超塑性定义和性质
【精品】第6章超塑性及超塑变形机理
第6章超塑性及超塑变形机理6.1超塑性的概念6.1.1超塑性及其宏观变形特征关于超塑性的定义,目前尚未有一个严格确切的描述。
通常认为超塑性是指材料在拉伸条件下,表现出异常高的伸长率而不产生缩颈与断裂现象。
当伸长率δ100%时,即可称为超塑性。
实际上,有的超塑材料其伸长率可达到百分之≥几百,甚至达到百分之几千,如在超塑拉伸条件下Sn-Bi共晶合金可获得1950%的伸长率,Zn-AI共晶合金的伸长率可达3200%以上。
也有人用应变速率敏感性指数m值来定义超塑性,当材料的m值大于0.3时,材料即具有超塑性。
超塑性的产生首先取决于材料的内在条件,如化学成分、晶体结构、显微组织(包括晶粒大小、形状及分布等)及是否具有固态相变(包括同素异晶转变,有序-无序转变及固溶-脱溶变化等)能力。
在上述内在条件满足一定要求的情况下,在适当的外在条件(通常指变形条件)下将会产生超塑性。
金属材料在超塑性状态下的宏观变形特征,可用大变形、小应力、无缩颈、易成形等来描述。
1)大变形超塑性材料在单向拉伸时伸长率占极高,目前已有占达8000%以上的报道。
超塑性材料塑性变形的稳定性、均匀性要比普通材料好得多,这就使材料成形性能大为改善,可以使许多形状复杂,难以成形构件的一次成形变为可能。
2)小应力材料在超塑性变形过程中的变形抗力很小,它往往具有粘性或半粘性流动的特点,在最佳超塑变形条件下,超塑流变应力 通常是常规变形的几分之一乃至几十分之一。
例如,Zn-22%Al合金在超塑变形时的流动应力不超过2MPa,钛合金板料超塑成形时,其流动应力也只有几十兆帕甚至几兆帕。
3)无缩颈一般具有一定塑性变形能力的材料在拉伸变形过程中,当出现早期缩颈后,由于应力集中效应使缩颈继续发展,导致提前断裂。
超塑性材料的塑性流变类似于粘性流动,没有(或很小)应变硬化效应,但对变形速度敏感,有所谓“应变速率硬化效应”,即变形速度增加时,材料的变形抗力增大(强化)。
金属材料的超塑性行为分析
金属材料的超塑性行为分析金属材料是一种重要的工程材料,广泛应用于制造业。
在某些条件下,金属材料表现出了超塑性行为,即在高温和大应变速率下具有显著的塑性变形能力。
超塑性行为不仅使金属材料能够制备出高精度的零部件,还能提高材料的工艺性能和延展性。
本文将对金属材料的超塑性行为进行分析和探讨。
一、超塑性的定义和特征超塑性是指某些材料在高温和高应变速率下能够实现显著的塑性变形。
与常规塑性变形不同,超塑性变形是在材料达到高应力状态下才开始发生的。
其特征包括晶粒滑移、晶界滑动和晶粒形变。
超塑性材料通常具有细小的晶粒尺寸和特殊的晶界结构,这使得它们能够实现高应变速率下的变形。
二、超塑性行为的机理超塑性行为的机理主要包括晶界滑移和晶界扩散。
晶界滑移是超塑性行为的重要因素之一。
在高温下,晶界处的位错运动能够促进材料的塑性变形。
此外,晶界扩散也是实现超塑性的关键因素。
高温下的晶界扩散能够提供塑性形变所需的能量,从而使材料变得更加柔软和延展。
三、超塑性行为的影响因素超塑性行为受多种因素的影响,包括温度、应变速率、晶粒尺寸和合金成分等。
通常情况下,超塑性材料需要在高温下进行加工。
随着温度的升高,金属材料的塑性增加,更容易发生超塑性变形。
而应变速率的增大也会促进超塑性行为的发生,但过大的应变速率可能导致材料的破坏。
此外,具有细小晶粒尺寸的材料更容易发生超塑性变形,并且合金成分对超塑性行为也有较大的影响。
四、超塑性行为的应用超塑性材料因其优异的塑性变形能力,在航空航天、汽车制造和电子设备等行业得到了广泛的应用。
在航空航天领域,超塑性材料制备的零部件具有更高的精度和可靠性,能够提高飞机的性能和安全性。
在汽车制造领域,超塑性材料的应用能够减轻车身质量,提高燃油效率和环保性。
在电子设备领域,超塑性材料具有良好的导电性和热导性,能够满足高性能电子产品的需求。
总结通过对金属材料的超塑性行为进行分析,我们了解到超塑性是一种重要的材料塑性变形方式,拥有广泛的应用前景。
2特种塑性成形-超塑性
结论: (1)提高宏观变形均匀性,可通过提高n和m值 实现; (2)超塑性变形的进行主要依赖m值,均匀变 形主要在准稳定阶段。 (3)一般塑性材料m值较小,均匀变形主要在 稳定阶段,依赖n值。
为什么超塑性定义中,可以用m>0.3? 为什么m物理意义可以表示材料抗缩颈的能力?
影响超塑性和应变速率敏感性指数的各种因素
两相组织的影响 两相晶粒可以互相阻碍在变形过程中的长 大。两项分布越均匀,两相的体积比越接近1 时,热稳定性越好,对超塑性变形越有利。 否则,第二相晶粒很少,同相晶粒聚合机 会大大增加。
§2.3 超塑性变形机理
超塑性变形过程中金属组织变化的特点 (1)晶粒长大、趋于(保持)等轴化; (2)晶粒的滑动、转动和换位; (3)由于晶界滑移,将在晶界附近产生大量 位错,为保证变形进行,位错以攀移和相消 方式松弛应力; (4)材料内部出现空洞。
4、超塑性流动应力本构方程、m的物理意义
5、组织超塑性变形机制
作业
请同学自己查找一种超塑性材料,下节课请1—2位同学采用 PPT形式向大家分享这种材料的超塑性变形机制、实现超塑性的 条件等。
特定的内部和外部条件
超塑性是指:材料在特定内部和外部条件 下具有异常高的塑性指标,这种现象称为超塑 性。
超 塑 性 分 类
组织超塑性 相变超塑性 其它超塑性
组织(细晶)超塑性:
(1)变形前及变形中等轴细小晶粒(一般<10μm); (2)变形温度恒定高温(0.5-0.7)Tm; (3)应变速率小
为什么有以上要求? 普遍认为超塑性的发生主要依靠晶界滑移变形机制, 晶界滑移本质上是晶界上原子扩散和位错运动的结果。
拉伸过程的三个阶段: (1)稳定阶段,第一个细颈点出现以前; (2)准稳定阶段,细颈扩散、转移,直到某 一部位的细颈极度发展而转移不出去为止。 此阶段的变形从细观上看不够均匀,但是 由于细颈部分的应变强化和应变速率敏感 性的作用,使不均匀性受到某种程度的抑 制,以致变形有一种在不均匀中求均匀的 趋势,以致宏观上大致是均匀变形。 (3)失稳阶段
超塑性的概念
超塑性成形资料
1.1超塑性的概念超塑性是指材料在特定条件下,表现出异常高的塑性而不产生缩颈与断裂的现象。
但至今还没有从物理本质上的确切定义。
有的以拉伸试验的延伸率来定义,认为 >200%即为超塑性;有的以应变速率敏感性指数m来定义,认为m>0.3,即为超塑性;还有的认为抗颈缩能力大,即为超塑性。
1.2超塑性的分类根据目前世界上各国学者研究的成果,按照实现超塑性的条件(组织,温度,应力状态等)可将超塑性分为三类:1.微晶组织超塑性(即恒温超塑性或结构超塑性)一般所指超塑性多属这类,它是国内外研究最多的一种。
当材料是微细的等轴晶粒组织,间距为0.5一5μm,温度大于该材料熔点温度的一半,应变速度为10-4一10-1/s之间时,材料拉伸断裂将呈现超塑性变形的能力。
2.相变超塑性(变温超塑性或动态超塑性)将材料在相变温度附近进行热循环,利用相变过程,每一次热循环贡献一小的应变,从而在多次热循环过程中获得大的延伸率。
3.内应力超塑性和相变超塑性一样进行热循环,利用材料的热膨胀系数的差异产生内应力,内应将有助于基体的塑性流动,从而使材料获得超塑性。
1.3超塑性的特点金属塑性成形时宏观变形有几个特点:大延伸、无缩颈、小应力、易成形。
(1)大变形:超塑性材料在单向时延伸率极高,有的可以到8000%表明超塑性材料在变形稳定性方面要比普通材料好很多。
这样使材料的成形性能大大改善,可以使许多形状复杂,一般难以成形的材料变形成为可能。
(2)无紧缩:超塑性材料的变形类似于粘性物质的流动,没有(或很小)应变硬化效应,但对应变速率敏感,当变形速度增大,材料会强化。
因此,超塑性材料变形时初期有紧缩形成,但由于紧缩部位变形速度增大而发生局部强化,而其余未强化部分继续变形,这样使紧缩传播出去,结果获得巨大的宏观均匀变形。
超塑性的无紧缩是指宏观上的变形结果,并非真的没有紧缩。
(3)小应力:超塑性材料在变形过程中,变形抗力可以很小,因为它具有粘性或半粘性流动的特点。
第二讲:超塑性成形
超塑性成形的应用
SPF构件用料情通开式模锻比较,模具结构基本相同,但需
增加加热和保温装置。同时,由于应变速率要求在较低范围内, 不能采用锤和热模锻压力机,只能用液压机。具有充模好、变 形力低、组织性能好、变形道次少、弹复小的特点。用于铝、 镁、钛合金的叶片、翼板等薄腹板带肋件或类似形状复杂零件 的模锻。
超塑性变形机理
溶解—沉淀理论 亚稳态理论 扩散蠕变机制 扩散流动机制--Ashby-Verral模型 位错蠕变机制
超塑性成形的应用
利用气压胀形/扩散连接复合工艺(SPF/DB)工艺制造的发动 机整流叶片形
超塑性成形的应用
军用飞机采用的超塑成形零件
超塑性成形的应用
铝合金超塑成形构件的市场分布
(2)实现超塑性的条件
微细晶粒超塑性的实现有赖于晶粒细化、适当的温度和低应变速率三个 基本条件。
冶金方法:主要是添加一些能够促使早期形核,使组织弥散,并在变形 过程中稳定晶粒的微量元素。此外,还可采取快速凝固方法。 压力加工方法:采用冷、温、热三种不同温度下的轧制或锻造。 热处理方法:包括反复淬火、形变热处理、球化退火等方法。
材料超塑性成型
目录一.超塑性的定义 (2)二.超塑性的发展 (2)三.超塑性的分类 (3)四.典型的超塑性材料 (4)五.超塑性的应用 (5)⑴超塑性在压力加工方面的应用 (6)⑵相变超塑性在热处理方面的应用 (6)⑶相变超塑性在焊接方面的应用 (7)⑷相变诱发塑形的应用 (7)一.超塑性的定义是指材料在一定的内部条件(如晶粒形状尺寸、相变等)和外部条件(如温度、应变速率等)下,呈现出异常低的流变抗力、异常高的流变性能(如大的延伸率等).1920年Rsenhain发现Zn-4Cu-7Al合金在低速弯曲时,可以弯曲近180°1934年英国Pearson发现Pb-Sn共晶合金在室温低速拉深时可以得到200%的延伸率1945年前苏联Bochvar发现Zn-Al共析合金具有异常高的延伸率1964年美国Backofen对Zn-Al合金进行了系统的研究,并提出了应变速率敏感性指数—m二.超塑性的发展近年来的发展:①先进材料超塑性的研究,主要指金属基复合材料,金属间化合物,陶瓷材料等超塑性的开发。
一般加工性能较差,所以有必要对其进行深入研究。
②高速超塑性研究,主要是提高超塑变形的速率,目的在于提高超塑成形的生产率。
③研究非理想超塑性材料的超塑性变形规律,以实现降低对超塑性变形材料的苛刻要求,从而提高成形件质量,扩大超塑性使用范围。
三.超塑性的分类早期由于超塑性现象仅限于Bi—Sn和Ai—Cu共晶合金、Zn-Al共析合金等少数低熔点的有色金属,也曾有人认为超塑性现象只是一种特殊现象。
随着更多的金属及合金实现了超塑性,以及与金相组织及结构联系起来研究以后,发现超塑性金属有着本身的一些特殊规律,这些规律带有普遍的性质。
而并不局限于少数金属中。
因此按实现超塑性的条件(组织、温度、应力状态等)一般分为以下几种①恒温超塑性。
一般所说超塑性变形多数属于这类,其特点是材料具有微细的等轴晶粒组织。
在一定的温度区间和一定变形速率下呈现超塑性。
2-4 金属的超塑性变形
常用于超塑性成形的材料
金属塑性成形原理
金属塑性成形原理
(二)超塑性的分类
按照超塑性实现的条件(组织、温度、应力状态等)可将超塑性分为: 细晶超塑性(恒温超塑性或结构超塑性)。 相变超塑性(动态超塑性)。
1.细晶超塑性
细晶超塑性是在一定的恒温条件下,应变速率和晶粒度都满足要求的条 件下所呈现出的超塑性。
Bi-Sn挤压材料在慢速拉伸下可获得 很大的延伸率(δ=1950%)
金属塑性成形原理
金属塑性成形原理
金属超塑性的特点: 大延伸率:单向拉伸时δ值非常高,材料成形性能得到大大改善,使形状复杂或难以成
形的材料变得容易成形。 无缩颈、流动应力小:超塑性变形时断面均匀缩小,断面收缩率可接近100%,几乎 无缩颈发生。并且具有非常低的流动应力,对设备吨位的要求很低。 易成形:超塑性变形过程中基本上没有或者只发生很小的应变硬化现象,流动性和充 填性极好,因而极易成形。 变形后晶粒仍为等轴晶粒:当原始材料是等轴细晶组织时,变形后几乎仍是等轴细晶 组织,看不到晶粒被拉长。 对应变速率很敏感:只有在一定的速度范围内才表现出超塑性。 制品表面光滑:由于超塑性成形是宏观均匀变形,所以变形后的制品表面光滑,没有 起皱、微裂和滑移痕迹等现象。 晶界滑移、移动及晶粒回转:从变形机制上,超塑性变形的晶界行为起了主要作用, 如晶粒转动、晶界滑动、晶粒换位等,与一般的滑移、孪晶等塑性变形行为是有明显区 别的,但并不产生脆性的晶界断裂。
部(环境)条件(如温度、应变速率等)下,呈现出异常低的流变抗力 和异常高的流变性能(如超大的延伸率)的现象称为超塑性。
金属材料在受到拉伸应力时,显示出很大的延伸率而不产生缩颈与断裂现象, 把延伸率能超过100%的材料统称为“超塑性材料”,相应地把延伸率超过100% 的现象叫做“超塑性”。
超塑性
超塑性成型(super plastic forming)
金属或两种以上金属组成的合金,通常是坚硬的,有大 的强度,做成各种构件很坚固,不容易破坏,这当然是一种 优点;但是,强度越大的材料,要做成某种形状,成形也就 越困难,这时强度大变成了缺点,给加工成形造成困难。 那么,有没有既柔软又坚硬的材料呢? 长期以来,人们幻想着有一种材料,加工成形时,像 麦芽糖似的,用一点力就能把它拉长,柔软可塑,而加工 成形后,又像钢铁一样坚硬牢固。 今天“幻想’已经成为现实,人们在实验中发现了超塑 性合金材料,大体上是这样一种理想的材料。
2、还有一种超塑性行为,产生在具有微细晶粒的有色金属和合金中。 即合金本身还要具有极为细小的等轴晶粒(直径5微米以下)。这种超塑 性成为超细晶粒超塑性。
超塑性合金其晶粒直径一般在0.2~5μm,尽管变形量很大,但晶粒形 状不变,仍为细小的等轴晶粒,试样形状的改变只是晶粒位置发生了变化, 变形发生在晶粒的界面上,在应力作用下通过短程扩散的晶界滑动而变换 了晶粒的排列。晶界滑动是微晶超塑性重要的变形机制。
1928年英国物理学家森金斯下了一个定义:凡金属在适当的温度下
变得像软糖一样柔软,而且其应变速度为每秒10毫米时产生300% 以上的延伸率,均属超塑性现象。1945年苏联包奇瓦尔等针对这一 现象提出了“超塑性”这一术语,并在许许多多有色金属共晶体及共析 体合金中,发现了不少的延展性特别显著的特异现象。
近年来,已在实验中找到了解决的办法,就是走超塑性的路。已经 研制成功超塑性钦合金,一种称为钛-铝-钒的合金,最大延伸率可达 2000%。而过去一般塑性加工最大延伸率只有30%。 超塑性钦合金在680一790℃温度范围内加热,成形压力为140一 2.10兆帕,加工时间只要8分钟,可以看出,加工压力低,成形时间短是 其特点。
铝合金的超塑性研究
5083是Al-Mg系防锈铝中的典型合金。5083铝合金具有较高的强度,良好的塑性、 抗腐蚀性及加工性等优点,是广泛应用于超塑成形的铝合金之一,已成为轨道交通工业 超塑成形的热门材料。对5083铝合金的超塑性研究发现,细晶是获得优异超塑性的必需 条件。 热机处理 (TMP) 和等通道转角挤压 (ECAP) 是获得细晶结构的典型途径。 AA5083 的超塑性不仅依赖于合金的晶粒尺寸,而且与晶粒的稳定性密切相关。通过添加 Cr , Mn,Zr和 Sc等元素可起到稳定晶粒尺寸的作用。 R. Kaibyshev等对添加0.2% Zr和1.6%Mn改良后的 AA5083研究发现,该合金在超塑 成形时晶粒的稳定性有明显提高,并且的最大延伸率达到了1150%。随着超细晶材料制 备技术的发展,AA5083低温高应变速率超塑性的研究也取得了一定的进展。Kyung-Tae Park等通过等通道转角挤压 (ECAP) 技术制备了晶粒尺寸为0.3μm的超细晶5083铝合金, 并添加微量的 Sc元素改良该合金,使该合金实现了高应变速率超塑性,并指出高应变速 率超塑性的现象是动态再结晶和晶粒大小在成形中得到良好保持共同作用的结果。 据报 道,工业用粗晶 AA5083延伸率可达到240%,细晶5083的延伸率可超过 500%。经过特殊 处理的含有Zr、 Mn元素的 AA5083,其延伸率甚至可高达1000%。
铝合金的超塑性研究
一、超塑性概述
塑性是金属的重要属性之一,它指的是金属在外力作用下,无损而永久地改变形状 的能力。金属材料的塑性是随着本身组织状态和变形条件的变化而变化的,在特定的组 织结构和变形条件下,金属和合金可以呈现出异乎寻常的大变形能力,延伸率可达到百 分之几百甚至百分之一千或几千以上,这种现象被称为超塑性。自上世纪20年代发现超 塑性现象的半个多世纪以来,科学研究者们在材料的超塑性机理、冶金学、力学特性等 方面开展了广泛的研究,已经发现了超过200种超塑性金属及合金。有些合金,特别是 铝合金,在通常的供应状态就具有一定的超塑性。 关于超塑性的定义目前尚未有一个严格确切的描述, 通常认为超塑性是指材料在拉 伸条件下, 表现出异常高的延伸率而不发生缩颈与断裂的现象, 当延伸率超过 100%时, 即可称为超塑性。也有人用应变速率敏感性指数 m值来定义超塑性:当材料的 m值大于 0.3时,材料即表现出超塑性。
超塑性
金属超塑性成形工艺及其发展超塑性是指材料在一定的内部(组织)条件(如晶粒形状及尺寸,相变等)和外部(环境)条件下(如温度、应变速率等),呈现出异常低的流变抗力、异常高的流变性能(例如大的延伸率)的现象。
超塑性现象最早的报道是在1920年,ROSENHAIN等发现Zn-4Cu-7Al合金在低速弯曲时,可以弯曲近180º。
1934年,C.P.PEARSON发现Pb-Sn共晶合金在室温低速拉伸时可以得到2000%的延伸率。
但是由于第二次世界大战,这方面的研究设有进行下去。
1945年A.A.BOCHV AR等发现Zn-Al共析合金具有异常高的延伸率并提出“超塑性”这一名词。
1964年,W.A.BACKOFEN对Zn-Al合金进行了系统的研究,并提出了应变速率敏感性指数m值这个新概念,为超塑性研究奠定了基础。
金属超塑性可以分为几类,主要是以下两种:①细晶超塑性(又称组织超塑性或恒温超塑性),其内在条件是具有稳定的等轴细晶组织,外在条件是每种超塑性材料应在特定的温度及速率下变形;②相变超塑性(又称环境超塑性),是指在材料相变点上下进行温度循环的同时对试样加载,事次循环中试样得到累积的大变形。
目前研究和应用最事的超塑性现象属于前者。
从60年代起,各国学者在超塑性材料学、力学、机理、成形学等方面进行了大量的研究并初步形成了比较完整的理论体系。
超塑性既是一门科学,一又是一种工艺技术。
利用它可以在小吨位设备上实现形状复杂、其他塑性加工工艺难以或不能进行的零件的精密成形。
在超塑性材料学方面,上述经典的超塑性理论对于“超塑性材料”规定的“均匀、稳定、等轴、细晶”的苛刻条件对超塑性的应用有很大的限制。
人们从为数甚少的“天然”超塑性材料(例如Pb-Sn及Zn-Al合金等)开始,进而研制“专门”的超塑性材料(例如Al-Cu-Zr合金等),其应用范围很小。
70年代起人们注意开发工业牌号合金的超塑性、基于上述组织条件,在超塑性变形或成形前要对材料进行细化晶粒的预处理,包括热处理和形变热处理,有些处理工艺相当繁杂,消耗了能源、人力和材料。
超塑性成形工艺
超塑性成形工艺班级:成型113 姓名:许红梅学号:2011101259 一.超塑性的定义超塑性是指在特定的条件下,即在低的应变速率(ε=10-2~10-4s-1),一定的变形温度(约为热力学熔化温度的一半)和稳定而细小的晶粒度(0.5~5μm)的条件下,某些金属或合金呈现低强度和大伸长率的一种特性。
其伸长率可超过100%以上,如钢的伸长率超过500%,纯钛超过300%,铝锌合金超过1000%。
目前常用的超塑性成形的材料主要有铝合金、镁合金、低碳钢、不锈钢及高温合金等。
1920年Rsenhain发现Zn-4Cu-7Al合金在低速弯曲时,可以弯曲近180°1934年英国Pearson发现Pb-Sn共晶合金在室温低速拉深时可以得到200%的延伸率1945年前苏联Bochvar发现Zn-Al共析合金具有异常高的延伸率1964年美国Backofen对Zn-Al合金进行了系统的研究,并提出了应变速率敏感性指数—m1特点1)金属塑性大为提高过去认为只能采用铸造成形而不能锻造成形的镍基合金,也可进行超塑性模锻成形,因而扩大了可锻金属的种类。
2)金属的变形抗力很小一般超塑性模锻的总压力只相当于普通模锻的几分之一到几十分之一,因此,可在吨位小的设备上模锻出较大的制件3)加工精度高超塑性成形加工可获得尺寸精密、形状复杂、晶粒组织均匀细小的薄壁制件,其力学性能均匀一致,机械加工余量小,甚至不需切削加工即可使用。
因此,超塑性成形是实现少或无切削加工和精密成形的新途径。
2应用板料成形其成形方法主要有真空成形法和吹塑成形法。
真空成形法有凹模法和凸模法。
将超塑性板料放在模具中,并把板料和模具都加热到预定的温度,向模具内吹入压缩空气或将模具内的空气抽出形成负压,使板料贴紧在凹模或凸模上,从而获得所需形状的工件。
对制件外形尺寸精度要求较高时或浅腔件成形时用凹模法,而对制件内侧尺寸精度要求较高时或深腔件成形时则用凸模法。
真空成形法所需的最大气压为105Pa,其成形时间根据材料和形状的不同,一般只需20~30s。
第2[1].3章 金属超塑性变形分析解析
第三节 金属的超塑性变形
对力学性能的影响主要表现为:
(1)超塑性变形后合金仍保持均匀细小的等轴晶组织,不存 在织构,所以不产生各向异性,且具有较高的抗应力腐蚀 能力。 (2)超塑性成形时,由于变形温度稳定、变形速度缓慢,所 以零件内部不存在弹性畸变能,变形后没有残余应力。 (3)对某些超塑性合金,存在加工软化现象,即硬度随压缩 率的增加而降低。 (4)高铬高镍不锈钢经超塑性变形后,形成细微的双相混合 组织,具有很高的抗疲劳强度。
第三节 金属的超塑性变形
晶界滑动和扩散蠕变联合机理(A-V机理)示意图
a.四个六边 形等轴晶粒 在应力作用 下,发生晶 粒滑动 c.四个晶粒发 生转动,形 成新的组态, 仍保持等轴 晶粒 晶粒转换机制的二维表示法
b在应力作用 下,发生晶粒 滑动,同时依 靠晶界扩散, 保持联结
d、e.伴随定向扩散的晶界滑动机制,虚线箭头代表体扩散方向
有人把上述的第二类及第三类超塑性统称为动态超 塑性,或环境超塑性。
第三节 金属的超塑性变形
二、超塑性变形机理
目前有这样几种解释: ①晶界滑移的作用;
超细晶粒材料的晶界有异乎寻常大的总面积,因此晶界运动在超塑性 变形中起着极其重要的作用。晶界运动分为滑动和移动两种,前者为 晶粒沿晶界的滑移,后者为相邻晶粒间沿晶界产生的迁移。 在研究超塑性变形机理的过程中,曾提出了许多晶界滑动的理论模型。
金属塑性成形原理
第二章 金属塑性变形的物理基础
第三节 金属的超塑性变形
主讲:刘华 华侨大学模具技术研究中心
第三节 金属的超塑性变形
一、超塑性概念及种类
概念:在一定条件下进行热变形,材料可得到特别大的 均匀塑性变形,而不发生缩颈,延伸率可达 500~2000%,材料的这种特性称为超塑性 特点: 大伸长率 无缩颈 低流动应力 对应变速率敏感 无加工硬化 易成形
对超塑性成型的认识
对超塑性成型的认识一.超塑性的简介及发展历史超塑性是指材料在一定的内部(组织)条件啊(如晶粒尺寸及形状、相变等)和外部(环境)条件下(如温度、应变速率等),呈现出异常低的流变抗力、异常高的流变性能(如大的延伸率)的现象。
超塑性的特点有大延伸率,无缩颈(小缩颈),小应力,易成形。
超塑性合金是指那些具有超塑性的金属材料。
超塑性是一种奇特的现象。
具有超塑性的合金能像饴糖一样伸长10倍、20倍甚至上百倍,既不出现缩颈,也不会断裂。
金属的超塑性现象,是英国物理学家森金斯在1982年发现的,他给这种现象做如下定义:凡金属在适当的温度下(大约相当于金属熔点温度的一半)变得像软糖一样柔软,而应变速度10毫米秒时产生本身长度三倍以上的延伸率,均属于超塑性。
最初发展的超塑性合金是一种简单的合金,如锡铅、铋锡等。
一根铋锡棒可以拉伸到原长的19.5倍,然而这些材料的强度太低,不能制造机器零件,所以并没有引起人们的重视。
60年代以后,研究者发现许多有实用价值的锌、铝、铜合金中也具有超塑性,于是前苏联、美国和西欧一些国家对超塑性理论和加工发生了兴趣。
特别在航空航天上,面对极难变形的钛合金和高温合金,普通的锻造和轧制等工艺很难成形,而利用超塑性加工却获得了成功。
到了70年代,各种材料的超塑性成型已发展成流行的新工艺。
现在超塑性合金已有一个长长的清单,最常用的铝、镍、铜、铁、合金均有10~15个牌号,它们的延伸率在200~2000%之间。
如铝锌共晶合金为1000%,铝铜共晶合金为1150%,纯铝高达6000%,碳和不锈钢在150~800%之间,钛合金在450~1000%之间。
实现超塑性的主要条件是一定的变形温度和低的应变速率,这时合金本身还要具有极为细小的等轴晶粒(直径五微米以下),这种超塑性称为超细晶粒超塑性。
还有一些钢,在一定的温度下组织中的相发生转变,在相变点附近加工也能完成超塑性,称为相变超塑性。
超塑加工具有很大的实用价值,只要很小的压力就能获得形状非常复杂的制作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相变超塑性不要求微细等轴晶粒,这是有利 的,但要求变形温度反复变化,给实际生产带来 困难,故使用上受到加工条件下产生较大弯曲、拉伸等变 形,二次大战后由前苏联科学家通过锌铝 合金拉伸试验提出超塑性的概念。
超塑性成形实例
Bi-44Sn挤压材料在慢速拉伸下出现异常大的延伸率现象 (δ=1950%),左为拉伸前的试样。
我国已成功开发应用了以铝合金、钛合金、 铜合金为代表的结构合金超塑性材料。 (1)、研究获得超塑性的途径; (2)、探索成型工艺规范; (3)、解决成型工艺关键
1.2、超塑性成形的基本特点 金属材料在受到拉伸应力时,显示出很大的延伸率
而不产生缩颈与断裂现象,把延伸率能超过100% 的材料统称为“超塑性材料”,相应地把延伸率 超过100%的现象叫做“超塑性”。
但实际的变形程度要更大。也可用应变速率敏感性 指数m来定义超塑性。 宏观上,可用大变形、无缩颈、小应力、
易成形来描述超塑性特点。
(1)、大变形 金属材料的最高伸长率铝青铜可达8000﹪,
材料成型性能好,可成形复杂程度高、变形 量大的成型件。 (2)、无缩颈
超塑性成形类似于粘性物质的流动,对 应变速率较敏感,既有应变速率硬化效应。 (3)、小应力
超塑性成形的流动应力是常规成型的十 几到几十分之一,设备吨位小。 (4)、易成形
m:0.6, σ:2MPa,δ:1000~2000﹪, غ:1.6×10‾³s‾¹,t:200~300 ℃
Zn-4%Al与Zn-5%Al :精炼后浇铸铸锭,在320 ℃退火 3h,在300 ℃ (Zn-4%Al )和260 ℃ (Zn-5%Al ) 下轧制。
m:0.5,σ:2MPa,δ:2000﹪, غ:1.6×10‾³s‾¹,t:350 ℃
Al-Li合金: Al-Li二元合金强度较低,加入铜、鎂、
锆、錳等合金元素,可使其强度与塑性有所改善。
④、钢
45钢:830~850 ℃淬火,反复4次。 m: σ:δ:240﹪, غ:2.0×10‾⁴s‾¹,t:680 ℃. T8钢:760 ℃水淬,后加热到537 ℃空冷。 m:σ:35MPa,δ:305﹪, غ: (2.4~9.5)×10‾⁴s‾¹,t:680~710 ℃. GCr15:退火料830 ℃调质1~4次。 3Cr2W8V:950 ℃循环淬火。 m:σ:49MPa,δ:156﹪, غ:2.0×10‾³s‾¹,t:800~850 ℃. 1Cr13、2Cr13:950~990 ℃加热,600 ℃回火,两次
③、铝合金
Al-6Cu-0.5Zr:用冷模浇铸铸锭,采用热轧及冷轧, 变形量大于90%,最后进行时效热处理。
m:0.50, σ:10~12MPa,δ:1000﹪, غ:1.3×10‾³s‾¹, t:430 ℃.
7475铝合金:供货板材固溶处理后,400 ℃过时效 8h;200 ℃轧制,轧制变形量为85%,482 ℃保 温5min。
特种塑性成形
1、发展省力成形工艺
F K s A
K 应力状态系数,异号时<1,同号时>1
s 流动应力,与材料成分、组织、变形温度、
变形速度、变形程度有关。
A 接触面积在主作用力方向上的投影
2、提高成形的柔度 3、提高成型的精度,如粉末锻造等
超塑性成形
1、金属超塑性概况及特点
1.1、发展概况
②、钛合金
TC4(Ti-6Al-4V)和TC9:供货状态即为细晶组 织。
m:0.85, σ:,δ:1000﹪, غ:1.0×10‾³s‾¹,t:800~1000 ℃.
Ti679:在900℃下锻造,800 ℃下退火1h后 空冷。
m:0.43, σ:25MPa,δ:734﹪, غ:6.7×10‾⁴s‾¹,t:800~850 ℃.
3)、其他超塑性 近年来发现,普通非超塑性材料在一定条件下快速
变形时,也能显示出超塑性。
有些材料在消除应力退火过程中,在应力作 用下也可以得到超塑性,Al-5%Si及Al-4%Cu合金 在溶解度曲线上下施以循环加热可以得到超塑性。 此外,国外正在研究的还有升温超塑性,异向超 塑性等。
有人把上述的第二类及第三类超塑性统称为 动态超塑性,或环境超塑性。
(3)、影响超塑性的因素 1)、获得细晶的途径及晶粒度的影响 ①冶金学方法
成核初期加微量元素,快速冷凝法; ②压力加工法
冷、热、温轧制或锻造 ③热处理方法 反复淬火、形变热处理、球化退火等
要求处理后的组织细晶、等轴、稳定 晶粒越小,流动应力越低,m值越大。
①、锌合金
Zn-22%Al:550~590℃精炼后浇铸铸锭。355~375 ℃8h以 上固溶后空冷。加热到290~360 ℃保温2小时,制成板 材或棒材后,加热至310~360 ℃保温1h以上,在低于18 ℃的水中淬火,保持1h.再加热至250~260℃保温0.5h.
成形过程无硬化,流动性和填充性好,可用多 种方式成形。
1.2、超塑性的分类及影响超塑性的因素 (1)、现象
超塑性是材料特定条件下呈现的特质:极
低的流动应力、极高的伸长率、良好的流动
性与复制性,晶间变形的比率提高。像熔融
塑料那样的金属,因此可成形大变形量、高
精度、复杂件,并可进行良好的复制。
力学特征:贝可芬方程
调质。 钢的细晶化,基本上是采用热处理。
⑤ 、鎂、铜合金
MB8:供货状态即为细晶组织。 m:0.34σ:25MPa,δ:228﹪, غ: 2.8×10‾⁴s‾¹,t:400 ℃. MB15:360℃保温1h,然后空冷。 m:0.51σ:23MPa,δ:574﹪, غ: 1.0×10‾⁴s‾¹,t:290 ℃. HPb59-1:300 ℃温轧后,450 ℃保温1h。 m:0.5σ:23MPa,δ:550﹪, غ: 8.33×10‾⁴s‾¹,t:600 ℃. H62:250~300 ℃保温1h,然后空冷。
.m
K
普通金属,m=0.02~0.2;超塑性材料, m=0.3~1
(2)、分类
1)、细微晶粒超塑性(恒温超塑性)
晶粒尺寸通常小于10 m
变形温度T>0.5 Tm
,并在变形过程中保持恒定 m
应变速率较低,通常 104 ~ 101
s
2)、相变超塑性(动态超塑性) 相变超塑性,并不要求材料具有超细晶粒组织,而