD =222AF AD =AF =CF =EF CH ∥12DE AD CH AC ==CG CHFG EF=111222DE CH CG y x EF EF GF ==⋅=⋅=(3)∵,,∴,∴,.∴,.设,则,由,得,∴,∴,∴CG =FG =CF =10DF =23x =13y =1542DE DF ==31542EF DF ==AD a =AF =2222515222a a ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭a =AD =10AF =22222517510044AE AF EF =-=-=AE =。
2024北京十二中初三上学期10月月考数学试题及答案
2024北京十二中初三10月月考数 学2024.10(满分100分,时间90分钟)一、单选题(共36分,每题3分)1. 将一元二次方程5x 2﹣1=4x 化为一般形式,其中一次项系数是( ) A. 5B. ﹣4C. 4D. ﹣12. 下列函数中,二次函数是( ) A. y =8x 2+1B. y =8x +1C. y =8xD. y =281x+ 3. 关于x 的一元二次方程ax 2﹣2x +1=0有两个不相等的实数根,则a 的取值范围是( ) A. a ≤1B. a <1C. a ≤1且a ≠0D. a <1且a ≠04. 若0k <,则关于x 的一元二次方程210x x k ++−=根的情况是( ) A. 有两个不相等的实数根 B. 没有实数根 C. 有两个相等的实数根 D. 只有一个实数根5. 下列说法正确的是( )A. 方程20ax bx c ++=是关于x 的一元二次方程B. 方程234x =的常数项是4C. 当一次项系数为0时,一元二次方程总有非零解D. 若一元二次方程的常数项为0,则0必是它的一个根6. 关于x 的方程()()2212110k x k x −+++=有实数根,则k 的取值范围是( ) A. 14k >且1k ≠ B. 14k ≥且1k ≠ C. 14k >D. 14k ≥7. 方程(x -1)(x -2)=1的根是( ) A. x 1=1,x 2=2 B. x 1=-1,x 2=-2 C. x 1=0,x 2=3D. 以上都不对8. 用配方法解一元二次方程22310x x −−=,配方正确的是( ).A. 2317416x ⎛⎫−= ⎪⎝⎭B. 23142x ⎛⎫−= ⎪⎝⎭C. 231324x ⎛⎫−= ⎪⎝⎭D. 231124x ⎛⎫−= ⎪⎝⎭9. 二次函数2(2)1y x =+−的图像大致为( )A. B. C. D.10. 把抛物线25y x =向左平移2个单位,再向上平移3个单位,得到的抛物线是( ) A. ()2523y x =−+B. ()2523y x =+−C. ()2523y x =++D. ()2523y x =−−11. 在同一直角坐标系中,直线1y ax =+与二次函数21y ax bx =++的图象可能是( )A. B. C. D.12. 二次函数21(0)y ax a =+<,线段AB 中,(1,1)A −−,(3,0)B ,将线段AB 向下平移3个单位得到线段MN ,若21(0)y ax a =+<的图象与线段MN 只有一个公共点,则a 的取值范围是( ) A. 5a <− B. 409a −≤< C. 459a −<≤−D. 50a −≤<二、填空题(共16分,每题2分)13. 写出一个图象开口向上,且经过点()01,的二次函数的解析式:_______. 14. 已知x =2是关于x 的一元二次方程kx 2+(k 2﹣2)x +2k +4=0的一个根,则k 的值为_____. 15. 抛物线23y x =向右平移1个单位,再向上平移4个单位后,得到新的抛物线的表达式是______. 16. 由于成本上涨,某商品经过两次连续涨价,每件售价由原来的50元涨到了72元.设平均每次涨价的百分率为x ,则由题意可列方程为,_______________.17. 已知函数()21y x =−−图像上两点()12,y A ,()2,a y B ,其中2a >,则1y 与2y 的大小关系是1y ____2y (填“<”、“>”或“=”)18. 一个三角形的两边长分别为3和6,第三边是方程2680x x −+=的一个根,则这个三角形的周长是______.19. 如图,在平面直角坐标系中,点A B ,的坐标分别为(2,2)−,(4,2)−,若抛物线2(0)y ax a =>与线段AB 没有交点,则a 的取值范围是______.20. 小轩从如图所示的二次函数y =ax 2+bx +c (a ≠0)的图象中,观察得出了下面五条信息: ①ab >0;②a +b +c <0;③b +2c >0;④a ﹣2b +4c >0;⑤.你认为其中正确的信息是_______三、解答题(共48分,21题16分,22、23、24、26每题6分,25题8分)21. 解方程(1)()219x −=; (2)2650x x −+=; (3)()3122x x x −=−; (4)22410x x −+=.22. 已知关于x 的方程:()()221100mx m x m m +−+−=≠.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数m 的值.23. 某学校要设计校园“数学嘉年华”活动的项目介绍展板.如图,现有一块长25dm ,宽8dm 的矩形展板,展示区域为全等的四个矩形,其中相邻的两个矩形展示区域之间及四周都留有宽度相同的空白区域.如果四个矩形展示区域的面积之和为2120dm ,求空白区域的宽度.24. 如图,已知二次函数y=x 2+bx+c 过点A (1,0),C (0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P 使△ABP 的面积为10,请直接写出点P 的坐标. 25. 已知二次函数228=+−y x x .(1)求此二次函数图象与两坐标轴的交点坐标,在给定的平面直角坐标系中画出这个二次函数的图象; (2)当5x 0−<<时,y 的取值范围是________; (3)求函数图象与两坐标轴交点所围成的三角形的面积.26. 在平面直角坐标系xOy 中,抛物线221(0)y mx mx m =−−>与x 轴的交点为A ,B ,与y 轴交于C .(1)求抛物线的对称轴和点C 坐标;(2)横、纵坐标都是整数的点叫做整点.拋物线在点A ,B 之间的部分与线段AB 所围成的区域为图形W(不含边界).m=时,求图形W内的整点个数;①当1②若图形W内有2个整数点,求m的取值范围.参考答案一、单选题(共36分,每题3分)1. 【答案】B【分析】一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.【详解】解:一元二次方程5x 2﹣1=4x 化为一般形式是5x 2﹣4x ﹣1=0,一次项系数分别为﹣4. 故选:B .【点睛】本题考查了一元二次方程的一般形式,解题的关键是通过移项,转化为一般形式,注意移项时符号的变化. 2. 【答案】A【分析】根据二次函数的定义:形如2y ax bx c =++( a ≠0)的函数叫二次函数,直接判断即可. 【详解】A 、281y x =+符合二次函数的定义,本选项符合题意; B 、81y x =+是一次函数,不符合题意; C 、8y x=是反比例函数,不符合题意; D 、281y x=+不是二次函数,不符合题意; 故选A【点睛】本题属于基础应用题,只需学生熟练掌握二次函数的定义,即可完成. 3. 【答案】D【分析】利用一元二次方程的定义和判别式的意义得到a≠0且24b ac −=(﹣2)2﹣4a >0,然后求出两个不等式的公共部分即可.【详解】解:根据题意得a ≠0且224(2)40b ac a −=−−>, 解得a <1且a ≠0. 故选:D .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c =0(a≠0)的根与b 2﹣4ac 有如下关系:当b 2﹣4ac >0时,方程有两个不相等的实数根;当b 2﹣4ac =0时,方程有两个相等的实数根;当b 2﹣4ac <0时,方程无实数根. 4. 【答案】A【分析】先计算根的判别式的值可得54k ∆=−,再利用0k <即可判断0∆>,最后根据根的判别式的意义进行判断. 【详解】解:()214154k k ∆=−−=−,而0k <,540k ∴−>,即0∆>,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查了一元二次方程的根的判别式的性质,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根. 5. 【答案】D【分析】本题主要考查了一元二次方程的有关概念,解题的关键是理解一元二次方程的有关概念.根据一元二次方程的有关概念进行分析即可.【详解】解:A .对于方程20ax bx c ++=,若0a =,则该方程不是关于x 的一元二次方程,故说法错误;B .方程234x =整理为一般形式为2340x −=,其常数项是4−,故说法错误;C .当一次项系数为0时,该方程不一定有解,故说法错误;D .若一元二次方程的常数项为0,则0必是它的一个根,说法正确. 故选:D . 6. 【答案】D【分析】根据方程有实数根,利用根的判别式来求k 的取值范围即可. 【详解】解:当方程为一元二次方程时,∵关于x 的方程()()2212110k x k x −+++=有实数根, ∴()()22121410k k ∆=+−⨯⨯≥−,且 1k ≠, 解得,14k ≥且1k ≠, 当方程为一元一次方程时,k =1,方程有实根 综上,14k ≥ 故选:D .【点睛】本题考查了一元二次方程方程的根的判别式,注意一元二次方程方程中0a ≠,熟悉一元二次方程方程的根的判别式的相关性质是解题的关键. 7. 【答案】D【详解】解:方程整理得:x 2﹣3x +1=0,这里a =1,b =﹣3,c =1,∵△=b 2﹣4ac =9﹣4=5,∴x .故选D . 8. 【答案】A【分析】按照配方法的步骤进行求解即可得答案.【详解】解:22310x x −−=, 移项得2231x x −=, 二次项系数化1的23122x x −=, 配方得22233132424x x ⎛⎫⎛⎫−+=+ ⎪ ⎪⎝⎭⎝⎭,即2317416x ⎛⎫−= ⎪⎝⎭, 故选:A .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤为(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方. 9. 【答案】D【详解】解:∵a =1>0, ∴抛物线开口向上,由解析式可知对称轴为x =﹣2,顶点坐标为(﹣2,﹣1). 故选:D . 10. 【答案】C【分析】按照“左加右减,上加下减”的规律进行解答即可.【详解】把抛物线25y x =向左平移2个单位,再向上平移3个单位,得到的抛物线是()2523y x =++ 故选C .【点睛】本题考查了抛物线的平移及抛物线解析式的变化规律:左加右减、上加下减. 11. 【答案】C【分析】此题主要考查了二次函数的图象、一次函数的图象与系数的关系,假设其中一个图象正确,然后根据图象得到系数的取值范围,然后根据系数的取值范围确定另一个图象的位置,看是否和图象相符即可求解.【详解】解:A 、根据一次函数图象知道0a <,与y 轴的交点不是(0,1),故A 选项错误;B 、根据二次函数的图象知道0a <,同时与y 轴的交点是(0,1),但是根据一次函数的图象知道0a >,故B 选项错误;C 、根据图象知道两个函数图象与y 轴的交点坐标为(0,1),同时也得到0a >,故C 选项正确;D 、根据一次函数图象知道0a <,根据二次函数的图象知道0a >,故D 选项错误. 故选:C . 12. 【答案】C【分析】本题考查二次函数图象及其性质、线段平移规律,根据线段平移特点求出坐标,再讨论二次函数与线段一个交点的情况,利用排除法即可求解.【详解】解:(1,1)A −−,(3,0)B ,线段AB 向下平移3个单位得到线段MN ,∴(1,4)M −−,(3,3)N −, ∴直线MN 解析式为11544y x =−, 二次函数21y ax =+,当图象过点M 时,将(1,4)M −−坐标代入函数式,得14a +=−,解得5a =−,此时联立2115441y x y ax ⎧=−⎪⎨⎪=+⎩解得12573,16x x ==−,∵191320−<<, ∴与抛物线有两个交点,故5a =−不符合条件; 故排除D 选项;当图象过点N 时,将(3,3)N −坐标代入函数式,得913a +=−,解得49a =−, 此时联立2115441y x y ax ⎧=−⎪⎨⎪=+⎩解得12191,20x x =−=, ∵57116−<−, ∴与抛物线只有一个交点,故49a =−符合条件; 故排除A 选项;当1a =−时,联立2115441y x y ax ⎧=−⎪⎨⎪=+⎩解得12x =−∵111322−<−<−+<, ∴与抛物线只有一个交点,故1a =−符合条件; 故排除B 选项. 故选:C .二、填空题(共16分,每题2分)13. 【答案】21y x =+等【分析】设二次函数的表达式为y=ax 2+bx+c(a ≠0),根据开口向上,a >0,可取a=1,将(0,1)代入得出c=1,即可得出二次函数表达式.【详解】设二次函数的表达式为y =ax 2+bx +c (a ≠0), ∵图象为开口向上,且经过(0,1), ∴a >0,c=1,∴二次函数表达式可以为:21y x =+(答案不唯一). 故答案为:21y x =+(答案不唯一).【点睛】本题主要考查了二次函数的性质,得出a 的符号和c=1是解题关键. 14. 【答案】﹣3【分析】把x =2代入kx 2+(k 2﹣2)x +2k +4=0得4k +2k 2﹣4+2k +4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.【详解】把x =2代入kx 2+(k 2﹣2)x +2k +4=0得4k +2k 2﹣4+2k +4=0, 整理得k 2+3k =0,解得k 1=0,k 2=﹣3, 因为k ≠0, 所以k 的值为﹣3. 故答案为﹣3.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 15. 【答案】()2314y x =−+【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:抛物线23y x =向右平移1个单位,再向上平移4个单位后,得到新的抛物线的表达式是:()2314y x =−+,故答案是:()2314y x =−+.【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减. 16. 【答案】()250172x +=【分析】可先表示出第一次涨价后的价格,然后可得第二次涨价后的价格,根据两次连续涨价,每件售价由原来的50元涨到了72元列方程即可. 【详解】解:设平均每次涨价的百分率为x ,则第一次涨价后的价格为()501x +,第二次涨价后的价格为()2501x +,∴可列方程为()250172x +=, 故答案为:()250172x +=.【点睛】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=. 17. 【答案】>【分析】根据二次函数的图象与性质即可完成.【详解】10−<,且对称轴为直线1x =,∴当1x >时,函数值随自变量的增大而减小;∵2a >,21y y ∴<,故答案为:>.【点睛】本题考查了二次函数的图象与性质,掌握二次函数的性质是关键.18. 【答案】13【分析】本题考查了解一元二次方程,三角形三边关系.先解一元二次方程,根据三角形三边关系确定第三边的长,进而即可求解.【详解】解:2680x x −+=,∴()()240x x −−=,解得:1242x x ==,.当4x =时,三边为3,4,6,能组成三角形,∴这个三角形的周长为36413++=;当2x =时,三边为2,3,6,不能组成三角形,故答案为:13.19. 【答案】108a <<或12a > 【分析】本题考查了二次函数的图象和性质,分别把点A B 、坐标代入函数解析求出a 的值,再根据二次函数的图象和性质解答即可求解,掌握二次函数的图象和性质是解题的关键.【详解】解:如图,当抛物线2(0)y ax a =>过点A 时,把()2,2A −代入2y ax = 得,24a =,解得12a =; 过点B 时,把()4,2B −代入2y ax =得,216a =, 解得18a =; ∴当抛物线2(0)y ax a =>与线段AB 没有交点时,由a 的大小与抛物线开口大小关系可知a 的取值范围为108a <<或12a >, 故答案为:108a <<或12a >. 20. 【答案】①②③④⑤【详解】①如图,∵抛物线开口方向向下,∴a<0.∵对称轴x=−2b a =−13,∴b=23a<0,∴ab>0.故①正确; ②如图,当x=1时,y<0,即a+b+c<0.故②正确;③如图,当x=−1时,y=a−b+c>0,∴2a−2b+2c>0,即3b−2b+2c>0,∴b+2c>0.故③正确;④如图,当x=−1时,y>0,即a−b+c>0.抛物线与y 轴交于正半轴,则c>0.∵b<0,∴c−b>0,∴(a−b+c)+(c−b)+2c>0,即a−2b+4c>0.故④正确;⑤如图,对称轴x=−2b a =−13,则a=32b.故⑤正确. 故答案为①②③④⑤点睛:此题考查二次函数的性质,由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.三、解答题(共48分,21题16分,22、23、24、26每题6分,25题8分)21. 【答案】(1)14x =,22x =−;(2)15x =,11x =;(3)11x =,123x =;(4)122x =,222x =. 【分析】本题主要考查解一元二次方程,掌握直接开平方法,因式分解法,公式法是解题的关键. (1)用直接开平方法,即可求解;(2)将方程左边进行因式分解,化为()()510x x −−=,再解一元一次方程即可求解;(3)整理后,将方程右边的项移到左边进行因式分解,化为()()1320x x −−=,再解一元一次方程即可求解;(4)可求2a =,4b =−,1c =,80∆=>,由求根公式2b x a−=,进行求解即可. 【小问1详解】解:()219x −=,开方得13x −=±,∴14x =,22x =−;【小问2详解】解:2650x x −+=,因式分解得()()510x x −−=,50x ∴−=或10x −=,∴15x =,11x =;【小问3详解】解:()3122x x x −=−,整理得()()31210x x x −−−=,∴()()1320x x −−=,10x ∴−=或320x −=,∴11x =,123x =;【小问4详解】解:22410x x −+=, 2a =,4b =−,1c =,∴()224442180b ac ∆=−=−−⨯⨯=>,∴4242x ±±===,∴122x =,222x −=. 22. 【答案】(1)见解析 (2)1±【分析】(1)说明该方程的判别式大于等于零即可证明结论;(2)利用因式分解法求出方程的两个根,然后结合题意即可解答.【小问1详解】证明:∵()()22221414414410m m m m m m m ∆=−−−=−+−+=>,∴方程有两个不相等的实数根.【小问2详解】解:∵()()221100mx m x m m +−+−=≠, ∴()()110x mx m ++−=∴12111,1m x x m m−=−==−, ∵方程的两个实数根都是整数.∴整数m 的值为1±.【点睛】本题主要考查了一元二次方程根的判别式和解一元二次方程等知识点,掌握一元二次方程根的个数与∆的关系和利用因式分解法解一元二次方程是解题关键.23. 【答案】1dm【分析】设空白区域的宽度为dm x ,根据题意,列出一元二次方程,求解即可.【详解】解:设空白区域的宽度为dm x ,根据题意可得,()258582255120x x x ⨯−⨯−⨯−=,解得18x =(舍去),21x =,答:空白区域的宽度应是1dm .【点睛】此题考查了一元二次方程的应用,解题的关键是理解题意,找到等量关系,正确的列出一元二次方程.24. 【答案】(1)二次函数的解析式为y=x 2+2x ﹣3.(2)P (﹣4,5)(2,5).【详解】试题分析:(1)根据曲线上点的坐标与方程的关系,把A (1,0),C (0,﹣3)代入)二次函数y=x 2+bx+c 中,求出b 、c 的值,即可得到函数解析式是y=x 2+2x ﹣3.∵二次函数y=x 2+bx+c 过点A (1,0),C (0,﹣3),∴1b c 0{c 3++==−,解得b 2{c 3==−.∴二次函数的解析式为y=x 2+2x ﹣3.(2)求出A 、B 两点坐标,得到AB 的长,再设P (m ,n ),根据△ABP 的面积为10可以计算出n 的值,然后再利用二次函数解析式计算出m 的值即可得到P 点坐标:∵当y=0时,x 2+2x ﹣3=0,解得:x 1=﹣3,x 2=1.∴A (1,0),B (﹣3,0).∴AB=4.设P (m ,n ),∵△ABP 的面积为10,∴12AB•|n|=10,解得:n=±5. 当n=5时,m 2+2m ﹣3=5,解得:m=﹣4或2.∴P (﹣4,5)(2,5).当n=﹣5时,m 2+2m ﹣3=﹣5,方程无解.∴P (﹣4,5)(2,5).25. 【答案】(1)图象与x 轴交点坐标为()4,0−,()2,0,图象与y 轴交点坐标为()0,8−,图象见解析 (2)97y −≤<;(3)27【分析】此题主要考查了配方法求函数顶点坐标以及利用图象判断函数值以及三角形面积求法,正确画出函数图象是解题关键.(1)利用顶点式得出顶点坐标,进而得出函数与坐标轴交点进而画出函数图象;(2)利用1x =−以及5x =−是求出函数值进而得出答案;(3)利用函数图象和三角形的面积公式得出三角形面积即可.【小问1详解】解:解:()222819y x x x =+−=+−;顶点横坐标为()1,9−−,对称轴为直线1x =−,当0y =,则()2019x =+−,解得:14x =−,22x =,故图象与x 轴交点坐标为:()4,0−,(2,0),当0x =,8y =−,故图象与y 轴交点坐标为:()0,8−,点()0,8−关于对称轴1x =−的对称点为()2,8−−,这个二次函数的图象如图所示:【小问2详解】解:当5x 0−<<时,由图象知,当1x =−时,二次函数有最小值9y =−,当5x =−时,()25197y =−+−=,故当5x 0−<<时,y 的取值范围是:97y −≤<;【小问3详解】解:如图所示:函数图象与两坐标轴交点所围成的三角形的面积为:169272⨯⨯=. 26. 【答案】(1)抛物线的对称轴为1x =,(0,1)C −;(2)①1个;②12m <≤.【分析】(1)先根据二次函数的对称轴2b x a =−可得其对称轴,再令0x =,求出y 的值,从而可得出点C 坐标;(2)①先得出抛物线的解析式,再画出图象,结合图象和整点的定义即可得;②先将二次函数的解析式化为顶点式,求出其顶点坐标,再结合图象,找出两个临界位置,分别求出m 的值,由此即可得出答案.【详解】(1)抛物线221y mx mx =−−的对称轴为212m x m−=−= 令0x =得:1y =−则点C 坐标为(0,1)C −;(2)①当1m =时 2221(1)2y x x x =−−=−−,画出其图象如下所示:结合图象和整点的定义可得:图形W 内的整点只有1个,即点(1,1)−;②将抛物线221y mx mx =−−化为顶点式2(1)1y m x m =−−−则抛物线的顶点坐标为(1,1)m −−,且图象经过定点(0,1)C −结合图象可知,若图形W 内的整点有2个,则这两个整点只能是(1,1),(1,2)−−因此有两个临界点:抛物线顶点为()1,2−和抛物线顶点为()1,3−当抛物线顶点为()1,2−时,12m −−=−,解得1m =当抛物线顶点为()1,3−时,13m −−=−,解得2m =则m 的取值范围为12m <≤.【点睛】本题考查了二次函数的图象与性质,较难的是题(2)②,掌握图象法,正确找出两个临界位置是解题关键.。
初三数学月考试卷
初三数学月考试卷一、选择题(每小题3分,共30分)1.下列函数中,是二次函数的是()A. y = 3 - 3x^2B. y = 2x + 1C. y = x^2 - 1/xD. y = (x - 1)^2 + 2答案:D2.已知关于x的一元二次方程kx^2 - 2x + 1 = 0有两个不相等的实数根,则k的取值范围是()A. k > 0B. k < 1C. k > 1D. k < 0且k ≠ -1答案:B(注意:此题需考虑判别式Δ = b^2 - 4ac > 0的条件,并排除k = 0的情况)3.将抛物线y = 3x2 - 2x + 1,则a = _______,b = _______。
A. a = 4, b = 0B. a = -4, b = 6C. a = -2, b = 6D. a = 2, b = 0答案:B(通过平移规律求解)4.已知二次函数y = ax^2 + bx + c的图象经过点A(-1, 0),B(3, 0),C(0, -3),则该二次函数的解析式为()A. y = x^2 - 2x - 3B. y = x^2 + 2x - 3C. y = -x^2 + 2x + 3D. y = -x^2 - 2x + 3答案:A(通过待定系数法求解)5.若a是关于x的方程3x2 + 1 = 0的一个根,-a是关于x的方程3x2 - 1 = 0的一个根,则a的值为()A. 1或-1B. 2或-2C. 1D. -1答案:A(通过代入法求解)二、填空题(每小题4分,共24分)6.已知二次函数y = ax^2 + bx + c的对称轴为直线x = 1,且经过点(2, 3)和(-3, -12),则此二次函数的解析式为_______。
答案:y = x^2 - 2x(通过对称轴和已知点求解)7.若关于x的一元二次方程kx^2 - 6x + 9 = 0有两个相等的实数根,则k的值为_______。
2024-2025学年九年级上学期第一次月考数学试题(9月)[含答案]
九年级数学(考试时间:60分钟,满分:100分)一、选择题(本大题共5小题,每小题2分,共10分).1.已知O e 的半径为4,平面内有一点M .若5OM =,则点M 与O e 的位置关系是( ).A .在圆内B .在圆上C .在圆外D .不能确定2.已知x=2是关于x 的一元二次方程x 2+ax=0的一个根,则a 的值为( )A .-2B .2C .12D .12-3.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是 AC 上的点.连接AC ,若20BAC =°∠,则D Ð的度数为( ).A .100°B .110°C .120°D .130°4.某商品经过连续两次降价,销售单价由原来200元降到160元.设平均每次降价的百分率为x ,根据题意可列方程为( )A .200(1-x )2=160B .200(1+x )2=160C .160(1+x )2=200D .160(1-x )2=2005.如图,四边形ABCD 内接于O e ,AE CB ^交CB 的延长线于点E ,若BA 平分DBE Ð,6AD =,4CE =,则AE 的长为( ).A .2B .3C .D .二、填空题(本大题共10小题,每小题3分,共30分)6.方程230x x -=的根为 .7.用配方法解方程2250x x --=时,原方程应变形为__________.8.写一个一元二次方程,使得它的两个根为1-,3,该方程为 .9.如图,等边△ABC 内接于⊙O ,AD 是直径,则∠CBD= °.10.如图,C 为O e 的劣弧AB 上一点,若124AOB Ð=o ,则ACB =∠ .11.若1x 、2x 是一元二次方程2210x x +-=的两个实数根,则12122x x x x +-的值为 .12.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,22.54A OC CD Ð=°=,,的长为 .13.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程()2(2)20a xb xc -+-+=的解为 .14.已知O e 的半径1OA =,弦AB ,若在O e 上找一点C ,则BCA Ð= °.15.如图,线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,若142Ð=°,则AOC Ð= °.三、解答题(本大题共7小题,共60分)16.解下列方程(1)2316x x-=(2)2(21)63x x -=-.17.已知关于x 的方程x 2+kx -2=0.(1)求证:不论k 取何实数,该方程总有两个不相等的实数根;(2)若该方程的一个根为2,求它的另一个根.18.如图,AD 、BC 是O e 的弦,且AD BC =,AC 是直径,求证:四边形ABCD 是矩形.19.已知关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x .(1)若2,8p q =-=-,则24p q -的值是 ,方程的解是 ;(2)若123,2x x ==-,求24p q -的值;(3)用含12,x x 的代数式表示24p q -,下列结论中正确的是( )A. 22124()p q x x -=+B. 22124()p q x x -=C. 22124()p q x x -=- D. 2212124()p q x x x x -=++20.某商店经销的某种商品,每件成本为40元.调查表明,这种商品的售价为50元时,可售出200件;售价每增加5元,其销售量将减少50件.为了实现2000元的销售利润,这种商品的售价应定为多少元?21.如图,已知点A 、B 是平面内两点,线段a 长度一定,在平面内作O e 使得它过点A 、B 且半程长为a (尺规作图,保留作图痕迹,写出必要的作图说明).22.如图,四边形ABCD 是O e 的内接四边形,AC BD ^,OF AB ^,垂足分别是E 、F .(1)直接写出OF 与CD 的数量关系__________,并证明你的结论;(2)若AB AC ==8BC =.求CD 的长.1.C【分析】本题考查了点与圆的位置关系:设圆的半径为r ,点P 到圆心的距离OP 为d ,当d r >时,则点P 在圆外;当d r =时,点P 在圆上;当d r <时,点P 在圆内,根据点P 与圆的位置关系的判定方法对点M 与O e 位置关系进行判断.【详解】解:∵O e 的半径为4,5OM =∴点M 到圆心的距离大于圆的半径,∴点M 在圆外.故选:C .2.A【分析】把x=2代入x 2+ax=0,即可求解.【详解】∵x=2是关于x 的一元二次方程x 2+ax=0的一个根,∴2220a +=,解得:a=-2.故选A.【点睛】本题主要考查一元二次方程的根的定义,理解方程的根的定义,是解题的关键.3.B【分析】本题考查了圆周角定理,连接BD ,根据圆周角定理求出ADB Ð及BDC Ð的度数,进而可得出结论,根据题意作出辅助线,构造出圆周角是解题的关键.【详解】解:连接BD ,∵AB 是半圆的直径,∴90ADB Ð=°,∵20BAC =°∠,∴20BDC BAC Ð=Ð=°,∴9020110ADC ADB BDC Ð=Ð+Ð=°+°=°,故选:B .4.A【分析】根据某商品经过连续两次降价,销售单价由原来200元降到160元,平均每次降价的百分率为x ,可以列出相应的方程,本题得以解决.【详解】解:由题意可得,200(1-x )2=160,故选:A .【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.5.D【分析】连接AC ,根据圆内接四边形对角互补得到ABE ADC Ð=Ð,根据 AD AD =得到ABD ACD Ð=Ð结合角平分线得到ABE ABD Ð=Ð,即可得到:ADC ACD Ð=Ð,从而得到AC AD =,结合勾股定理即可得到答案;【详解】解:连接AC ,∵四边形ABCD 内接于O e ,∴180ADC ABC Ð+Ð=°,∵180ABE ABC Ð+Ð=°,∴ABE ADC Ð=Ð,∵ AD AD =,∴ABD ACD Ð=Ð,∵BA 平分DBE Ð,∴ABE ABD Ð=Ð,∴ADC ACD Ð=Ð,∴AC AD =,∵AE CB ^,6AD =,4CE =,∴6AC =∴AE ==故选:D .【点睛】本题考查勾股定理及圆内接四边形对角互补,同弧所对的圆周角相等,等角对等边等知识,掌握这些知识是解题的关键.6.120,3x x ==【详解】解:x (x -3)=0 ,解得:x 1=0,x 2=3.故答案为:x 1=0,x 2=3.7.()216x -=【分析】把常数项﹣5移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【详解】移项得:x 2﹣2x =5,配方得:x 2﹣2x +1=5+1,即(x ﹣1)2=6.故答案为(x ﹣1)2=6.【点睛】本题考查了用配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8.2230x x --=(答案不唯一)【分析】本题主要考查一元二次方程的根与系数的关系,根据一元二次方程的根与系数的关系可得出122b x x a +=-=,123c x x a ×==-,令1a =,则2b =-,3c =-则可得出一个符合条件的一个一元二次方程.【详解】解:∵一元二次方程的两个根为1-,3,∴122b x x a+=-=,123c x x a ×==-,令1a =,则2b =-,3c =-∴符合条件的一个一元二次方程为:2230x x --=,故答案为:2230x x --=.9.30°.【详解】解:∵△ABC 是等边三角形,∴∠ABC=∠C=∠BAC =60°,根据圆周角定理得:∠D=∠C=60°,∵AD 为直径,∴∠ABD=90°,∴∠BAD=30°∴∠CAD=∠BAC-∠BAD=90°-60°=30°∴∠CBD=∠CAD=30°.故答案为:30°10.118°【分析】本题考查了圆周角定理和圆内接四边形性质的应用,能正确作辅助线是解此题的关键.作圆周角ADB Ð,根据圆周角定理求出D Ð的度数,根据圆内接四边形性质求出C Ð即可.【详解】解:如图作圆周角ADB Ð,使D 在优弧上,124AOB Ð=°Q ,1622D AOB \Ð=Ð=°,A Q 、D 、B 、C 四点共圆,180ACB D \Ð+Ð=°,118ACB \Ð=°,故答案为:118°.11.0【分析】根据一元二次方程根与系数的关系求得1212,x x x x +的值,代入代数式即可求解.【详解】解:解:∵1x 、2x 是一元二次方程2210x x +-=的两个实数根,∴122x x +=-,121x x =-.∴12122x x x x +-()2210=--´-=,故答案为:0.【点睛】本题考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程()200ax bx c a ++=¹的两根,12b x x a +=-,12c x x a=.12.【分析】本题考查了垂径定理,等腰直角三角形的性质和圆周角定理.解题的关键是熟练掌握以上知识点,根据圆周角定理得245BOC A Ð=Ð=°,由于圆O 的直径AB 垂直于弦CD ,根据垂径定理得CE DE =,且可判断OCE △为等腰直角三角形,所以CE ==然后利用2CD CE =进行计算.【详解】解:∵22.5A Ð=°,∴245BOC A Ð=Ð=°,∵圆O 的直径AB 垂直于弦CD ,∴CE DE =,则OCE △为等腰直角三角形,∵OC∴CE ==∴2CD CE ==.故答案为:13.11x =,25x =【分析】本题考查一元二次方程的解的概念,将第二个方程中的()2x -看成一个整体,则由第一个方程的解可知,21x -=-或3,从而可得出答案.【详解】解:∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴方程()2(2)20a x b x c -+-+=的解为21x -=-或3,解得:11x =,25x =,故答案为:11x =,25x =.14.45°或135°.【分析】本题考查了圆周角定理,圆内接四边形的性质,勾股定理逆定理,先由勾股定理逆定理求出90AOB Ð=°,分别在优弧 AB 和劣弧 AB 取点1C 和2C ,连接1AC ,1BC ,2AC ,2BC ,则145BC A Ð=°,然后根据圆内接四边形的性质可求出2135BC A Ð=°,掌握知识点的应用是解题的关键.【详解】解:∵1OA OB ==,AB =,∴222OA OB AB +=,∴90AOB Ð=°,如图,分别在优弧 AB 和劣弧 AB 取点1C 和2C ,连接1AC ,1BC ,2AC ,2BC ,∴145BC A Ð=°,∵四边形12AC BC 是圆内接四边形,∴12180BC A BC A Ð+Ð=°,∴2135BC A Ð=°,故答案为:45°或135°.15.84【分析】本题主要考查线段的垂直平分线的性质,多边形内角和定理,三角形外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.连接BO ,并延长BO 到P ,根据线段的垂直平分线的性质得AO OB OC ==,90BDO BEO Ð=Ð=°,根据四边形的内角和为360°得180DOE ABC +=°∠∠,根据外角的性质得AOP A ABO COP C OBC Ð=Ð+ÐÐ=Ð+Ð,,相加可得结论.【详解】解:连接BO ,并延长BO 到P ,∵线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,∴AO OB OC ==,90BDO BEO Ð=Ð=°,∴180DOE ABC +=°∠∠,∵1180DOE +=°∠∠,∴142ABC Ð=Ð=°,∵AO OB OC ==,∴A ABO Ð=Ð,OBC C Ð=Ð,∵AOP A ABO Ð=Ð+Ð,COP C OBC Ð=Ð+Ð,∴24284AOC AOP COP A ABC C Ð=Ð+Ð=Ð+Ð+Ð=´°=°;故答案为:84.16.(1)11x =21x =(2)112x =,22x =.【分析】本题考查了解一元二次方程.(1)根据配方法解一元二次方程;(2)先移项,然后根据因式分解法解一元二次方程,即可求解.【详解】(1)解:2316x x -=,2361x x -=,2123x x -=,24213x x -+=,()2413x -=,1x -=11x =21x =(2)解:2(21)63x x -=-,()()2213210x x ---=,()()212130x x ---=,∴210x -=或240x -=,∴112x =,22x =.17.(1)见解析;(2)它的另一个根为-1.【分析】(1)求判别式b 2-4ac =k 2+8>0即可证明;(2)利用根与系数的关系即可求解.【详解】(1) ∵a =1 ,b =k ,c =-2 ,∴b 2-4ac =k 2+8 ,∵不论k 取何实数,k 2≥0 ,∴k 2+8>0即b 2-4ac >0 ,∴不论k 取何实数,该方程总有两个不相等的实数根;(2) ∵a =1 ,c =-2, x 1=2,∴ x 1g x 2=-2,2x 2=-2,∴ x 2=-1,∴另一个根为-1.【点睛】本题考查一元二次方程的根与系数的关系,熟练掌握一元二次方程的根存在性的判别方法及一元二次方程的根与系数的关系是解题的关键.18.见详解【分析】本题主要考查了直径所对的圆周角等于90度,矩形的判定,勾股定理,根据直径所对的圆周角等于90度,可得出90D B Ð=Ð=°,根据勾股定理可得出2222AB BC CD AD +=+,再由AD BC =即可得出AB CD =.进而可得出四边形ABCD 是平行四边形,结合90D Ð=°即可证明.【详解】证明:∵AC 为O e 的直径,∴90D B Ð=Ð=°,在Rt ABC △中,222AB BC AC +=,在Rt ADC V 中,222CD AD AC +=,∴2222AB BC CD AD +=+,由∵AD BC =,∴AB CD =,∴四边形ABCD 是平行四边形,又∴90D Ð=°,∴四边形ABCD 是矩形.19.(1)36,124,2x x ==-(2)25(3)C【分析】(1)先把2,8p q =-=-,代入24p q -,可得2436p q -=,再代入原方程,再利用因式分解法,即可求解;(2)根据一元二次方程根与系数的关系,即可求解;(3)根据一元二次方程根与系数的关系,再利用完全平方公式的变形,即可求解.【详解】(1)解:∵2,8p q =-=-,∴()()22424836p q -=--´-=,∴方程为228=0x x --,∴()()420x x -+= ,解得:124,2x x ==-;(2)解:∵关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x ,∴1212,x x p x x q +=-×=,∵123,2x x ==-,∴()()32,32p q -=+-=´- ,∴1,6p q ==- ,∴()22414625p q -=-´-=;(3)解:∵关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x ,∴1212,x x p x x q +=-×=,∴()()()222222221212112212112212444242p q p q x x x x x x x x x x x x x x x x -=--=+-×=+×+-×=-×+=-.故选:C【点睛】本题主要考查了解一元二次方程和一元二次方程根与系数的关系,熟练掌握一元二次方程的解法和一元二次方程根与系数的关系是解题的关键.20.这种商品的售价应定为50元或60元.【分析】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出方程.设这种商品的售价应定为x 元,利用销售总利润等于每件利润乘以销售数量,即可得出关于x 的一元二次方程,解方程即可得到答案.【详解】解:设这种商品的售价应定为x 元,根据题意列方程得:50(40)2005020005x x éù-æö--=ç÷êúèøëû 整理得:2x 110x 30000-+=解得:150x =,260x =,答:这种商品的售价应定为50元或60元.21.见详解【分析】本题主要考查了作图,画圆,作线段垂直平分线,连接AB ,作AB 的垂直平分线CD ,以点A 为圆心线段a 为半径画弧交CD 于点O ,再以点O 为圆心线段AO 为半径作圆即为所求.【详解】解:如下图:O e 即为所求:22.(1)12OF CD =,证明见详解(2)【分析】(1)连接AO 并延长交O e 于点G ,连接BG ,证明OF 是ABG V 的中位线,则有12OF BG =,再根据同弧所对的圆周角相等可得AGB ECB Ð=Ð,直径所对的圆周角是直角可得90ABG Ð=°,则有90BAG AGB Ð+Ð=°,根据AC BD ^,90ECB EBC Ð+Ð=°,从而可得BAG EBC Ð=Ð,BG CD =,继而可得12OF CD =;(2)先证明AG BC ^,由等腰三角形三线合一的性质得出142BH HC BC ===,再由勾股定理求出AH ,再证明AHC BHG ∽V V ,由相似三角形的判定以及性质即可得出答案.【详解】(1)解:12OF CD =,证明如下:连接AO 并延长交O e 于点G ,连接BG ,∵OF AB ^,∴AF BF =,∵AO GO =,∴OF 是ABG V 的中位线,∴12OF BG =,∵AG 是O e 的直径,∴90ABG Ð=°,∴90BAG AGB Ð+Ð=°,∵AC BD ^,∴90CEB Ð=°,∴90ECB EBC Ð+Ð=°,∵ AB AB =,∴AGB ECB Ð=Ð,∴BAG EBC Ð=Ð,∴BG CD =,∴12OF CD =;(2)∵AB AC =,∴ACB ABC Ð=Ð,∵ACB AGB Ð=Ð,∴ABC AGB Ð=Ð,∵90ABC CBG AGB GBC Ð+Ð=Ð+Ð=°∴AG BC ^,∵AB AC =,8BC =,∴142BH HC BC ===,∴8AH ===,∵ACB HGB Ð=Ð,AHC BHG Ð=Ð,∴AHC BHG ∽V V ,AH BH,84=,∴BG =∴CD BG ==.【点睛】本题主要考查了直径所对的圆周角是90°,同弧所对的圆周角相等,三角形中位线的判定以及性质,等腰三角形的性质,相似三角形的判定以及性质,勾股定理等知识, 掌握这些性质以及判定是解题的关键.。
2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)
2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.一元二次方程4x2+x−3=0中一次项系数、常数项分别是( )A. 2,−3B. 0,−3C. 1,−3D. 1,02.解方程(x+1)2=3(1+x)的最佳方法是( )A. 直接开平方法B. 配方法C. 公式法D. 因式分解法3.抛物线y=−3x2+2x−1与y轴的交点为( )A. (0,1)B. (0,−1)C. (−1,0)D. (1,0)4.若关于x的一元二次方程(k−1)x2+x+1=0有实数根,则k的取值范围是( )A. k≥54B. k>54C. k>54且k≠1 D. k≤54且k≠15.若关于x的方程x2−kx−3=0的一个根是x=3,则k的值是( )A. −2B. 2C. −12D. 126.关于x的方程|x2−2x−3|=a有且仅有两个实数根,则实数a的取值范围是( )A. a=0B. a=0或a=4C. a>4D. a=0或a>47.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x个,根据题意,下面列出的方程正确的是( )A. 12x(x+1)=110 B. 12x(x−1)=110 C. x(x+1)=110 D. x(x−1)=1108.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A. 无实数根B. 有两个相等实数根C. 有两个同号不等实数根D. 有两个异号实数根9.二次函数y=ax2+bx+c,若ab<0,a−b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )A. y1=−y2B. y1>y2C. y1<y2D. y1、y2的大小无法确定10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc<0;②b>a+c;③2a−b=0;④b2−4ac<0.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。
2023-2024学年上海市29校联考九年级上学期月考数学试题及解析
2023学年第一学期九年级数学学科素养测试(满分:150分 完成时间:100分钟)一、选择题:(本大题共6小题,每题4分,满分24分)1. 如果ABC DEF ∽△△(其中顶点A 、B 、C 依次与顶点D 、E 、F 对应)那么下列等式中,不一定成立的是( ) A. A D ∠=∠ B.A DB E∠∠=∠∠ C. AB DE =D.AB DEAC DF=【答案】C 【解析】【分析】本题考查了相似三角形的性质,主要利用了相似三角形对应角相等,对应边成比例.根据相似三角形对应角相等,对应边成比例解答即可. 【详解】解:ABC DEF △∽△,A ∴、A D ∠=∠正确,故本选项错误;B 、A DB E∠∠=∠∠正确,故本选项错误; C 、AB DE =不一定成立,故本选项正确; D 、AB DEAC DF=正确,故本选项错误. 故选:C .2. 已知点D 、E 分别是ABC 的边AB 、AC 上,DE BC ∥,且:1:3ADE DBCE S S =△四边形,那么:AD DB 的值是( ).A.14B.13C.12D. 1【答案】D 【解析】【分析】由:1:3ADE DBCE S S =△四边形可得:1:4ADE ABC S S =△△ 再证ADE ABC △△∽可得12AD AB =,则AD BD =即可解答;掌握相似三角形的面积比等于相似比的平方是解题的关键.【详解】解:如图:∵:1:3ADE DBCE S S =△四边形 ∴()::1:4ADE ABCADE ADE DBCE S SS S S =+=△△△四边形∵DE BC ∥, ∴ADE ABC △△∽,∴12AD AB == 即AD BD =, ∴:1AD DB =.故选D .3. 如果抛物线2y ax bx c =++不经过第二象限,且在y 轴的左侧是上升的,那么下列对其顶点的描述中,正确的是( ).A. 其顶点一定不在第一、二象限B. 其顶点一定不在第二、三象限C. 其顶点一定不在第三、四象限D. 其顶点一定不在第四、一象限【答案】B 【解析】【分析】根据题意可知a<0、对称轴bx 02a=−>,然后根据对称轴确定顶点的可能位置即可;根据题意确定对称轴的位置是解题的关键.【详解】解:∵抛物线2y ax bx c =++不经过第二象限,且在y 轴的左侧是上升的, ∴a<0,对称轴bx 02a=−>, ∴顶点不可能在第二、三象限. 故选B .4. 已知在四边形ABCD 中,记AB a =,BC b =,CD c =,DA d =.如果向量a 、b 、c 、d 都是单位向量,那么下列描述中,正确的是( ) A. 向量a 与b 方向相同,且向量c 与d 方向相同 B. 向量a 与c 方向相同,且向量b 与d 方向相同 C. 向量a 与b 方向相反,且向量c 与d 方向相反D. 向量a 与c 方向相反,且向量b 与d 方向相反 【答案】D 【解析】【分析】本题考查了向量的定义,根据题意作出图形,根据向量的定义及数形结合即可求解,熟练掌握向量的定义,利用数形结合思想解决问题是解题的关键. 【详解】解:如图:∴向量a 与c 方向相反,且向量b 与d 方向相反,故选D .5. 如图,在ABC 中,CD 是边AB 上的高,已知90ACB ∠=︒,1AB =.下列线段中,其长为sin 2A 的是( )A. BCB. ACC. BDD. AD【答案】C 【解析】【分析】本题考查正弦的定义,掌握sin A A ∠=的对边斜边是解题的关键.【详解】解:∵CD 是边AB 上的高,已知90ACB ∠=︒, ∴90A ACD ACD DCB ∠+∠=∠+∠=︒, ∴A DCB ∠=∠, 又∵sin BC A AB =,sin BDDCB BC∠=, ∴2sin sin sin =BC BDA A DCB BD AB BC=⋅∠⋅=, 故选C .6. 已知抛物线M :2y ax bx c =++的顶点为P ,抛物线N :2y ax bx d =−++的顶点为Q .命题1:如果点P 在抛物线N 上,那么点Q 也在抛物线M 上;命题2:如果点P 不在抛物线N 上,那么点Q 也不在抛物线M 上.下列说法中,正确的是( ) A. 命题1是真命题,命题2也是真命题 B. 命题1是真命题,命题2是假命题 C. 命题1是假命题,命题2是真命题 D. 命题1是假命题,命题2也是假命题【答案】A 【解析】【分析】根据题意可知抛物线M 、抛物线N 开口方向相反,对称轴互为相反数,据此判断即可;根据二次函数的性质的抛物线M 、抛物线N 的关系是解题的关键.【详解】解:∵抛物线M :2y ax bx c =++的顶点为P ,抛物线N :2y ax bx d =−++的顶点为Q . ∴抛物线M 、抛物线N 开口方向相反,对称轴互为相反数;∴如果点P 在抛物线N 上,那么点Q 也在抛物线M 上;原说法是真命题; 如果点P 不在抛物线N 上,那么点Q 也不在抛物线M 上;即原说法是真命题. 故选A二、填空题:(本大题共12题,每题4分,满分48分)7. 已知::1:3:6a b c =,30a b c ++=,那么−−=c b a ________. 【答案】6 【解析】【分析】设a n =,则3,6b n c n ==,然后代入30a b c ++=求得n ,进而求得a 、b 、c 的值,最后代入计算即可;掌握一元一次方程的应用是解题的关键.【详解】解:设a n =,则3,6b n c n ==,则3630n n n ++=,解得:3n =; ∴3,9,18a b c ===, ∴18936c b a −−=−−=. 故答案为6.8. 已知抛物线2y ax bx c =++的顶点在直线y x =上,且开口向下,请写出一个满足上述条件的抛物线的表达式:________.【答案】2y x =−(答案不唯一)【解析】【分析】先根据开口向下可知a<0,再根据顶点在y x =上,即2424b ac ba a−−=,整理得2240b b ac −−=,然后确定符合条件的值即可解答.【详解】解:∵抛物线2y ax bx c =++开口向下, ∴a<0,∵抛物线2y ax bx c =++的顶点在直线y x =上,∴2424b ac b a a−−=,即2240b b ac −−=,如:当1a =−,0b c ==符合题意. 故答案为:2y x =−(答案不唯一). 9. 已知点()11,A y 和()22,By 在二次函数()220y axax c a =++<图像上,则12y y −________0.(填“>”、“<”或“=”) 【答案】> 【解析】【分析】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.根据二次函数的解析式得出图象的开口向下,对称轴是直线=1x −,根据1x >−时,y 随x 的增大而减小,即可得出答案. 【详解】解:()220y ax ax c a =++<,∴图象的开口向下,对称轴是直线212ax a=−=−, ∴1x >−时,y 随x 的增大而减小, 112−<<,21y y ∴<, 120y y ∴−>,故答案为>.10. 已知平面直角坐标系中点()3,4A 和()0,B b ,满足1tan 2ABO ∠=(O 为原点),那么b 的值为________.【答案】2−或10##10或2− 【解析】【分析】本题考查的是坐标与图形,锐角三角函数的应用,分当点B 在y 轴的正半轴上和负半轴上两种情况,分别画出图形、根据正切的定义列方程求解即可;清晰的分类讨论是解答本题的关键. 【详解】解:①如图:当点B 在y 轴的正半轴上时,则4BC b =−,∵1tan 2ABO ∠=, ∴12AC BC =,即3142b =−,解得:10b =;②如图:当点B 在y 轴的负半轴上时,则4BC b =−,∵1tan 2ABO ∠=,∴12AC BC =,即3142b =−+,解得:=2b −.故答案为2−或10.11. 平面直角坐标系中点()30A ,、()02B ,、()53C −,,设OA a =,OB b =,那么向量CO =________.(用向量a 、b 表示) 【答案】5332a b − 【解析】【分析】本题考查了向量的线性运算:平面向量的加法法则,利用作平面直角坐标系更快速解题,掌握()CO OC =−是解题的关键【详解】解:依题意,如图所示:故()535353323232CO OC OA OB OA OB a b ⎛⎫=−=−−+=−=− ⎪⎝⎭ 故答案为:5332a b − 12. 如果轮船甲位于轮船乙的北偏东35︒方向,那么轮船乙位于轮船甲的________.(注明方向) 【答案】南偏西35︒ 【解析】【分析】根据方位角的相对性进行解答即可;理解相对性是解题的关键. 【详解】解:∵轮船甲位于轮船乙的北偏东35︒方向, ∴轮船乙位于轮船甲的南偏西35︒. 故答案为:南偏西35︒.13. 已知等腰三角形两腰上的中线相互垂直,那么其顶角的正弦值为________. 【答案】35##0.6 【解析】【分析】如图:过B 作BE AC ⊥ 设2BC = 则1BG CG == 再根据直角三角形的性质可得112DG BC ==;根据三角形的重心是中线的三等分点可得3AG =;再运用等腰三角形的性质和勾股定理可得AB AC ==35BE CE ==,最后根据正弦的定义即可解答.【详解】解:如图:过B 作BE AC ⊥ 设2BC = 则1BG CG ==∵D 是重心,BD CD ⊥ ∴112DG BC ==∴BD CD === 22AD DG == 即3AG =∵AD 是中线 AB AC = ∴AG BC ⊥∴AB AC ====∵1tan 3BE AG ACB CE CF ∠=== ∴3BE CE =∵222BC CE BE =+∴()2223BC CE CE =+ 解得:5CE =∴3BE CE ==,∴3sin5BE BAC AB ∠===.故答案为35.【点睛】本题主要考查了等腰三角形的性质、勾股定理、三角形重心的性质、正切、正弦的定义等知识点,掌握三角形的重心是中线的三等分点成为解题的关键.14. 已知菱形的周长为C ,其一个内角(锐角)的正切值为2,设其面积为S ,那么S 关于C 的函数关系式是________.(不必写出定义域)【答案】2S =【解析】【分析】本题考查正切的定义,菱形的性质和面积以及勾股定理.正切等于对边比邻边,菱形的四边长度相等.根据菱形的性质得出菱形的边长,由正切的定义得出2DEAE=,再由勾股定理得出DE 的长,由菱形的面积等于底乘以高即可求解.【详解】解:如图,四边形ABCD 是菱形,DE 是AB 边上的高,∵菱形的周长为C , ∴4C AB AD ==, ∵A ∠的正切值为2, ∴2DEAE=, ∴12AE DE =, 由勾股定理可得222AD AE DE =+,∴222142C DE DE ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭解得:10DE =,菱形面积为241040C S AB DE C C =⋅=⋅=,2.15. 已知一张等腰直角纸片,其底边长为3cm ,将其沿过其重心且平行于底边的直线折叠,则折叠后重叠部分的面积为________2cm . 【答案】34【解析】【分析】本题考查平行线分线段成比例及三角形中位线的性质、勾股定理,熟知相关性质是正确解决本题的关键.过AC 中点E 作EF AB ∥,交CD 于F ,利用平行线分线段成比例求出重叠部分的上底、下底、高,再利用梯形面积公式即可求出.【详解】解:如图所示,3AB =,CD BE 、是中线,M 是重心,PQ 过点M 且PQ AB ∥,将CPQ 沿直线PQ 折叠,重叠部分是梯形GHPQ ,EF AB ∥,12EF FM BD DM ∴==, 3AB =,32BD AD CD ∴===,2AC BC ==, 34EF CF ∴==, 1142FM ,DM ∴==,1CM QM ∴==,2PQ =,CQ =2AQ ∴=, 1AG ∴=,同理1BH =,1GH ∴=,()11312224GHPQ S ∴=⨯+⨯=梯形.故答案为:34.16. 已知在ABC 中,5AB =,4BC =,3CA =,G 是其重心,那么以GA 、GB 、GC 为三边的三角形的面积是________. 【答案】2 【解析】【分析】如图:延长AG 交BC 于D 再延长GD 使得DE DG = 根据题意可证四边形CGBE 是平行四边形,即CE BG =、BE CG =,最后根据三角形的重心将三角形三等分以及等底等高即可解答;掌握三角形的重心是三角形的中线的三等分点是解答本题的关键.【详解】解:如图:延长AG 交BC 于D 再延长GD 使得DE DG = ∵AD 是中线, ∴21,,33CD BD AG AD GD AD ===, AG GE = ∴四边形CGBE 是平行四边形, ∴CE BG =,BE CG = ∵AG GE =,∴那么以GA 、GB 、GC 为三边的三角形为BEG ∵111342333BCGABCSS ==⨯⨯⨯=, ∴平行四边形CGBE 的面积为24BCGS =,∴122BEGCGBE SS ==. 故答案为2.17. 如图,将矩形ABCD 分别沿AE 、DF 折叠,恰好使点B 、C 重合于形内点G 处,如果EFG 与ADG △的面积比为1:4,那么:AB AD =________.【答案】58【解析】【分析】本题考查了矩形与折叠问题,勾股定理,相似三角形的性质与判定,过点G 作MN AD ⊥交AD 于点N ,交BC 于点M ,证明EGM GAN ∽得出12EG EM MG AG NG AN ===,设,EM x MG y ==,分别表示出,MN AB ,得出43y x =,进而表示出,AB AD ,即可求解. 【详解】如图所示,过点G 作MN AD ⊥交AD 于点N ,交BC 于点M ,依题意,,AG AB DG DC ==, 又AB CD =, ∴AG GD =,∴GAD GDA ∠=∠,则BAG CDG ∠=∠, ∵折叠, ∴AGEB ∠=∠,DGFC ∠=∠,∴360180BAG BEG B AGE ∠+∠=︒−∠−∠=︒,又180BEG MEG ∠+∠=︒, ∴MEG BAG ∠=∠, ∵90EGA ∠=︒∴90EGM AGN ∠+∠=︒∴90GAN AGN EGM ∠=︒−∠=∠ ∴EGM GAN ∽ 同理可得MGF NDG ∽∵EFG 与ADG △的面积比为1:4, ∴12EG EM MG AG NG AN === 设,EM x MG y == ∴2,2NG x AN y ==,∴EG =AB AG ==∴222BC BE EM x =+= ∴2AB MN MG NG y x ==+=+∴2y x =+ 解得:43y x =∴410233AB x x x =+=,1623AD BC x x === ∴58AB AD = 故答案为:58.18. 如图,直线123l l l ∥∥,等边ABC 的三个顶点分别在直线1l 、2l 、3l 上,如果直线1l 、2l 间的距离与直线2l 、3l 的距离之比为1:2,那么AB 与直线1l 夹角的正切值是________.【答案】5【解析】【分析】本题考查旋转性质,等边三角形的性质,解直角三角形,过点C 作2CD l ⊥于点D ,然后把CDB 绕点C 顺时针旋转60︒得到CEA ,过点E 作3FG l ⊥于点F ,交1l 于点G ,过点B 作1BH l ⊥于点H ,设BH a =,得到12EF EC a ==,然后求出正切值即可. 【详解】解:过点C 作2CD l ⊥于点D ,然后把CDB 绕点C 顺时针旋转60︒得到CEA ,过点E 作3FG l ⊥于点F ,交1l 于点G ,过点B 作3BH l ⊥于点H ,设BH a =,则2CD a =,则2CE CD a ==,90FCD CDB FEC ∠=∠=∠=︒,60ECD ∠=︒,3FG a = ∴30ECF ∠=︒, ∴12EF EC a ==, ∴32EG FG EF a a a =−=−=,又∵90ECF FEC GEA FEC ∠+∠=∠+∠=︒, ∴30GEA ∠=︒∴2cos cos303EG a EA a GEA ===∠︒,∴3AC a ===,又∵等边ABC , ∴3AB AC a ==,∴3AH a ===,∴tan 5BH BAH AH∠===,故答案为:5. 的三、解答题:(本大题共7题,满分78分)19. 计算:()043tan 30tan 60cot 60cos701sin 60cos 45︒︒+︒+︒−−︒︒. 【答案】7 【解析】【分析】本题考查了实数的运算,掌握特殊角的三角函数值是解题的关键,将特殊角的三角函数值代入并结合零次幂的性质计算即可. 【详解】解:()043tan 30tan 60cot 60cos701sin 60cos 45︒︒+︒+︒−−︒︒431=+−⎝⎭114=−61=+− 7=.20. 如图,在等腰梯形ABCD 中,AD BC ∥,2AD =,4BC =,3AB =,BE CD ⊥,垂足为E .(1)设AB a =,AD b =,求作向量EC 分别在AB 、AD 方向上的分向量; (2)求sin ABE ∠的值.【答案】(1)见解析 (2)79【解析】【分析】(1)如图:作,AM BC DN BC ⊥⊥ 则四边形AMND 是矩形.可以得到2MN AD ==、1BM CN ==,再根据三角函数可得43CE =,进而可得49EC CD =,再根据向量的和差可得DC a b =+,即4499EC a b =+,据此作图即可; (2)如图:如图:设AM 与BE 交于点H ,由等腰梯形的性质可得1BF =,再根据勾股定理可得AM =BE =4HM =、BH =AH =;再根据三角函数可得HI =73AI =,进而得到23BI =,最后根据正弦的定义即可解答. 【小问1详解】解:如图:作,AM BC DN BC ⊥⊥ 则四边形AMND 是矩形.∴2MN AD == ∴1BM CN ==∴1cos 3CE NC C BC DC ∠=== 即143CE =,即43CE = ∴49CE CD = 即49EC CD = ∵AD BC ∥,2BC AD = ∴22BC AD b ==,∴2DC DA AB BC b a b a b =++=−++=+, ∴4499EC a b =+ ∴向量EC 在AB 、AD 的分向量分别为4499a b 、;作图见图:小问2详解】解:如图:设AM 与BE 交于点H ,∵等腰梯形ABCD 中,AD BC ∥,2AD =,4BC =, ∴1BF = ∴AM ==BE ==∵4tan 43HM CE EBC BM BE ∠====即14HM =,解得:4HM =;∴BH ==∴AH AM MH =−= 如图:作HIAB ⊥∴1sin 3HI BM BAM AH AB ∠=== 即173HI =,解得:HI = 同理可得:73AI =,∴72333BI =−=,∴712sin 39IH ABE BH ∠===.【点睛】本题主要考查了等腰梯形的性质、矩形的判定与性质、解直角三角形、三角函数、向量等知识点,正确作出辅助线、灵活运用三角函数解直角三角形是解题的关键.【21. 已知函数2423y x x =++.(1)试着通过列表、描点、连线的方式,画出其图像的草图; (2)根据所画草图,请写出该函数的三条图像特征.【答案】(1)见解析 (2)①函数图像的对称轴为=1x −;②当1x >−,y 随x 的增大而减小;③函数图像无限靠近x 轴,但不会和x 轴相交(不唯一合理即可). 【解析】【分析】(1)根据列表、描点、连线的步骤画出函数图像即可;掌握作图步骤是解题的关键; (2)根据函数图像,总结归纳性质即可;掌握数形结合思想是解题的关键. 【小问1详解】 解:①列表如下:②描点、连线如下:【小问2详解】解:由(1)所得图像可得如下性质:①函数图像的对称轴为=1x −;②当1x >−,y 随x 的增大而减小;③函数图像无限靠近x 轴,但不会和x 轴相交(不唯一合理即可).22. 小明想利用建筑CD 玻璃幕墙的反射作用来测建筑AB 的高度.如图所示,他先在建筑AB 的底部A 处用测角仪测得其顶部B 在建筑CD 玻璃幕墙上的反射点E 的仰角为α,然后他沿AC 前进了10米到达点F 处,再用测角仪测得建筑AB 的顶部B 在建筑CD 玻璃幕墙上的反射点G 的仰角为β.已知1tan 3α=,sin 13β=,测角仪置于水平高度1.5米的M 、N 处.求建筑AB 的高度.【答案】31.5 【解析】【分析】延长BE BG ,分别交MN 的延长线于M N '',,MM '于CD 相交于H ,设m NH x =,则()()()10m,210m,220m MH x N M x MM x '=+=+'=+,然后在Rt MM B '和Rt MN B '中解直角三角形可得()1·tan 2103BM MM x α==+'、·tan BM MN β'=,由sin 13β=可得tan 4β=,进而得到()2104BM x =+,据此列方程解得35x =,最后代入即可解答.正确的作出辅助线、灵活应用解直角三角形解实际问题是解题的关键.【详解】解:如图:延长BE BG .分别交MN 的延长线于M N '',,MM '于CD 相交于H ,设m NH x = 则()()()10m,210m,220m MH x N M x MM x '=+=+'=+在Rt MM B '中,()1·tan 2103BM MM x α==+'; Rt MN B '中,·tan BM MN β'=, ∵sin 13β=,∴cos 3β=,∴tan 4β=,∴()2104BM x =+,∴())122021034x x +=+,解得:35x =+,∴()()123520 1.531.5m 3AB ⎡⎤=⨯++=+⎣⎦.答:建筑AB 的高度为()31.5m +.23. 如图,正方形纸片ABCD .现对纸片做如下操作:第一步,对折纸片,使边AD 与BC 重合,得到折痕EF ;第二步,将BCF △折叠,得到折痕BF ;第三步,将ABP 折叠,使顶点A 落在折痕BF 上点Q 处.(1)求证:点P 恰为线段AD 的黄金分割点;(2)现有矩形纸片ABCD ,其中AB BC <,如图所示.请你借助这张纸片,设法折出一个30︒的角.要求写出折纸的步骤(可仿照上面的表述),并在图中画出各步骤的折痕位置,注明30︒角的位置,不需要证明.【答案】(1)见解析 (2)见解析 【解析】【分析】本题考查折叠作图,黄金分割点的定义,勾股定理,掌握黄金分割的比值是解题的关键.(1)先运用勾股定理得到2BF =,然后在Rt QPF 和Rt DGF 中,运用2222FQ PQ DF DP +=+解题计算即可证明;(2)先对折矩形,然后再折叠,使得点A 落在第一次的折痕上,即可得到30︒角. 【小问1详解】 证明:如图,连接PF ,设正方形ABCD 的边长为1,则12DF =.在Rt BCF 中,2BF ==,则12QF BF BQ =−=−. 设AP PQ x ==,则1PD x =−, 在Rt QPF 和Rt DGF 中,有2222FQ PQ DF DP +=+, 即()222211122x x ⎛⎫⎛⎫−++− ⎪ ⎪ ⎪⎝⎭⎝⎭=, 解得512x √−=, 即点P 是AD 的黄金分割点(AG GD >); 【小问2详解】方法如图所示:第一步:对折矩形纸片ABCD ,使 AD 与BC 重合,得到折痕EF ,把纸片展平;第二步:再一次折叠纸片,使点A 落在EF 上,落点为点N ,并使折痕经过点B ,得到折痕BM ,同时,得到线段BN .则30ABM MBN NBC ∠∠∠===︒.24. 如图,直线1l :122y x =+与x 、y 轴的交点为A 、B ,点P 是该直线上位于第一象限内的一点,满足12PB BA =.(1)以B 为顶点的抛物线2y ax bx c =++与线段AB (不含点A 、B )有交点,求a 的取值范围; (2)将直线1l 平移得到直线2l ,直线2l 与x 、y 轴的交点为C 、D ,且使BC CD ⊥,问:直线1l 平移到直线2l ,至少需要平移多少距离?(3)如果(1)中抛物线2y ax bx c =++与直线2l 在抛物线对称轴右侧的交点为Q ,当PQA △与PQB △相似时,求此时抛物线的表达式.【答案】(1)108a −<<(2 (3)2129y x =−+ 【解析】【分析】(1)根据题意可得:a<0、0b =、()()4,0,0,2A B −,然后求出抛物线过临界点时的a 的取值,进而完成解答;确定a 、b 的取值范围是解答本题的关键; (2)设平移后的直线2l 的解析式为:212y x t =+;BC 的解析式为3y kx b =+,根据垂直直线的关系可得2k =−,进而确定(),0,0,2b C D t ⎛⎫⎪⎝⎭;再根据点C 在2l 上可得4b t =−,则0,4b D ⎛⎫− ⎪⎝⎭;再运用勾股定理列方程可得2b =,然后确定()11,0,0,2C D ⎛⎫− ⎪⎝⎭,最后根据两点间距离公式即可解答;明确各直线间的关系是解题的关键; (3)设1,22P a a ⎛⎫+ ⎪⎝⎭,根据题意和勾股定理可得()2,3P ;再根据PQA PQB ∽可得3PA PQ AQ PB BQ PQ ===;设Q 的坐标为11,22n n ⎛⎫− ⎪⎝⎭,根据两点间距离公式可得3=,解得:3n =或92n =(舍),即Q 的坐标为()3,1;再结合(1)、(2)即可解答;灵活运用相似三角形的性质和两点间距离公式是解题的关键. 【小问1详解】解:∵以B 为顶点的抛物线2y ax bx c =++与线段AB (不含点A 、B )有交点, ∴抛物线的开口一定向下,即a<0;且对称轴为y 轴,则02ba−=、0b =, 当0x =时,1222y x =+=;当0y =时,4x =−, ()()4,0,0,2A B −;当2y ax bx c =++恰好过()0,2B 点时,则2c =,()220y ax a =+<;当2y ax bx c =++恰好过()()4,0,0,2A B −两点时,有0162a =+,即18a =−; 综上,a 的取值范围为108a −<<. 【小问2详解】解:设平移后的直线2l 的解析式为:212y x t =+;BC 的解析式为3y kx b =+, ∵BC CD ⊥, ∴112k =−,即2k =−, ∴32y x b =−+,∴(),0,0,2b C D t ⎛⎫⎪⎝⎭由点C 在2l 上,则1022b t ⨯+=,解得:4b t =−,即0,4b D ⎛⎫− ⎪⎝⎭,在Rt BCD 中有222BC CD BD +=,即2222422244b b b b ⎛⎫⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,解得:2b =,∴()11,0,0,2C D ⎛⎫− ⎪⎝⎭21122y x =−∴平移距离BC ==【小问3详解】 解:设1,22P a a ⎛⎫+ ⎪⎝⎭, ∵12PB BA =, ∴2BA PB =∴=,解得:2a =,即()2,3P ; ∵PQA PQB ∽∴3PA PQ AQPB BQ PQ=== 设Q 的坐标为11,22n n ⎛⎫− ⎪⎝⎭3=,解得:3n =或92n =(舍), ∴Q 的坐标为()3,1,(1)可得由22y ax =+,则192a =+,解得:19a =−. ∴抛物线表达式为:2129y x =−+;25. 如图,在ABC 中,90ACB ∠=︒,3AC =,4BC =,O 是边AC 的中点,点D 位于边AB 上,连接DO 并延长交BC 的延长线于点E ,过点D 作DF BC ⊥,垂足为F .(1)当DE AB ⊥时,求tan AED ∠的值; (2)当EA AB ⊥时,求证:2DF DA DB =⋅;(3)作射线OP ,使其平行于BC ,且在AC 的右侧.试问:在射线OP 上是否存在点Q ,使得OQD OQE ∠=∠如果存在,请求出OQ 的长;如果不存在,请说明理由.【答案】(1)1241(2)见解析 (3)4 【解析】【分析】(1)由中点的性质可得32OA OC ==,再直角三角形可得65OD =、910AD =、158OE = 进而得到12340ED =;最后根据正切的定义即可解答; (2)如图:延长EA FD 、相交于G ,根据平行线等分线段定理可得,,OA EO CO EODG ED DF ED==再说明GD DF =,可得sin ADG DG ∠=;再说明sin DF B DB ∠= 则B G ∠=∠;然后可得AD DF DG BD =,再结合GD DF =即可证明结论;(3)如图:作AI BC ∥交BD 延长线于I ,过O 作射线OP 交AB 于G ,,连接CG 交DF 于H DF 与OG 交于J ,再证DJG HJG ≌可得,DJ JH DG HG ==,进而说明DQO EQO ∠=∠,即H 在EQ上;再根据平行线等分线段定理可得GQ HG DGCE CH AD==;然后再说明OG CQ =即可解答. 【小问1详解】解:∵O 是边AC 的中点,3AC = ∴32OA OC ==∵DE AB ⊥,∴346sin 255BC OD OA CAB OA AB =⋅∠=⋅=⨯= 339cos 2510AC AD OA CAB OA AB =⋅∠=⋅=⨯=631553cos cos 282OC OC OE COE AOD ===÷=∠∠∴1561238540ED =+= ∴912312tan 104041AD AED DE ∠==÷=. 【小问2详解】解:如图:延长EA FD 、相交于G , ∵AC GF ∥∴,,OA EO CO EODG ED DF ED == ∴OA CODG DF=, ∵OA OC = ∴GD DF = ∵EA AB ⊥, ∴sin ADG DG∠=在Rt DFB △中,sin DFB DB∠= 则B G ∠=∠ ∴AD DFDG BD= ∵GD DF =, ∴AD DFDF BD= 即2DF DA DB =⋅. 【小问3详解】解:如图:假设Q 存,作AI BC ∥交BD 延长线于I ,过O 作射线OP 交AB 于G ,,连接CG 交DF于H DF 与OG 交于J ,∵OG AC ⊥ AG CG = OG BC ∥ ∴G 是AB 的中点,∴,AG CG BG AGO CGO ==∠= ∵DF OP ⊥ JG GJ = ∴DJG HJG ≌ ∴,DJ JH DG HG ==∴DQ HQ = DQO HQO ∠=∠ 又∵DQO EQO ∠=∠ ∴H 在EQ 上, ∵CE QG ∥ ∴GQ HG DGCE CH AD == ∵AI OG ∥ ∴OG DG AI AD= 则OG GQAI CE = ∵,AO CO AI CE =∥ ∴AI CE = ∴OG CQ = ∴12OG AO OB AC == 即12OG OB = ∴24OQ OG BC ===.【点睛】本题主要考查了中点的性质、解直角三角形、三角函数、平行线等分线段定理、全等三角形的判定与性质等知识点,灵活运用相关知识成为解答本题的关键.,。
2024-2025学年九年级上册数学第一次月考试卷02【人教版】
2024-2025学年九年级上册数学第一次月考试卷02【人教版】数学(人教版)注意事项:1.你拿到的试卷满分150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.一元二次方程212302x x --=的一次项系数是()A.2B.12C.12-D.-32.对于二次函数()253y x =+的图象,下列说法不正确的是()A.开口向上B.对称轴是直线3x =-C.顶点坐标为()3,0- D.当3x <-时,y 随x 的增大而增大3.关于x 的一元二次方程224(41)0x m x m +++=有实数根,则m 的最小整数值为()A.1B.0C.-1D.-24.二次函数()220y ax ax c a =-+≠的图象过点()3,0,方程220ax ax c -+=的解为()A.123,1x x =-=-B.121,3x x =-=C.121,3x x == D.123,1x x =-=5.2023年4月23是第28个世界读书日,读书已经成为很多人的一种生活方式,城市书院是读书的重要场所之一,据统计,某书院对外开放的第一个月进书院600人次,进书院人次逐月增加,到第三个月末累计进书院2850人次,若进书院人次的月平均增长率为x ,则可列方程为()A.600(12)2850x += B.2600(1)2850x +=C.2600600(1)600(1)2850x x ++++= D.22850(1)600x -=6.若点()13,A y -,()21,B y ,()32,C y 是抛物线22y x x =-+上的三点,则1y ,2y ,3y 的大小关系为()A.123y y y >> B.231y y y >> C.321y y y >> D.213y y y >>7.二次函数()20y ax bx c a =++≠的图象如图所示,则一次函数y bx a =+的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限8.如图,在平面直角坐标系中,点A 、E 在抛物线2y ax =上,过点A 、E 分别作y 轴的垂线,交抛物线于点B 、F ,分别过点E 、F 作x 轴的垂线交线段AB 于两点C 、D .当点()24E ,,四边形CDFE 为正方形时,则线段AB 的长为()A.4B.C.5D.9.如图,四边形ABCD 是边长为5的菱形,对角线AC BD ,的长度分别是一元二次方程2240x mx ++=的两实数根,DH 是AB 边上的高,则DH 值为()A.1.2B.2.4C.3.6D.4.810.已知,0ab >,420a b c ++=,420a b c -+>,则下列结论成立的是()A.0a >,24b ac≥ B.0a >,24b ac< C.0<a ,24b ac< D.0<a ,24b ac>二、填空题(本大题共4小题,每小题5分,满分20分)11.已知关于x 的一元二次方程()221210m x x m -++-=有一个根是0,则m 的值是________.12.将二次函数22y x x =+的图象向右平移1个单位长度,再向上平移2个单位长度,平移后的二次函数的图象的顶点坐标是________.13.非零实数m ,()n m n ≠满足220m m --=,220n n --=,则11m n+=______.14.在平面直角坐标系中,设二次函数()()1y x a x a =+--,其中0a ≠.(1)此二次函数的对称轴为直线x =______;(2)已知点(),P t m 和()1,Q n 在此函数的图象上,若m n ≤,则t 的取值范围是______;三、(本大题共2小题,每小题8分,满分16分)15.解方程(1)2x 2+4x +1=0(配方法)(2)x 2+6x =5(公式法)16.已知二次函数2y ax bx c =++的图象经过()1,5A ,()0,3B ,()1,3C --三点.(1)求这个函数的解析式;(2)用配方法求出这个二次函数图象的顶点坐标.四、(本大题共2小题,每小题8分,满分16分)17.在平面直角坐标系xOy 中,已知点()1,m -,()2,n 在二次函数23y x bx =+-的图象上.(1)当m n =时,求b 的值;(2)在(1)的条件下,当32x -<<时,求y 的取值范围.18.定义:如果关于x 的一元二次方程()200ax bx c a ++=≠满足0a b c -+=,那么我们称这个方程为“黄金方程”.(1)判断一元二次方程22530x x ++=是否为黄金方程,并说明理由.(2)已知230x ax b -+=是关于x 的黄金方程,若a 是此黄金方程的一个根,求a 的值.五、(本大题共2小题,每小题10分,满分20分)19.已知关于x 的方程()23260x k x k +--=.若等腰三角形ABC 的一边6a =,另两边长b ,c 恰好是这个方程的两个根,求ABC 的周长.20.某社区在开展“美化社区,幸福家园”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用50米长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,AD 两边).(1)若花园的面积为400米2,求AB 的长;(2)若在直角墙角内点P 处有一棵桂花树,且与墙BC ,CD 的距离分别是10米,30米,要将这棵树围在矩形花园内(含边界,不考虑树的粗细),则花园的面积能否为625米2?若能,求出AB 的值;若不能,请说明理由.六、(本题满分12分)21.在平面直角坐标系中,抛物线()2220y x mx m m x =-+-+≥的顶点为A ,与y 轴相交于点B .(1)点A 的坐标为________,点B 的坐标为________;(用含m 的式子表示)(2)设抛物线()2220y x mx m m x =-+-+≥的函数图象最高点的纵坐标为n .①当1m =时,n =________;当1m =-时,n =________;②写出n 关于m 的函数解析式及自变量m 的取值范围.七、(本题满分12分)22.已知关于x 的一元二次方程22210x kx k k -+++=有两个实数根.(1)试求k 的取值范围;(2)若221210x x +=,求k 的值;(3)若此方程的两个实数根为1x ,2x ,且满足122x x +=,试求k 的值.八、(本题满分14分)23.如图,抛物线2y x bx c =-++的图象与x 轴交于点()30A -,和点C ,与y 轴交于点()0,3B .(1)求抛物线的解析式;(2)设点P 为抛物线的对称轴上一动点,当PBC 的周长最小时,求点P 的坐标;的面积最大?若存在,求出点Q的坐标;若(3)在第二象限的抛物线上,是否存在一点Q,使得ABQ不存在,请说明理由.2024-2025学年九年级上册数学第一次月考试卷02【人教版】数学(人教版)注意事项:1.你拿到的试卷满分150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.一元二次方程212302x x --=的一次项系数是()A.2 B.12C.12-D.-3【答案】C 【解析】【分析】根据一元二次方程的一般形式,即可解答.【详解】解:一元二次方程212302x x --=的一次项系数是12-,故选:C .【点睛】本题考查了一元二次方程的一般形式及其概念,熟练掌握和运用一元二次方程的一般形式及其概念是解决本题的关键.2.对于二次函数()253y x =+的图象,下列说法不正确的是()A.开口向上B.对称轴是直线3x =-C.顶点坐标为()3,0- D.当3x <-时,y 随x 的增大而增大【答案】D 【解析】【分析】根据二次函数的表达式,可得出抛物线的开口方向,对称轴,顶点坐标及增减性,据此可解决问题.【详解】解:因为二次函数的表达式为25(3)y x =+,所以抛物线的开口向上,故A 说法正确;又抛物线的对称轴是直线3x =-,故B 说法正确;因为抛物线的顶点坐标为()3,0-,故C 说法正确;因为抛物线对称轴为直线3x =-,且开口向上,所以当3x <-时,y 随x 的增大而减小.故D 说法不正确;故选:D .【点睛】本题考查二次函数的图象和性质,能根据所给函数表达式得出开口向下、对称轴、顶点坐标和增减性是解题的关键.3.关于x 的一元二次方程224(41)0x m x m +++=有实数根,则m 的最小整数值为()A.1B.0C.-1D.-2【答案】B 【解析】【分析】根据判别式24b ac ∆=-用含有m 的式子将∆表示出来,再根据有实数根,则可知0∆≥,列出不等式即可解决问题.【详解】解: 224(41)0x m x m +++=,∴()2222411616811681m m m m m m ∆=+-=++-=+,有实数根,∴810m +≥,∴18m ≥-,∴最小整数值为0.故选:B .【点睛】本题考查了根据一元二次方程根的情况求参数,解决本题的关键是熟记根的情况与判别式的关系.4.二次函数()220y ax ax c a =-+≠的图象过点()3,0,方程220ax ax c -+=的解为()A.123,1x x =-=-B.121,3x x =-=C.121,3x x ==D.123,1x x =-=【答案】B 【解析】【分析】首先求出二次函数的对称轴,然后根据二次函数的对称性得到抛物线与x 轴的另一个交点坐标为()3,0,进而利用二次函数与一元二次方程的关系即可求解.【详解】解:抛物线的对称轴为直线212ax a-=-=,∵抛物线与x 轴的一个交点坐标为()3,0,且1(31)1--=-,∴抛物线与x 轴的另一个交点坐标为()1,0-,∴方程220ax ax c -+=的解为:121,3x x =-=.故选:B .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.5.2023年4月23是第28个世界读书日,读书已经成为很多人的一种生活方式,城市书院是读书的重要场所之一,据统计,某书院对外开放的第一个月进书院600人次,进书院人次逐月增加,到第三个月末累计进书院2850人次,若进书院人次的月平均增长率为x ,则可列方程为()A.600(12)2850x += B.2600(1)2850x +=C.2600600(1)600(1)2850x x ++++= D.22850(1)600x -=【答案】C 【解析】【分析】先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于2850,列方程即可.【详解】解:设进馆人次的月平均增长率为x ,则由题意得:2600600(1)600(1)2850x x ++++=.故选:C .【点睛】本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.6.若点()13,A y -,()21,B y ,()32,C y 是抛物线22y x x =-+上的三点,则1y ,2y ,3y 的大小关系为()A.123y y y >>B.231y y y >> C.321y y y >> D.213y y y >>【答案】B 【解析】【分析】根据二次函数的性质得到抛物线22y x x =-+的开口向下,对称轴为直线1x =,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线22y x x =-+,∴抛物线开口向下,对称轴为直线()2121x =-=⨯-,而()13,A y -离直线1x =的距离最远,()21,B y 在直线1x =上,∴231y y y >>.故选:B .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.7.二次函数()20y ax bx c a =++≠的图象如图所示,则一次函数y bx a =+的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限【答案】C 【解析】【分析】先根据二次函数图象与系数的关系得到a<0,0b >,再根据一次函数图象与系数的关系求解即可.【详解】解:∵二次函数开口向下,对称轴在y 轴右侧,∴002ba a<>-,,∴0b >,∴一次函数y bx a =+的图象经过第一、三、四象限,不经过第二象限,故选C .【点睛】本题主要考查了一次函数图象与系数的关系,二次函数图象与系数的关系,正确推出a<0,0b >是解题的关键.8.如图,在平面直角坐标系中,点A 、E 在抛物线2y ax =上,过点A 、E 分别作y 轴的垂线,交抛物线于点B 、F ,分别过点E 、F 作x 轴的垂线交线段AB 于两点C 、D .当点()24E ,,四边形CDFE 为正方形时,则线段AB 的长为()A.4B.C.5D.【答案】B 【解析】【分析】通过待定系数法求出函数解析式,然后设点A 横坐标为m ,则4CD CE ==,从而得出()8A m ,,将点坐标代入解析式求解.【详解】解:把点()24E ,代入2y ax =中得44a =,解得1a =,∴2y x =,∵点()24E ,,四边形CDFE 为正方形,∴4CD CE EF ===,设点A 横坐标为m ,则()8A m ,,代入2y x =得28m =,解得m =或m =-.∴2AB m ==.故选:B .【点睛】本题考查二次函数与正方形的结合,解题关键是利用待定系数法求得函数解析式.9.如图,四边形ABCD 是边长为5的菱形,对角线AC BD ,的长度分别是一元二次方程2240x mx ++=的两实数根,DH 是AB 边上的高,则DH 值为()A.1.2B.2.4C.3.6D.4.8【答案】B【解析】【分析】根据对角线AC BD ,的长度分别是一二次方程2240x mx ++=的两实数根,得到24AC BD ⨯=,根据菱形的面积公式得到1122ABCD S AC BD =⨯=菱形,再根据ABCD S AB DH =⨯菱形得到12 2.45DH ==.【详解】解:∵对角线AC BD ,的长度分别是一二次方程2240x mx ++=的两实数根,∴24AC BD ⨯=,∴1122ABCD S AC BD =⨯=菱形,∵ABCD S AB DH =⨯菱形,∴12AB DH ⨯=,∴12 2.45DH ==,故选:B .【点睛】本题考查了菱形的面积和一元二次方程根与系数的关系的应用,掌握菱形面积的计算方法是解题的关键.10.已知,0ab >,420a b c ++=,420a b c -+>,则下列结论成立的是()A.0a >,24b ac≥ B.0a >,24b ac < C.0<a ,24b ac < D.0<a ,24b ac >【答案】D【解析】【分析】设2y ax bx c =++,由0ab >,420a b c ++=,420a b c -+>可得二次函数过(2,0),(2,)t -()0t >,且其对称轴在x 轴负半轴,即可求解.【详解】解:设2y ax bx c =++,∵420a b c ++=,420a b c -+>,∴二次函数过(2,0),(2,)t -()0t >,∵0ab >,∴二次函数对称轴<02b x a=-,二次函数的大致图象如下:由图象可知0<a ,∵二次函数与x 轴有2个交点,∴240b ac ∆=->,即24b ac >,故选:D .【点睛】本题考查二次函数的图象与性质.由题意确定二次函数经过的点和其对称轴的特点是解答本题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.已知关于x 的一元二次方程()221210m x x m -++-=有一个根是0,则m 的值是________.【答案】1-【解析】【分析】把0x =代入方程进行计算,结合一元二次方程的二次项系数不为0,即可得到答案.【详解】解:把0x =代入方程,得:210m -=,∴1m =±,∵10m -≠,∴1m ≠,∴1m =-;故答案为:1-.【点睛】本题考查了解一元二次方程,以及方程的解,解题的关键是熟练掌握解一元二次方程的方法,利用方程的解正确求出参数.12.将二次函数22y x x =+的图象向右平移1个单位长度,再向上平移2个单位长度,平移后的二次函数的图象的顶点坐标是________.【答案】()0,1【解析】【分析】按照“左加右减,上加下减”的规律解答.【详解】解:()22211y x x x =+=+- ,∴二次函数22y x x =+的图象的顶点坐标是()11--,,图象向右平移1个单位,再向上平移2个单位,得到函数图象的顶点坐标是()0,1.故答案为:()0,1.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.13.非零实数m ,()n m n ≠满足220m m --=,220n n --=,则11m n+=______.【答案】12-##0.5-【解析】【分析】根据已知判断出m ,n 是方程220x x --=的两实数根,然后利用根与系数关系即可求解.【详解】解:∵实数m ,()n m n ≠满足等式220m m --=,220n n --=,∴m ,n 是方程220x x --=的两实数根,∴1m n +=,mn 2=-,∴111122m n m n mn ++===--,故答案为:12-.【点睛】本题考查了方程的解以及一元二次方程的根与系数关系,能熟练利用方程解的定义得到m ,n 是方程220x x --=的两实数根是解题的关键.14.在平面直角坐标系中,设二次函数()()1y x a x a =+--,其中0a ≠.(1)此二次函数的对称轴为直线x =______;(2)已知点(),P t m 和()1,Q n 在此函数的图象上,若m n ≤,则t 的取值范围是______;【答案】①.12##0.5②.01t ≤≤【解析】【分析】(1)根据二次函数()()1y x a x a =+--,经过(),0a -和()1,0a +,是对称点,算出对称轴即可;(2)根据对称轴为直线12x =,点(),P t m 和()1,Q n 在二次函数()()1y x a x a =+--的图象上,画出函数图象,点Q 关于对称轴的对称点Q ',分析图象,写出t 的取值范围即可.【详解】(1) 二次函数()()1y x a x a =+--,∴函数经过(),0a -和()1,0a +,是对称点,∴对称轴为直线1122a a x -++==,故答案为:12(2) 二次函数()()1y x a x a =+--,∴二次项系数为10>,∴函数图象开口向上,又(),P t m 和()1,Q n 在此函数的图象上,对称轴为直线12x =,∴画出图象如下图,点Q 关于对称轴的对称点Q '横坐标12102=⨯-=,m n ≤ ,∴点P 应在线段QQ '下方部分的抛物线上(包括点Q 、Q '),01t ∴≤≤,故答案为:01t ≤≤【点睛】本题考查了二次函数的图象和性质,画出图象数形结合是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.解方程(1)2x 2+4x +1=0(配方法)(2)x 2+6x =5(公式法)【答案】(1)121122x x =-+=--(2)13x =-+,23x =-.【解析】【分析】(1)配方法求解可得;(2)公式法求解可得.【小问1详解】(1)解:2x 2+4x =﹣1,x 2+2x =﹣12,x 2+2x +1=﹣12+1,即(x +1)2=12,∴x +1=±22,则x =﹣1±2∴121122x x =-+=--【小问2详解】解:x 2+6x ﹣5=0,∵a =1,b =6,c =﹣5,∴△=36﹣4×1×(﹣5)=56,则x =62142-±=﹣313x =-+,23x =-.【点睛】本题考查了公式法和配方法解一元二次方程,熟悉用公式法和配方法解一元二次方程的解题步骤是解题的关键.16.已知二次函数2y ax bx c =++的图象经过()1,5A ,()0,3B ,()1,3C --三点.(1)求这个函数的解析式;(2)用配方法求出这个二次函数图象的顶点坐标.【答案】(1)二次函数的解析式为2243y x x =-++(2)顶点坐标是()1,5【解析】【分析】(1)将点()1,5A 、()0,3B 、()1,3C --代入二次函数的解析式2y ax bx c =++,利用待定系数法求得这个二次函数的解析式;(2)利用(1)的结果,将二次函数的解析式转化为顶点式,然后根据解析式求这个二次函数的顶点坐标.【小问1详解】解:将()1,5A 、()0,3B 、()1,3C --代入二次函数2y ax bx c =++,得533a b c c a b c ++=⎧⎪=⎨⎪-+=-⎩,解得243a b c =-⎧⎪=⎨⎪=⎩.∴二次函数的解析式为2243y x x =-++.【小问2详解】解:∵()22243215y x x x =-++=--+,∴顶点坐标是()1,5.【点睛】本题考查了待定系数法求二次函数的解析式、二次函数的三种形式.将二次函数的一般解析式转化为顶点式时,采用了“配方法”.四、(本大题共2小题,每小题8分,满分16分)17.在平面直角坐标系xOy 中,已知点()1,m -,()2,n 在二次函数23y xbx =+-的图象上.(1)当m n =时,求b 的值;(2)在(1)的条件下,当32x -<<时,求y 的取值范围.【答案】(1)1b =-(2)1394y -≤<【解析】【分析】(1)将点()1,m -,()2,n 代入23y xbx =+-可得2m b =--,12n b =+,结合m n =,再建立方程求解即可;(2)由22113324y x x x ⎛⎫=--=-- ⎪⎝⎭可得函数最小值,再分别计算3x =-,2x =时的函数值,从而可得答案.【小问1详解】解:将点()1,m -,()2,n 代入23y xbx =+-,得2m b =--,12n b =+,∵m n =,∴212b b --=+,∴1b =-.【小问2详解】∵22113324y x x x ⎛⎫=--=-- ⎪⎝⎭,∴当12x =时,最小值134y =-,当3x =-时,9y =,当2x =时,1y =-,∴当32x -<<时,y 的取值范围为1394y -≤<.【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的图象与性质,熟练的利用图象性质求解函数值的取值范围是解本题的关键.18.定义:如果关于x 的一元二次方程()200ax bx c a ++=≠满足0a b c -+=,那么我们称这个方程为“黄金方程”.(1)判断一元二次方程22530x x ++=是否为黄金方程,并说明理由.(2)已知230x ax b -+=是关于x 的黄金方程,若a 是此黄金方程的一个根,求a 的值.【答案】(1)一元二次方程22530x x ++=是黄金方程,理由见解析(2)1a =-或32a =【解析】【分析】(1)根据黄金方程的定义进行求解即可;(2)根据黄金方程的定义得到3b a =--,则原方程为2330x ax a ---=,再由a 是此黄金方程的一个根,得到2230a a --=,解方程即可.【小问1详解】解:一元二次方程22530x x ++=是黄金方程,理由如下:由题意得,253a b c ===,,,∴2350a b c -+=+-=,∴一元二次方程22530x x ++=是黄金方程;【小问2详解】解:∵230x ax b -+=是关于x 的黄金方程,∴()30b a +--=,∴3b a =--,∴原方程为2330x ax a ---=,∵a 是此黄金方程的一个根,∴22330a a a ---=,即2230a a --=,∴()()1230a a +-=,解得1a =-或32a =.【点睛】本题主要考查了解一元二次方程,一元二次方程解的定义,正确理解题意是解题的关键.五、(本大题共2小题,每小题10分,满分20分)19.已知关于x 的方程()23260x k x k +--=.若等腰三角形ABC 的一边6a =,另两边长b ,c 恰好是这个方程的两个根,求ABC 的周长.【答案】周长为14【解析】【分析】当0∆≥时,求出k 值,进而找出方程的根,再进行分类讨论从而得出三角形的周长.【详解】解:∵22224(32)4(6)9124(32)0b ac k k k k k ∆=-=--⋅-=++=+≥,∴无论k 取何值,方程总有实数根.①若6a =为底边,则b ,c 为腰长,则b c =,则Δ0=,∴()2320k +=,解得23k =-.此时原方程化为2440x x -+=,∴122x x ==,即2b c ==.此时ABC 三边为6,2,2,不能构成三角形,舍去;②若6a =为腰,则b ,c 中一边为腰,不妨设6b a ==,将6x =代入方程,得()2663260k k +--=,解得2k =-,则原方程化为28120x x -+=,∴12x =,26x =,即6b =,2c =,此时ABC 三边为6,6,2,能构成三角形.综上所述,ABC 三边为662,,,∴周长为66214++=.【点睛】本题考查了根的判别式、三角形的三边关系以及等腰三角形的性质,掌握根的判别式是解题的关键.20.某社区在开展“美化社区,幸福家园”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用50米长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,AD 两边).(1)若花园的面积为400米2,求AB 的长;(2)若在直角墙角内点P 处有一棵桂花树,且与墙BC ,CD 的距离分别是10米,30米,要将这棵树围在矩形花园内(含边界,不考虑树的粗细),则花园的面积能否为625米2?若能,求出AB 的值;若不能,请说明理由.【答案】(1)10米或40米(2)不能,见解析【解析】【分析】(1)设AB 的长为x 米,则BC 的长为()50x -米,由矩形的面积公式列出方程,解方程即可得到答案;(2)设AB 的长为x 米,则BC 的长为()50x -米,由矩形的面积公式列出方程,解方程即可得到答案.【小问1详解】解:设AB 的长为x 米,则BC 的长为()50x -米,由题意得:()50400x x -=,解得:121040x x ==,,即AB 的长为10米或40米;【小问2详解】解:花园的面积不能为625米2,理由如下:设AB 的长为x 米,则BC 的长为()50x -米,由题意得:()50625x x -=,解得:1225x x ==,当25x =时,50502525BC x =-=-=,即当25AB =米,25BC =米<30米,∴花园的面积不能为625米2.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.六、(本题满分12分)21.在平面直角坐标系中,抛物线()2220y x mx m m x =-+-+≥的顶点为A ,与y 轴相交于点B .(1)点A 的坐标为________,点B 的坐标为________;(用含m 的式子表示)(2)设抛物线()2220y x mx m m x =-+-+≥的函数图象最高点的纵坐标为n .①当1m =时,n =________;当1m =-时,n =________;②写出n 关于m 的函数解析式及自变量m 的取值范围.【答案】(1)(),m m ,()20,m m -+(2)①1,2-;②2,0,0m m n m m m ≥⎧=⎨-+<⎩【解析】【分析】(1)首先将抛物线转化成顶点式,即可求出A 点坐标,然后将0x =代入即可求出B 点坐标;(2)①首先将抛物线转化成顶点式,分别将1m =或1m =-代入求解即可;②首先将抛物线转化成顶点式,然后根据二次函数的性质求解即可.【小问1详解】∵()2222y x mx m m x m m =-+-+=--+,∴(),A m m ,令0x =,则2222y x mx m m m m =-+-+=-+,∴()20,B m m -+.故答案为:(),m m ,()20,m m -+;【小问2详解】()()22220y x mx m m x m m x =-+-+=--+≥.①当1m =时,()()2110y x x =--+≥,则函数的最高点为()1,1;当1m =-时,()()2110y x x =-+-≥,则函数的最高点为()0,2-,故答案为:1,2-.②()2222y x mx m m x m m =-+-+=--+,则抛物线的对称轴为x m =.当0m ≥时,()()20y x m m x =--+≥的图象过顶点(),m m ,则n m =;当0m <时,()()20y x m m x =--+≥的图象都在对称轴的右侧,y 随x 的增大而减小,所以函数的最高点为()20,m m -+,则2n m m =-+,综上,2,0,0m m n m m m ≥⎧=⎨-+<⎩.【点睛】此题考查了二次函数的性质,解题的关键是熟练掌握二次函数的性质.七、(本题满分12分)22.已知关于x 的一元二次方程22210x kx k k -+++=有两个实数根.(1)试求k 的取值范围;(2)若221210x x +=,求k 的值;(3)若此方程的两个实数根为1x ,2x ,且满足122x x +=,试求k 的值.【答案】(1)1k ≤-(2)2k =-(3)1k =-【解析】【分析】(1)根据方程的系数结合根的判别式0∆≥,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(2)由根与系数的关系可得出122x x k +=,2121x x k k =++,结合221210x x +=可得出关于k 的方程,解之即可得出k 的值;(3)由(2)可知:122x x k +=,2121x x k k =++,根据22131024k k k ⎛⎫++=++> ⎪⎝⎭,可得120x x >,即由122x x +=,可得22112224x x x x ++=,进而可得22112224x x x x ++=,则有()2124x x +=,即()224k =,问题得解.【小问1详解】∵关于x 的一元二次方程22210x kx k k -+++=有两个实数根,∴()()222Δ424110b ac k k k =-=--⨯⨯++≥,解得:1k ≤-;【小问2详解】∵方程22210x kx k k -+++=的两个实数根为1x ,2x ,∴122x x k +=,2121x x k k =++,∵221210x x +=,∴222121212()210x x x x x x +=+-=,∴()22(2)2110k k k -++=,整理得:260k k --=,解得:3k =或者2k =-,∵根据(1)有1k ≤-,即2k =-;【小问3详解】由(2)可知:122x x k +=,2121x x k k =++,∵22131024k k k ⎛⎫++=++> ⎪⎝⎭,∴120x x >,∵122x x +=,∴()2124x x +=,∴22112224x x x x ++=,∵120x x >,∴22112224x x x x ++=,∴()2124x x +=,∴()224k =,∴1k =±,∵根据(1)有1k ≤-,即1k =-.【点睛】本题考查了一元二次方程根的判别式,一元二次方程根与系数的关系,熟练掌握一元二次方程根的判别式和根与系数的关系,灵活运用完全平方公式的变形是解题的关键.八、(本题满分14分)23.如图,抛物线2y x bx c =-++的图象与x 轴交于点()30A -,和点C ,与y 轴交于点()0,3B .(1)求抛物线的解析式;(2)设点P 为抛物线的对称轴上一动点,当PBC 的周长最小时,求点P 的坐标;(3)在第二象限的抛物线上,是否存在一点Q ,使得ABQ 的面积最大?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为223y x x =--+(2)点P 坐标为()1,2-(3)存在,点Q 的坐标为315,24⎛⎫-⎪⎝⎭【解析】【分析】(1)利用待定系数法求解即可;(2)易得抛物线的对称轴为1x =-,又可求出()1,0C .连接AB 与对称轴1x =-的交点即为所求点P .利用待定系数法即可求出直线AB 的解析式,令=1x -,则2y =,即点P 坐标为()1,2-;(3)设()2,23Q x x x --+是第二象限的抛物线上一点,过点Q 作QD x ⊥轴交直线AB 于点E ,则点E 的坐标为(),3x x +,从而可求出23QE x x =--,再根据ABQ BQE AQE S S S =+△△△,结合二次函数的性质即可求解.【小问1详解】解:∵抛物线2y x bx c =-++的图象经过点()30A -,和点()0,3B ,∴0933b c c =--+⎧⎨=⎩,解得23b c =-⎧⎨=⎩,∴抛物线的解析式为223y x x =--+;【小问2详解】解:()222314y x x x =--+=-++,∴抛物线的对称轴为1x =-,令2230y x x =--+=,解得:13x =-,21x =,∴()1,0C .∵点C 与点A 关于直线1x =-对称,∴连接AB 与对称轴1x =-的交点即为所求点P .设直线AB 的解析式为y kx m =+,∴303k m m -+=⎧⎨=⎩,解得:13k m =⎧⎨=⎩,∴直线AB 的解析式为3y x =+;当=1x -时,2y =,∴点P 坐标为()1,2-;【小问3详解】存在.设()2,23Q x x x --+是第二象限的抛物线上一点,过点Q 作QD x ⊥轴交直线AB 于点E ,∴点E 的坐标为(),3x x +,∴2223(3)3QE x x x x x =--+-+=--,∴()22133327322228ABQ BQE AQES S S QE OA x x x ⎛⎫=+=⋅=-+=-++ ⎪⎝⎭△△△,∴当32x =-时,ABQ S △取得最大值,此时215234y x x =--+=,∴315,24Q ⎛⎫- ⎪⎝⎭.综上,在第二象限的抛物线上,存在一点Q ,使得ABQ 的面积最大,且点Q 的坐标为315,24⎛⎫- ⎪⎝⎭.【点睛】本题为二次函数综合题,考查利用待定系数法求函数解析式,二次函数的图象和性质等知识.利用数形结合的思想是解题关键.。
重庆市九龙坡区2024-2025学年九年级上学期10月月考数学试题(含答案)
2025届初三上期第一次月考数学试题一、选择题(每题4分,共40分,请将答案填写在答题卡相应位置。
)1.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.将拋物线向下平移1个单位后所得的抛物线的解析式为( )A .B .C .D .3.若关于的一元二次方程有一个根为,则代数式的值为( )A .B .4C .10D .124.关于二次函数,下列说法正确的是( )A .图象的开口向上B .图象与轴的交点坐标为C .图象的顶点坐标是D .当时,随的增大而减小5.如图,将绕点按逆时针方向旋转36°后得到,若,则的度数是( )A .B .C .D .6.二次函数的与的部分对应值如右表,则当时,的值为( )…0123……1510767…A .15B .10C .7D .67.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆400人次,进馆人次逐月增加,到第三个月底累计进馆1456人次,若进馆人次的月平均增长率为,则可列方程为( )2(1)3y x =-+23y x =+2(1)2y x =-+2(2)3y x =-+2(1)4y x =--x 20x mx n +-=2x =2m n -4-22)1y x =-+y ()0,1()2,1-2x >y x AOB △O COD △24AOB ∠=︒AOD ∠36︒24︒12︒60︒()20y ax bx c a =++≠x y 5x =y x 1-yxA .B .C .D .8.函数与的图象在同一坐标系下可能是( )A .B .C .D .9.如图,中,,将绕点顺时针旋转得到,使点的对应点恰好落在边上,交于点.若,则的度数是( )(用含的代数式表示)A .B .C .D .10.抛物线的图象如上图所示,对称轴为直线.下列说法:①;②;③(为全体实数);④若图象上存在点和点,当时,满足,则的取值范围为.其中正确的个数有()()40011456x +=()24001400(1)1456x x +++=2400(1)1456x +=()24004001400(1)1456x x ++++=()20y ax bx a =+≠y ax b =+ABC △85ACB ∠=︒ABC △C EDC △B D A AC ED 、F BCD α∠=EFC ∠α3852α︒+31752α︒+31752α︒-3952α︒+()20y ax bx c a =++≠2x =-0abc >304c b -<()242a ab at at b -≥+t ()11,A x y ()22,B x y 125n x x n <<<+12y y =n 72n -<<-A .1个B .2个C .3个D .4个三、填空题(每题4分,共32分,请将答案填写在答题卡相应位置。
上海市部分学校2024-2025学年上学期九年级数学月考测试卷
上海市部分学校2024-2025学年上学期九年级数学月考测试卷一、单选题1.如果ABC DEF ∽△△(其中顶点A 、B 、C 依次与顶点D 、E 、F 对应).那么下列等式中,不一定成立的是()A .A D ∠=∠B .2⎛⎫= ⎪⎝⎭ABC DEF S AC S DF C .AB DE=D .AB DEAC DF=2.已知点D 、E 分别是ABC V 的边AB 、AC 上,DE BC ∥,且:1:3ADE DBCE S S =△四边形,那么:AD DB 的值是().A .14B .13C .12D .13.关于二次函数()22y x =--的图象,下列说法正确的是()A .是中心对称图形B .开口向上C .对称轴是直线2x =-D .最高点是()2,04.已知在四边形ABCD 中,记AB a =,BC b=,CD c = ,DA d = .如果向量a 、b 、c 、d 都是单位向量,那么下列描述中,正确的是()A .向量a 与b 方向相同,且向量c 与d方向相同B .向量a 与c 方向相同,且向量b 与d方向相同C .向量a 与b 方向相反,且向量c 与d方向相反D .向量a 与c 方向相反,且向量b 与d方向相反5.如图,在ABC V 中,CD 是边AB 上的高,已知90ACB ∠=︒,1AB =.下列线段中,其长为sin 2A 的是()A .BCB .AC C .BD D .AD6.如图,在正方形网格内,线段PQ 的两个端点都在格点上,网格内另有,,,A B C D 四个格点,下面四个结论中,正确的是()A .连接AB ,则AB PQ ∥B .连接BC ,则BC PQ ∥C .连接BD ,则BD PQ⊥D .连接AD ,则AD PQ⊥二、填空题7.已知::1:3:6a b c =,30a b c ++=,那么--=c b a .8.线段AB 上有一点,::,10P AP PB AB AP AP ==,那么BP =.9.如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为.10.如果轮船甲位于轮船乙的北偏东35︒方向,那么轮船乙位于轮船甲的.(注明方向)11.某小山坡的坡长为200米,山坡的高度为100米,则该山坡的坡度i =.12.已知点()11,A y 和()22,B y 在二次函数()20y ax a =<图像上,则12y y -0.(填“>”、“<”或“=”)13.已知平面直角坐标系中点()3,4A 和()0,B b ,满足1tan 2ABO ∠=(O 为原点),那么b 的值为.14.平面直角坐标系中,已知点()3,0A 、()0,2B 、()5,3C ,设,OA a OB b ==,那么向量OC =.(用向量a、b表示)15.已知直线1234l l l l ∥∥∥,相邻的两条平行直线间的距离均为h ,矩形ABCD 的四个顶点分别在这四条直线上,放置方式如图所示,4,6AB BC ==,则tan α=.16.如图,90,BAC AB AC ∠=︒==过点C 作CD BC ⊥,延长CB 到E ,使13BE CD =,连接,AE ED .若2ED AE =,则BE =.(结果保留根号)17.如图,已知菱形ABCD 的边长为2,60DAB ∠=︒,E 为AB 的中点,F 为CE 的中点,AF 与DE 相交于点G ,则GF 的长等于.18.对于平面直角坐标系xOy 中的点P 和图形M ,给出如下定义:若在图形M 上存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.当O 的半径为2时,点P 在直线y x =-上,若P 为O 的关联点,则点P 的横坐标p 的取值范围是.三、解答题19.计算:()043tan 30tan 60cot 60cos701sin 60cos 45︒︒+︒+︒--︒︒.20.如图,已知在四边形ABCD 中,F 是边AD 上一点,AF =2DF ,BF 交AC 于点E ,又AF=14BC .(1)设AB =a ,AD =b ,用向量a 、b表示向量BF =,AC =.(2)如果∠ABC =90°,AD =3,AB =4,求BE 的长.21.如图,一次函数2y x =的图象与反比例函数(0)k y x x=>的图象交于点()4,A n .将点A 沿x 轴正方向平移m 个单位长度得到点,B D 为x 轴正半轴上的点,点B 的横坐标大于点D 的横坐标,连接,BD BD 的中点C 在反比例函数(0)ky x x=>的图象上.(1)求,n k 的值;(2)当m 为何值时,AB OD ⋅的值最大?最大值是多少?22.四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,,,BE CD GF 为长度固定的支架,支架在,,A D G 处与立柱AH 连接(AH 垂直于MN ,垂足为H ),在,B C 处与篮板连接(BC 所在直线垂直于MN ),EF 是可以调节长度的伸缩臂(旋转点F 处的螺栓改变EF 的长度,使得支架BE 绕点A 旋转,从而改变四边形ABCD 的形状,以此调节篮板的高度).已知,208cm AD BC DH ==,测得60GAE ∠=︒时,点C 离地面的高度为288cm .调节伸缩臂EF ,将GAE ∠由60︒调节为54︒,判断点C 离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin540.8,cos540.6︒≈︒≈)23.已知如图,在ABC V 中,点D 在边BC 上,,BAD C BE ∠=∠是角平分线交AD 于点F .(1)求证:ABE DBF △△∽;(2)求证:::AF DF CE AE =.24.已知直线6y kx =+与y 轴相交于点A ,与抛物线2y ax =相交于()2,4B 、C 两点.(1)求点A 、点C 的坐标及抛物线的解析式;(2)求BOC 的面积;(3)若点Q 是y 轴上一点.且15BCQ ∠=︒.求Q 点坐标.25.如图,在ABC V 中,4AC =,3BC =,90ACB ∠=︒,D 是边AC 上一个动点(不与点⊥,垂足为E,交边AB于点F.A、C重合),CE BD∠的值;(1)当点D是边AC中点时,求tan ACF=,求y关于x的函数关系式,并写出定义域;(2)设CD x=,AF y△相似时,求线段CD的长.(3)当EFD与EFB。
2024-2025学年第一学期第一次月考九年级数学试题
2024-2025学年第一学期第一次月考九年级数学试题(人教版)时间:90分钟; 总分:120分学校:___________姓名:___________班级:___________考号:___________一、单选题(16道题,每题3分,共48分) 1.下列方程属于一元二次方程的是( ) A .230x y -+= B .32220+--=x x x C .22x x -=D .221x x+= 2.一元二次方程220x x -=的根是( ) A .1x =B .0x =C .10x =,22x =D .10x =,22x =-3.如果函数()1132m y m x x +=--+是二次函数,则m 的值是( )A .1±B .1-C .2D .14.若一元二次方程2410x x -+=可化成()2x m n +=的形式,则m n +的值为( ) A .1B .2C .3D .55.将抛物线22y x =-向右平移1个单位后所得新抛物线的表达式为( ) A .21y x =- B .23y x =-C .()=+-2y x 12D .()212y x =--6.关于二次函数()2246y x =-+,下列说法正确的是( ) A .有最大值6B .对称轴为4x =C .当1x >时,y 的值随x 值的增大而增大D .开口向下7.关于x 的一元二次方程2230x x m -+=有两个相等的实数根,则m 的值是( ) A .15B .13C .12D .18.二次函数()2212y x =--的顶点坐标是( ) A .()1,2-B .()1,2C .()1,2--D .()1,2-9.已知2x =是一元二次方程20x bx c +-=的解,则63b c -+的值为( )A .12B .12-C .6D .6-10.某种药品经过连续两次降价,销售单价由原来的90元降到70元.设平均每次降价的百分率为x ,根据题意列出的方程为( )A .()270190x -=B .()290170x -=C .()()290190170x x -+-=D .()290170x -=11.已知1x 、2x 是一元二次方程2430x x -+=的两个实数根,则12x x +的值为( )A .4-B .3-C .3D .412.如图,拱桥的形状是抛物线,其函数关系式为214y x =-(点O 为拱桥桥顶),当水面离桥顶的高度为25m 4时,水面的宽度为( )A .8mB .9mC .10mD .11m13.已知一元二次方程的一个解为x =( ) A .23304x x --= B .23304x x -+= C .22610x x -+= D .22310x x -+=14.在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图象如图所示,则方程20ax bx c ++=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断15.如图,我校音乐教室矩形地面的长为8m ,宽为5m ,现准备在地面正中间铺设一块长方形地毯,四周未铺地毯的条形区域的宽度都相同,若地毯面积为218m ,设四周未铺地毯的条形区域的宽度是m x ,则下列结论正确的是( )A .()()82518x x --=B .112x =C .1x =D .1x =或11216.如图,抛物线()20y ax bx c a =++≠与x 轴交于点()3,0-,其对称轴为直线12x =-,结合图象有下列结论:①0abc >;①30a c +>;①当0x <时,y 随x 的增大而增大;①240ac b -<;其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题(3道题,17-18每题3分,19题4分,共10分)17.方程()()223x x +-=转化为一元二次方程的一般形式是 .18.已知二次函数2y ax bx c =++图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么表格中m = ,它的图象与x 轴的交点坐标是 .19.如图,在ABC 中,90ABC ∠=︒,8AB =,6BC =.动点P ,Q 分别从点A ,B 同时开始移动,点P 由点A 向点B 运动,速度为每秒1个单位,点Q 由点B 向点C 运动,速度为每秒2个单位,点Q 移动到点C 后停止,点P 也随之停止运动,设运动时间为t 秒.t=秒时,PBQ的面积为.(1)当2(2)当t=秒时,PBQ的面积最大.三、解答题(7道题,共62分)20.(8分)解方程:(1)()2x-=2218(2)232150--=x x21.(8分)已知:关于x的方程2+-=.320x mx(1)求证:方程有两个不相等的实数根;x-,求另一个根及m的值.(2)若方程的一个根是=122.(8分)已知二次函数2=-++,y与x的部分对应值如下表:y x bx c(1)根据表格中的数据,试确定二次函数的解析式和n的值;(2)将此图象沿x轴向左平移2个单位长度,写出平移后抛物线解析式的对称轴并写出当y>时x的取值范围.23.(8分)甲型流感病毒的传染性强,有一个人患了流感,经过两轮传染后就会有若干人被传染上流感,假设每轮感染中平均一个人会传染x个人.(1)两轮传染后,感染流感的总人数为__________(用含x的代数式表示);(2)在进入第二轮传染之前,有两位患者被及时隔离并治愈,问经过两轮传染后是否会有15人同时患病的情况发生,请说明理由.24.(9分)如图,一座拱桥的轮廓呈抛物线型,拱高6m,在高度为10m的两支柱AC和BD 之间,还安装了三根立柱,相邻两立柱间的距离均为5m.(1)建立如图所示的平面直角坐标系,求拱桥抛物线的表达式;(2)求立柱EF的长;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.25.(10分)如图,抛物线22=--+与x轴交于A,B两点(点A在点B的左侧),与yy x x轴交于点C.(1)求点A ,B 的坐标;(2)若P 为抛物线的顶点,求ACP △的面积.26.(11分)某景区旅游商店以20元/kg 的价格采购一款旅游食品加工后出售,经调查发现,该食品每天的销售量y (kg )与销售单价x (元)满足2100y x =-+,设销售这种食品每天的利润为W (元).(1)求W 与x 之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?(3)在保证销售量尽可能大的前提下,该商场每天获得250元的利润,应将销售单价定为多少元?。
金太阳试卷初三数学月考(2篇)
第1篇一、选择题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且a=2,若点P(1,-3)在抛物线上,则下列结论正确的是()A. 抛物线的对称轴为x=1B. 抛物线的顶点坐标为(1,-3)C. 抛物线的顶点坐标为(0,-3)D. 抛物线的顶点坐标为(-1,-3)答案:B2. 下列方程中,解集不为空集的是()A. x^2+x+1=0B. x^2-1=0C. x^2+1=0D. x^2+x-1=0答案:B3. 若sinα=0.8,且α在第二象限,则cosα的值为()A. -0.6B. -0.8C. 0.6D. 0.8答案:A4. 已知正方形的边长为a,对角线长为b,则下列关系正确的是()A. a^2+b^2=4a^2B. a^2+b^2=2a^2C. a^2+b^2=3a^2D. a^2+b^2=5a^2答案:B5. 若函数f(x)=x^3-3x+2在区间[1,2]上单调递增,则函数g(x)=x^2-6x+8在区间[1,2]上的单调性为()A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:A二、填空题6. 若等差数列{an}的前n项和为Sn,且S5=50,S9=90,则S13的值为______。
答案:1307. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=6,b=8,cosA=1/3,则sinB的值为______。
答案:√2/38. 若函数y=f(x)在区间[0,1]上单调递增,且f(0)=1,f(1)=2,则f(1/2)的取值范围是______。
答案:(1,2)9. 已知一次函数y=kx+b的图象经过点A(1,2)和B(3,-1),则k+b的值为______。
答案:-110. 若等比数列{an}的公比为q,且a1=1,a2=2,则q的值为______。
答案:2三、解答题11. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且a=2,若点P(1,-3)在抛物线上,求抛物线的顶点坐标。
黑龙江省齐齐哈尔市铁锋区2024-2025学年九年级上学期第一次月考数学试题(含答案)
初三学年上学期质量检测数学试题一、选择题(每小题3分,共30分)1.下列方程一定是一元二次方程的是( )A. B. C. D.2.若是关于的一元二次方程的一个解,则的值是( )A.2021B.2022C.2023D.20243.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是( )A.且B.C.且D.4.某电影上映第一天票房收入约1亿元,以后每天票房收入按相同的增长率增长,三天后累计票房收入达到4亿元.若增长率为,则下列方程正确的是( )A. B. C. D.5.,与为二次函数图象上的三点,则,,的大小关系是( )A. B. C. D.6已知是关于的方程的一个实数根,该方程的两实数根恰是等腰的两条边长,则的周长为( )A.9B.10C.6或10D.8或107.已知二次函数的图象与轴有两个交点,则的取值范围为( )A. B.且 C. D.且8.若,则代数式的值( )A.-1或3 B.1或-3C.-1D.39.若,则二次函数的图象的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限10.已知二次函数的图象如图所示,有下列结论:①;②;③;④.其中正确的结论是( )2210x x +-=2230x y --=220ax x -+=23210x x --=1x =-x 220230ax bx --=1a b ++x ()22210m x x ---=m 1m ≥2m ≠1m >1m >2m ≠2m ≠x 14x +=()214x +=()2114x ++=()()21114x x ++++=()11,y -()22,y ()33,y 245y x x =--+1y 2y 3y 123y y y <<321y y y <<312y y y <<213y y y <<2x =x ()2440x m x m -++=ABC △ABC △2y 77kx x =--x k 7k 4>-7k 4<-k 0≠7k 4≥-74k >-0k ≠()()22222230a ba b +-+-=22a b +0b <21y x bx =+-()20y ax bx c a =++≠0abc >2a b c ++=12a >1b <A.①②B.②③C.②④D.③④二、填空题(每小题3分,共21分)11.将化成的形式,则的值是______.12.当_____时,关于的方程是一元二次方程;当_____时,此方程是一元一次方程。
数学月考试卷及答案初三
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -3D. 0.1010010001…2. 已知 a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. -a < -bD. -a > -b3. 若 x^2 - 4x + 3 = 0,则 x 的值为()A. 1 或 3B. -1 或 3C. 1 或 -3D. -1 或 -34. 下列函数中,是二次函数的是()A. y = x^2 + 2x + 1B. y = 2x^3 + 3x^2 + 4x + 5C. y = x^2 + 3x + 2D. y = 2x^2 + 3x - 15. 在△ABC中,∠A = 45°,∠B = 60°,则∠C 的度数是()A. 75°B. 105°C. 120°D. 135°6. 若 |x - 2| = 3,则 x 的值为()A. -1 或 5B. 1 或 5C. -1 或 -5D. 1 或 -57. 下列各式中,是绝对值方程的是()A. |x| + 2 = 3B. |x - 1| = 2C. |x + 1| = -3D. |x - 2| = 58. 若 a、b、c 是等差数列,且 a + b + c = 12,a + c = 8,则 b 的值为()A. 2B. 4C. 6D. 89. 已知 m、n、p 是等比数列,且 m + n + p = 24,m n p = 64,则 p 的值为()A. 2B. 4C. 8D. 1610. 下列函数中,是反比例函数的是()A. y = x^2 + 2x + 1B. y = 2x^3 + 3x^2 + 4x + 5C. y = x^2 + 3x + 2D. y = 2/x + 3二、填空题(每题5分,共25分)11. 若 x + y = 5,xy = 6,则 x^2 + y^2 的值为 ________。
初三月考数学试卷带答案
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √9B. √16C. √-4D. √0答案:A2. 下列等式中,正确的是()A. 2x + 3 = 5x - 1B. 3x - 2 = 2x + 4C. 4x - 5 = 3x - 2D. 2x + 1 = 5x + 3答案:C3. 下列函数中,y是x的一次函数的是()A. y = 2x + 3B. y = 3x^2 - 2C. y = √xD. y = 4/x答案:A4. 已知函数y = 2x - 3,若x = 2,则y的值为()A. -1B. 1C. 3D. 5答案:D5. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)答案:A6. 下列各组数中,存在反比例关系的是()A. x = 2,y = 4B. x = 3,y = 6C. x = 5,y = 10D. x = 4,y = 8答案:D7. 一个长方形的长是10cm,宽是5cm,它的周长是()A. 20cmB. 25cmC. 30cmD. 35cm答案:C8. 一个等腰三角形的底边长是8cm,腰长是6cm,那么这个三角形的面积是()A. 24cm²B. 30cm²C. 36cm²D. 42cm²答案:C9. 若a > b > 0,则下列不等式中正确的是()A. a + b > a - bB. a - b > a + bC. a - b > a - cD. a + b < a - c答案:A10. 已知一元二次方程x² - 5x + 6 = 0,则x的值为()A. 2或3B. 1或4C. 2或1D. 3或4答案:A二、填空题(每题5分,共25分)11. 若x = 3,则2x - 1的值为______。
答案:512. 下列函数中,y = 3x - 2是一次函数,自变量x的取值范围是______。
内蒙古自治区呼和浩特市第五中学2024-2025学年九年级上学期10月月考数学试题
2024-2025学年度第一学期初三年级第一次集中测查一数学出题人:李璐璐审题人:崔亚楠刘丽敏一、单选题(共19分)1.(本题2分)下列函数中,属于二次函数的是().A.y=12x B.y=1x2+1 C.y=(x+4)2−x2 D.y=x2−12.(本题2分)用配方法解方程x2−2x−3=0时,配方后所得的方程为().A.(x−1)2=4B.(x−1)2=2C.(x+1)2=4D.(x+1)2=23.(本题2分)若关于x的一元二次方程(a+2)a2+3a+1=0有两个不相等的实敷根,则a的取值范围是().A. a≤14B.a<14C.a<14且a≠−2 D.a>14且a≠−24.(本题2分)关于x的一元二次方程(a+3)a2+(a2−5)a−3=0的一次项系数为4,则m的值为().A.3B.0C.3或-3D.0或35.(本题2分)若关于x的一元二次方程(a+2)a2+a+a2−4=0的一个根为0,则m的值为().A.-2B.0C.2D.-2或26.(本题3分)若点A(-1.a),B(-3,b),C(2,c)都在二次函数y=x2的图象上,则a,b,c的大小用“<“连接的结果为().A.b<a<cB.c<b<aC. a<c<bD.c<a<b7.(本题3分)某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175亿元,二月、三月平均每月的增长率是多少?若设平均每月的增长率为x,根据题意,可列方程为().A. 50(1+x)2=175B.50+50(1+x)+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)2=1758.(本题3分)已知等腰△ABC的一条边为7,其余两边的边长恰好是方程a2−2(a+1)a+a2+5=0的两个根,则m 的值是().A.2B.4C.2或10D.4或10二、填空题(共24分)9.(本题3分) 方程(2a−3)2=3(a−1)化为一般形式是 .10.(本题3分)关于二次函数y=x2−2,下列说法正确的为 .1.抛物线开口向上2.抛物线的顶点坐标为(0,2)3.抛物线的对称轴为y轴4.当x>0时,y随x的增大而增大11.(本题3分)若方程(m+2)x2 +(m−1)x−2=0是关于x的一元二次方程,则m= .12.(本题3分)设a1,a2是关于x的一元二次方程x2−2(m+1)x+m2+2=0的两个实数根,且(a1+1)(a2+1)=8,则m的值为 .13.(本题3分)某校“研学”活动小组在一次综合实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支,主干、支干和小分支的总数是57,则这种植物每个支干长出的小分支个数是 . 14.(本题3分)将抛物线y=3x2向下平移1个单位长度,再向右平移2个单位长度,得到新的抛物线的表达式为 .15.(本题3分)一个两位数比它的十位上的数字与个位上的数字之积大40,已知十位上的数字比个位上的数字大2,则这个两位数是 .16.(本题3分)已知m是方程式x2+x−3=0的根,则式子m3+2m2−2m+2017的值为 .三、解答题(共57分)17.(本题6分)解方程:(1)(a+3)2=(5−3a)2(2)3x2+6x−4=0;18.(6分)阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y²+4y+8的最小值解: y²+4y+8=y²+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴代数式y²+4y+8的最小值为4(1)求代数式x2−6x+13的最小值:(2)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为18m,设较小矩形的宽为”(如图)当x为多少时,矩形养殖场的总面积最大?最大值为多少?19.(本题7分)某养殖专业户要建一个如图所示的长方形鸡场、鸡场的一边靠墙,墙的对而留有一个2米宽的门,另三边用竹篱笆围成,篱笆总长30米,若墙长为18米,要围成的鸡场面积是120平方米、求鸡场的垂直于墙的边长为多少米?20.(本题9分)阅读材料:在一元二次方程ax²+bx+c=0(a≠0)中,我们定义方程的判别式为Δ=b2−4ac,当Δ>0时,方程有两不同的实数根;当Δ=0时,方程有两个相等的实数根:当Δ<0时,方程没有实数根,并且当方程有实数根时,两根之和为a1+a2=−aa ,两根之积为a1a2=aa.已知关于x的方程:x2+(2m−1)x+m2=0(1)若方程有两个实数根,求m的取值范围.(2)若方程的一个根为1,另一个根为n,求m和n的值.(3)若方程的两个实数根为邛乓,且a12+a22=13,求m的值.21.(本题9分)已知二次函数y=x2的图象与直线y=x+2的图象如图所示.(1)判断y=x2的图象的开口方向,并说出此抛物线的对称轴、顶点坐标:(2)设直线y=x+2与抛物线y=x2的交点分别为A,B,如图所示,试确定A,B两点的坐标;(3)连接OA,OB,求△AOB的面积.22.(本题8分)为传承端午文化,2024年的端午节期间全国各地举行了丰富多彩的赛龙舟活动,某商家以每套75元的价格购进一批龙舟训练比赛服装,定价每套120元进行售卖.(1)经统计,3月份该服装销售量为256件,5月份该服装销售量为400件,求该服装销售量的月平均增长率:(2)今年端午节在6月份,此段时间龙舟比赛服的销量将有大幅提升,但端午节过后销量又会下滑,为了在6月份端午期间扩大销量减少库存,商家决定对龙舟比赛服进行降价促销,经过调研,在5月份的销售数量基础上每降价5元,销量将提高15件,商家将比赛服的售价定为多少时,才能获得13350元的利润.23.(12分)综合与运用如图,在矩形ABCD中,AB=6cm,BC=12cm.点M从A点出发沿AB以1cm/s的速度向B点运动,同时点N 从B点出发沿BC以2cm/s的速度向C点运动,当其中一点到达终点时,另一点也停止运动,设点M、N的运动时间为t秒,(1)当t为何值时,MN=√29cm ?(2)当t为何值时,△MNB的面积是△DCN面积的一半?(3)当t为何值时,△DMN是以DM为斜边的直角三角形?。
2024北京交大附中初三上学期10月月考数学试题及答案
2024北京交大附中初三10月月考数 学一、选择题(共16分,每题2分)第1—8题均有四个选项,符合题意的选项只有一个.1. 下列四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,中心对称图形是( )A. B. C. D.2. 抛物线22()1y x =−+的顶点坐标是( ) A. ()2,1B. ()2,1−C. ()2,1−D. ()2,1−−3. 将抛物线y =2x 2向右平移1个单位,再向上平移5个单位,则平移后的抛物线的解析式为( ) A. y =2(x +1)2+5 B. y =2(x +1)2-5 C. y =2(x -1)2+5 D. y =2(x -1)2-54. 如图,将ABC 绕着点C 顺时针旋转50︒后得到A B C '''.若40,110A B ∠=∠='︒︒,则BCA '∠的度数是( )A. 90︒B. 80︒C. 50︒D. 30︒5. 在平面直角坐标系中,把点P (-3,2)绕原点O 顺时针旋转180°,所得到的对应点P 的坐标为( ) A. (3,-2)B. (2,-3)C. (-3,-2)D. (3,2)6. 用配方法解一元二次方程245x x −=时,此方程可变形为( ) A. ()221x +=B. ()221x −=C. ()229x +=D. ()229x −=7. 如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =−,其对称轴与两段抛物线所围成的阴影部分的面积为A. 2B. 4C. 8D. 168. 如图,动点P 在线段AB 上(不与点A ,B 重合),分别以AB AP BP ,,为直径作半圆,记图中所示的阴影部分面积为y ,线段AP 的长为x .当点P 从点A 移动到点B 时,y 随x 的变化而变化,则表示y 与x 之间关系的图象大致是( )A. B. C. D.二、填空题(共16分,每题2分)9. 请写出一个开口向上且顶点坐标为()0,1的抛物线的解析式_______________.10. 二次函数2y x bx a =++的图像的顶点在x 轴上,写出一组满足条件的实数a 、b 的数值a =________,b =________. 11. 点()13,A y −,()22,By 在抛物线25y xx =−上,则1y ________2y .(填“>”,“<”或“=”)12. 二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线1x =−,与x 轴的一个交点为(1,0),与y 轴的交点为(0,3),则方程()200ax bx c a ++=≠的解为________.13. 已知关于x 的一元二次方程()221210m x x m −++−=有一个根是0,则m 的值是________.14. 如图,二次函数21(0)y ax bx c a =++>与一次函数2(0)y kx m k =+≠的图象相交于点(2,4)A −,(8,2)B ,则使12y y >成立的x 的取值范围是_______________.15. 某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则y 与x 的关系式为_______.16. 二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a≠0)中的x 与y 的部分对应值如下表:(2)抛物线顶点坐标为(1,5);(3)3是方程ax 2+(b ﹣1)x+c=0的一个根;(4)当﹣1<x <3时,ax 2+(b ﹣1)x+c >0.其中正确的序号为___________________.三、解答题(共868分,第17、18、19题每题4分,第20-26题、每题6分,第27-28题每题77分)解答应写出文字说明、演算步骤或证明过程.17. 计算:()031−π+−. 18. 解方程:243x x =−19. 已知:如图,ABC 绕某点按一定方向旋转一定角度后得到111A B C ,点A ,B ,C 分别对应点1A ,1B ,1C .(1)根据点1A 和1B 的位置确定旋转中心是点 . (2)请在图中画出111A B C .20. 如图,D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60°,得到线段AE ,连接CD ,BE .(1)求证:△AEB ≌△ADC ;(2)连接DE ,若∠ADC =105°,求∠BED 的度数.21. 已知关于x 的一元二次方程()21220m x x −++=有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.22. 已知二次函数()20y ax bx c a =++≠中,函数y 与自变量x 的部分对应值如下表:(1)求二次函数的表达式,并写出这个二次函数图象的顶点坐标; (2)求出该函数图象与x 轴的交点坐标,并画出此二次函数的图象.(3)结合图象,当0y >时,x 的取值范围是 . (4)结合图象,当21x −≤≤时,y 的取值范围是 . 23. 如图,在ABC 中,D 是AB 上一点,AD DC =,DE 平分∠ADC 交AC 于点E ,DF 平分∠BDC 交BC 于点F ,90DFC ∠=︒.(1)求证:四边形CEDF 是矩形;(2)若30B ∠=︒,2AD =,连接BE ,求BE 的长.24. 2021年12月《北京市义务教育体育与健康考核评价方案》正式发布,跳绳成为新增的体育中考选考项目.某校体育组为了解八年级学生跳绳的基本情况,从八年级男、女生中各随机抽取了20名学生1分钟跳绳次数,并对数据进行整理、描述和分析.下面给出了部分信息.a .学生1分钟跳绳次数频数分布直方图如下(数据分成9组:90100x ≤<,100110x ≤<,…,170180x ≤<):b .男生1分钟跳绳次数在140150x ≤<这一组的是:140,141,142,143,144,145,145,147c .1分钟跳绳次数的平均数、中位数、优秀率如下表:级女生1分钟跳绳次数大于或等于130个,成绩为优秀. 根据以上信息,回答下列问题:(1)将女生1分钟跳绳次数频数分布直方图补充完整; (2)写出表中m ,n 的值;(3)此次测试中,某学生的1分钟跳绳次数为140个,这名学生的成绩排名超过同组一半的学生,判断该生属于______(填“男生”或“女生”)组;(4)如果全年级男生人数为100人,女生人数为120人,请估计该年级跳绳成绩优秀的总人数. 25. 篮球是大家平时接触非常多的运动之一,投篮时,球出手后篮球飞行的轨迹可以近似的看作一条抛物线的一部分,建立如图所示平面直角坐标系,从出手到球进篮筐的过程中,篮球的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()()20y a x h k a =−+<.(1)某球员一次投篮时,记录了篮球的水平距离x 与竖直高度y 的几组数据如下:(2)小明同学在此基础上想要研究自己的投篮情况,已经求得第一次的投篮轨迹近似满足函数关系式:()25 2.4 4.512y x =−−+,请回答下列问题: ①小明同学第一次投篮的出手点高度为__________m ;②已知篮筐中心位置在水平距离4.2m ,竖直高度3m 处.当篮球的竖直高度为3m 时对应的水平距离与篮筐中心位置的水平距离相差0.1m 以内,篮球可以进入篮筐.若小明第二次的投篮轨迹近似满足函数关系式:()25 2.1412y x =−−+,已知两次投篮只有一次投中,则__________投中(填写“第一次”或“第二次”).26. 已知抛物线22y x ax b =−+经过点()11,.(1)用含a 的式子表示b 及抛物线的顶点坐标;(2)若对于任意12a x a −≤≤+,都有1y ≤,求a 的取值范围.27. 如图,ACB △中,AC BC =,90ACB ∠=︒,CD AB ⊥于点D ,点P 在AC 的延长线上,连接DP ,点B 与点E 关于直线DP 对称,连接AE .(1)依题意补全图形; (2)求证:AE DP ∥;(3)当=AE CP 时,连接CE ,PE ,用等式表示线段AE ,CE ,PE 之间的数量关系,并证明. 28. 在平面直角坐标系xOy 中,对于点P 与图形W 给出如下定义:如果存在以点P 为端点的一条射线与图形W 有且只有2个公共点,那么称点P 是图形W 的“相关点”.已知点(),2A m ,()2,0B m −,()2,0C m +.(1)当0m =时,①在点()11,0P −,()21,1P ,()34,0P ,()43,1P −中,是折线BA AC −的“相关点”的是______; ②点M 是直线24y x =+上一点,如果点M 是折线BA AC −的“相关点”,求点M 的横坐标M x 的取值范围;(2)正方形DEFG 的各边都平行于坐标轴,对角线的交点N 的坐标是()24,0m −.如果正方形的边长是2,正方形DEFG 上的任意一点都是折线BA AC −的“相关点”,请直接写出m 的取值范围.参考答案一、选择题(共16分,每题2分)第1—8题均有四个选项,符合题意的选项只有一个.1. 【答案】D【分析】根据中心对称图形的定义∶把一个图形绕某个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,解答即可.【详解】解:A .不符合中心对称图形的定义,因此不是中心对称图形,故错误; B .不符合中心对称图形的定义,因此不是中心对称图形,故错误; C .不符合中心对称图形的定义,因此不是中心对称图形,故错误; D .符合中心对称图形的定义,因此是中心对称图形,故正确; 故选:D .【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念是解题关键. 2. 【答案】A【分析】本题主要考查二次函数的性质,根据二次函数()2,(,y a x h k a b c =−+为常数,0)a ≠,顶点坐标是()h k ,,据此求解即可.【详解】解:抛物线22()1y x =−+的顶点坐标是()2,1, 故选:A . 3. 【答案】C【详解】∵平移不改变抛物线的二次项系数,∴将抛物线y =2x 2向右平移1个单位,再向上平移5个单位, 平移后的抛物线的解析式为y =2-1)2+5, 故选C.【点睛】本题考查了抛物线的平移变换.关键是将抛物线的平移转化为顶点的平移,平移的规律是左加右减,上加下减,根据规律结合顶点式即求平移后抛物线的解析式. 4. 【答案】B【分析】先利用旋转的性质得到50110ACA B B ''∠=︒==︒,∠∠,再利用三角形内角和计算出30ACB ∠=︒,然后计算BCA ACA '∠+∠即可.【详解】解:ABC 绕着点C 顺时针旋转50︒后得到A B C ''',50110ACA B B ''∴∠=︒==︒,∠∠,40A ∠=︒,18030ACB A B ∴∠=︒−︒−=∠∠,305080BCA BCA ACA ''∴∠=∠+∠=︒+︒=︒.故选:B .【点睛】本题考查了三角形内角和定理,旋转的性质,熟知旋转的性质是解题的关键:旋转图形对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.5. 【答案】D【详解】根据题意得,点P 关于原点的对称点是点P ′, ∵P 点坐标为(-3,2), ∴点P ′的坐标(3,-2). 故选:D .【点睛】考点:坐标与图形变化-旋转. 6. 【答案】D 【详解】245x x −=24454x x −+=+()229x −=故选:D . 7. 【答案】B【详解】解:过点C 作CA ⊥y 轴于点A ,根据抛物线的对称性得:OBD 的面积等于CAO 的面积, ∴阴影部分的面积等于矩形ACBO 的面积.∵22112(2)222y x x x =−=−−, ∴顶点坐标为C (2,-2).∴对称轴与两段抛物线所围成的阴影部分的面积为:2×2=4. 故选B . 8. 【答案】C【分析】假设1AB =,则1BP x =−,然后根据AB AP BP y S S S =−−半圆半圆半圆求出y 关于x 的函数关系式即可得到答案.【详解】解:假设1AB =,则1BP AB AP x =−=−, ∴AB AP BP y S S S =−−半圆半圆半圆22211222222x x πππ−⎛⎫⎛⎫⎛⎫=⨯−⨯−⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()2221888x x x πππ−+=−−244x x ππ=−+,故选C .【点睛】本题主要考查了二次函数在几何图形中的应用,正确求出y 关于x 的函数关系式是解题的关键.二、填空题(共16分,每题2分)9. 【答案】21y x =+(答案不唯一)【分析】本题考查二次函数的性质,熟练掌握二次函数的性质是解题关键.已知顶点坐标,可用抛物线的顶点式表示解析式,已知开口向上,只要二次项系数为正数即可. 【详解】解:由题意可设该抛物线解析式为21y ax =+. ∵开口向上, ∴0a >即可.令1a =,则抛物线的解析式为21y x =+. 故答案为:21y x =+(答案不唯一). 10.【答案】 ①.14(答案不唯一). ②. 1(答案不唯一). 【分析】本题考查二次函数的图象与性质,求出顶点坐标是解答本题的关键.先化为顶点式,求出顶点坐标,再利用顶点纵坐标等于0列式求解即可.【详解】解:22224b b y x bx a x a ⎛⎫=++=++− ⎪⎝⎭, ∴该二次函数的顶点坐标为2,24b b a ⎛⎫−− ⎪⎝⎭.∵该二次函数的顶点在x 轴上,∴204b a −=,∴24a b =. 当1b =时,14a =. 故答案为:14,1(答案不唯一). 11. 【答案】>【分析】将A ,B 两点代入抛物线,求出对应的y 值即可.【详解】当3x =−时,21524y x x =−=;当2x =时,2256y x x =−=−;∵246>−,∴12y y >.故答案为:>.【点睛】本题考查了二次函数的图像和性质,掌握知识点是解题关键.12. 【答案】13x =−,21x =【分析】本题考查二次函数图象的对称性,二次函数与相关一元二次方程的关系.掌握二次函数图象关于其对称轴对称,二次函数图象与x 轴交点的横坐标即为其相关一元二次方程的解是解题关键.根据二次函数图象的对称性可求出另一交点坐标为()3,0−,即得出其相关一元二次方程的的解为13x =−,21x =.【详解】解:∵该二次函数对称轴为直线1x =−,与x 轴的一个交点为()1,0,∴该二次函数与x 轴的另一个交点为()3,0−,∴方程()200ax bx c a ++=≠的解为13x =−,21x =.故答案为:13x =−,21x =.13. 【答案】1−【分析】把x =0代入方程进行计算,结合一元二次方程的二次项系数不为0,即可得到答案.【详解】解:把0x =代入方程,得:210m −=,∴1m =±,∵10m −≠,∴1m ≠,∴1m =−;故答案为:1−.【点睛】本题考查了解一元二次方程,以及方程的解,解题的关键是熟练掌握解一元二次方程的方法,利用方程的解正确求出参数.14. 【答案】2x <−或8x >【分析】本题考查二次函数与不等式的关系,解题关键是结合图象求解.根据抛物线与直线交点坐标,结合图象求解. 【详解】解:抛物线与直线交点坐标为(2,4)A −,(8,2)B ,2x ∴<−或8x >时,抛物线在直线上方,∴使12y y >成立的x 的取值范围是2x <−或8x >.故答案为:2x <−或8x >15. 【答案】y =(60﹣x )(300+20x )【分析】根据题意可以列出相应的函数关系式,本题得以解决.【详解】由题意可得,()()6030020=−+y x x .故答案为:()()6030020=−+y x x .【点睛】本题考查由实际问题列二次函数关系式,解答本题的关键是明确题意,列出相应的函数关系式. 16. 【答案】(1)、(3)、(4)【分析】根据表格可得到函数的对称轴,再判断出函数的开口方向,与y 轴的交点、顶点坐标,再根据函数的图像与性质即可一一判断.【详解】(1)函数的对称轴为:x =12(0+3)=32, 对称轴左侧y 随x 的增大而增大,故a <0,x =0,y =3=c >0,故(1)正确,符合题意;(2)函数的对称轴为x =32,故(2)错误,不符合题意; (3)ax 2+(b−1)x +c =0,则ax 2+bx +c =x ,当x =3时,ax 2+bx +c =3,故(3)正确,符合题意;(4)由(3)知,3是方程ax 2+(b−1)x +c =0的一个根,由函数的对称轴知其另外一个根为1, 故当−1<x <3时,ax 2+(b−1)x +c >0,故(4)正确,符合题意;故答案为:(1)、(3)、(4).,主要要求学生通过观察函数图象的方式来求解不等式.三、解答题(共868分,第17、18、19题每题4分,第20-26题、每题6分,第27-28题每题77分)解答应写出文字说明、演算步骤或证明过程.17.【分析】本题考查二次根式的混合运算,涉及零指数幂,化最简二次根式,化简绝对值,掌握二次根式的混合运算法则是解题关键.先计算零指数幂,化最简二次根式,化简绝对值,再进行加减运算即可.【详解】解:()031π−+11=+=18. 【答案】121,3x x ==【分析】先化为一般形式,然后根据因式分解法解一元二次方程【详解】解:243x x =−,2430x x −+=,()()130x x −−=,即10x −=或30x −=,解得121,3x x ==.【点睛】本题考查了因式分解法解一元二次方程,掌握解一元二次方程的方法是解题的关键.19. 【答案】(1)1O(2)见解析【分析】(1)分别作1AA 、1BB 的中垂线m 、n ,两者的交点即为所求;(2)作出点C 绕点1O 顺时针旋转90°所得对应点,再首尾顺次连接即可得;【小问1详解】解:如图,根据点1A 和1B 的位置确定旋转中心是点1O ,【小问2详解】如图所示,111A B C 即为所求.【点睛】本题主要考查作图-旋转变换,解题的关键是掌握旋转变换的定义和性质,并据此得出变换后的对应点.20. 【答案】(1)见解析;(2)45°【分析】(1)根据等边三角形的性质,可得60BAC ︒∠=,AB AC =,再由旋转的性质,可得60DAE ︒∠=,AE AD =,从而得到EAB DAC ∠=∠,再证EAB ≌()DAC SAS 即可;(2)根据题意可得EAD 为等边三角形.可得60AED ︒∠=,根据三角形全等可得105AEB ADC ︒∠=∠=,然后利用两角之差即可求解.【详解】(1)证明:ABC 是等边三角形,60BAC ︒∴∠=,AB AC =.线段AD 绕点A 顺时针旋转60︒,得到线段AE ,60DAE ︒∴∠=,AE AD =.BAD EAB BAD DAC ∴∠+∠=∠+∠.EAB DAC ∴∠=∠.在△EAB 和△DAC 中,AE AD EAB DAC AB AC =⎧⎪∠=∠⎨⎪=⎩,EAB ∴≌()DAC SAS .()2解: 60DAE ︒∠=,AE AD =,EAD ∴为等边三角形.60AED ︒∴∠=, EAB ≌DAC △.105AEB ADC ︒∴∠=∠=.∴∠BED =∠AEB -∠AED =105°-60°=45°,45BED ︒∴∠=.【点睛】本题主要考查了等边三角形的性质和判定,全等三角形的判定和性质,图形的旋转,熟练掌握相关知识点是解题的关键.21. 【答案】(1)32m <且1m ≠;(2)11x =,21x =− 【分析】(1)由Δ>0,得到关于m 的不等式,解之得到m 的范围,根据一元二次方程的定义求得答案; (2)由(1)知m =0,可得方程2220x x −++=,利用因式分解法求解可得.【详解】.解:(1)关于x 的一元二次方程()21220m x x −++=有两个不相等的实数根, 10m ∴−≠,即1m ≠.又128m ∆=−,0∴∆>,即1280m −>. 解得32m <. m ∴的取值范围是32m <且1m ≠. (2)在32m <且1m ≠的范围内,最大整数m 为0. 此时,方程化为2220x x −++=.∴方程的根为11x =+,21x =【点睛】本题主要考查一元二次方程的定义及根的判别式,解题的关键是熟练掌握方程的根的情况与判别式的值之间的关系.22. 【答案】(1)223y x x =+−,顶点坐标(1,4)−−(2)与x 轴的交点坐标分别为()3,0−,()1,0,画图象见解析(3)3x <−或1x >(4)40y −≤≤【分析】本题考查求二次函数解析式,二次函数的图象和性质,求二次函数与坐标轴的交点坐标.利用待定系数法求二次函数解析式并正确画出图象是解题关键.(1)利用待定系数法求二次函数解析式即可,再将其改为顶点式即得出顶点坐标;(2)令0y =,求出x 的值,即得出该函数图象与x 轴的交点坐标,再描点连线画出此二次函数的图象即可;(3)求当0y >时,x 的取值范围,即求函数图象在x 轴上方时,x 的取值范围,结合图象可直接得出结果;(4)结合图象可直接得出结果.【小问1详解】解:将 ()2,3−−,()1,4−−,()0,3−代入()20y ax bx c a =++≠, 得:34243a b c a b c c −=−+⎧⎪−=−+⎨⎪−=⎩,解得:123a b c =⎧⎪=⎨⎪=−⎩,∴该二次函数的表达式为()222314y x x x =+−=+−,∴这个二次函数图象的顶点坐标为(1,4)−−;【小问2详解】解:对于223y x x =+−,令0y =,则2230x x +−=,解得:13x =−,21x =,∴该函数图象与x 轴的交点坐标分别为()3,0−,(1,0).画出此二次函数的图象如下: 【小问3详解】解:由图可知,当0y >时,x 的取值范围是3x <−或1x >;【小问4详解】解:由图可知,当21x −≤≤时,y 的取值范围是40y −≤≤.23. 【答案】(1)见解析 (2【分析】(1)证∠EDF =90°,∠CED =90°,再由∠DFC =90°,即可得出结论;(2)证△ACD 是等边三角形,得∠ACD =60°,AC =AD =2,则AE =CE =1,再由勾股定理得DE ,然后由三角形中位线定理得BC =2DE =【小问1详解】解:证明:∵DE 平分∠ADC ,DF 平分∠BDC ,∴∠ADE =∠CDE =12∠ADC ,∠CDF =12∠BDC , ∴∠CDE +∠CDF =12(∠ADC +∠BDC )=12×180°=90°, 即∠EDF =90°,∵AD =DC ,∴∠DCA =∠DAC ,∴∠CED =∠AED =12×180°=90°, 又∵∠DFC =90°,∴四边形CEDF 是矩形;【小问2详解】解:由(1)可知,四边形CEDF 是矩形,∴∠CED =∠ECF =90°,∴∠A =90°-∠B =90°-30°=60°,DE ⊥AC ,∵AD =DC ,∴CE =AE ,△ACD 是等边三角形,∴∠ACD =60°,AC =AD =2,∴AE =CE =1,∴DE =∠DCB =∠ECF -∠ACD =90°-60°=30°,∴∠DCB =∠B ,∴DB =DC =AD ,∴DE 是△ABC 的中位线,∴BC =2DE =,在Rt △BCE 中,由勾股定理得:BE =,即BE【点睛】本题考查了矩形的判定与性质、等边三角形的判定与性质、三角形中位线定理以及勾股定理等知识,熟练掌握矩形的判定与性质是解题的关键.24. 【答案】(1)见解析 (2)141.5m =,70%n =(3)“女生” (4)149人【分析】(1)利用抽取女生的总人数和女生跳绳次数频数分布直方图中的数据,求出成绩在130140x ≤<之间的人数即可;(2)利用中位数的定义求m ,利用八年级女生1分钟跳绳次数大于或等于130个的人数除以女生总人数求n ;(3)将这名学生的成绩与男生、女生成绩的中位数比较即可;(4)利用样本估计总体的方法解决.【小问1详解】解:女生成绩在130140x ≤<之间的人数为:20112261115−−−−−−−−=,补全后的频数分布直方图如下图所示:【小问2详解】解:由男生1分钟跳绳次数频数分布直方图和140150x ≤<这一组的数据可知,20名男生中,成绩从低到高排序,第10位和第11位的成绩分别是141,142, 因此男生组的中位数:141142141.52m +==; 女生1分钟跳绳次数大于或等于130个的人数为:5611114++++=, 因此女生组的优秀率:14100%70%20n =⨯=, 故141.5m =,70%n =;【小问3详解】解:这名学生的成绩140小于男生组的中位数141.5,大于女生组的中位数138,因此该生属于“女生”,故答案为:“女生”;【小问4详解】解:由已知和(2)的结论知男生组的优秀率为65%,女生组的优秀率为70%,10065%12070%6584149⨯+⨯=+=(人), 因此估计该年级跳绳成绩优秀的总人数为149人.【点睛】本题考查统计相关知识,掌握频数分布直方图、中位数的定义和应用,以及利用样本估计总体的方法是解题的关键.25. 【答案】(1)()2.54,,()28 2.5425y x =−−+ (2)①2.1;②第一次 【分析】(1)由表格中的数据可得篮球飞行轨迹的最高点坐标为()2.54,,设此函数满足的函数解析式为:()22.54y a x =−+,将()02,代入函数解析式,求出a 的值即可得到答案; (2)①令0x =,求出y 的值即可得到答案;②分别令3y =,计算出x 的值,进行估算,并进行比较即可得到答案.【小问1详解】解:由表格中的数据可得:篮球飞行轨迹的最高点坐标为()2.54,, 设此函数满足的函数解析式为:()22.54y a x =−+, 将()02,代入函数解析式得:()20 2.542a ⨯−+=, 解得:825a =−, ∴篮球飞行轨迹满足的函数解析式为:()28 2.5425y x =−−+; 【小问2详解】解:①根据题意得:当0x =时,()250 2.4 4.5 2.112y =−⨯−+=, ∴小明同学第一次投篮的出手点高度为2.1m ,故答案为:2.1; ②在()25 2.4 4.512y x =−−+中,令3y =,则()25 2.4 4.5312x −−+=,解得:1 2.45x =−,2 2.45x =+,在()25 2.1412y x =−−+中,令3y =,则()25 2.14312x −−+=,解得:1 2.15x =−,2 2.15x =+,310 2.4 4.35+≈,2.1 3.65+≈,且当篮球的竖直高度为3m 时对应的水平距离与篮筐中心位置的水平距离相差0.1m 以内,篮球可以进入篮筐,篮筐中心位置在水平距离4.2m ,∴第一次投中,故答案为:第一次.【点睛】本题考查了二次函数的实际应用,理解题意,熟练掌握二次函数的图象与性质是解此题的关键.26. 【答案】(1)2b a =,抛物线的顶点坐标为()22a a a −,;(2)3a ≥或1a ≤−. 【分析】(1)把点()11,代入22y x ax b =−+计算可求得含a 的式子表示b 的代数式,配方成顶点式,即可求解;(2)由(1)知抛物线的对称轴为直线x a =,抛物线开口向上,离对称轴越远函数值越大,则当2x a =+时,代入计算,解不等式即可求解.【小问1详解】解:∵抛物线22y x ax b =−+经过点()11,,∴112a b =−+,∴2b a =,∵()22222y x ax b x a a a =−+=−+−, ∴抛物线的顶点坐标为()22a a a −,;【小问2详解】 解:∵()22222y x ax b x a a a =−+=−+−,∴抛物线的对称轴为直线x a =,又∵抛物线开口向上,离对称轴越远函数值越大,且12a x a −≤≤+,∴当2x a =+时,()22222421y a a a a a a =+−+−=+−≤最大,即2230a a −−≥,∴()()310a a −+≥, ∴3010a a −≥⎧⎨+≥⎩或3010a a −≤⎧⎨+≤⎩, 解得3a ≥或1a ≤−.【点睛】本题考查了二次函数的顶点坐标,函数的增减性,在本题的解答中,除了必要的理论依据外,还需要学生具有比较强的解不等式的能力.27. 【答案】(1)补图见解析(2)证明见解析 (3)2222CE AE EP +=,证明见解析【分析】本题考查了全等三角形的判定和性质,勾股定理,中位线的性质,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握这些性质是解题的关键.(1)根据题意画图即可;(2)设BE 与DP 交于点M ,分别证明M 、D 为BE 、AB 中点,利用中位线可证;(3)过点C 作CN CE ⊥交BE 于点N ,连接BP ,设AC 与BE 交于点T ,BE 与DP 交于点M ,BC 与DP 交于点Q ,先证CBN CAE △≌△,得CN CE =,推出45CEN ∠=︒,再证CPD EAC △≌△,推出CD EC =,推出BC ==,再证EP BP =,最后在Rt CBP △中,利用222BC CP BP +=求证.【小问1详解】解:补全图形如图:【小问2详解】解:如图,设BE 与DP 交于点M∵点B 与点E 关于直线DP 对称,∴DP BE ⊥,BM EM =,∵AC BC =,CD AB ⊥,∴AD BD =,∴M ,D 分别为,BE AB 的中点∴DM AE ∥,即:AE DP ∥;【小问3详解】解:2222CE AE EP +=,证明如下:如图,过点C 作CN CE ⊥交BE 于点N ,连接BP ,设AC 与BE 交于点T ,BE 与DP 交于点M ,BC 与DP 交于点Q ,∵90ACB ∠=︒,∴90ACN BCN ACN ACE ∠+∠=∠+∠=︒,∴BCN ACE ∠=∠,∵90CBN CTB CAE ATE ∠+∠=∠+∠=︒,CTB ATE ∠=∠,∴CBN CAE ∠=∠,又∵CB CA =,∴()ASA CBN CAE ≌,∴CN CE =,∴45CEN CNE ∠=∠=︒,∴135AEC AEB CEN ∠=∠+∠=︒,∵AC BC =,90ACB ∠=︒,CD AB ⊥于点D ,∴45BCD CBD ∠=∠=︒,AD ,∴BC =,135PCD PCB BCD ∠=∠+∠=︒,∴AEC PCD ∠=∠,∵90PCQ BMQ ∠=∠=︒,∴90CPD CQP NBC BQM ∠+∠=∠+∠=︒,∵CQP BQM ∠=∠,∴CPD NBC ∠=∠,∴CPD CAE ∠=∠,又∵CP AE =,∴()ASA CPD EAC ≌,∴CD EC =,∴BC =,∵DP BE ⊥,BMEM =,∴EP BP =,在Rt CBP △中,222BC CP BP +=,即:)222AE EP +=,即:2222CE AE EP +=.28. 【答案】(1)①23,P P ;②223M x −≤<−(2)0m <或8m >【分析】(1)①根据所给坐标画出图像,根据定义进行判断即可求解;②根据题意画出24y x =+,结合定义可知当M 与点B 重合时M x 取得最小值,与直线AC 相交时,M x 取得最大值,进而即可求解;(2)根据题意求得直线AB 的解析式为2y x m =−+,直线AC 的解析式为2y x m =−++,正方形DEFG 上的任意一点都不在BA AC −所围成的锐角之内以及边上(除线段AB ,AC 外),当正方形有一点在AB 或AC 上时,根据点N 的坐标以及正方形的性质求得点F 的坐标,分别代入直线,AB AC 的解析式即可求得点F 的坐标,结合函数图像即可求解.【小问1详解】当0m =时,()()()0,2,2,0,2,0A B C −,①如图,在平面直角坐标系中描出点()()()0,2,2,0,2,0A B C −,()11,0P −,()21,1P ,()34,0P ,()43,1P −连接,AB AC ,由图像可知,23,P P 为折线BA AC −的“相关点”;②如图,点M 是直线24y x =+上一点,根据定义可知:点M 为折线BA AC −的“相关点”当M 与点()2,0B −重合时,此时M x 取得最小值,为2−,当M 在直线AC 上时,M x 取得最大值,设直线AC 解析式为y kx b =+()()0,2,2,0A C则202k b b +=⎧⎨=⎩解得12k b =−⎧⎨=⎩∴直线AC 解析式为2y x =−+联立224y x y x =−+⎧⎨=+⎩解得2383x y ⎧=−⎪⎪⎨⎪=⎪⎩即M x 的最大值为23− 223M x ∴−≤<− 【小问2详解】点(),2A m ,()2,0B m −,()2,0C m +.设直线AB 的解析式为y cx d =+,AC 解析式为y ex f =+,则()220mc d m c d +=⎧⎨−+=⎩,()220me f m e f +=⎧⎨++=⎩, 解得12c d m =⎧⎨=−+⎩,12e f m =−⎧⎨=+⎩ ∴直线AB 的解析式为2y x m =−+,直线AC 的解析式为2y x m =−++,当正方形DEFG 上的任意一点都是折线BA AC −的“相关点”;∴正方形DEFG 上的任意一点都不在BA AC −所围成的锐角之内以及边上(除线段AB ,AC 外), 当正方形有一点在AB 或AC 上时,如图,当点F 在AB 上时,()24,0N m −,正方形的边长为2,则()23,1F m −−, 代入直线AB 解析式,可得()1232m m −=−−+,解得0m =;当点F 在AC 上时,()24,0N m −,正方形的边长为2,则()25,1F m −−,代入直线AC 解析式,可得()1252m m −=−−++,解得8m =,结合图像可知,当正方形DEFG 上的任意一点都是折线BA AC −的“相关点”,0m <或8m >.【点睛】本题考查了新定义问题,待定系数法求一次函数解析式,正方形的性质,坐标与图形,两直线交点问题,理解新定义是解题的关键.。
2024北京清华附中初三上学期10月月考数学试题及答案
2024北京清华附中初三10月月考数 学(清华附中初22级)一、选择题(本题共24分,每小题3分)第1-8题均有四个选项,符合题意的选项只有一个.1. 下面四个标志中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2. 用配方法解方程2610x x +−=,变形后结果正确的是( ) A. ()2310x +=B. ()237x +=C. ()2310x −=D. ()237x −=3. 如果两个相似三角形的面积之比为9:4,那么这两个三角形的周长之比为( ) A. 81:16B. 27:12C. 9:4D. 3:24. 在平面直角坐标系xOy 中,将抛物线23y x =先向右平移4个单位长度,再向上平移1个单位长度,得到的抛物线是( ) A. 23(x 4)1y =+−B. 23(4)1y x =++C. 23(4)1y x =−−D. 23(4)1y x =−+5. 如果()11,M y −,()22,N y 是正比例函数y kx =的图象上的两点,且12y y >.那么符合题意的k 的值可能是( ) A.13B. 1C. 3D. 2−6. 如图,在菱形ABCD 中,66ABC ∠=︒,对角线AC BD ,交于点O ,E 为CD 的中点,连接OE ,则AOE ∠的度数为( )A. 114︒B. 120︒C. 123︒D. 147︒7. 已知0b >时,二次函数221y ax bx a =++−的图象如下列四个图之一所示.根据图分析,a 的值等于....( )A. 2−B. 1−C. 1D. 28. 如图,在Rt ABC △中,AB AC =,D 、E 是斜边BC 上两点,将ACD 绕点A 顺时针旋转90°,得到ABF △,连接EF ,若AED AEF ≌△△,下列结论:①45DAE =︒∠;②ABD EAF △∽△;③BE CD DE +=;④222BE CD DE +=.其中正确的是( ) A. ①②③B. ②③④C. ①②D. ①②④二、填空题(本题共24分,每小题3分)9. 在平面直角坐标系中,点()3,4P −关于原点对称的点的坐标是______. 10. 二次函数2246y x x =−+−的最大值是______. 11. 如图,ABCD 中,延长BC 至E ,使得12CE BC =.若2CF =,则DF 的长为_______.12. 2022至2024年,某城市居民人均可支配年收入由6.58万元增长至7.96万元.设人均可支配年收入的平均增长率为x ,根据题意列出方程得 ____________________.13. 已知点()11,P y −,()23,Q y 在一次函数()10y kx k =+≠的图象上,且12y y <,则k 的值可以是______.(写出一个即可).14. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作OE AD ⊥,垂足为E ,若6AB =,则OE 的长为______.15. 如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边20cm DE =,10cm EF =,测得边DF 离地面的高度 1.5m AC =,6m CD =,则树高AB 是______m .16. 某酒店在客人退房后清洁客房需打扫卫生、整理床铺、更换客用物品、检查设备共四个步骤.某清洁小组有甲、乙、丙三名工作人员,工作要求如下:①“打扫卫生”只能由甲完成;每间客房“打扫卫生”完成后,才能进行该客房的其他三个步骤,这三个步骤可由任意工作人员完成并可同时进行;②一个步骤只能由一名工作人员完成,此步骤完成后该工作人员才能进行其他步骤; ③每个步骤所需时间如表所示:_________分钟;若由甲、乙、丙合作完成四间客房的清洁工作,则最少需要_________分钟.三、解答题(本题共72分,其中17、18、19、21、22、23题每小题5分,20、26题每小题6分,25、26题每小题7分,27、28题每小题8分)17. 解方程:2520x x −+=.18. 如图,已知△ABC 顶点的坐标分别为A (1,-1),B (4,-1),C (3,-4).(1)将△ABC 绕点A 逆时针旋转90°后,得到△AB 1C 1.在所给的直角坐标系中画出旋转后的11AB C ∆,并写出点1B 的坐标:1B ;(2)以坐标原点O 为位似中心,在第二象限内再画一个放大的222A B C ∆,使得它与△ABC 的位似比等于2:1 .19. 二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:(1)直接写出c ,m 的值; (2)求此二次函数的解析式.20. 已知关于x 的一元二次方程x 2﹣(m+3)x+m+2=0. (1)求证:无论实数m 取何值,方程总有两个实数根; (2)若方程两个根均为正整数,求负整数m 的值.21. 如图,矩形ABCD 中,点E 为边AB 上任意一点,连接CE ,点F 为CE 的中点,过点F 作MN CE ⊥,MN 与AB 、CD 分别相交于点M 、N ,连接CM 、EN .(1)求证:四边形CNEM 为菱形;(2)若10AB =,4=AD ,当2AE =时,求EM 的长.22. 如图,某班级门口有一块长为20厘米、宽为15厘米的小型长方形优秀事迹展板,展板上粘贴上下左右对齐两排的6个长方形且面积都为18平方厘米的班级学生主要事迹贴纸,若要求学生的主要事迹贴纸之间以及到上下左右的宽度都相等(设为x 厘米),如图所示,求宽度x .23. 某高校要选派一位同学去参加首都高校校园文化演讲,为了选出综合素质最高的一名同学进行演讲,先对所有报名的同学进行了笔试,再对笔试90分以上(含90分)的同学进行面试.小强、小亮、小旭三位同学脱颖而出,他们的笔试成绩(满分100)分别是98,94,90.之后组织了十位评委对小强、小亮、小旭三位同学面试表现进行打分,每位评委最高打10分,面试成绩等于各位评委打分之和.之后对这三位同学的面试的数据进行整理、描述和分析,下面给出了部分信息.a.评委给小强同学打分如下:10,10,9,8,8,8,7,7,6,6b.评委给小亮、小旭两位同学打分的折线图如下图:c.小强、小亮、小旭三位同学面试情况统计表:(1)直接写出表中m,n的值;(2)在面试中,如果评委给某个同学的打分的方差越小,则认为评委对该同学面试的评价越一致.据此推断:小强、小亮、小旭三位同学中,评委对_________的评价更一致(填“小强”、“小亮”或“小旭”);(3)在笔试和面试两项成绩中,按笔试成绩占40%,面试成绩占60%,计算小强、小亮、小旭的综合成绩,综合成绩最高的是_________(填“小强”、“小亮”或“小旭”).=,点D为BC中点,作点D关于线段AC的对称点F,连接DF交AC 24. 如图,在ABC中,AB AC∥交AC、AB于H、G.于E,过点F作FG BC=;(1)求证:CE EH(2)若3BC =,1CE =,求GH 的长.25. “夏至”是二十四节气的第十个节气,《烙遵宪度》中解释道:“日北至,日长之至,日影短至,故曰夏至,至者,极也.”夏至入节的时间为每年公历的6月21日或6月22日.某小组通过学习、查找文献,得到了夏至日正午中午12时,在北半球不同纬度的地方,100cm 高的物体的影长和纬度的相关数据,记纬度为x (单位:度),影长为y (单位:cm ),x 与y 的部分数据如下表:(1)通过分析上表数据,发现可以用函数刻画纬度x 和影长y 之间的关系,在平面直角坐标系xOy 中,画出此函数的图象;(2)北京地区位于大约北纬40度,在夏至日正午,100cm 高的物体的影长约为______cm (精确到0.1); (3)小红与小明是好朋友,他们生活在北半球不同纬度的地区,在夏至日正午,他们测量了100cm 高的物体的影长均为40cm ,那么他们生活的地区纬度差约是______度.26. 在平面直角坐标系xOy 中,抛物线221y ax mx =−−经过点()1,22P m −−, (1)求a 的值;(2)己知点()11,A m y −−,()224,B m y +在此抛物线上,当11m −<<时,比较1y ,2y ,1−的大小,并说明理由.27. 如图,在ABC 中,AB AC =,BAC α∠=,P 为线段BC 上的动点(不与点C 重合),将线段AP 绕点A 顺时针旋转α得到线段AQ .(1)如图1,当P 是BC 中点时,连接BQ ,求证:BP BQ =;(2)过点Q 作直线QM AC ∥,交直线BC 于点M ,在射线MB 上取一点N ,使得2MN CP =,连接QN .请补全图2,直接写出MQN ∠的大小并证明.28. 在平面直角坐标系xOy 中,Q 是x 轴正半轴上一点,对于四边形ABCD 边上的点P 和图形W (点P 不在x 轴上),给出如下定义:若POQ α∠=,将图形W 绕点P 逆时针旋转α得到图形M ,则称图形M 是图形和点P 的“关联图”.如图,点()1,1A ,()1,1B −,()1,1C −−,()1,1D −.(1)点()11,2N −,()222N ,,331,2N ⎛⎫⎪⎝⎭,(4N 中,在四边形ABCD 和点()0,1E 的“关联图”上的点是__________;(2)已知点1,02F ⎛⎫⎪⎝⎭,3G t ⎛⎫ ⎪ ⎪⎝⎭. ①若线段OF 关于点P 的“关联图”在四边形ABCD 的内部(包含边界),设点P 的横坐标的最小值为m ,纵坐标的最大值为n ,直接写出n m −的值__________;②当OFG △关于点P 的“关联图”和OFG △都在四边形ABCD 的内部(包含边界)时,锐角α的最大值是60︒,请直接写出t 的取值范围__________.参考答案一、选择题(本题共24分,每小题3分)第1-8题均有四个选项,符合题意的选项只有一个.1. 【答案】D【分析】本题考查了轴对称、中心对称图形的定义,掌握相关定义是解题的关键.“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴”,据此找出图中的轴对称图形;“ 把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心”,据此找出图中的中心对称图形即可解答题目. 【详解】A 、不是中心对称图形,是轴对称图形,不符合题意; B 、既不是轴对称图形,也不是中心对称图形,不符合题意; C 、不是中心对称图形,但是轴对称图形,不符合题意; D 、既是轴对称图形又是中心对称图形,符合题意. 故选:D . 2. 【答案】A【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式,即可得出答案. 【详解】解:2610x x +−= 即261x x +=, ∴26919x x ++=+, ∴()2310x +=, 故选:A .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 3. 【答案】D【分析】本题考查了相似三角形的性质,直接根据相似三角形的性质即可得出答案,熟练掌握相似三角形的面积的比等于相似比的平方是解此题的关键. 【详解】解:∵两个相似三角形的面积之比为9:4, ∴两个相似三角形的相似比为3:2, ∵相似三角形的周长比等于相似比, ∴这两个三角形的周长之比为3:2, 故选:D . 4. 【答案】D【分析】本题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.【详解】将抛物线23y x =先向右平移4个单位长度,再向上平移1个单位长度,得到的抛物线是23(4)1y x =−+.故选:D . 5. 【答案】D【分析】本题考查了正比例函数的性质,由12x x <时,12y y >,根据正比例函数的增减性,得到0k <,即可得到答案.【详解】解:∵()11,M y −,()22,N y 是正比例函数y kx =的图象上的两点,且12y y >. ∴0k <, 故选:D . 6. 【答案】C【分析】本题考查了菱形的性质,三角形中位线定理.由菱形的性质求得33DBC ∠=︒,90AOD ∠=︒,根据三角形中位线定理得到OE BC ∥,求得33DOE ∠=︒,据此求解即可. 【详解】解:∵在菱形ABCD 中,66ABC ∠=︒, ∴1332DBC ABC ∠=∠=︒,90AOD ∠=︒,O 为BD 的中点, ∵E 为CD 的中点,∴OE 是DBC △的中位线, ∴OE BC ∥,∴33DOE DBC ∠=∠=︒, ∴9033123AOE ∠=︒+︒=︒, 故选:C . 7. 【答案】B【分析】本题难度中等,考查根据二次函数的图象确定二次函数的字母系数的取值范围,先根据所给条件和图象特征,判断出正确图形,再根据图形特征求出a 的值. 【详解】解:因为前两个图象的对称轴是y 轴,所以02ba−=,又因为0a ≠,所以0b =,与0b >矛盾; 第三个图的对称轴02ba−>,0a >,则0b <,与0b >矛盾; 故第四个图正确.由于第四个图过原点,所以将(0,0)代入解析式,得:210a −=,解得1a =±, 由于开口向下,1a =−.故选:B .8. 【答案】D【分析】先求出90,45BAC ABC C ︒︒∠=∠=∠=,再根据旋转和全等的性质得到1452DAE EAF FAD =∠=∠=︒∠,即可判断①;AFE BDA ∠=∠,45EAF ABD ∠=∠=︒,即可判断②;根据旋转和全等三角形的性质得到BF CD =,EF DE =,再根据三角形三边关系即可判断③;证明90EBF ABF ABC ∠=∠+∠=︒,在Rt BEF △中,利用勾股定理和等量代换即可判断④. 【详解】解:在Rt ABC △中,AB AC =, ∴90,45BAC ABC C ︒︒∠=∠=∠=,∵将ACD 绕点A 顺时针旋转90°,得到ABF △, ∴90FAD ∠=︒, ∵AED AEF ≌△△, ∴1452DAE EAF FAD =∠=∠=︒∠, 故①正确;∵AED AEF ≌△△, ∴AFE BDA ∠=∠, 又∵45EAF ABD ∠=∠=︒, ∴ABD EAF △∽△, 故②正确;∵将ACD 绕点A 顺时针旋转90°,得到ABF △, ∴BF CD =, ∵AED AEF ≌△△, ∴EF DE =,在BEF △中,BE BF EF +>, ∴BE CD DE +>, 故结论③错误;∵将ACD 绕点A 顺时针旋转90°,得到ABF △, ∴45ABF C ∠=∠=︒,BF CD =, ∴90EBF ABF ABC ∠=∠+∠=︒, ∴在Rt BEF △中,222BE BF EF +=, ∴222BE CD DE +=, 故结论④正确,综上可知,正确的是①②④, 故选:D【点睛】此题考查了旋转的性质、全等三角形的性质、相似三角形的判定、勾股定理、三角形三边关系、等腰三角形的性质等知识,熟练掌握旋转的性质是解题的关键.二、填空题(本题共24分,每小题3分)9. 【答案】(3,−4)【分析】本题考查求关于原点对称的点的坐标,根据点(),x y 关于原点对称的点的坐标为(),x y −−求解即可.【详解】解:在平面直角坐标系中,点()3,4P −关于原点对称的点的坐标是()3,4−,故答案为:()3,4−.10. 【答案】4−【分析】先求出对称轴,再求出最大值即可.【详解】∵2246y x x =−+−∴二次函数2246y x x =−+−开口向下,在顶点处有最大值,∵二次函数2246y x x =−+−对称轴为直线4122x ,∴当1x =时,2464y =−+−=−,即最大值为:4−,故答案为:4−.【点睛】本题考查二次函数的性质和最值,解答本题的关键是明确题意,利用二次函数的性质解答. 11. 【答案】4【分析】本题考查了平行四边形的性质,相似三角形的判定和性质,根据平行四边形的性质和相似三角形【详解】解:四边形ABCD 是平行四边形,AD BC ∴=,AD BC ∥, 12CE BC =, 12CE AD ∴=, AD CE ∥,ADF ECF ∴∽,∴AD DF CE CF=2=, 2CF =,24DF CF ∴==,故答案为:4.12. 【答案】()26.5817.96x +=【分析】本题考查了由实际问题抽象出一元二次方程,根据“2022至2024年,某城市居民人均可支配年收入由6.58万元增长至7.96万元”列方程求解.【详解】解:由题意得:()26.5817.96x +=,故答案为:()26.5817.96x +=.13. 【答案】1(答案不唯一)【分析】本题考查了一次函数的性质,由13−<时,12y y <,得y 随x 的增大而增大,则0k >,然后取值即可,根据正确掌握一次函数的增减性是解题的关键.【详解】解:∵点()11,P y −,()23,Q y 在一次函数()10y kx k =+≠的图象上,∴当13−<时,12y y <,∴y 随x 的增大而增大,∴0k >,∴取1k =,故答案为:1(答案不唯一).14. 【答案】3【分析】首先根据矩形的性质得到OA OD =,然后利用等腰三角形三线合一性质得到AE DE =,然后证明出OE 是ABD △的中位线,进而求解即可.【详解】∵四边形ABCD 是矩形∴OA OD =∵OE AD ⊥∴AE DE =∵OB OD =∴OE 是ABD △的中位线 ∴132OE AB ==. 故答案为:3.【点睛】此题考查了矩形的性质,等腰三角形三线合一性质,三角形中位线的性质等知识,解题的关键是熟练掌握以上知识点.15. 【答案】4.5【分析】根据相似三角形的判定及性质可得3BC =(m ),进而可求解.【详解】解:90FED BCD ∠=∠=︒,且D D ∠=∠,FED BCD ∴∽,EF DE CB DC ∴=,即:0.10.26CB =, 解得:3BC =(m ),3 1.5 4.5AB BC AC ∴=+=+=(m ),∴树高AB 是4.5m ,故答案为:4.5.【点睛】本题考查了相似三角形的判定及性质,熟练掌握其判定及性质是解题的关键.16. 【答案】 ①. 29 ②. 48【分析】本题主要考查统计的知识,理解题意是解题的关键;在不考虑其他因素的前提下,若甲单独完成一间客房的清洁工作,所需时间为四个步骤所需时间的和,若由甲、乙、丙合作完成四间客房的清洁工作,所需时间为“打扫卫生”和“整理床铺”2个步骤所需时间的和.【详解】解:在不考虑其他因素的前提下,若甲单独完成一间客房的清洁工作,所需时间为1086529+++=(分); 若由甲、乙、丙合作完成四间客房的清洁工作,甲完成四间客房“打扫卫生”需40分钟,甲完成一间客房“打扫卫生”需10分钟,随后乙、丙进行其他三个步骤,可完成四间客房整理床铺、更换客用物品的工作,其中一人完成四间客房整理床铺需32分钟,可再完成两间客房检查设备的工作,一人完成四间客房更换客用物品需24分钟,也可再完成两间客房检查设备的工作,所以若由甲、乙、丙合作完成四间客房的清洁工作,则最少需要40848+=(分);故答案为29;48.三、解答题(本题共72分,其中17、18、19、21、22、23题每小题5分,20、26题每小题6分,25、26题每小题7分,27、28题每小题8分)17. 【答案】152x =,252x −=【详解】首先找出方程中得a 、b 、c ,再根据公式法求出b 2﹣4ac 的值,计算x = 2b a−,即可得到答案.∵a =1,b =-5,c =2()2245412170b ac −=−−⨯⨯=>∴代入求根公式得, ()521x −−===⨯∴152x +=,252x −= “点睛”当一元二次方程方程ax 2+bx +c =0(a ≠0,且a ,b ,c 都是常数)的二次项的系数不为1或是无理数时,优先考虑公式法.18. 【答案】(1)作图见解析;B (1, 2);(2)作图见解析.【详解】分析:(1)由题意得,将△ABC 绕点A 逆时针旋转90°后,得到△AB 1C 1.则AB 1⊥AB ,AC 1⊥AC ,画出图形写出坐标.(2)根据以坐标原点O 为位似中心,在第二象限内再画一个放大的△A 2B 2C 2,可以得出A 1,B 1,C 1的坐标扩大2倍,且横纵坐标改变符号,得出即可.详解:(1)如图: B 1(1,2),(2)如图点睛:此题主要考查了图形的旋转与位似,利用位似图形的性质得出A 1,B 1,C 1的坐标是解决问题的关键.19. 【答案】(1)4c =,52m =;(2)219(1)22y x =−++或2142y x x =−−+ 【分析】(1)根据表格中对应值可知对称轴的值和抛物线与y 轴的交点,即可求得c 的值,根据抛物线的对称性即可求得m 的值;(2)直接利用待定系数法求出二次函数解析式即可.【详解】解:(1)根据图表可知:二次函数y=ax 2+bx+c 的图象过点(0,4),(-2,4), ∴对称轴为直线2012x −+==−,c=4, ∵(-3,52)的对称点为(1,52), ∴m=52; (2)∵对称轴是直线x=-1, ∴顶点为(-1,92), 设y=a (x+1)2+92, 将(0,4)代入y=a (x+1)2+92得,a+92=4, 解得a=-12, ∴这个二次函数的解析式为y=-12(x+1)2+92. 【点睛】本题考查的是二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数的解析式,能熟练求解函数对称轴是解题的关键.20. 【答案】(1)见解析;(2) m=-1.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出:无论实数m 取什么值,方程总有两个不相等的实数根;(2)利用分解因式法解原方程,可得x 1=m ,x 2=m+1,在根据已知条件即可得出结论.【详解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴无论m 取何值,(m+1)2恒大于等于0∴原方程总有两个实数根(2)原方程可化为:(x-1)(x-m-2)=0∴x 1=1, x 2=m+2∵方程两个根均为正整数,且m 为负整数∴m=-1.【点睛】本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.21. 【答案】(1)证明见解析(2)5【分析】本题考查了矩形的性质以及勾股定理,熟记矩形的性质并灵活运用是解题的关键.矩形的性质:①平行四边形的性质矩形都具有; ②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等.(1)根据已知证明EFM CFN △≌△,证得EM CN =,根据一组对边平行且相等的四边形是平行四边形证得四边形CNEM 是平行四边形,然后证明NE NC =,即可证得结论;(2)10AB =,2AE =,则8BE =,设EM MC x ==,则8BM x =−,利用勾股定理求出x 即可解答.【小问1详解】证明:矩形ABCD 中,AB DC ,MEF NCF ∴∠=∠,EMF CNF ∠=∠,点F 为CE 的中点,EF CF ∴=,EFM CFN ∴≌,EM CN ∴=,∴四边形CNEM 为平行四边形,MN CE ⊥于点F ,EF CF =,NE NC ∴=,∴四边形CNEM 为菱形;【小问2详解】 解:四边形CNEM 是菱形,EM CM ∴=,四边形ABCD 是矩形,4AD BC ∴==,90B ,10AB =,2AE =,8BE ∴=,设EM MC x ==,则8BM x =−,在Rt BMC 中,222BM BC CM +=,即2224)8(x x −+=,解得5x =,EM ∴的长为5.22. 【答案】2【分析】本题考查了一元二次方程的应用,利用平移的观点,把6个长方形平移在一起,成为一个一个新的长方形,则长和宽分别是(20x −米和()153x −米,根据面积公式即可列方程求解.【详解】解:根据题意,得()()826015143x x −=⨯−,整理得210160x x −+=,解得12x =,28x =(不符合题意,舍去)故宽度x 为2.23. 【答案】(1)79,9(2)小旭 (3)小亮【分析】本题考查了求中位数、求方差、求加权平均数,熟练掌握求法是解此题的关键.(1)将小强的成绩全部相加即可得出m 的值,根据中位数的定义即可得出n 的值;(2)分别求出三人面试成绩的方差,比较即可得出答案;(3)分别求出三人数为最终成绩,进行比较即可得出答案.【小问1详解】解:由题意可得:10109888776679m =+++++++++=,将小亮的面试成绩按从小到大排列如下:6,7,7,8,9,9,9,10,10,10,故9992n +==; 故答案为:79,9【小问2详解】 解:79107.9x =÷=小强,()()()()()2222222107.997.9387.9277.9267.9 1.8910S ⨯−+−+⨯−+⨯−+⨯−==小强,85108.5x =÷=小亮,()()()()()22222268.5278.588.5398.53108.5 1.8510S −+⨯−+−+⨯−+⨯−==小亮,87108.7x =÷=小旭,()()()2222588.7398.72108.70.6110S ⨯−+⨯−+⨯−==小旭,222S S S ∴>>小强小旭小亮,故评委对小旭的评价更一致;故答案为:小旭【小问3详解】解:小强的成绩为:9840%7960%39.247.486.6⨯+⨯=+=(分),小亮的成绩为:9440%8537.65188.6⨯+⨯=+=(分),小旭的成绩为:9040%8760%3652.288.2⨯+⨯=+=(分),86.688.288.6<<,∴综合成绩最高的是小亮.故答案为:小亮24. 【答案】(1)见详解 (2)13GH = 【分析】本题主要考查等腰三角形的性质、全等三角形的性质与判定及相似三角形的性质与判定,熟练掌握等腰三角形的性质、全等三角形的性质与判定及相似三角形的性质与判定是解题的关键;(1)由轴对称可知DE FE =,则有()ASA DCE FHE ≌,然后问题可求证;(2)连接AD ,交FG 于点M ,由题意易得32BD CD ==,AD BC ⊥,由(1)可得3,12HF CD EH CE ====,然后根据相似三角形的性质可进行求解. 【小问1详解】证明:∵点D 关于线段AC 的对称点F ,∴DE FE =,DFAC ⊥,∵FG BC ∥,∴EDC F ∠=∠, ∵CED HEF ∠=∠,∴()ASA DCE FHE ≌,∴CE EH =;【小问2详解】解:连接AD ,交FG 于点M ,如图所述:∵点D 为BC 中点,3BC =, ∴32BD CD ==,AD BC ⊥, ∵FG BC ∥,∴AM GH ⊥,ABC AGH ACB AHG ∠=∠=∠=∠,∴AG AH =,∴GM MH =,∵DCE FHE ≌, ∴3,12HF CD EH CE ====, ∵90,DEC ADC ACD DCE ∠=∠=︒∠=∠,∴DCE ACD ∽, ∴CD CE AC CD=,即2CD CE AC =⋅, ∴94AC =, ∴14AH AC CH =−=, ∵FG BC ∥, ∴AMH ADC ∽,∴114994MH AH CD AC ===, ∴16MH =, ∴123GH MH ==. 25. 【答案】(1)见解析 (2)30.0(3)44【分析】本题考查了函数图象,根据数据描绘函数图象、从函数图象获取信息是解题的关键; (1)根据表格中数据描点连线即可做出函数图象;(2)结合函数图象找到40x =时,y 的值即可;(3)结合函数图象找到40y =时,x 的值,再作差即可;【小问1详解】解:函数的图象如下:【小问2详解】解:根据(1)中图象可得:当40x =时,30.0y ≈,故答案为:30.0(答案不唯一);【小问3详解】解:根据(1)中图象可得:当40y =时,1x ≈或45x ≈,45144−=,故答案为:44(答案不唯一);26. 【答案】(1)1a =−(2)211y y <<−,理由见解析【分析】此题考查了二次函数的图象和性质,数形结合是解题的关键.(1)把()1,22P m −−代入221y ax mx =−−,即可得到答案;(2)由(1)得到()222211y x mx x m m =−−−=−++−,当1x m =−−时,122y m =−,当24x m =+时,2282417y m m =−−−,则21y y −24913m ⎛⎫=−++ ⎪⎝⎭,根据二次函数的性质得到当11m −<<时,249103m ⎛⎫−++< ⎪⎝⎭,则当11m −<<时21y y <,由221m −<−得到1221y m =−<−,即可得到答案.【小问1详解】解:∵抛物线221y ax mx =−−经过点()1,22P m −−,∴把点()1,22P m −−代入221y ax mx =−−得到, 2221m a m −=+−,解得,1a =−;【小问2详解】由(1)得到抛物线221y ax mx =−−为()222211y x mx x m m =−−−=−++−, 当1x m =−−时,()1222112y m m m m =−−−++−=−,当24x m =+时,()222224182417y m m m m m =−+++−=−−−, ∴()2122282417292415y y m m m m m −=−−−−−=−−−24913m ⎛⎫=−++ ⎪⎝⎭ 当249103m ⎛⎫−++= ⎪⎝⎭时,解得1m =−或53m =−, 即抛物线24913y m ⎛⎫=−++ ⎪⎝⎭与x 轴交于点()1,0−和5,03⎛⎫− ⎪⎝⎭,如图,∵抛物线24913y m ⎛⎫=−++ ⎪⎝⎭开口向下,∴当11m −<<时,249103m ⎛⎫−++< ⎪⎝⎭, ∴当11m −<<时,210y y −<,即21y y <, ∵11m −<< ∴201m <<, ∴221m −<− ∴1221y m =−<− ∴211y y <<−27. 【答案】(1)见详解 (2)图见详解,90MQN ∠=︒,过程见详解 【分析】本题主要考查等腰三角形的性质、 (1)由题意易得11,22AP AQ BAP BAC QAP =∠=∠=∠,然后可证()SAS BAP BAQ ≌,然后问题可求证;(2)按题意画出图形,连接BQ ,作QB QD =,交CN 于点D ,由题意易得()SAS BAQ CAP ≌,则有QBA C ABC ∠=∠=∠,12BQ CP MN ==,然后可得QD DN DM ==,进而问题可求解. 【小问1详解】证明:由旋转可知:,AP AQ QAP BAC α=∠==∠, ∵AB AC =,点P 是BC 中点, ∴1122BAP BAC QAP ∠=∠=∠, ∴BAP BAQ ∠=∠, ∵AB AB =,∴()SAS BAP BAQ ≌, ∴BP BQ =; 【小问2详解】 解:由题意可得如图:连接BQ ,作QB QD =,交CN 于点D , ∵,AP AQ QAP BAC α=∠==∠,∴,QAB QAP BAP PAC BAC BAP ∠=∠−∠∠=∠−∠,即QAB PAC ∠=∠, ∵AB AC =,∴()SAS BAQ CAP ≌,∴QBA C ABC ∠=∠=∠,12BQ CP MN ==, ∵QB QD =,∴2QBD QDB C ∠=∠=∠, ∵QM AC ∥, ∴C QMD ∠=∠,∴DQM QDB QMD C QMD ∠=∠−∠=∠=∠, ∴QD DM =, ∴12DM QD BQ MN ===, ∴点D 是MN 的中点, ∴QD DN DM ==,∴,N DQN DQM DMQ ∠=∠∠=∠,由三角形内角和可知22180DQN DQM ∠+∠=︒, ∴90DQN DQM ∠+∠=︒,即90∠=︒NQM . 28. 【答案】(1)24,N N(2;②11t −≤≤【分析】(1)由题意得:90α=︒,此时正方形ABCD 绕点()0,1E 逆时针旋转90︒得到的关联图形M 仍为正方形,()1,1A 的对应点为()10,2A ,()1,1B −的对应点为()10,0B ,点()1,1C −−的对应点()12,0C ,点()1,1D −的对应点()12,2D ,即可确定;(2)①分类讨论,分别讨论点P 在正方形的四条边上,画出示意图进行分析,找出临界状态,多动点,固定变量,一个一个分析即可;②由①可知,只有P 落在CD 或AD 边上,OF 关于点P 的“关联图”才在正方形ABCD 内部,要使OFG △关于点P 的“关联图”和OFG △都在四边形ABCD 的内部,且α的最大值为60︒,故P 一定会在CD 上,当60POF ∠=︒,此时α不能增大,即移动点G 时,不能使得G '仍然落在正方形ABCD 内部,则此临界状态时,G '一定落在BC 上.由G t ⎛ ⎝⎭可知点G 在直线3y =上运动,记为直线l ,记直线l 与y 轴交于点M ,过点P 作PN l ⊥,由勾股定理建立方程221533t t +=++P 落在AD 上时,1t =−,均可满足G O F '''△在正方形ABCD 内部,综上所述:11t −≤≤. 【小问1详解】 解:如图,由题意得:90α=︒,此时正方形ABCD 绕点()0,1E 逆时针旋转90︒得到的关联图形M 仍为正方形,()1,1A 的对应点为()10,2A ,()1,1B −的对应点为()10,0B ,点()1,1C −−的对应点()12,0C ,点()1,1D −的对应点()12,2D ,当()12,0C 时,连接1,CE EC CD 与y 轴交于点R , 则11,2CR OE ER OC ====, 而190CRE EOC ∠=∠=︒, ∴1CRE EOC △≌△, ∴1EC EC =, ∴1CER EC O ∠=∠,∴11190CER CE O EC O CE O ∠+∠=∠+∠=︒, ∴点()1,1C −−的对应点()12,0C , 同理可证明点()1,1D −的对应点()12,2D ,∴()11,2N −,()22,2N 在四边形ABCD 和点()0,1E 的“关联图”上, 故答案为:()11,2N −,()22,2N ; 【小问2详解】解:①当点P 在AD 上时,连接,PO DO ,∵四边形ABCD 是正方形,∴045α<≤︒,OP OD ≤==∴1OP <≤当点P 与点D 重合时,即45α=︒,此时点O 的对应点'O 在CD 上,且()11O '−,如图:随着点P 在AD 上运动,画图可知O F ''在正方形内部运动,直至点F '落在AD 上,如图:如上图,此时POQ FPF α'∠=∠=, ∵PTF OTP ∠=∠, ∴PTF OTP △∽△, ∴PT TFOT PT=, ∴211122PT TO TF =⨯=⨯=,∴2PT =,∴当点P 在AD 上运动时,12P y −≤≤, 当点P 在AB 边上时,此时45135α︒≤≤︒,即点P 在AB 两个端点处,α取得最小值和最大值,1OP OA ≤≤=随着α增大,作图可发现O F ''会远离AB ,如图:当点P 运动到AB ,点O '恰好落在点A ,但此时点F '仍在正方形的外部,∴当点P 在AB 边上时,线段OF 关于点P 的“关联图”不可能在正方形ABCD 的内部; 当点P 在BC 边运动时,∵135180α︒≤<︒,O F ''会更加远离正方形ABCD ,如图:∴点P 在BC 边运动时,线段OF 关于点P 的“关联图”不可能在正方形ABCD 的内部; 当点P 在CD 边上时, ∵OPO POQ α'∠=∠=, ∴O P OF '∥,如图:当点P 运动到CD 中点时,此时O '落在点C 处,F 点落在点112⎛⎫−− ⎪⎝⎭,处,随着点P 继续接近点D ,O F ''始终在正方形ABCD 内,如图:∴点P 在CD 边上时,01P x ≤≤,综上所述:点P 横坐标最小值为0,纵坐标最大值为2n =,∴2n m −=,故答案为:2;②由①可知,只有P 落在CD 或AD 边上,OF 关于点P 的“关联图”才在正方形ABCD 内部,∴要使OFG △关于点P 的“关联图”和OFG △都在四边形ABCD 的内部,且α的最大值为60︒,∴P 一定会在CD 上,如图所示,当60POF ∠=︒,此时α不能增大,即移动点G 时,不能使得G '仍然落在正方形ABCD 内部,则此临界状态时,G '一定落在BC 上.由,3G t ⎛⎫ ⎪ ⎪⎝⎭可知点G 在直线3y =上运动,记为直线l ,记直线l 与y 轴交于点M ,过点P 作PN l ⊥,∴在Rt OMG △中,由勾股定理得:2222133GO G O t t ⎛⎫==+=+ ⎪ ⎭'⎝'⎪, ∵60POQ α∠==︒,CD x ∥轴, ∴60OPR ∠=︒, ∴30ROP ∠=︒, ∴2OP PR =, 设,2RP x OP x ==,则在Rt ORP △中,由勾股定理得:1OR ==,∴3x =,∴3OP =,∴11333CO CP PO ''=−=+−=−,在Rt CG O '△中,由勾股定理得:22221113CG t t ⎛=+−−=+ ⎝⎭',∴在Rt CG P '△中,由勾股定理得:22221113G P t t ⎛'=−++=+ ⎝⎭,在Rt GNP △中,222251333GP t t ⎛⎫⎛=−++=−++ ⎪ ⎪ ⎝⎭⎝⎭, 由旋转得G O P GOP ''△≌△,∴GP G P '=,∴221533t t ++=+解得:13t =−, 当点P 落在AD 上时,1t =−,均可满足G O F '''△在正方形ABCD 内部,∴综上所述:11t −≤≤.故答案为:11t −≤≤.【点睛】本题考查正方形的性质,旋转变换,勾股定理,全等三角形的判定与性质,直角三角形的性质等,难度很大,重点理解题意,根据旋转的不变性,进行画图分析,对分类讨论的思想要求较高.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三学年月考试题(2014年4月1日)
2013—2014初三下学期数学月考试题
(试题总分:120分答题时间:90分钟)一
1.函数22
)1
(-
-
=a x
a
y是反比例函数,则a的值是()A.-1B.1C.2D.1或-1 2.下列二次根式中,x的取值范围是2
≥
x的是()
A.2-x B.x+2 C.x-2 D.
1
x-2
3.若反比例函数y=
x
k
(k≠0)的图象经过点(-1,2),则这个函数的图象一定经过点().
A.(2,-1)
B.(-
2
1
,2) C.(-2,-1) D.(
2
1
,2)
4.下列根式中,是最简二次根式的是()
A.B. C.D.
5. 若最简二次根式a
a2
4
1-
+与的被开方数相同,则a的值为()
A.
4
3
-
=
a B.
3
4
=
a C.a=1 D.a= —1
6.已知点A(-3,y1),B(-2,y2),C(3,y3)都在反比例函数y=
4
x
的图象上,则().
A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3 7. 化简)2
2
(2
8+
-得()
A.—2 B.2
2-C.2 D.2
2
4-
8. 已知关于x 的函数y =k (x +1)和y =-k
x
(k ≠0)它们在同一坐标系中的
大致图象是( )
9. 若x <y <0,则222y xy x +-+222y xy x ++=( ) A.2x B.2y C.-2x D.-2y 10. 如图,一次函数与反比例函数的图象相交于
A 、
B 两点,则图中使反比例函数的值小于一次函数 的值的x 的取值范围是( ). A 、x <-1 B 、x >2
C 、-1<x <0或x >2
D 、x <-1或0<x <2 二、认真填一填(每题3分,共30分) 11. 已知反比例函数x
k
y =
的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”).
12. 计算:=⨯÷182712 ;=÷-32274483
13. 已知关于x 的一次函数y =kx +1和反比例函数y =6
x 的图象
都经过点(2,m ),则一次函数的解析式是________. 14. 3
212
31--与
的大小关系是 。
(填“大于”或“小于”)
15. 有一面积为8的梯形,其上底是下底长的3
1
,若下底长为x ,
高为y ,则y 与x 的函数关系是 . 16.如图,P 是反比例函数图象在第二象限上的
一点,且矩形PEOF 的面积为3,则反比例函数 的表达式是_________.
17. 若()2
240a c --=,则
=+-c b a .
18.点A (2,1)在反比例函数y k
x
=的图像上,当1﹤x ﹤4时, y 的取值范围是
19. ==
=……,请你将猜想到的规律用含自然数(1)n n ≥的代数式表示出来是 .
20. 如图所示,在x 轴的正半轴上依次截取OA 1=A 1A 2=A 2A 3=A 3A 4=A 4A 5…,过A 1、A 2、A 3、A 4、A 5…分别作x 轴的垂线与反比例函数y=
x
2
的图象交于点P 1、P 2、P 3、P 4、P 5…,并设△OA 1P 1、△A 1A 2P 2、△A 2A 3P 3…面积分别
为S 1、S 2、S 3…,按此作法进行下去,则S n 的值为 _________ (n 为正整数).
三、仔细想一想(共60分) 21.(共24分)计算:
初三学年月考试题(2014年4月1日)
①)169()144(-⨯- ②2253
1
- ③)459(43332-⨯ ④⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝
⎛-126312817
⑤2484554+-+ ⑥ 2
332326--
22. (共8分)已知:
的值。
求代数式
22,2
1
1881-+-+++-+-=x
y
y x x y
y x x x y
23.(共8分)一辆汽车往返于甲、乙两地之间,如果汽车以50千米/时的平均速度从甲地出发,则6小时可到达乙地.
(1)写出时间t (时)关于速度v(千米/时)的函数关系式,说明比例系数的实际意义.
(2)因故这辆汽车需在5小时内从甲地到乙地,则此时汽车的平均速度至少应是多少?
24.(共10分)如图,已知一次函数y=kx+b(k≠0)的图象与x
轴、y轴分别交于A、B两点,且与反比例函数y=m
x
(m≠0)的图
象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.
25.(共10分)如图,在平面直角坐标系中,直线2
k
y x =+与双曲线k
y x
=
在第一象限交于点A ,与x 轴交于点C ,AB ⊥x 轴, 垂足为B ,且AOB S Λ=1.求:
(1)求两个函数解析式; (2)求△ABC 的面积.
二、认真填一填(每空3分,共30分)
11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 三、仔细想一想(共60分) 21.(共24分)计算:
①)169()144(-⨯- ②2253
1
-
初三学年月考试题(2014年4月1日)
③)459(43332-⨯ ④⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝
⎛-126312817
⑤2484554+-+ ⑥ 2
332326--
22. (共8分)已知:
的值。
求代数式
22,2
1
1881-+-+++-+-=x
y
y x x y
y x x x y。