线性代数二次型及标准形
二次型的规范形与标准形
二次型的规范形与标准形在线性代数中,二次型是由一组变量的二次多项式构成的一类函数。
它在数学和应用领域都有广泛的应用。
对于任意二次型,可以通过适当的线性变换将其化为规范形或标准形。
本文将介绍二次型的规范形和标准形,并探讨它们的性质和应用。
1. 二次型的定义和性质二次型是由变量x1,x2,...,xn 的二次多项式构成的函数。
通常表示为Q(x) = x^T A x,其中x = (x1, x2, ..., xn)^T 是变量向量,A 是实对称矩阵。
二次型具有以下性质:- 对称性:Q(x) = Q(x^T)- 齐次性:Q(kx) = k^2 Q(x),对任意实数k- 加性:Q(x + y) = Q(x) + Q(y),对任意向量x,y2. 二次型的规范形对于任意二次型Q(x),可以通过合适的变量变换将其化为规范形。
规范形是一种特殊的形式,使得无法再通过线性变换进一步简化。
规范形的形式如下:Q(x) = λ1 y1^2 + λ2 y2^2 + ... + λn yn^2其中,λ1,λ2,...,λn 是实数,y1,y2,...,yn 是规范变量。
通过矩阵的特征值分解,可以得到二次型的规范形。
具体步骤如下:- 求出二次型Q(x)对应的对称矩阵A的特征值λ1,λ2,...,λn- 对应每个特征值λi,求出对应的特征向量yi- 将特征向量yi按列排列得到矩阵P = (y1, y2, ..., yn)- 规范形为Q(x) = P^T Δ P,其中,Δ = diag(λ1, λ2, ..., λn) 是特征值对角矩阵3. 二次型的标准形二次型的标准形是规范形的一种特殊情况,对应于所有特征值都是1或-1的情况。
标准形的形式如下:Q(x) = y1^2 + y2^2 + ... + yn^2对于特征值λi = 1,取对应的特征向量yi作为标准变量;对于特征值λi = -1,取对应的特征向量yi的相反数作为标准变量。
相比规范形,标准形更加简洁,且易于分析和计算。
二次型标准型和规范型
二次型标准型和规范型二次型是矩阵形式的二次函数,通常用向量和矩阵的乘积来表示。
在线性代数中,二次型是一种将一个多元变量的向量映射到实数的函数,常用于描述抽象空间中的二次曲面。
对于一个n维实向量空间V上的二次型,可以通过一个对称矩阵A来定义,即二次型的矩阵表达式为Q(x) = x^T Ax,其中x是一个列向量。
二次型的标准型是指将二次型通过合适的线性变换转化为一个特定的形式,这个形式更便于研究和计算。
在实数域上,任何一个n维非退化二次型都可以通过合适的正交变换(即特征变换)化为标准型,即形如Q(x) = λ1y1^2 + λ2y2^2 + ... +λnyn^2,其中λi为非零实数,yi为变换后的新变量。
标准型中的每一项都是对应新变量的平方项,没有交叉项。
二次型的规范型是指将二次型通过一个线性变换转化为一个更简洁的形式,通常是对标准型进行变换。
规范型的形式为Q(x) = y1^2 + y2^2 + ... + yn^2,其中yi为变换后的新变量。
规范型相对于标准型来说,更加精简,变量之间没有相关性,也没有尺度差异。
这样的形式能够更好地研究和理解二次型的性质。
转化为二次型的标准型和规范型在研究和计算中起着重要的作用。
它们可以帮助我们更好地理解二次型的本质和性质,更清晰地描述和分析问题。
同时,标准型和规范型之间的转化可以通过线性变换来实现,这种变换能够保持二次型的性质不变,因此在问题求解中也可以通过变换将二次型转化为更容易处理的形式,简化计算过程。
总之,二次型的标准型和规范型是对其矩阵表达形式进行变换,将其转化为更方便研究和计算的形式。
标准型通过正交变换将二次型转化为形如λ1y1^2 + λ2y2^2 + ... + λnyn^2的形式,其中λi为非零实数,yi为变换后的新变量。
规范型是对标准型进行变换,将其转化为更简洁、更方便理解和分析的形式Q(x) = y1^2 + y2^2 + ... + yn^2,其中yi为变换后的新变量。
线性代数知识点总结(第6章)
线性代数知识点总结(第6章)(一)二次型及其标准形1、二次型:(1)一般形式(2)矩阵形式(常用)2、标准形:如果二次型只含平方项,即f(x1,x2,…,x n)=d1x12+d2x22+…+d n x n2这样的二次型称为标准形(对角线)3、二次型化为标准形的方法:(1)配方法:通过可逆线性变换x=Cy(C可逆),将二次型化为标准形。
其中,可逆线性变换及标准形通过先配方再换元得到。
★(2)正交变换法:通过正交变换x=Qy,将二次型化为标准形λ1y12+λ2y22+…+λn y n2其中,λ1,λ2,…,λn是A的n个特征值,Q为A的正交矩阵注:正交矩阵Q不唯一,γi与λi对应即可。
(二)惯性定理及规范形4、定义:正惯性指数:标准形中正平方项的个数称为正惯性指数,记为p;负惯性指数:标准形中负平方项的个数称为负惯性指数,记为q;规范形:f=z12+…z p2-z p+12-…-z p+q2称为二次型的规范形。
5、惯性定理:二次型无论选取怎样的可逆线性变换为标准形,其正负惯性指数不变。
注:(1)由于正负惯性指数不变,所以规范形唯一。
(2)p=正特征值的个数,q=负特征值的个数,p+q=非零特征值的个数=r(A)(三)合同矩阵6、定义:A、B均为n阶实对称矩阵,若存在可逆矩阵C,使得B=C T AC,称A与B合同△7、总结:n阶实对称矩阵A、B的关系(1)A、B相似(B=P-1AP)←→相同的特征值(2)A、B合同(B=C T AC)←→相同的正负惯性指数←→相同的正负特征值的个数(3)A、B等价(B=PAQ)←→r(A)=r(B)注:实对称矩阵相似必合同,合同必等价(四)正定二次型与正定矩阵8、正定的定义二次型x T Ax,如果任意x≠0,恒有x T Ax>0,则称二次型正定,并称实对称矩阵A是正定矩阵。
9、n元二次型x T Ax正定充要条件:(1)A的正惯性指数为n(2)A与E合同,即存在可逆矩阵C,使得A=C T C或C T AC=E(3)A的特征值均大于0(4)A的顺序主子式均大于0(k阶顺序主子式为前k行前k列的行列式)10、n元二次型x T Ax正定必要条件:(1)a ii>0(2)|A|>011、总结:二次型x T Ax正定判定(大题)(1)A为数字:顺序主子式均大于0(2)A为抽象:①证A为实对称矩阵:A T=A;②再由定义或特征值判定12、重要结论:(1)若A是正定矩阵,则kA(k>0),A k,A T,A-1,A*正定(2)若A、B均为正定矩阵,则A+B正定。
4.2 二次型的标准型与规范型
4.2 二次型的标准型与规范型二次型是一个重要的数学概念,常常出现在线性代数和数学分析中。
在研究二次型的性质时,我们可以通过对其进行特征值分解来得到其标准型和规范型。
本文将对二次型的标准型与规范型进行详细阐述。
1. 二次型二次型是指形如 $f(x)=x^TAx$ 的二次齐次多项式,其中 $x$ 是 $n$ 维实向量,$A$ 是 $n$ 阶实对称矩阵。
其中 $n$ 称为二次型的阶数。
二次型具有以下性质:(1)对称性:$f(x)=x^TAx=x^T(A^T)x=f(x)$;(2)齐次性:$f(kx)=k^2f(x)$,其中 $k$ 是常数;(3)线性性:$f(x+y)=f(x)+f(y)$;(4)正定性:如果对于任意非零 $x$,有 $f(x)>0$,则称这个二次型是正定的;(8)无定性:如果既不是正定的,也不是负定的,则称这个二次型是无定性的。
2. 标准型标准型是指经过矩阵相似变换得到的对角矩阵。
标准型对于研究二次型的性质非常方便,因为对角矩阵的特殊性质使得二次型的性质易于判断。
我们可以通过以下步骤获得一个二次型的标准型:(1)求出二次型的矩阵 $A$ 的特征值和特征向量;(2)将特征向量按对应的特征值大小排列,组成矩阵 $P=[p_1, p_2, \cdots, p_n]$;(3)令 $D=\begin{bmatrix}\lambda_1 & & \\& \ddots & \\& & \lambda_n\end{bmatrix}$,其中 $\lambda_i$ 是矩阵 $A$ 的第 $i$ 个特征值;(4)则可得到一个相似变换矩阵 $T=P^{-1}$,使得 $T^{-1}AT=D$。
此时,$D$ 即为该二次型的标准型。
标准型的优点在于可以直接通过特征值的正负性判断二次型是否正定、负定或者无定。
例如,如果所有的特征值都为正,则该二次型是正定的;如果所有的特征值都为负,则该二次型是负定的;如果特征值有正有负,则该二次型是无定性的。
线性代数二次型的标准形和规范形
含有平方项
含有x1的项配方
解 f x 1 2 2 x 2 2 5 x 3 2 2 x 1 x 2 2 x 1 x 3 6 x 2 x 3
x1 22x1x22x1x32x2 25x3 26x2x3
(x1x2x3)2x22x322x2x3 2x225x326x2x3 (x 1 x 2 x 3 )2 x 2 2 4 x 3 2 4 去x 2 掉x 3配方后多出来的项
x3 0 0 1 y3
标准形为 f y12y22.
所用变换矩阵为
1 C 0
1 1
0 0
1 2 , 1
(C 10)
例2 用配方法化二次型
f 2 x 1 x 2 2 x 1 x 3 6 x 2 x 3
为标准形,并写出对应的可逆线性变换。
解 所给二次型中无平方项,所以先作线性变换
x1 3 y 3
即
x1 x2
1 1
1 1
0 y1 0 y2
x2 0 0 1 y3
原二次型化为
f 2 y 1 2 2 y 2 2 4 y 1 y 3 8 y 2 y 3.
f 2 y 1 2 2 y 2 2 4 y 1 y 3 8 y 2 y 3.
再配方,得
f 2 (y 1 y 3 ) 2 2 (y 2 2 y 3 ) 2 6 y 3 2 ,
第二节
本节讨论的主要问题是:如何通过可逆线性变换XCY,
把二次型f(x1,x2,,xn)XTAX化为y1, y2,, yn 的平方和 d1y12 d2y22 dnyn2 ,称之为二次型的标准形。从前面分
析可以看出, 要把一个二次型化为标准形, 只要找一个可逆阵C, 使CTAC成为对角阵,即A与一个对角阵合同。
z3
Ch5-5线性代数二次型及其标准型
2 01
0
0 0 1
可得
f
的规范形:f
=
-z
2 1
+
z
2 2
+
z
2 3
.
用正交阵将二次型化为标准形的步骤:
正交变换法
(i) 写出 f 的矩阵 A,并求出 A所有相异特征值 1, , m;
它们的重数依次为 r1, r2 , rm ( r1 r2 rm n )
(ii) 对每个重特征值i , 求出对应的 ri 个线性无关的特征向量
二次曲线
旋转变换
ax2 bxy cy2 1
令
x y
x cos x sin
y sin y cos
, ,
二次齐次多项式
m x2 n y2 1
不改变长度、夹角
可逆线性变换 正交变换
对于n 元的二次齐次多项式,能否存在一个可逆的线性变换 将其变为只含平方项的二次齐次多项式
求可逆矩阵 C 使得 C TAC B , 称为将 A 合同(变换)为 B .
简单性质:
10 矩阵的合同关系是等价关系;
20 合同矩阵CT必A等C 秩 B; , 而 C 可逆,
30 与对称矩阵合同的矩阵也是对称阵.
A AT , C TAC B BT CT ATC CT AC B
从合同的角度看二次型的变换问题:
二次型 f xTAx 经可逆变换 x C y化成二次型 f yTB y
存在可逆阵 C 将矩阵 A合同为B, 即 A, B 满足CTAC =B, 且 B仍为对称阵,二次型 f 的秩不变.
能将二次型 f = xTA x 经过可逆线性变换化成标准形
线性代数课件456二次型与标准形xg
2
解之 x1 2x2 2x3 其基础解系 1 1
0
先将1,2 正交化。
2
2 0
1
1 1,
2
2
2 , 1,
1 1
1
2 0 1
4 5
2 1 0
1 5
2 4 5
1 5
2
单位化
p1
1
2 1 ,
5 0
2
p2
1 35
4, 5
24
当 1 7 时解 7E AX 0
为标准形, 并求出所作的可逆线性变换.
解 x1 y1 y2
令
x2 y1 y2
x3
y3
f (x1, x2, x3) 2 y12 2 y22 4 y1y3 4 y2 y3
2( y12 2y1y3 y32 ) 2y22 4y2 y3 2y32
2( y1 y3)2 2( y2 y3)2
2 1
0 2
0 2 0
(2) 求出A 的全部特征值及其对应的标准正交的
特征向量。
2 2 0
E A 2 1 2 2 1 4
0 2
1 2 2 1 3 4
17
而它们所对应的标准正交的特征向量为
2
1
P1
3
1 2
2
1
P2
3
2 1
1
P3
1 3
2 2
(3) 写出正交变换
为 x1, x2,, xn 的标准二次型(二次型的标准形)
可见 f 为对角形。
注:由(1)可见,每一项中变量的方次之和均为2。
如:
f
x12
x1x2
3x2 3
线性代数§5.5二次型及其标准形
总有正交变换 y=Px, 使 f 化为标准形: f = 1y12+2y22+· · · +nyn2,
其中1, 2, · · · ,n 是 f 的矩阵A=(aij)的特征值.
用正交变换化二次型为标准形的具体步骤: 1. 将二次型表示成矩阵形式 f = xTAx, 求出A; 2. 求出A的所有特征值1, 2, · · · , n ; 3. 求出对应特征值i 的正交单位化的特征向量组, 从而有正交规范向量组 1, 2, · · · , n ; 4. 记P=(1, 2, · · · , n ), 作正交变换x=Py, 则得 f 的 标准形: f = 1y12+2y22+· · · +nyn2 . 例2: 将二次型 f =17x12+14x22+14x32–4x1x2–4x1x3–8x2x3 通过正交变换x=Py化成标准形. 解: 1. 写出对应的二次型矩阵. 17 2 2 A 2 14 4 2 4 14
取aji = aij , 则 2aij xi xj = aij xi xj + aji xjxi , 于是 f(x1, x2, · Байду номын сангаас · , xn) =a11x12+a12x1x2 +· · · +a1nx1xn +a21x2x2 + a22x22+· · · +a2nx2xn +· · · · · · +an1xnx1+an2xnx2+ · · · +ann xn2
思考题:
求一正交变换, 将二次型 f(x, y, z)=5x2+5y2+3z2–2xy+6xz–6yz 化为标准型, 并指出f (x, y, z)=36表示何种二次曲面.
线性代数二次形及其标准型
f = x T Ax = (Qy )T A(Qy ) = y T (Q T AQ ) y = y T Λy
2 = λ1 y12 + λ 2 y22 + L + λn yn
线性代数
第五章
11 11
例4
通过正交变换 化二次型
2 2 2 f = 5 x1 + 5 x 2 + 2 x 3 − 8 x1 x 2 − 4 x1 x 3 + 4 x 2 x 3
a11 x1 + a12 x2 + L+ a1n xn a x a x L a x = ( x1 , x2 ,L, xn ) 21 1 + 22 2 + + 2n n LLLL a x + a x + L+ a x nn n n1 1 n2 2
线性代数
写成矩阵形式
解
.
½ 0 f ( x 1 , x 2 , x 3 ) = ( x 1 , x 2 , x 3 ) ½ 2 −3 2 ½
x1 −3 x 2 2 0 x 3
½
注
a ij = a ji ( i ≠ j )为交叉项 x i x j的系数的一半, 的系数的一半, a ii 为平方项 x i2的系数 ,
令正交变换X=QY,则 , 令正交变换
2 2 f = y12 + y 2 + 10 y 3
(注):正交变换化二次形为标准形具有保持几何图形不变 ):正交变换化二次形为标准形具有保持几何图形不变 的特点,使其易于识别。 , 。 线性代数 的特点 使其易于识别 第五章
14 14
(二)用满秩线性变换化二次型为标准形——配方法 用满秩线性变换化二次型为标准形 配方法 例2 化二次型
线性代数第六章
1 2 1
1 2 1
对
A
2
2
0
进行行变换可以得到
0
2
5
,所以二次型的秩为
3.
1 0 6
0 0 17
6.1.1 二次型的基本概念
例题
5
1 2
0
例2
设
A
1 2 0
3
4
,写出矩阵
A
所对应的二次型.
4
2
解: f (x1 ,x2 ,x3 ) 5x12 3x22 2x32 x1x2 8x2 x3 .
6.1.2 可逆变换
定义
设由变量 y1 ,y2 ,L ,yn 到 x1 ,x2 ,L ,xn 的线性变换为
x1 c 1 y1
1 c
y1 2 L2
c
n
yn
,
1
x2
c
2 y1
1 c y2 2 L2 L
c
n
yn
,
2
xn cn1 y 1 cn y2 2 L cnn yn ,
(6-3)
c11 c12 L
解:由于
f
中没有平方项,但有
x1
x2
项,由此令
x1 x2
y1 y1
y2 y2
, ,即
x3
y3 ,
x1 1 1 0 y1
x2
1
1
0
y2
,
x3 0 0 1 y3
得
f ( y1 y2 )( y1 y2 ) ( y1 y2 ) y3 y12 y22 y1 y3 y2 y3
n
nn
f aij xi xj
aij xi x j
i ,j 1
线性代数—二次型的标准形和规范形课件
已知二次型$f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 - 4x_1x_3$,求其标准形。
解答部分
答案3:略
答案2:略
答案1:略
01
03 02
THANKS
感谢您的观看
详细描述
二次型可以用矩阵表示,通过将二次型中的系数排列成一个矩阵,可以方便地 研究二次型的性质和变化。这种矩阵称为二次型的矩阵表示。通过矩阵运算, 可以方便地计算二次型的值、求导数、求解方程等。
二次型的性质
总结词
二次型具有一些重要的性质,如对称性、正定性、负定性等,这些性质决定了二次型在数学和工程领域的应用价 值。
二次型用于描述物理系统的能量关系,如弹簧振荡器、谐振腔等系统的能 量形式。
二次型在物理学中用于建立数学模型,如线性方程组、微分方程等,以解 决实际问题。
二次型在经济学中的应用
01
二次型在经济学中常用于描述成本、收益和利润等 经济量之间的关系。
02
二次型用于描述经济系统的最优化问题,如生产、 消费和投资的最优配置问题。
特征值与特征向量
总结词
特征值和特征向量是二次型的重要属性 ,它们可以通过线性变换来获得。
VS
详细描述
特征值是二次型在某个特定变换下的不变 值,而特征向量则是与该特征值对应的向 量。通过特征值和特征向量,可以进一步 了解二次型的性质和结构。例如,特征值 可以用于判断二次型的正定性、负定性或 零定性,而特征向量可以用于构建二次型 的标准形。
详细描述
二次型具有对称性,即对于任意实数$x, y$,都有$f(x, y) = f(y, x)$。此外,二次型还具有正定性、负定性等性 质,这些性质决定了二次型在数学和工程领域的应用价值。例如,在物理学中,二次型用于描述物体的运动状态 和受力情况;在经济学中,二次型用于描述成本和收益的关系等。
线性代数卢刚版4.2二次型的标准形与规范型
1 , 2 , … , n ;
Step2
Step3
求出正交矩阵 P,使
P TAP = diag(1 , 2 , … , n) ; 作正交线性替换 x = Py ,
其中 y= (y1 , y2 , … , yn )T Rn , 则二次型 f ( x1 , x2 , … , xn ) 化为标准形
(1) f ( x1,x2 ,x3 ) 2x1x2 2x1x3 2x2 x3 ;
(2) f ( x1,x2,x3 ) x 4x2 x3 4x1x2 8x1x3 4x2 x3 .
2 1
2
2
用正交线性替换将二次型
f ( x1 , x2 ,…, xn)
= xTAx (其中 AT = A) 化为标准形的步骤: Step1 求出二次型矩阵 A 的全部特征值
1、用正交变换法 化二次型为标准形
由于二次型的矩阵为实对称矩阵,由于实对称 矩阵必可对角化,由此可得 定理4.2对于二次型 f ( x1 , x2 , … , xn ) = xTAx(AT=A) 存在n阶正交矩阵P,使得经过正交线性替换 x=Py
二次型 xTAx 化为标准形.
例 1 . 用正交线性替换化下列二次型为标准形, 并求出所作的正交线性替换:
化为标准形,并求所用的线性替换及变换矩阵.
解 先按 x12 及含有 x1 的混合项配成完全平方
2 f ( x1, x2 , x3 ) 2( x1 2x1 ( x2 x3 ) ( x2 x3 )2 )
2( x2 x3 )
2
2 3x2
2 x3
8x2 x3
2 2 2( x1 x2 x3 )2 x2 x3 4x2 x3
(完整版)线性代数第六章实二次型(自考经管类原创)
正定 半正定 负定 半负定 不定
二、正定矩阵
n元实二次型f xT Ax,及对称矩阵A一一对 应,能够判定A为正定矩阵,则f 必为正定二 次型.正定矩阵有哪些性质,怎样判定?
正定矩阵的性质 定理 对角矩阵为正定矩阵当且仅当中所 有对角元全大于零. 例 E为正定矩阵.
定理(必要条件) 对称矩阵A为正定矩阵,则A 中所有对角元必全部大于零. 反之,若存着对角元aii 0, 则A必然不正定. 例2 f 4x12 6x22 +15x32 x1x2 2x2 x3是否正定? 定理 正定矩阵的合同矩阵必为正定矩阵. 定理 同阶正定矩阵之和必为正定矩阵.
2a12x1x2 + 2a13x1x3 + ···+ 2an-1,nxn-1xn
为二次型.
取 aij = aji , 则
2aijxixj = aijxixj + ajixjxi ,
nn
于是 二次型可写成 f (x1, x2,..., xn )
aij xi x j .
i1 j1
a11 a12 a1n
令
y1 y2
x1 x2
2x2 x3
y3 x3
即作可逆变换
x1 x2
y1+2 y2 y2 +y3
+2y3
x3 = y3
x1 1 2 2 y1
即经可逆变换
x2
=
0
1
1
y2
x3 0 0 1 y3
将二次型化为标准形y12 6 y22 4 y32
O
定义 规范形中k称为二次型的正惯性指数,k r称 为负惯性指数,正负惯性指数的差2k r称为二次 型的符号差.
定理 对称矩阵A与B合同当且仅当它们有相同的 秩和相同的正惯性指数.
《线性代数及其应用》课件-第7章
线性替换
定义 2 设 X = [x1, x2, . . . , xn]T, Y = [y1, y2, . . . , yn]T, S ∈ Pn×n, 称
X = SY
线性替换
定义 2 设 X = [x1, x2, . . . , xn]T, Y = [y1, y2, . . . , yn]T, S ∈ Pn×n, 称
x = x′ cos θ − y′ sin θ, y = x′ sin θ + y′ cos θ,
或
x y
=
cos θ sin θ
− sin θ cos θ
x′ y′
化为标准形 a′x′2 + c′y′2 = 1.
▶
例如,
二次曲线
x2
√ − [3x]y
+ [2y2
=
1
经坐标旋] 转[ 变]换
x y
=
二次型及其矩阵表示
二次型 (quadratic form)是指含 n 个变量的齐二次多项式 f (x1, x2, . . . , xn) =a11x21 + a22x22 + · · · + annx2n + 2a12x1x2 + 2a13x1x3 + · · · + 2an−1,nxn−1xn
当 j > i 时, 令 aji = aij , 则 2aij xixj = aij xixj + ajixj xi, 二次型可用矩阵乘 积记作:
0 x1 1 x2
0 0 −3 x3
= x21 + 4x1x2 + x2x3 − 3x23,
12 0
该二次型的矩阵为 A = 2 0
1 2
《线性代数》教学课件—第5章 二次型 第五节 二次型及其标准型
A 12
12
,
x
x y
.
显然,二次型的秩为 R( A) 2.
例 23 已知二次型
f (x1,x2,x3,x4 ) x12 3x22 x32 4x42 2x1x2 4x1x3 6x1x4 8x2 x3 4x2 x4,
写出二次型的矩阵 A ,并求出二次型的秩.
aijபைடு நூலகம்xi x j xT Ax,
i1 j1
其中 AT = A 为实对称矩阵, 称 A 为二次型的矩
阵. 称矩阵 A 的秩 R(A) 为二次型的秩. 这样,
实二次型与实对称矩阵之间就建立起一一对应的
关系.
例 22 已知二次型 f (x,y) x2 4xy y2 ,
写出二次型的矩阵 A , 并求出二次型的秩.
(2) f (x1,x2,x3) x12 4x22 x32 4x1x2 8x1x3 4x2x3 .
(1) 解 二次型 f 的矩阵 A 为 (2) 解 0二1次型1 f 的矩阵 A 为
本若请本若请本若请节想本单若请节想本单若请节想本单若内请结节击想本 本单若 若内请 请结节击想本 本单若 若内请 请结节击想本 本容单若 若束内请 请返结节节击想 想本 本容单单若 若束内请 请返结节节击想 想本 本 本容单 单若 若 若束内请 请 请返结节 节已想击想本本 本容单单若 若回束内内请 请返结 结节 节已击想击想本本容单单若回束内内请返结 结节 节 节已击 击想 想想本本容单 单 单若回束内 内结请返结结堂节节已击想 想击按本本容容单 单若回束 束内 内结请返返结结堂节已击击想按本本容容单若回束 束内 内 内结请返 返结 结结堂节已击 击 击想按本本容 容束单若回束束课内内结请返返结 结钮堂节已已击 击想按本 本本容 容束单若回回束束课内结请返返结钮堂节已已击想按本 本容 容 容束单回 回束束 束课内结返 返 返结钮堂节已 已击想按本本,容容束单回回束 束课.内结结!返 返结钮堂 堂节已 已击想按按本本,容束单回回束课.内结结!返结钮堂 堂已 已 已击按 按本 本本,容束回 回 回束课.内结 结!返结钮堂堂已已击按按本 本,容束束回 回束课 课.内结 结!返结钮钮堂堂已击按按本,容束束回束课 课.结 结 结!返钮 钮堂堂 堂已按 按 按本,容束 束回束课课.结结!返钮钮堂 堂已按 按本,,容束束回束课课..结!!返钮钮堂已按本,,束束束回课 课课..结!!钮 钮 钮堂已按本,,束束回课 课..结!!钮 钮堂已按本,,束回课..结!!钮堂按,,,束课...结!!!钮堂按,,束课..结!!钮堂按,束课.!钮,束课.!钮,束课.!钮,.!,.!,.!
线性代数第6章二次型及其标准形
f ( x1, x2 , x3 ) [ x1, x2 , x3 ]4
5
6
x2
xT
Bx
7 8 9 x3
解 f x12 5 x22 9 x33 6 x1 x2 10x1 x3 14x2 x3
1 3 5 x1
[ x1, x2 , x3 ]3
x2 x3
注:二次型
对称矩阵
定义2: 二次型 f X T AX 把对称矩阵 A称为二次型 f 的矩阵 也把二次型 f 称为对称矩阵 A 的二次型 对称矩阵 A 的秩称为二次型 f 的秩
例1 写出下面二次型 f 的矩阵表示,并求 f 的秩r(f)。
1 2 3 x1
an1 x1 an2 x2
a1n xn
a2n xn
ann xn
a11 a12
( x1, x2 ,
,
xn
)
a21
a22
an1
an2
a1n x1
a2
n
x2
ann
xn
a11 a12
1 E A 2 4 2 2 4 2 52 4
4 2 1 4 2 1
所以A的特征值为: 1 2 5, 3 4
1 2 1
2对1
2
5, 解5E
AX
0, 得基础解系为:1
1
解(1)写出二次型 f 的矩阵 (2) 求出A的全部特征值及其对应的标准正交的特征向量
线性代数4.4 二次型
例
解
求下列平面图形所围图形的面积:
3x 2 xy 3 y 1 f ( x, y) 3x2 2xy 3 y 2
2 2
3 1 A I 2 6 8 ( 2)( 4) 1 3
A 的特征值为
3 1 A 1 3
可顺次求得单位特征向量
0.6 0.6 0.8 e1 令 P 0.8 e2 0.6 0.8 则经正交变换 x Py,可得标准形
0.8 0.6
f 10 y 15 y
2 1
2 2
例、试用正交变换化二次型
解:
3 2 x1 求二次型 f ( x1 , x2 ) x1 x2 x 经过线性变换 2 6 2 x1 2 y1 y2 之后的表达式。 x2 y1 2 y2 2 1 T T 令 x x1 x2 , y y1 y2 , 有 x y, 则 1 2 3 2 x1 f x1 x2 x 2 6 2 2 1 3 2 2 1 y1 y1 y2 y 1 2 2 6 1 2 2 10 0 y1 y1 y2 10 y12 35 y22 0 35 y2
换x=Hy变成y的二次型
2 2 f (Hy) d1 y12 d2 y2 dn yn
就称此二次型为原来二次型的标准形。
如例4.17
f ( x1 , x2 ) x1
3 2 x1 x2 2 6 x2
x1 2 y1 y2 2 f 10 y12 35 y2 经线性变换 化得标准形 x2 y1 2 y2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 0 1
2
1 0
,
3
0 1
,
2
11,
0
1
1
3.将特征向量正交化单位化
1 2
0
1 2
单位化即得
p2
1
0 0
2
,
p3
1 1
0
2 2
,
p4
1 2 12 1 2
于是正交变换为
x1 1 2
x2
x3 x4
1 2 1 2 12
12 12
0 0
x1( x1 x2 ) x2 ( x1 x2 )
x1
x1
x2
x1 x1
x2 x2
x
2
1 1
11
x1 x2
令
x
x1 x2
则 f x1 , x2 xT Ax
其中 A 11 11
f x1, x2 , x3 2x12 4x22 5x32 4x1x3
f x1, x2 , x3 x1 x2 x1 x3 x2 x3
对称矩阵A叫做二次型 f 的矩阵;
f 叫做对称矩阵A的二次型;
对称矩阵A的秩叫做二次型 f 的秩.
例1 写出二次型
f x12 2 x22 3 x32 4 x1 x2 6 x2 x3 的矩阵.
解 a11 1, a22 2, a33 3, a12 a21 2, a13 a31 0, a23 a32 3.
1 1 1 1 1 1 1 1
(
A
E
)
1 1 1
1 1 1
1 1 1
1 11
0 0 0
00 00 00
0
0 0
1 1 1 1 1 1 1 1
0 0 0
00 00 00
0 0 0
0 0 0
0 0 0
0 0
0 0
00
x1 x2 x3 x4 0
可得正交的基础解系
一、正交变换法
定理2
任给二次型 f
n
aij xi x j aij a ji
, 总有
i , j1
正交变换x Py,使 f 化为标准形
f 1 y12 2 y22 n yn2 ,
其中1,2 , , n是 f 的矩阵A aij 的特征值.
用正交变换化二次型为标准形的具体步骤
1. 将二次型表成矩阵形式f xT Ax,求出A;
1 2 0 A 2 2 3.
0 3 3
四、化二次型为标准形
f x1 , x2 x12 2 x1 x2 2 x2 2
( x1 x2 )2 x22
令y1 x1 x2 , y2 x2
则(1)式变为y12 y22。所作的变量替换为
x1
x2
y1
y2 y2
即
f a11 x12 a12 x1 x2 a1n x1 xn
a21 x2 x1 a22 x22 a2n x2 xn
an1 xn x1 an2 xn x2
ann
x
2 n
n
aij xi x j .
i , j1
2.用矩阵表示
f a11 x12 a12 x1 x2 a1n x1 xn
曲面.
思考题解答
5 1 3
解
二次型的矩阵为A
1
5
3,
3 3 3
可求得 det( A E) ( 4)( 9),
于是A的特征值为 1 0, 2 4, 3 9,
对应特征向量为
1 1 1
p1 1 , p2 1, p3 1.
2
0
1
将其单位化得
2. 实二次型的化简,并不局限于使用正交 矩阵,根据二次型本身的特点,可以找到某种运 算更快的可逆变换.下一节,我们将介绍另一种 方法——拉格朗日配方法.
思考题
求一正交变换,将二次型
f x1 , x2 , x3
5 x12
5
x
2 2
3 x32
2x1 x2
6x1 x3
6x2 x3
化为标准型,并指出 f x1, x2, x3 1 表示何种二次
x1 x2
1 0
11
y1 y2
记为x Cy
f x1 , x2
xT Ax
yTCT
ACy
y
T
1 0
0 1
y
x Cy
称
为
由
变
量y1
,
y
到
2
变
量x1
,
x
的
2
一
个
线
性
替
换
,
矩阵形式为x Cy。
若C 0,则称线性变换为可逆的线性变换, 或称非退化的线性变换。
若C为正交矩阵时,则称为正交变换。
对于二次型,我们讨论的主要问题是:寻求 可逆的线性变换,将二次型化为标准形.
i 1,2,3,
1 3
2 5
2 45
得 1 2 3, 2 1 5 , 3 4 45 .
2 30Leabharlann 545所以
1 3
P 2 3
2
3
2 5 15
0
2 45
4 45 .
5
45
于是所求正交变换为
x1 1 3 x2 2 3 x3 2 3
a11 a12 a1n
x1
记
A
a21
a22
a2n
,
x
x2 ,
an1 an2 ann
xn
则二次型可记作 f xT Ax,其中A为对称矩阵.
三、二次型的矩阵及秩
在二次型的矩阵表示中,任给一个二次型, 就唯一地确定一个对称矩阵;反之,任给一个对 称矩阵,也可唯一地确定一个二次型.这样,二 次型与对称矩阵之间存在一一对应的关系.
1 6
q1
p1 p1
1 2
6 ,
6
1 2
q2
p2 p2
1 2,
0
q3
p3 p3
1
1
1
3
3 .
3
故正交变换为
1
x1 x2 x3
6 1
6 2
6
1 1
2 1 2
0
3 1
3 1
y1 y2 y3
,
3
化二次型为
f
4
y
2 2
2. 求出A的所有特征值1,2 , ,n;
3. 求出对应于特征值的特征向量1 ,2 , ,n;
4.
将特征向量1 ,
2
,
,
正
n
交化,
单位化,
得
1 ,2 , ,n ,记C 1 ,2 , ,n ;
5. 作正交变换x Cy,则得f的标准形
f
1 y12
n
y
2 n
.
例2 求一个正交变换x Py,把二次型
.
1 1 1
1 1 1
计算特征多项式 : 把二,三,四列都加到第一列上,有
1 1 1 1
1 1 1
A E ( 1)
,
1 1 1
1 1 1
把二,三,四行分别减去第一行,有
11
1
1
0 1 2
2
A E ( 1)
0 2 1 2
00
0
( 1)2 1 2 2 1
1
( 1)2(2 2 3) ( 3)( 1)3.
2 (2,1,0)T , 3 (2,0,1)T .
3.将特征向量正交化
取 1 1, 2 2, 3 3
得正交向量组
2 ,3 2 , 2
2
,
1 (1 2,1,1)T , 2 (2,1,0)T , 3 (2 5,4 5,1)T .
4.将正交向量组单位化,得正交矩阵 P
令
i
i i
,
一、二次型及其标准形的概念
定义1 含有n个变量x1 , x2 , , xn的二次齐次函数
f x1 , x2 , , xn a11 x12 a22 x22 ann xn2
2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn 称为二次型.
当aij是复数时, f称为复二次型 ;
都为二次型;
f x1, x2 , x3 x12 4x22 4x32
为二次型的标准形.
二、二次型的表示方法
和号表示 f x1 , x2 x12 2 x1 x2 x22
x12 x1 x2 x2 x1 x22
矩阵表示
22
aij xi x j
i1 j1
f x1 , x2 x12 x1 x2 x2 x1 x2 2
一般地
1.用和号表示 对二次型
f x1 , x2 , , xn a11 x12 a22 x22 ann xn2
2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn
取a ji aij , 则2aij xi x j aij xi x j a ji x j xi ,于是
当aij是实数时, f称为实二次型 .
只含有平方项的二次型 f k1 y12 k2 y22 kn yn2
称为二次型的标准形(或法式). 例如
f x1, x2 , x3 2x12 4x22 5x32 4x1x3 f x1, x2 , x3 x1 x2 x1 x3 x2 x3
f 2 x1 x2 2 x1 x3 2 x1 x4 2 x2 x3 2 x2 x4 2 x3 x4
化 为 标 准 形.
解 1.写出对应的二次型矩阵,并求其特征值
0 1 1 1
二次型的矩阵为
A
1 1
0 1 1 0
1 1