第八章 参数估计

合集下载

第8章 参数估计

第8章 参数估计

f
x,
x 1 0
求参数 的极大似然估计.
0 x 1,
其它
解 设 X1, X 2 ,L , X n为来自总体的样本, 则似然函数为
L n x1x2L xn 1 ,
取对数后有:
nபைடு நூலகம்
ln L nln 1ln xi, i1
上式对 求导, 并令其为零, 则有
解之得
dln L
d
n
n i1
h X1, X2,L , Xn , 通过样本观测值 x1, x2,L , xn 所对应的估计值
h x1, x2,L , xn
作为总体参数的估) 计值. 记作
h x1, x2,L , xn .
点估计的意义: 在数轴上表示一个点.
区间估计的含义是: 依据样本来估计未知参数的某一 范围.
区间估计的具体实现: 由样本构造两个统计量:
h1 X1, X2,L , Xn , h2 X1, X2,L , Xn ,
再由观测值 x1, x2 ,L , xn 得到具体的区间
h1 x1, x2,L , xn , h2 x1, x2,L , xn ,
以此区间作为未知参数的区间估计.
二、两种常用点估计
下面讨论两种常用的点估计方法: 矩估计和极大似然 估计.
例5 设 X1, X 2 ,L X n 是取自于总体的一个样本, 其中
X : R0, , 因
1
E
X
2
,
因此 21 的矩估计为2 X .
例6 设 X1, X 2 ,L X n 是取自于总体的一个样本, X 的
密度函数为
f
x
1
x
,
0,
求 的矩估计. 这里 1.

统计学第七章、第八章课后题答案

统计学第七章、第八章课后题答案

统计学复习笔记之南宫帮珍创作第七章第八章参数估计一、思考题1.解释估计量和估计值在参数估计中, 用来估计总体参数的统计量称为估计量.估计量也是随机变量.如样本均值, 样本比例、样本方差等.根据一个具体的样本计算出来的估计量的数值称为估计值. 2.简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值即是被估计的总体参数.(2)有效性:是指估计量的方差尽可能小.对同一总体参数的两个无偏估计量, 有更小方差的估计量更有效.(3)一致性:是指随着样本量的增年夜, 点估计量的值越来越接近被估总体的参数.3.怎样理解置信区间在区间估计中, 由样本统计量所构造的总体参数的估计区间称为置信区间.置信区间的论述是由区间和置信度两部份组成.有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间), 其实不说明置信度, 也不给出被调查的人数, 这是不负责的暗示.因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌.在公布调查结果时给出被调查人数是负责任的暗示.这样则可以由此推算出置信度(由后面给出的公式), 反之亦然.4.解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率.也就是说, 无穷次重复抽样所获得的所有区间中有95%(的区间)包括参数.不要认为由某一样本数据获得总体参数的某一个95%置信区间, 就以为该区间以0.95的概率覆盖总体参数.5.简述样本量与置信水平、总体方差、估计误差的关系.1.估计总体均值时样本量n为其中:2.样本量n与置信水平1-α、总体方差、估计误差E之间的关系为▪与置信水平成正比, 在其他条件不变的情况下, 置信水平越年夜, 所需要的样本量越年夜;▪与总体方差成正比, 总体的不同越年夜, 所要求的样本量也越年夜;▪与与总体方差成正比, 样本量与估计误差的平方成反比, 即可以接受的估计误差的平方越年夜, 所需的样本量越小.二、练习题1.从一个标准差为5的总体中采纳重复抽样方法抽出一个样本量为40的样本, 样本均值为25.1)样本均值的抽样标准差即是几多?2)在95%的置信水平下, 估计误差是几多?解: 1)已知σ = 5, n = 40, = 25∵∴2)已知∵2.某快餐店想要估计每位顾客午餐的平均花费金额, 在为期3周的时间里选取49名顾客组成了一个简单随机样本.1)假定总体标准差为15元, 求样本均值的抽样标准误差.2)在95%的置信水平下, 求估计误差.3)如果样本均值为120元, 求总体均值µ的95%的置信区间.解:1)已知σ = 15, n = 49∵∴2)已知∵3)已知 = 120∵ 置信区间为±E3.从一个总体中随机抽取n =100的随机样本, 获得 =104560, 假定总体标准差σ = 85414, 试构建总体均值µ的95%的置信区间.解:已知n =100, =104560, σ = 85414, 1-a=95% ,由于是正态总体, 且总体标准差已知.总体均值m在1-a置信水平下的置信区间为104560 ± 1.96×85414÷√1004.从总体中抽取一个n =100的简单随机样本, 获得 =81, s=12.要求:1)构建µ的90%的置信区间.2)构建µ的95%的置信区间.3)构建µ的99%的置信区间.解:由于是正态总体, 但总体标准差未知.总体均值m在1-a置信水平下的置信区间公式为81±×12÷√100 = 81±×????????4)= 25, σ = 3.5, n =60, 置信水平为95%5)=119, s =23.89, n =75, 置信水平为98%6)=3.149, s =0.974, n =32, 置信水平为90%解:∵∴ 1) 1-a=95% ,其置信区间为:25±1.96×3.5÷√602) 1-a=98% , 则a=0.02, a/2=0.01, 1-a/2=0.99,查标准正态分布表,可知:其置信区间为: 119±2.33×23.89÷√753) 1-a=90%,其置信区间为:3.149±1.65×0.974÷√325.利用下面的信息, 构建总体均值µ的置信区间:1)总体服从正态分布, 且已知σ = 500, n = 15, =8900, 置信水平为95%.解:N=15, 为小样本正态分布, 但σ已知.则1-a=95%, .其置信区间公式为∴置信区间为:8900±1.96×500÷√15=(8646.7 , 9153.2)2)总体不服从正态分布, 且已知σ = 500, n = 35, =8900,置信水平为95%.解:为年夜样本总体非正态分布, 但σ已知.则1-a=95%, .其置信区间公式为∴置信区间为:8900±1.96×500÷√35=(8733.9 9066.1)3)总体不服从正态分布, σ未知, n = 35, =8900, s =500, 置信水平为90%.解:为年夜样本总体非正态分布, 且σ未知, 1-a=90%,1.65.其置信区间为:8900±1.65×500÷√35=(8761 9039)4)总体不服从正态分布, σ未知, n = 35, =8900, s =500, 置信水平为99%.解:为年夜样本总体非正态分布, 且σ未知, 1-a=99%,2.58.其置信区间为:8900±2.58×500÷√35=(8681.9 9118.1)6.某年夜学为了解学生每天上网的时间, 在全校7500名学生中采用重复抽样方法随机抽取36人, 调查他们每天上网的时间, 获得下面的数据(单元:小时)(略).求该校年夜学生平均上网时间的置信区间, 置信水平分别为90%解:先求样本均值:= 3.32再求样本标准差:置信区间公式:7.从一个正态总体中随机抽取样本量为8的样本, 各样本值分别为:10, 8, 12, 15, 6, 13, 5, 11.求总体均值µ的95%置信区间.解:本题为一个小样本正态分布, σ未知.先求样本均值:= 80÷8=10再求样本标准差:于是 , 的置信水平为的置信区间是,已知, n = 8, 则,α/2=0.025, 查自由度为n-1 = 7的分布表得临界值所以, 置信区间为:10±2.45×3.4641÷√78.某居民小区为研究职工上班从家里到单元的距离, 抽取了由16个人组成的一个随机样本, 他们到单元的距离分别是:10, 3,14, 8, 6, 9, 12, 11, 7, 5, 10, 15, 9, 16, 13, 2.假设总体服从正态分布, 求职工上班从家里到单元平均距离的95%的置信区间.解:小样本正态分布, σ未知.已知, n = 16, , 则, α/2=0.025, 查自由度为n-1 = 15的分布表得临界值样本均值再求样本标准差:于是 , 的置信水平为的置信区间是?? ??????????????????±??×??÷√??9.从一批零件是随机抽取????个, 测得其平均长度是??????, 标准差是????.1)求确定该种零件平均长度的????August的置信区间.2)在上面估计中, 你使用了统计中的哪一个重要定理?请解释.解:)??这是一个年夜样天职布.已知N??????, ??????????????, S????????, α?? ????, .其置信区间为:149.5±1.96×1.93÷√36 2)中心极限定理论证:如果总体变量存在有限的平均数和方差, 那么, 不论这个总体的分布如何, 随着样本容量的增加, 样本均值的分布便趋近正态分布.在现实生活中, 一个随机变量服从正态分布未必很多, 可是多个随机变量和的分布趋于正态分布则是普遍存在的.样本均值也是一种随机变量和的分布, 因此在样本容量充沛年夜的条件下, 样本均值也趋近于正态分布, 这为抽样误差的概率估计理论提供了理论基础.10.某企业生产的袋装食品采纳自动打包机包装, 每袋标准重量为100克, 现从某天生产的一批产物中按重复抽样随机抽取50包进行检查, 测得每包重量如下:(略)已知食品包重服从正态分布, 要求:1)确定该种食品平均重量的95%的置信区间.2)如果规定食品重量低于100克属于分歧格, 确定该批食品合格率的95%的置信区间.解:1)本题为一个年夜样本正态分布, σ未知.已知N=50, µ=100, 1-α=0.95, .① 每组组中值分别为97、99、101、103、105, 即此50包样本平均值= (97+99+101+103+105)/5 = 101② 样本标准差为:③其置信区间为:101±1.96×1.666÷√502)∵ 分歧格包数(<100克)为2+3=5包, 5/50 = 10%(分歧格率), 即P = 90%.∴ 该批食品合格率的95%置信区间为:11.假设总体服从正态分布, 利用下面的数据构建总体均值μ的99%的置信区间.(略)解:样本均值样本标准差:尽管总体服从正态分布, 可是样本n=25是小样本, 且总体标准差未知, 应该用T统计量估计.1-α=0.99, 则α=0.01, α/2=0.005, 查自由度为n-1 =24的分布表得临界值的置信水平为的置信区间是,12.一家研究机构想估计在网络公司工作的员工每周加班的平均时间, 为此随机抽取了18个员工, 获得他们每周加班的时间数据如下(单元:小时):(略)假定员工每周加班的时间服从正态分布, 估计网络公司员工平均每周加班时间的90%的置信区间.解:① N = 18 < 30, 为小样本正态分布, σ未知.②样本均值样本标准差:=③ 1-α= 90%, α= 0.1, α/2= 0.05, 则查自由度为n-1 = 17的分布表得临界值④的置信水平为的置信区间是,13.利用下面的样本数据构建总体比例丌的置信区间:1)n =44, p = 0.51 , 置信水平为99%2)n =300, p = 0.82 , 置信水平为95%3)n =1150, p = 0.48, 置信水平为90%解: 1) 1-α= 99%, α= 0.01, α/2= 0.005, 1-α/2= 0.995, 查标准正态分布表, 则2)1-a=95%,3)1-a=90%,分别代入14.在一项家电市场调查中, 随机抽取了200个居民户, 调查他们是否拥有某一品牌的电视机, 其中拥有该品牌电视机的家庭占23%.求总体比例的置信区间, 置信水平分别为90%和95%.解: 1)置信水平90%, 1-a=90%, 1.65, N = 200, P = 23%.代入2)置信水平95%, 1-a=95%, , N = 200, P = 23%.代入15.一位银行的管理人员想估计每位顾客在该银行的月平均存款额.他假设所有顾客月存款额的标准差为1000元, 要求的估计误差在200元以内, 置信水平为99%.应选取多年夜的样本?解:已知 1-α = 99%, 则 2.58.E = 200, σ= 1000元.则N = (²×σ²)÷E²= (2.58²×1000²)÷200²≈167(得数应该是166.41, 不论小数后是几多, 都向上进位取整, 因此至少是167人)16.要估计总体比例丌, 计算下列条件下所需的样本量.1)E=0.02, 丌=0.40, 置信水平96%2)E=0.04, 丌未知, 置信水平95%3)E=0.05, 丌=0.55, 置信水平90%解: 1)已知 1-α = 96%, α/2 =0.02 , 则N = {²×丌(1-丌)}÷E²=2.06²×0.4×0.6÷0.02²≈25472)已知 1-α = 95%, α/2 =0.025 , 则丌未知,则取使丌(1-丌)最年夜时的0.5.N = {²×丌(1-丌)}÷E²=1.96²×0.5×0.5÷0.04²≈601 3)置信水平90%, 1-a=90%, 1.65,N = {²×丌(1-丌)}÷E²=1.65²×0.55×0.45÷0.05²≈27017.某居民小区共有居民500户, 小区管理者准备采纳一项新的供水设施, 想了解居民是否赞成.采用重复抽样方法随机抽取了50户, 其中有32户赞同, 18户反对.1)求总体中赞成该项改革的户数比例的置信区间(α=0.05)2)如果小区管理者预计赞成的比例能到达80%, 估计误差不超越10%, 应抽取几多户进行调查(α=0.05)解:1)已知N=50, P=32/50=0.64, α=0.05, α/2 =0.025 , 则置信区间:P±2)已知丌=0.8 , E = 0.1, α=0.05, α/2 =0.025 , 则N= ²丌(1-丌)/E²= 1.96²×0.8×0.2÷0.1²≈6218.根据下面的样本结果, 计算总体标准差σ的90%的置信区间:1)=21, S=2, N=502)=1.3, S=0.02, N=153)=167, S=31, N=22解:1)年夜样本, σ未知, 置信水平90%, 1-a=90%,21±1.65×2÷√502)小样本, σ未知, 置信水平90%, 1-a=90%, 则查自由度为n-1 = 14的分布表得临界值, = 1.3±1.761×0.02÷√153) 年夜样本, σ未知, 置信水平90%, 1-a=90%,167±1.65×31÷√2219.题目(略)1)构建第一种排队方式等候时间标准差的95%的置信区间2)构建第二种排队方式等候时间标准差的95%的置信区间3)根据1)和2)的结果, 你认为哪种排队方式更好?解:本题为小样本正态分布, σ未知, 应用公式,置信水平95%, 1-a=95%, 则查自由度为n-1 = 9的分布表得临界值1)= 7.15,其置信区间为7.15±2.31×0.48÷√102)= √0/9 = 0其置信区间为7.15±04)第二种排队方式更好.(19题是对总体方差的估计, 应该用卡方统计量进行估计, 20题是对两个总体参数的估计, 这二种类型老师未讲, 不是本次考试的内容, 不能用Z统计量像估计总体均值和比例那样去估计, 具体内容见书上P188――P194)第九章假设检验一、思考题1.假设检验和参数估计有什么相同点和分歧点?解:参数估计与假设检验是统计推断的两个组成部份.相同点:它们都是利用样本对总体进行某种推断.分歧点:推断的角度分歧.参数估计讨论的是用样本统计量估计总体参数的方法, 总体参数μ在估计前是未知的.而在假设检验中, 则是先对μ的值提出一个假设, 然后利用样本信息去检验这个假设是否成立.2.什么是假设检验中的显著性水平?统计显著是什么意思?解:显著性水平用α暗示, 在假设检验中, 它的含义是当原假设正确时却被拒绝的概率或风险, 即假设检验中犯弃真毛病的概率.它是由人们根据检验的要求确定的.(我理解的统计学意义, 统计显著是统计上专用的判定标准, 指在一定的概率原则下, 可以供认一种趋势或者合理性到达的水平, 到达为统计上水平显著, 达不到为统计上水平不显著)3.什么是假设检验中的两类毛病?解:弃真毛病(α毛病):当原假设为真时拒绝原假设, 所犯的毛病成为第I类毛病, 又称为弃真毛病.犯第I类毛病的概率常记作α.取伪毛病(β毛病):当原假设为假时没有拒绝原假设, 所犯的毛病称为第II类毛病, 又称取伪毛病.犯第II类毛病概率常记作β.发生第I类毛病的概率也常被用于检验结论的可靠性怀抱.假设检验中犯第I类毛病的概率被称为显著性水平, 记作α.4.两类毛病之间存在什么样的数量关系?在样本容量n一定的情况下, 假设检验不能同时做到犯α和β两类毛病的概率都很小.若减小α毛病, 就会增年夜犯β毛病的机会;若减小β毛病, 也会增年夜犯α毛病的机会.要使α和β同时变小只有增年夜样本容量.但样本容量增加要受人力、经费、时间等很多因素的限制, 无限制增加样本容量就会使抽样调查失去意义.因此假设检验需要慎重考虑对两类毛病进行控制的问题.5.解释假设检验中的P值.解:如果原假设为真, 所获得的样本结果会像实际观测结果那么极端或更极真个概率, 称为P值.也称为观察到的显著性水平.P值是反映实际观测到的数据与原假设H0之间纷歧致水平的一个概率值.P值越小, 说明实际观测到的数据与H0之间纷歧致水平就越年夜.6.显著性水平与P值有何区别?解:α(显著性水平)是一个判断的标准(当原假设为真, 却被拒绝的概率), 而P是实际统计量对应分位点的概率值(当原假设为真时, 所获得的样本观察结果或更极端结果呈现的概率).可以通过α计算置信区间, 然后与统计量进行比力判断, 也可以通过统计量计算对应的p值, 然后与α值比力判断.7.假设检验依据的基来源根基理是什么?解:假设检验利用的是小概率原理, 小概率原理是指发生概率很小的随机事件在一次试验中是几乎不成能发生的.根据这一原理, 可以先假设总体参数的某项取值为真, 也就是假设其发生的可能性很年夜, 然后抽取一个样本进行观察, 如果样本信息显示呈现了与事先假设相反的结果且与原假设分歧很年夜, 则说明原来假定的小概率事件在一次实验中发生了, 这是一个违背小概率原理的分歧理现象, 因此有理由怀疑和拒绝原假设;否则不能拒绝原假设.8. 你认为在单侧检验中原假设和备择假设的方向应该如何确定?解: 假设问题有两种情况, 一种是所考察的数值越年夜越好(左单侧检验或下限检验), 临界值和拒绝域均在左侧;另一种是数值越小越好(右单侧检验或上限检验), 临界值和拒绝域均在右侧.二、 练习题1. 已知某炼铁厂的含碳量服从正态分布N (4.55, 0.108²), 现在测定了9炉铁水, 其平均含碳量为4.484.如果估计方差没有变动, 可否认为现在生产的铁水平均含碳量为4.55(α=0.05)? 解: 已知μ0=4.55, σ²=0.108², N=9, =4.484,这里采纳双侧检验, 小样本, σ已知, 使用Z 统计.假定现在生产的铁水平均含碳量与以前无显著不同.则, α=0.05, α/2 =0.025 , 查表得临界值为计算检验统计量: = (4.484-4.55)/(0.108/√9) 决策:∵Z 值落入接受域, ∴在=0.05的显著性水平上接受H0. nx Z / σ - =μ0结论:有证据标明现在生产的铁水平均含碳量与以前没有显著不同, 可以认为现在生产的铁水平均含碳量为4.55.2. 一种元件, 要求其使用寿命不得低于700小时.现从一批这种元件中随机抽取36件, 测得其平均寿命为680小时.已知该元件寿命服从正态分布, σ=60小时, 试在显著性水平0.05下确定这批元件是否合格.解: 已知N=36, σ=60, =680, μ0=700这里是年夜样本, σ已知, 左侧检验, 采纳Z 统计量计算. 提出假设:假定使用寿命平均不低于700小时H0:μ≥700H1: μ < 700= 0.05, 左检验临界值为负, 查得临界值: -Z0.05=-1.645计算检验统计量: = (680-700)/(60/√36) = -2决策:∵Z 值落入拒绝域, ∴在=0.05的显著性水平上拒绝H0, 接受H1结论:有证据标明这批灯胆的使用寿命低于700小时, 为分歧格产物.3. 某地域小麦的一般生产水平为亩产250公斤, 其标准差是30公斤.现用一种化肥进行试验, 从25个小区抽样, 平均产量为n x Z / σ - = μ0270公斤.这种化肥是否使小麦明显增产(α=0.05)?解:已知μ0 =250, σ = 30, N=25, =270提出假设:假定这种化肥没使小麦明显增产.即 H0:μ≤250H1: μ>250计算统计量:Z = (结论:Z统计量落入拒绝域, 在α =0.05的显著性水平上, 拒绝H0, 接受H1.决策:有证据标明, 这种化肥可以使小麦明显增产.4.糖厂用自动打包机打包, 每包标准重量是100千克.每天开工后需要检验一次打包机工作是否正常.某日开工后测得9包重量(单元:千克)如下:(略)已知包重服从正态分布, 试检验该日打包机工作是否正常.(α =0.05)= 99.98提出假设, 假设打包机工作正常:即 H0:μ= 100H1: μ≠100计算统计量:决策:有证据标明这天的打包机工作正常.5. 某种年夜量生产的袋装食品, 按规定不得少于250克.今从一批该食品中任意抽取50袋, 发现有6袋低于250克.若规定不符合标准的比例超越5%就不得出厂, 问该批食品能否出厂(=0.05)?H0:丌≤5%H1:丌>5%(因为没有找到丌暗示的公式, 这里用P0暗示丌0)结论:因为Z 值落入拒绝域, 所以在=0.05的显著性水平上, 拒绝H0, 而接受H1.决策:有证据标明该批食品合格率不符合标准, 不能出厂. 6. 某厂家在广告中声称, 该厂生产的汽车轮胎在正常行驶条件下超越目前的平均水平25000公里.对一个由15个轮胎组成的随机样本做了试验, 获得样本均值和标准差分别为27000公里和5000公里.假定轮胎寿命服从正态分布, 问该厂家的广告是否真- = ns x t μ0实(=0.05)?解:N=15,H0:μ0 ≤25000H1:μ >25000结论:因为t 值落入接受域, 所以接受H0, 拒绝H1.决策:有证据标明, 该厂家生产的轮胎在正常行驶条件下使用寿命与目前平均水平25000公里无显著性不同, 该厂家广告不真实. 7. 某种电子元件的寿命x (单元:小时)服从正态分布.现测得16只元件的寿命如下:(略).问是否有理由认为元件的平均寿命显著地年夜于225小时(=0.05)? 解:= 241.5,H :μ??> ??创作时间:二零二一年六月三十日 - = ns x t - = ns x tμ0 μ0。

概率论和数理统计(第三学期)第8章参数估计

概率论和数理统计(第三学期)第8章参数估计
n n 1
由契比雪夫不等式,有
P( S 2 ES2
n
n
)
DS
2
n

2 4
2 n 1 2
即 lim P( S 2 ES2 ) 0
n
n
n
(n 1)S 2
E
2
n n 1
ES2 2 n
故 lim P( S 2 2 ) 0
n
n
§8.3 参数的区间估计
定义
设是总体的未知参数,若 (1 1
6
S~2 1 1.20 0.162 0.85 0.162 0.30 0.162 6 0.45 0.162 0.82 0.162 0.12 0.162 1 1.042 0.692 0.142 0.612 0.982 0.282 6 1 2.99 6 0.498 2
n
p xi
1
p
1 xi
xi p i1
1
p
n
n xi
i1
i 1
n
令y xi,得: i 1 ln Lxi , p y ln p n yln1 p
由对数似然方程
d ln L y n y 0 dp p 1 p
解得
p
y n
1 n
n i 1
xi
x
因为这是惟一的解,所 以p的极大似然估计值为
二、顺序统计量法
定义
1
, 2
,
,
为总体
n
的一个样本,将它
们按大小次序排列,取 居中的一个数 (若n为偶
数时,则取居中两数的 平均值)记为~,称~为
样本中位数。

~
k
1
,
1 2
k

第八章 参数估计PPT课件

第八章  参数估计PPT课件
16
点估计
最大似然估计法
如 果 似 然 函 数 L (x 1 ,x 2 ,...,x n ; )在 ˆ 处 取 得 最 大 值 ,则 称 ˆ 为 总 体 参 数 的 最 大 似 然 估 计 .
由于函数y lnx在定义域内单增,则如果当
ˆ时似然函数L(x1, x2,..., xn;)取得最大值,则 当 ˆ时lnL(x1, x2,..., xn;)也取得最大值;反之 亦然.因此我们只需考虑lnL(x1, x2,..., xn;)的最
(1) X n1 X1 n2 X 2 是的无偏估计 ;
n1 n2
(2)S
2
(n1
1)S12
(n2
1)SLeabharlann 2 2是2的无偏估计
.
n1 n2 2
9
估计量优劣标准
有效估计
设 和 都是的无偏估计,若样本容量为n, 的
方差小于 的方差,则称 是比 有效的估计量。
如果在的一切无偏估计量里中, 的方差达到最小, 则称为的有效估计量。
(1) 设为连续型随机变量 , 其概率密度函数为
( x; ), 其中 为未知参数 ,由于样本的独立性 , 样
本( X 1, X 2 ,..., X n )的联合概率密度函数为
n
L( x1, x2 ,..., xn ; ) ( xi ; ) i 1
对于样本 ( X 1, X 2 ,..., X n )的一组观测值 ( x1, x2 ,..., xn )
是 向 量 ,则 求 偏 导 数 );
第 四 ,令 导 数 等 于 零 ,解 出 即 可 .
18
点估计
最大似然估计法的例题
1. 0—1分布中p的最大似然估计;
2. Poisson分布的参数 的最大似然估计; 3. 指数分布的参数 的最大似然估计;

第8章参数估计习题解答

第8章参数估计习题解答

∑ ( xi − µ )2
i =1
n
.
23.
设( ( X 1 , X 2 , L , X n ) )是抽自总体 X : N ( µ , σ ) 的随机样本, a , b 为常数,且
2
0<a<b , 则 随 机 区 间 ⎜
nσ 2 nσ 2 − a b
( X i − µ )2 n ( X i − µ )2 ⎞ ⎟ 的长度的数学期望为 ∑ b ,∑ a i =1 ⎝ i =1 ⎠ ⎛
i =1 i =1
.
22. 设 X 1 , X 2 ,L , X n 是来自总体 X 数 L( µ , σ ) =
2
− 1 e ∏ 2π i =1 σ n ( xi − µ )2 2σ
2
N ( µ , σ 2 ) 的样本,则有关于 µ 及 σ 2 的似然函
− n 2 − n 2 − 1 2σ
2
= (2π ) (σ 2 ) e
的分布函数 Φ ( x ) 的函数值:Φ (1.645) = 0.95 ,Φ (1.96) = 0.975 ,Φ (1.282) = 0.90 .则在 显著水平 α = 0.05 , E ( X ) 的置信区间为( A ).
A. (1.216, 2.784) .
B. (1.342,
2.658) .
C. (1.4872,
ˆ = 2X . D. θ 4
7.
设总体 X 的密度函数为 P ( x,
⎧θx θ −1 0 < x < 1 , θ > 0 , ( X 1 , X 2 ,L , X n ) θ) = ⎨ ⎩o 其它
为样本,记 Ak =
1 n k ∑ X i , k = 1,2.3 ,则以下结论中错误的是( A ). n i =1

08.1参数的矩估计方法

08.1参数的矩估计方法


1(1,2 ,L ,k ) B1
2 (1,2 ,L ,k ) B2
LLLLLL
k (1,2 ,L ,k ) Bk
解得µl $l (B1, B2,L , Bk ),l 1, 2,L , k,并以$l作为参数l的
估计量,这种估计量称为矩估计量,矩估 计量的观察值就是矩估计值。
或者
Cl
矩估计法的理论依据: 大数定律
∵ X1, X2 , , Xn 是独立同分布的,
∴ X1k, X2k, , Xnk 也是独立同分布的.
于是有 E(X1k)=E(X2k)==E(Xnk)= E(Xk)=μk .
根据辛钦大数定律, 样本k阶矩Ak依概率收敛于总体k
阶矩μk ,即
Ak
1 n
n i 1
知参数1,2,…,k,即F=F(x;1,2,…,k), 总体X的前k 阶矩l =E(Xl )(l=1,2,…,k)存在, 它们是1,2,…,k的函数
l(1,2,…,k)(l =1,2,…,k)
假设X1,X2,…,Xn是总体X的一个样本,建 立统计量--样本l 阶原点矩Al (l=1,2,…,k),
试对参数给出估计。
1 n
E( X ) n i1 X i
一阶样本原 点矩
E(X 2)
1 n
n i 1
Xi
1 n
n i 1
Xi2
2
2
1 n
n i 1
Xi2
二阶样本原 点矩
解之得:
解之得:
)
1 n
n i 1
Xi
ˆ
2
1 n
n i 1
Xi2
(ˆ )2
从而得, 2
为: ) 1
ni

第八章(第一节矩估计法)

第八章(第一节矩估计法)


1
n
n i1
Xi
替换 E
X

即得 的另一矩估计量为
. ^
1 n
n i 1
Xi
此外还需比较估计的优劣性,
这一点将在下一节将会介绍,这里
不再多说。
为了对参数 和 2 进行估计,
我们从总体中抽取样本 X , X ,, X
1
2
n
(对于一次具体的抽取,他就是具
体的数值 x , x ,, x ,在不致引起混淆
1
2
n
的情况下,今后也用 x , x ,, x 表示随
1
2
n
机变量),根据样本矩在一定程度上
反映了总体矩的特征,自然想到用
样本矩作为总体矩的估计。
解由
x 1 (12.6 13.4 12.8 13.2) 13 ,
4
s 2 1 [(12.6 13)2 (13.4 13)2 (12.8 13)2 (13.2 13)2 ] 0.133 4 1
得 和 2的估计值分别为 13(mm)和
0.133(mm)2 。
例3 设总体 X 的概率密度为
就完全确定了。例如,总体
X ~ N(, 2),但不知道其中参数
和 2的具体数值,我们要想法确定 参数 , 2 。
为了寻求总体的这些参数的值,
我们可对总体进行调查,很自然的
会想到用从总体 X 中抽取得的样本
值 x , x ,, x ,对总体中的未知参数作
1
2
n
出来估计,这类问题就是参数估计。
参数估计主要有参数的点估计 和参数的区间估计。
例 1 某灯泡厂生产一批灯泡,
由于随机因素的影响,每个灯泡的

参数估计方法

参数估计方法

第八章参数估计方法研究工作的目的在于了解总体特征的有关信息,因而用样本统计数估计相应总体参数,并由之进行统计推断。

总体特征的各种参数,在前几章主要涉及平均数、标准差等,并只从直观上介绍其定义和公式,未就其历,即参数估计(parameter estimation)的方法作讨论。

本章将简要介绍几种常用参数估计方法,即矩法、最小二乘法、极大似然法。

第五章述及参数的点估计(point estimation)和区间估计(interval estimation),本章讨论点估计方法。

区间估计是在点估计的基础上结合统计数的抽样分布而进一步作出的推论,有关内容将散见在其它各章。

第一节农业科学中的主要参数及其估计量的评选标准一、农业科学中的主要参数农业科学研究中需要估计的参数是多种多样的,主要包括总体数量特征值参数,例如,用平均数来估计品种的产量,用平均数差数来估计施肥等处理的效应;用百分数(或比例)来估计遗传分离比例、群体基因或基因型频率、2个连锁主基因间的重组率;通过变异来源的剖分,用方差来估计环境方差、遗传方差和表型方差,在此基础上以估计性状的遗传力等遗传参数;用标准误来估计有关统计数的抽样误差,如重组率的标准误、遗传抽样误差、遗传多样性误差、频率误差等。

在揭示变数间的相互关系方面,用相关系数来描述2个变数间的线性关系;用回归系数、偏回归系数等来描述原因变数变化所引起的结果变数的平均变化的数量,用通径系数来描述成分性状对目标性状的贡献程度等。

有关数量关系和数量变化方面的内容将在第9至11章介绍。

二、参数估计量的评选标准讨论参数估计方法前需要了解数学期望(expectation)的概念和评价估计方法优劣的标准。

(一) 数学期望在抽样分布中,已经讲述了从总体中抽出所有可能样本的样本平均数的平均数等于总体平均数,这里,样本平均数的平均数就是一种数学期望。

例如,一个大豆品种的含油量为20%,测定一次可能是大于20%,再测定可能小于20%,大量反复测定后平均结果为20%,这时20%便可看作为该大豆品种含油量的数学期望,而每单独测定一次所获的值只是1个随机变量。

概率论与数理统计第八章

概率论与数理统计第八章

上式也可记为 PH0 {拒绝H 0}
本例中,上式应为
(x)
PH 0
X
/
0
n
u
2
/2
1
/2
u / 2 O
u / 2
x
b)第二类错误(取伪)
原假设H0事实上是假的,但是由于检验统计量的 观察值没有落在拒绝域中,从而导致接受H0.这时犯了 “取伪”的错误,即接受了错误的假设,这一类错误我
(2) 当H0不真时,作出接受H0的决策——称为第二 类错误(或称“存伪”错误)。
a)第一类错误(弃真)
原假设H0事实上是真的,但是由于检验统计量的观 察值落入拒绝域中,从而导致拒绝H0.这时犯了“弃真” 的错误,即将正确的假设摒弃了,将这一类错误称之为第
一类错误.记犯第一类错误的概率为 ,则有
PH0 {拒绝H0 H0为真}
们称之为第二类错误.记犯第二类错误的概率为 ,则
P{接受H0 | H0为假}
或者 PH1 {接受H 0} P{接受H 0 | H1为真}
在本例中,
PH1
X
/
0
n
u
2
(x)
/2
1
/2
u / 2 O
u / 2
x
可以看出假设检验中包含的两个重要的思想:
1)反证法思想
为了确定是否要拒绝原假设H0,首先是假定H0真,看
当然也不能总认为正常,有了问题不能及时 发现,这也要造成损失.
如何处理这两者的关系,假设检验面对的就 是这种矛盾.
一般可以认为X1,…,X5是取自正态总体 N (, 2 ) 的样本,当生产比较稳定时, 2 是一个常数.
现在要检验的假设是:
H0: 0( 0 = 355)

讲座-8第八章 参数估计与假设检验基础学习文档

讲座-8第八章  参数估计与假设检验基础学习文档
(见表8-1)由于个体之间的差异,每次样本平均数不大可能恰好等于该地女学 生身高的总体均数( μ =165.70cm )。这种由个体变异产生的差异称为抽样误 差(sampling error)。在抽样研究中,抽样误差是不可避免的,但怎样估计抽 样误差的大小,这是进行统计推断必须考虑的问题。
从N(165.70 , 3.212) 抽到的100份随机样本的计算结果(n=20)
Path of Statistical inference
总体
抽样
样本
估计 参数: , ,
统计推断
获取统计量
如: x, s, p
探讨成年男性肺炎患者与男性健康成年的血红蛋白(g/dl)有无区别? 在这两个人群中随机抽取各10例:
组别 肺炎 健康
1 11.9 13.9
2 10.9 14.2
3 10.1 14.0
t 分布曲线(ν=9)
① 相同自由度时,∣t∣值越大,概率P 越小; ∣t∣值越小, 概率P 越大;
② 在相同∣t∣值时,同一自由度的双侧概率是单侧概率的两 倍。
归纳:
随机变量 X
N(μ, σ2)
均数 X
N(μ ,σ2/n )
Z X
Z 变换 Z X
n
标准正态分布 N(0, 12)
用途不同: 当资料呈正态分布时,标准差与均数结合可估计参考值范围,
计算 CV 等;标准误可用于估计参数的置信区间,进行假设检验。
与样本例数关系不同: 样本量足够大时,标准差趋向于稳定,标准误随例数的增加而减小,甚至
趋近于0,若样本量趋向总例数,则标准误接近0;
二者联系: 均为变异指标,若把总体中各样本均数看作一个变量,则标准误可称为样
p

第八章 参数估计习题

第八章 参数估计习题

第八章 参数估计习题一、 填空题1.设总体),(~2σμN X ,n X X X ,,,21 是来自X 的一个样本,参数2,σμ都是未知的,则μ的矩估计量为 。

2σ的矩估计量为 。

2.设总体),(~2σμN X ,其中2σ未知,μ已知,n X X X ,,,21 是来自X 的一个样本,做样本函数如下①∑=-ni i X n 12)(1μ,②21])([∑=-ni iXσμ,③∑=-n i i X X n 12)(1,④∑=--n i iX X n 12)(11,⑤∑=+--ni i i X X n 121)()1(21,这些样本函数中,是统计量的有 。

3.假设随机变量)1,(~μξN ,n X X X ,,,21 是来自ξ的样本,如果关于置信度是0.95的μ 的置信区间是(9.02,10.98),则样本容量______=n4.设某总体X 的密度函数为⎪⎩⎪⎨⎧<<-=其他,00,)(2);(2ααααx x x f ,对容量为n 的样本,参数α的矩估计量为 。

5.假设总体)81.0,(~μξN ,n X X X ,,,21 是来自ξ的样本,测得样本均值5=x ,则置信度是0.99的μ的置信区间是6.设n X X X ,,,21 是来自总体X 的样本,对总体方差进行估计时,常用的无偏估计量是。

7.设总体X 在区间],0[θ上服从均匀分布,则未知参数θ的矩法估计量为 。

二、选择题1.设n X X X ,,,21 是来自总体X 的样本,2)(,)(σμ==x D x E ,并且和是未知参数,下面结论中是错误的[ ]。

(A )X =1ˆμ是μ的无偏估计; (B )12ˆX =μ是μ的无偏估计; (C )21ˆˆμμ比有效; (C )21)(1∑=-ni i X n μ是2σ的 极大似然估计量。

2 在区间估计中αθθθ-=<<1)ˆˆ(21P 的正确含义是[ ] (A)θ以α-1的概率落在区间)ˆ,ˆ(21θθ内; (B)θ落在区间)ˆ,ˆ(21θθ以外的概率为α; (C)θ不落在区间)ˆ,ˆ(21θθ以外的概率为α; (D)随机区间)ˆ,ˆ(21θθ包含θ的概率为α-1。

第08章--对数极大似然估计

第08章--对数极大似然估计

( yt
1
2 xt 2 2
3wt
)2
T t 1
log
( yt
1
2 xt
3wt
1 2
log(
2
)
这里, 是原则正态分布旳密度函数。
16
lt
( ,
)
log
yt
1
2 xt
3wt
1 2
log(
2)
将这一例子旳对数极大似然函数过程写成下面旳赋值语
句:
Series res=y-c(1)-c(2)*x-c(3)*w
15
下面考虑2个变量旳例子:
yt 1 2 xt 3wt ut ut ~ N (0, 2 )
这里,y, x, w 是观察序列,而 ={1, 2, 3, 2}是模型旳参数。
有T个观察值旳样本旳对数似然函数能够写成:
log
L(
,
2)
T 2
log(2
)
1 2
T t 1( y ; ψ) 0 , i =1, 2, …, n (8.1.2)
i
由上式可解得 n1 向量 旳极大似然估计值 ψˆ,而式(8.1.2)
也被称为似然函数。
6
因为 L(y ; ) 与 ln[L(y ; ))] 在同一点处取极值,所
以也能够由
ln L( y ; ψ) 0 , i =1, 2, …, n (8.1.3)
而对数极大似然措施使得寻找这些极大似然估计变 得轻易了。只需创建一种对数似然对象,把上面旳赋值 语句输入到logL旳阐明窗口,然后让EViews来估计这个 模型。
20
在输入赋值语句时,只需对上面旳文本做两处微小旳 改动就能够了。首先,把每行开头旳关键字series删掉(因 为似然阐明暗含了假定序列是目前旳)。第二,必须在阐 明中加入额外旳一行(关键字@logL为包括似然贡献旳序 列命名)。

概率统计与随机过程 8- 参数估计

概率统计与随机过程 8- 参数估计
EX = A1 = X 2 EX = A2
EX = A1 = X E ( X − EX ) 2 = S 2
EX = A1 = X E ( X − EX ) 2 = B2
此外还需比较估计的优劣性, 此外还需比较估计的优劣性 , 这一点将在下 一节将会介绍,这里不再多说。 一节将会介绍,这里不再多说。
设随 机 变量X :EX =μ, DX =σ
1 n
2
分别为总体X的一阶原点矩和二阶中心矩; 分别为总体X的一阶原点矩和二阶中心矩;而
i =1
∑ Xi = X ,
i =1
n
1 n −1
∑ ( X i −X ) = S
2
n
2
分别为样本的一阶原点矩和样本方差. 分别为样本的一阶原点矩和样本方差.
ˆ 称 µ =
ˆ= 1 θ n

n
i =1
Xi
2、极大似然函数法
先看一个简单的例子: 某位同学与一位猎人一起外出打猎,一 只野兔从前方窜过.只听到一声枪响,野兔 应声倒下.如果要你推测,是谁打中的呢? 你会如何想呢? 你就会想,只发一枪便打中,猎人命中的 概率一般大于这位同学命中的概率.看来这 一枪是猎人射中的. 这个例子所作的推断已经体现了极 大似然法的基本思想.
ln L = ∑ [(1 − xi ) ln(1 − p ) + xi ln p ]
i =1
n
令 d ln L =
dp
1 p

xi −
1 1− p

(1 − x i ) = 0
ˆ ⇒ p=x
多参数情形的极大似然估计 f 若总体X的概率密度为: ( x ; θ 1 , θ 2 , L , θ k ) 其中 θ ,θ ,L,θ 为未知参数, x , x ,⋅ ⋅ ⋅, x 为样本观察值, 此时似然函数为: L( x , x ,L, x ;θ ,θ ,L,θ ) = C f ( x ;θ ,θ ,L,θ )

极大似然估计法

极大似然估计法

第八章参数估计第一节参数的点估计二、极大似然估计法极大似然估计最早是由高斯于1821年提出,但一般将之归功于英国统计学家Fisher,R.A,因为Fisher,R.A在1922年证明了极大似然估计的性质,并使得该方法得到了广泛的应用。

这里介绍估计的另一种常用方法-极大似然估计法。

先看一个简单的例子:某位同学与一位猎人一起外出打猎,一只野兔从前方窜过.只听到一声枪响,野兔应声倒下.如果要你推测,是谁打中的呢?你会如何想呢?你就会想,只发一枪便打中,猎人命中的概率一般大于这位同学命中的概率.看来这一枪有极大的可能是猎人射中的.这个推断很符合人们的经验事实,这里的“极大的可能”就是“极大似然”之意。

这个例子所作的推断已经体现了极大似然法的基本思想.极大似然法的基本思想在社会思维意识中常有所体现。

例如某地发生了一个疑难案件,警察欲破案或民众推测嫌疑人,一般是将重点集中在作案可能性较大的可疑人身上。

为了说明极大似然估计的原理,我们先来考察一个简单的估计问题。

设袋中装有许多白球和黑球。

只知两种球的数目之比为3:1,试判断是白球多还是黑球多。

显然,从袋中任取一球为黑球的概率p 是41或者43,如果是41,则袋中白球多,如果是43,就是黑球多。

现在我们从袋中有放回的任取3只球,那么黑球数目X 服从二项分布:xx x p p C p x X P --==33)1(};{, 3,2,1,0=x ; 43,41=p 其中p 为取到黑球的概率.从常识上可以接受这样的判断:(1)若取出的3只中有0只黑球,3只白球,则我们以较大的把握认为袋中白球多, 应认为是从黑球概率为41=p 的总体中取来的. (2)若取出的3只中有1只黑球, 2只白球,则我们以较大的把握认为袋中白球多, 应认为是从黑球概率为41=p 的总体中取来的; (3)若取出的3只中有2只黑球, 1只白球,则我们以较大的把握认为袋中黑球多, 应认为是从黑球概率为43=p 的总体中取来的; (4)若取出的3只中有3只黑球, 0只白球,则我们以较大的把握认为袋中黑球多,应认为是从黑球概率为43=p 的总体中取来的. 分别计算4341==p p 和时,}{x X P =的值,列于表8—1.由于样本来自于总体,因而应很好的反映总体的特征。

计量经济学第八章分布滞后模型

计量经济学第八章分布滞后模型
(1)经验加权法
根据实际问题的特点、实际经验给各滞后变 量指定权数,滞后变量按权数线性组合,构成新 的变量。权数据的类型有:
•递减型: 即认为权数是递减的, X 的近期值对 Y 的 影响较远期值大。 如消费函数中,收入的近期值对消费的影 响作用显然大于远期值的影响。 例如:滞后期为 3的一组权数可取值如下: 1/2, 1/4, 1/6, 1/8
1.
滞后效应与与产生滞后效应的原因
因变量受到自身或另一解释变量的前几期值 影响的现象称为滞后效应。 表示前几期值的变量称为滞后变量。 如:消费函数 通常认为,本期的消费除了受本期的收入影 响之外,还受前1期,或前2期收入的影响: Ct=0+1Yt+2Yt-1+3Yt-2+t Yt-1,Yt-2为滞后变量。
该模型可用OLS法估计。假如参数估计结果为:
ˆ0
=0.5
ˆ 1 =0.8
则原模型的估计结果为:
0 .8 0 .8 Yˆ t 0 . 5 Xt X 2 4
t 1

0 .8 6
X
t2

0 .8 8
X
t3
0 .5 0 .4 X t 0 .2 X
t 1
0 . 133 X
①在解释变量x之后必须指定k和m的值,d为可选项, 不指定时取默认值0;1强制b0趋于0;2强制bk趋于0; 3强制两端趋于0。
②如果有多个具有滞后效应的解释变量,则分别用几 个PDL项表示;例如: LS Y C PDL(x1,4,2) PDL(x2,3,2,2) ③在估计分布滞后模型之前,最好使用互相关分析命 令CROSS初步判断滞后期的长度k; 命令格式为: CROSS Y X 接着输入滞后期 p 之后,将输出 yt 与 xt , xt-1…xt-p的各期相关系数,以判断较为合适的滞后 期长度k。 例 表给出了中国电力基本建设投资X与发电 量Y的相关资料,拟建立一多项式分布滞后模型 来考察两者的关系。

参数估计的特点

参数估计的特点

二、总体比例区间估计
p z
2
(1 )
n


p
z
2
(1 )
n
p z
2
p(1 n
p)
(1
n) N


p

z
2
p(1 p) (1 n )
n
N
【例8-8】在4000件成品中按不重复方 法抽取200件进行检查结果有废品8件, 当概率保证为0.9545时,试估计这批成 品废品量的范围。
灯泡检验
参数估计的特点
(1)遵循随机原则。这是抽样与其他非全面调查如重点 调查、典型调查的主要区别之一。(2)用部分数据推断 和估计总体的参数。(3)参数估计必然产生误差。这个 误差,不但事前可以计算,而且可以采取措施使其控制在 一定范围,从而使得估计达到一定的可靠程度
二、参数估计的方法
参数估计主要分点估计和区间估计两种
112.5 102.6
100 116.6 136.8
101 107.5 123.5 95.4 102.8
103 95 102 97.8 101.5
102 108.8 101.6 108.6 98.4
100.5 115.6 102.2
105 93.3
正态分布方差未知小样本
x t
2
x t
2
三、总体方差区间估计
本章只讨论正态总体方差的估计情况。 根据样本方差的抽样分布可知,样本方 差服从自由度n-1的卡方分布
(n 1)s 2 2 (n 1)s 2
2 1

2

2
2
【例8-11】某车间工人加工零件,现抽 取50人调查,样本均值为21件,样本标 准差为2件,计算总体标准差90%的置信 区间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章参数估计
一、思考题
1.什么是参数估计?参数估计有何特点?
2.评价估计量优劣的准则是什么?
3.什么是点估计、区间估计?二者有何联系和区别?
4.确定必要的抽样数目有何意义?必要抽样数目受哪些因素影响?
二、练习题
(一)填空题
1.参数估计的方法有_________和_________。

2.若样本方差(s n21-)的期望值等于总体方差(σ2),则称s n21-为σ2的____________估计量
3.总体参数的估计区间是由_________和_________组成。

4.允许误差是指与的最大绝对误差范围。

5.如果总体平均数落在区间960~1040内的概率是95%,则抽样平均数是
______,允许误差是______。

6.在同样的精度要求下,不重复抽样比重复抽样需要的样本容量。

x=5,7.设总体X的方差为1,从总体中随机取容量为100的样本,得样本均值
=2.58)
则总体均值的置信水平为99%的置信区间_____________。

(Z
0.005
(二)判断题
1( )参数估计就是用样本统计量去估计总体的参数。

2( )随机抽样是参数估计的前提。

3( )参数估计的抽样误差可以计算和控制。

4( )估计量的数学期望等于相应的总体参数值,则该估计量就被称为相应总体参数的无偏估计量。

5( )区间估计就是根据样本估计量以一定的置信度推断总体参数所在的区间范围。

6( )样本统计量n x x s ∑-=22)(是总体参数2σ的无偏估计量。

7( )估计量的有效性是指估计量的方差比其它估计的方差小。

8( )点估计是以样本估计量的实际值直接作为相应总体参数的估计值。

9( )抽样估计的置信水平就是指在抽样指标与总体参数构造的置信区间中,
包含总体参数真值的区间所占的比重。

10( )样本容量一定时,置信区间的宽度随置信水平的增大而减小。

(三)单选题
1.极限误差是指样本统计量和总体参数之间( )。

A.抽样误差的平均数
B.抽样误差的标准差
C.抽样误差的可靠程度
D.抽样误差的最大可能范围
2.参数估计的主要目的是( )。

A.计算和控制抽样误差
B. 为了深入开展调查研究
C.根据样本统计量的数值来推断总体参数的数值
D. 为了应用概率论
3.参数是指基于( )计算的指标值。

A.样本
B.某一个样本
C.多个样本
D.总体
4.总体参数很多,就某一参数(如均值)而言,它的取值( )。

A.是唯一的
B.不是唯一的
C.随样本的变化而变化
D.随抽样组织形式的变化而变化
5.样本统计量很多,就某一统计量(如均值)而言,它的取值( )。

A.是唯一的
B.随样本的变化而变化
C.由总体确定
D.由抽样的组织形式唯一确定
6.以样本均值x 估计正态总体的均值μ时,如果总体方差2σ已知,这时将会需要查阅( )。

A.正态分布表
B.标准正态分布表
C.t 分布表
D.2χ分布表
7.以样本均值x 估计正态总体的均值μ时,如果总体方差2σ未知,这时将会需要查阅( )。

A.正态分布表
B.标准正态分布表
C.t分布表
D.2χ分布表
8.某次考试学生的考试成绩X近似服从正态分布,()
~N
78
X,则可认
,
64为有大约68.26%的学生考试成绩分布的范围是( )
A.(70,80)
B.(70,86)
C.(62,94)
D.(62,86)9.从π=0.5的总体中,重复抽取一个容量为100的简单随机样本,p的标准差为()
A.0.5
B.0.25
C.0.05
D.0.1
10.在其它条件不变的情况下,如果允许误差范围缩小为原来的1/2,则样本容量()
A.扩大为原来的4倍
B.扩大为原来的2倍
C.缩小为原来的1/2倍
D.缩小为原来的1/4倍
11.置信水平 1-α表达了置信区间的()。

A.精确性
B.准确性
C.显著性
D.可靠性
12.自正态总体中随机抽取容量为n 的样本,其均值和标准差为 33 和
4 ,当n = 2
5 时,总体均值 95%的置信区间为()。

A.33 ± 6.40
B.33 ± 1.60
C.33 ± 2.22
D.33 ±1.65
(四)多项选择题
1.下列命题正确的有()
A.样本容量与置信水平成正比
B.样本容量与总体方差成反比
C.样本容量与允许误差成反比
D.重复抽样的样本容量比不重复抽样的样本容量要多
E.纯随机抽样的样本容量比其他抽样组织形式要少
2.区间估计( )
A.没有考虑抽样误差大小
B.考虑了抽样误差大小
C.能说明估计结论的可靠程度
D.能说明估计结论的精确程度
E.不能说明估计结论的精确程度
3.假设总体为非正态分布,从该总体中抽取容量为100的样本,则样本均
值的抽样分布( )。

A. 服从正态分布
B. 服从T 分布
C. 样本均值的期望等于总体均值
D. 样本均值的标准差等于总体标准差除以100的平方根
E. 样本均值的方差等于总体方差除以100的平方根
4.科学的抽样估计方法要具备的要素是( )。

A.合适的统计量
B. 抽样方法
C.合理的误差范围
D.可接受的置信度
E.最小的调查经费
(五)计算题
1. 某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1) 假定总体标准差为15元,求样本均值的抽样标准误差;
(2) 在95%的置信水平下,求允许误差;
(3) 如果样本均值为120元,求总体均值95%的置信区间。

2.某地区粮食播种面积共3000亩,按不重复抽样方法随机抽取100亩进行实测。

调查结果,平均亩产为500公斤,亩产的标准差为50公斤。

试以90%的置信度估计该地区粮食平均亩产量和总产量的置信区间。

3.某企业生产一批灯泡10000只,随机抽取100只作耐用时间试验和合格检验,测算结果,平均使用时间为2000小时,标准差为12小时,其中有20只不合格。

要求:
(1)确定该批灯泡平均耐用时间95%的置信区间;
(2) 确定该批灯泡合格率95.45%的置信区间;
4.某公司机加工车间200名工人加工同种零件,全体工人每加工一件零件所需时间(分钟))5,(~2 N X ,今欲抽选部分工人所构成的简单随机样本,根据部分工人每生产一件零件平均所耗时间推算全体工人每生产一件零件平均所耗时间,并要求置信度达到95%,允许误差不超过3分钟,试求应抽多少工人才合适。

5.某公司生产一种食用植物油,月产量是5000瓶,最近几次抽样调查所得的产
品不合格率分别是2%.2.5%.3%,现为了调查产品的不合格率,问至少应该抽查多少瓶油,才能以95%的置信度保证抽样误差不超过2%。

6. 某居民小区共有居民500户,小区管理者准备采取一向新的供水设施,想了解居民是否赞成。

采取重复抽样方法随机抽取了50户,其中有32户赞成,18户反对。

(1)求总体中赞成该项改革的户数比例的置信区间,置信水平为95%;
(2)如果置信水平为90%,小区管理者预计赞成的比例能达80%,极限误差不超过5%,应抽取多少户进行调查?。

相关文档
最新文档