三角形全等的五种判定方法及如何构造三角形全等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形综合复习
1. 全等三角形的概念及性质;
2. 三角形全等的判定;
3. 角平分线的性质及判定。
知识点一:证明三角形全等的思路
通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:
⎧→⎧⎪⎪
→⎨⎪⎪⎪
→⎩⎪
⎪→→⎧⎪⎪
→⎧⎪⎪
⎨⎨⎪
→⎨⎪⎪
⎪⎪⎪
→⎩⎩⎪
⎪→⎧⎪⎨→⎪⎩⎪⎩
SAS SSS
HL AAS SAS ASA AAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:
ACF BDE ∆≅∆。
知识点二:构造全等三角形
例 2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
求证:AE CF =。
知识点三:常见辅助线的作法
1. 连接四边形的对角线
例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。
解题后的思考:连接四边形的对角线,是构造全等三角形的常用方法。
2. 作垂线,利用角平分线的知识
例5.如图,,
AP CP分别是ABC
∆外角MAC
∠和NCA
∠的平分线,它们交于点P。
求证:BP为MBN
∠的平分线。
解题后的思考:题目已知中有角平分线的条件,或者有要证明角平分线的结论时,常过角平分线上的一点向角的两边作垂线,利用角平分线的性质或判定来解答问题。
3. “截长补短”构造全等三角形
例 6.如图,在ABC
∆中,AB AC
>,12
∠=∠,P为AD上任意一点。
求证:AB AC PB PC
->-。
解答过程:
在AB上截取AN AC
=,连接PN
在APN
∆与APC
∆中
12
AN AC
AP AP
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴APN APC
∆≅∆(SAS)
∴PN PC
=
在BPN
∆中,PB PN BN
-<
∴-<-
PB PC AB AC,即AB-AC>PB-PC。
一、选择题:
1. 能使两个直角三角形全等的条件是( ) A. 两直角边对应相等 B. 一锐角对应相等 C. 两锐角对应相等
D. 斜边相等
2. 根据下列条件,能画出唯一ABC ∆的是( ) A. 3AB =,4BC =,8CA =
B. 4AB =,3BC =,30A ∠=
C. 60C ∠=,45B ∠=,4AB =
D. 90C ∠=,6AB =
3. 如图,已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③
C D ∠=∠;④B E ∠=∠。
其中能使ABC AED ∆≅∆的条件有( )
A. 4个
B. 3个
C. 2个
D. 1个
4. 如图,12∠=∠,C B ∠=∠,,AC BD 交于E 点,下列不正确的是( ) A. DCE ABE ∠=∠ B. CE BE =
C. DEC ∆不全等于ABE ∆
D. ECB ∆是等腰三角形
5. 如图,已知AB CD =,BC AD =,23B ∠=,则D ∠等于( ) A. 67 B. 46 C. 23
D. 无法确定
二、填空题:
6. 如图,在ABC ∆中,90C ∠=,ABC ∠的平分线BD 交AC 于点D ,且:2:3CD AD =,10AC cm =,则点D 到AB 的距离等于__________cm ;
7. 如图,已知AB DC =,AD BC =,,E F 是BD 上的两点,且BE DF =,若
100AEB ∠=,30ADB ∠=,则BCF ∠=____________;
8. 将一张正方形纸片按如图的方式折叠,,BC BD 为折痕,则CBD ∠的大小为________;
9. 如图,在等腰Rt ABC ∆中,90C ∠=,AC BC =,AD 平分BAC ∠交BC 于D ,DE AB ⊥于E ,若10AB =,则BDE ∆的周长等于____________;
10. 如图,点,,,D E F B 在同一条直线上,AB //CD ,AE //CF ,且AE CF =,若
10BD =,2BF =,则EF =___________;
三、解答题: 11. 如图,ABC ∆为等边三角形,点,M N 分别在,BC AC 上,且BM CN =,AM 与BN 交于Q 点。
求AQN ∠的度数。
12. 如图,90ACB ∠=,AC BC =,D 为AB 上一点,AE CD ⊥,BF CD ⊥,交CD 延长线于F 点。
求证:BF CE =。