地源热泵地埋管计算方法
地源热泵地埋管长度计算
地源热泵地埋管长度计算地源热泵地埋管长度计算,这可是个技术活儿。
咱们先来聊聊地源热泵,这是一种利用地下温度差异进行能源转换的设备,既环保又节能,是现代家庭装修的热门选择。
而地埋管作为地源热泵的核心部件,其长度的计算可是关系到能效高低的重要因素。
那么,如何才能算出合适的地埋管长度呢?别着急,听我慢慢道来。
我们要了解地源热泵的工作原理。
简单来说,就是通过地下的恒定温度来提取能量,然后通过压缩机将低温热量提升到高温,再通过换热器将热量传递给室内系统,实现制冷或供暖。
所以,地埋管的长度就关系到了地下水温的分布和能效的高低。
那么,如何计算地埋管的长度呢?这里我们可以借鉴一下古人的智慧——“量入为出”。
我们需要知道地源热泵的装机容量,也就是它所能提供的能量。
这个数据通常可以在地源热泵的销售合同中找到。
有了这个数据,我们就可以大致估算出需要多少米的地埋管来满足能量需求。
接下来,我们要考虑地下水的流动情况。
地下水通常是从低处向高处流动的,所以在设计地埋管时,我们要尽量让管道处于地下水流动的最低点。
这样一来,管道内的水流速度就会加快,热量传递也会更加顺畅。
这个原则也要根据实际情况灵活调整。
我们还要考虑地形地貌的影响。
在山地或者丘陵地区,地下水流动可能会受到地形的阻碍,这时候我们就需要增加地埋管的长度,以保证能量的有效传递。
这也要在合理范围内进行,过长的地埋管不仅会增加成本,还可能影响建筑物的结构安全。
在确定了地埋管的基本参数后,我们还需要进行详细的计算。
这里我们可以引用一个成语——“因地制宜”。
具体来说,就是要根据当地的地下水文地质条件、建筑物的结构特点以及气候环境等因素,综合考虑地埋管的长度、弯曲程度以及连接方式等细节问题。
在实际操作过程中,我们还可以借助一些专业软件来进行辅助计算。
这些软件通常可以根据输入的数据自动生成地埋管的设计图纸,帮助我们更好地把握设计的精度和效果。
这些软件的使用也需要一定的专业知识和技能,所以在使用过程中一定要谨慎操作。
地源热泵计算
对武汉地质构造特点,对地下一定深度的温度场进行研究,并对地埋管的换热设计计算中的若干问题进行了研究,在简化计算换热模型的基础上,在Excel 上用VBA 编写宏功能,得到实用的地埋管换热的工程设计计算方法,是一种工程易用的计算软件。
同时将这种计算方法应用到了一个实际工程中。
0 前言地埋管地源热泵空调系统由土壤换热器、热泵主机和空调末端三部分组成,其中系统的关键是土壤换热器的设计与施工。
在现有的工程实践中,垂直地埋管方式居多。
这是因为垂直地埋管要比水平地埋管经济一些。
土壤换热器的设计计算要根据实测岩土体及回填料热物性参数,采用专用软件进行计算,或者按《地源热泵系统工程技术规范》附录B的方法进行计算。
由于上述两种方法在工程应用中都有诸多不便,在实际工程设计中并不实用。
一般工程设计都常用指标法。
为了保证计算结果安全可靠,在此,对现有的方法作了一些改进,在EXCEL上用VBA 编写宏功能,得到一种工程上易用的计算软件,并应用于工程实践。
通过一个实际工程来验证计算的正确性。
1 地质条件及温度场1.1 地勘柱状图及温度分布图1 为武汉市汉口的一个工程的地质条件及岩土体的情况,图2 为武汉市汉阳的一个工程的地质条件及岩土体的情况。
图3 为工程一地下温度场分布曲线图,图4 为工程二地下温1.2 测试结果分析由现场测试的结果可知:两工程地区跨度大,地质结构也有所不同,但地下平均温度却变化不大。
工程一所在地的地下平均温度为18.4 度,工程二所在地的地下平均温度为19.4 度。
由此可知,地区跨度较大,但地下的平均温度基本稳定在18度到19 度之间。
2 换热计算及其若干问题2.1 换热计算中几个问题的简化处理(1)沿垂直方向,不同地质结构,分别计算换热。
(2)进出口温差,沿垂直方向,根据地质结构不同分段,确定热交换温度。
(3)冬夏季进出口初始设计温度,按最不利情况考虑。
(4)埋管管井距,按3m<H<6m 考虑。
地源热泵空调竖直埋管换热器计算方法
最大工况温度(制冷) 最大工况温度(制冷)℃ 30 最小工况温度(制热) 最小工况温度(制热)℃ 3
℃ 15
2.本地区土壤检测情况(一般土壤) 2.本地区土壤检测情况(一般土壤)
一般土壤:干土壤比热为0.837KJ/kg•K 埋管管材外径 mm 32
ห้องสมุดไป่ตู้
3. 3.管材参数
埋管管材导热率 埋管管材厚度 竖直埋管换热器深度 单孔竖直埋管数量 最热月平均每日运行时间
4. 4.竖直埋管换热器设计规范
竖直埋管换热器之间间距 最冷月平均每日运行时间 M h 制热时 制热时 5 12
竖直埋管总长( 竖直埋管总长(M) 竖直埋管换热器数量( 竖直埋管换热器数量(座)
地源热泵竖直埋管换热器计算器
1. 1.地源热泵空调参数
地源热泵制冷量(KW) 地源热泵制冷量(KW) 6000 地源热泵制热量(KW) 地源热泵制热量(KW) 6000
土壤平均导热率 土壤平均含水量 W/M℃ ﹪ W/M℃ mm M 根 h
地源热泵制冷功率(KW) 地源热泵制冷功率(KW) 138 地源热泵制热功率(KW) 地源热泵制热功率(KW) 173
390019 975
462822 1157
地源热泵竖直埋管换热器计算器:1.计算器内土壤平均导热率为天津某地区 2.计算器参数埋管管材为PE100
地源热泵系统工程技术规范及埋管计算方法
主要内容
1 总则 2 术语 3 工程勘察 4 地埋管换热系统 5 地下水换热系统 6 地表水换热系统 7 建筑物内系统 8 整体运转、调试与验收 9 附录
地源热泵系统工程技术规范
2 术语
2.0.1 地源热泵系统 groud-source heat pump system 以岩土体、地下水或地表水为低温热源,由水源热泵
分为直接地下水换热系统和间接地下水换热系 统。
2.0.11 直接地下水换热系统 由抽水井取出的地下水,经处理后直接流
经水源热泵机组热交换后返回地下同一含水层 的地下水换热系统。
8
地源热泵系统工程技术规范
2 术语
2.0.12 间接地下水换热系统 由抽水井取出的地下水经中间换热器热交换
后返回地下同一含水层的地下水换热系统。 2.0.13 地表水换热系统
14
地源热泵系统工程技术规范
3.1 一般规定
3.1.4 工程场地状况调查应包括下列内容: 1 场地规划面积、形状及坡度;(是否满足打井或埋管面
积和位置要求) 2 场地内已有建筑物和规划建筑物的占地面积及其分布; 3 场地内树木植被、池塘、排水沟及架空输电线、电信电
缆的分布; 4 场地内已有的、计划修建的地下管线和地下构筑物的分
蕴藏在浅层岩土体、地下水或地表水中的热能资源。 2.0.5 传热介质 heat-transfer fluid
地源热泵系统中,通过换热管与岩土体、地下水或地 表水进行热交换的一种液体。一般为水或添加防冻剂的水 溶液。
6
地源热泵系统工程技术规范
2 术语
2.0.6 地埋管换热系统 ground heat exchanger system 传热介质通过竖直或水平地埋管换热器与岩土体进行热交
地埋管换热器计算方法
摘 要:本文通过对某住宅小区地源热泵系统地热换热器的方案设计的工程实例,介绍了采用《地热之星》软 件设计地热换热器的方法;讨论分析了回填材料导热系数、岩土导热系数、钻孔间距以及循环液的类型四种 主要因素对地热换热器设计尺寸的影响,并指出提高回填材料导热系数、适当增大钻孔间距以及选择凝固点 较低的循环液有利于减小钻孔长度,从而节省地热换热器的初投资。
本工程采用单U型竖直埋管的形式。单个钻孔的截面示意图如图1 所示。管材采用目前国际上广泛使用的 高密度聚乙烯管(PE3408),其导热系数为
本工程采用单U型竖直埋管的形式。单个钻孔的截面示意图如图1 所示。管材采用目前国际上广泛使用的 高密度聚乙烯管(PE3408),其导热系数为 0.42 W/(m℃);标准尺寸比为SDR11,管外径为32mm,内径为26mm。两支管间距选为C 型,即两根管子中心距 为钻孔半径。
4 方案比较 综合以上所述,在该工程地热换热器设计的方案比较中主要考虑以下几项因素的影响:①回填材料导热系数; ②岩土导热系数;③钻孔间距;④循环液的类型。
4.1 回填材料导热系数和岩土导热系数对地热换热器设计尺寸的影响
当循环液为乙二醇 16% ,钻孔几何分布为矩形阵列 4×25 ,钻孔间距为 4*5 (行间距*列间距)时,采用不 同的回填材料导热系数以及岩土导热系数计算出了一系列地热换热器的尺寸,据此画出了 1 万平米空调面积 总钻孔长度随岩土导热系数和回填材料导热系数的变化曲线图。图 2 中的曲线从上到下分别代表岩土的导热 系数为 0.8,1.2,1.6,2.0 W/(m.K) 。从图中可以看出,随着回填材料的导热系数的增大,钻孔长度逐渐减小; 随着岩土导热系数的增大,钻孔长度明显减小。另外,从图中还可以看到对于导热系数在 0.8-2.0 W/(m.K) 范 围内的岩土,当钻孔回填材料的导热系数由 0.6 W/(m.K)增大到 1.2 W/(m.K) 时,仅增大了 1 倍,钻孔总长度 就减少了 500m 左右。这说明:当回填材料导热系数较小,尤其当其小于 1.2 W/(m.K) 时,提高钻孔回填材料 的导热系数,可以减少相当可观的埋管长度。
地源热泵室外地埋管系统冷热不均衡问题解决方案
地源热泵室外地埋管系统冷热不均衡问题解决方案一、冬夏季地下换热量计算:夏季向土壤中排放的热量Q1·= 597KW×(1+1÷5.15) -597KW×(1-1÷3.98)=713-378=335KW冬季从土壤中吸收的热量Q2·= 505KW×(1-1÷3.98)×2=756KW二、埋管孔数计算:冬季地埋管打孔数,口N2=756÷(40×0.045)=420口三、占地面积估算地埋管间距按四米计算,S=420×42=6720m2四、全年冷热不平衡校核计算整个制冷期向土壤排放的总热量:φ1=335KW×18×0.8小时×120×0.9天=整个制热期从土壤吸收的总热量:φ2=756KW×18×0.8小时×120×0.9天=冷热不平衡率U=φ1/φ2=0.443冷热不平衡率取值在0.8—1.15之间,则无需对地埋管系统进行地下温度场的冷热不平衡处理。
冷热不平衡率U<0.8或>1.15,则需对地埋管系统进行地下温度场的冷热不平衡处理。
说明:(以机组夏季运行120天、夏季运行120天、每天运行18个小时),空调全负荷使用系数见计算公式,我们按中原地区的气候条件,夏季制冷期为120天(6月1日—9月30日),冬季采暖期为120天(11月15日—3月15日),开动系数(制冷或采暖期内系统的开动天数比率)估算为0.90,主机使用系数为0.8[每天18小时运行,其计算依据是1/(0.17/A+0.39/B+0.33/C+0.11/D),其中A、B、C、D分别是在100%、75%、50%、25%负荷下运转的耗能量。
五、地埋管系统地下温度场的冷热不平衡处理1、冬季采用一台风冷热泵机组供应泳池热水;U=φ1/φ2=0.8862、夏季采用一台风冷热泵机组供应泳池热水;U=φ1/φ2=0.9433、冬季采用一台风冷热泵机组供应游泳馆空调;U=φ1/φ2=0.8864、安装锅炉对地埋系统补充热量:;按需调节5、屋顶布置太阳能,利用太阳能来实现地埋管系统地下温度场的冷热不平衡处理。
用EXCEL进行地源热泵地埋管道水力计算
1.主要计算参数:
Φ25PE管的外径25mm
Φ25PE管的壁厚 2.3mm
Φ32PE管的外径32mm
Φ32PE管的壁厚3mm
Φ40PE管的外径40mm
Φ40PE管的壁厚 3.7mm
Φ50PE管的外径50mm
Φ50PE管的壁厚 4.6mm
Φ90PE管的外径90mm
Φ90PE管的壁厚8.2mm
DN32钢管的内径35.75mm
DN40钢管的内径41mm
DN125钢管的内径131mm
DN150钢管的内径156mm
DN200钢管的内径207mm
单个Φ25PEU型管中水的流量418.1kg/h171t/h,Φ25PE管共170*2+207/3=409路,假设每一路水PE管的当量绝对粗糙度k0.01mm《PE100聚乙烯管道应用于天然气中压主干管的分析》钢管的当量绝对粗糙度k0.2mm
7.5℃水的密度999.877kg/m3
32.5℃水的密度994.863kg/m3
7.5℃水的运动粘度 1.4E-06m2/s
32.5℃水的运动粘度7.6E-07m2/s
2.水力计算:
U型管与支管四种连接方式比较
第1组地埋管的冬季水力阻力(4口井同程并联)
上海沃特奇勒暖通工程有限公司 2012-12
7/3=409路,假设每一路水流量相同然气中压主干管的分析》。
地源热泵地埋管计算方法
•地源热泵地埋管计算方法地埋部分设计(一)管材选择及流体介质一、管材一般来讲,一旦将地下埋管系统换热器埋入地下后,基本不可能进行维修或更换,因此地下的管材应首先要保证其具有良好的化学稳定性、耐腐性.1、聚乙烯(PE)和聚丁烯(PB)在国外地源热泵系统中得到了广泛应用.2、PVC(聚氯乙烯)管的导热性差和可塑性不好,不易弯曲,接头处耐压能力差,容易导致泄漏,因此在地源热泵系统中不推荐用PVC 管。
3、为了强化地下埋管的换热,国外有的提出采用薄壁(0.5mm)的不锈钢钢管,但目前实际应用不多。
4、管件公称压力不得小于1.0Mpa,工作温度应在—20℃~50℃范围内.5、地埋管壁厚宜按外径与壁厚之比为11倍选择。
6、地埋管应能按设计要求长度成捆供应,中间不得有机械接口及金属接头。
二、连接1、热熔联接(承接联接和对接联接,对于小管径常采用)2、电熔联结三、流体介质及回填料流体介质南方地区:由于地温高,冬季地下埋管进水温度在0℃以上,因此多采用水作为工作流体;北方地区:冬季地温低,地下埋管进水温度一般均低于0℃,因此一般均需使用防冻液。
(①盐类溶液——氯化钙和氯化钠水溶液;②乙二醇水溶液;③酒精水溶液等)。
埋管水温:1、热泵机组夏季向末端系统供冷水,设计供回水温度为7—12℃,与普通冷水机组相同。
地埋管中循环水进入U管的最高温度应<37℃,与冷却塔进水温度相同。
2、热泵机组冬季向末端系统供水温度与常规空调不同,在满足供热条件下,应尽量减低供热水温度,这样可改善热泵机组运行工况、减小压缩比、提高cop值,并降低能耗。
地埋管中循环水冬季进水温度,以水不冻结并留安全余地为好,可取3-4℃。
当然为了使地埋管换热器获得更多热量,可加大循环水与大地间温差传热,然而大地的温度是不变的,因此只有将循环水温降至0℃以下,为此循环水必须使用防冻液,如乙二醇溶液或食盐水。
但这样会提高工程造价、增加对设备的腐蚀.在严寒地区不得不这样做,而在华北地区的工程中用水就可满足要求,不一定要加防冻液。
地源热泵的计算.
目录摘要1地然热泵介绍 (1)1.1热源 (5)1.2组成部分 (5)1. 3主要特点 (5)1. 4形式 (6)1.5可再生性 (7)1.6高效节能 (7)1.7优点 (9)1.8工作原理 (10)热泵原理 (11)热泵分类 (11)1.9系统类型 (12)1.10应用方式 (13)1.11制冷原理 (14)1.12制热原理 (14)1.13存在问题 (14)2土壤源热泵系统设计的主要步骤 (13)2.1建筑物冷热负荷及冬夏季地下换热量计算 (14)2.2地下管道设计 (14)2.21 选择管材 (1)52.22确定管径 (16)2.23 确定竖井管 (1)62.24 确定竖井数目及间距 (17)2.25 计算管道压力损失 (17)2.26 水泵选型 (1)72.27校核管材承压力 (18)3 其它 (1)8 4 设计举例 (19)4.1 设计参数 (2)4.1.1 室外设计参数 (2)14.1.2 室内设计参数 (2)14.2 计算空调负荷及选择主要设备 (2)14.3 计算地下负荷 (2)24.4 确定管材及埋管管径 (2)24.5 确定竖井埋管管长 (2)24.6 确定竖井数目及间距 (2)24.7 计算地埋管压力损失 (22)4.8 校核管材承压能力 (22)5参考文献 (23)摘要随着我国建筑业持续发展,对建筑节能的要求越来越高,而供热系统和空调系统是建筑能耗的主要组成部分,因此,设法减小这两部分能耗意义非常显著。
地源热泵供热空调系统是一种使用可再生能源的高效节能、环保型的系统[1]。
冬季通过吸收大地的能量,包括土壤、井水、湖泊等天然能源,向建筑物供热;夏季向大地释放热量,给建筑物供冷。
相应地,地源热泵系统分土壤源热泵系统、地下水热泵系统和地表水热泵系统3种形式。
土壤源热泵系统的核心是土壤耦合地热交换器。
地下水热泵系统分为开式、闭式两种:开式是将地下水直接供到热泵机组,再将井水回灌到地下;闭式是将地下水连接到板式换热器,需要二次换热。
地源热泵地下埋管形式及计算
地源热泵地下埋管形式及计算本文介绍了地源热泵地下埋管换热器系统形式及设计计算中的有关问题,其中包括埋管方式、埋管深度、地下埋管系统的环路形式、埋管材料、埋管间距、埋管系统的管径选择及水力和热力计算等问题。
0引言地下埋管换热器是地源热泵系统的关键组成部分,其选择的形式是否合理,设计的是否正确,关系到整个地源热泵系统能否满足要求和正常使用,本文就这方面的有关问题作些讨论,供同行们参考。
1地源热泵地下埋管形式目前地源热泵地下埋管换热器主要有两种形式,即水平埋管和垂直埋管。
1.1水平埋管水平埋管主要有单沟单管、单沟双管、单沟二层双管、单沟二层四管、单沟二层六管等形式[1],由于多层埋管的下层管处于一个较稳定的温度场,换热效率好于单层,而且占地面积较少,因此应用多层管的较多。
近年来国外又新开发了两种水平埋管形式,一种是扁平曲线状管,另一种是螺旋状管。
它们的优点是使地沟长度缩短,而可埋设的管子长度增加。
管路的埋设视岩土情况,可采取挖沟或大面积开挖方法。
按文献[1]介绍,单层管最佳深度0.8~1.0m,双层管1.2~1.9m,但无论任何情况均应埋在当地冰冻线以下。
由于水平管埋深较浅,其埋管换热器性能不如垂直埋管,而且施工时,占用场地大,在实际使用中,往往是单层与多层互相搭配;螺旋管优于直管,但不易施工。
由于浅埋水平管受地面温度影响大,地下岩土冬夏热平衡好,因此适用于单季使用的情况(如欧洲只用于冬季供暖和生活热水供应),对冬夏冷暖联供系统使用者很少。
1.2垂直埋管根据埋管形式的不同,一般有单U形管,双U形管,小直径螺旋盘管和大直径螺旋盘管,立式柱状管、蜘蛛状管、套管式管等形式;按埋设深度不同分为浅埋(≤30m)、中埋(31~80m)和深埋(>80m)。
目前使用最多的是U形管、套管和单管式,下面作一简述。
1)U形管型是在钻孔的管井内安装U形管,一般管井直径为100~150mm,井深10~200m,U形管径一般在φ50mm以下(主要是流量不宜过大所限)。
地源热泵系统工程技术规范及埋管计算方法
1 岩土层的结构;
2 岩土体热物性; 3 岩土体温度;
4 地下水静水位、水温、水质及分布;
5 地下水径流方向、速度; 6 冻土层厚度。
3.2.2A 当地埋管地源热泵系统的应用建筑面积在3000 m2~5000 m2 时,宜进行岩土热响应试验;当应用建筑面积大于等于 5000 m2时, 应进行热响应试验。11地源热泵系统工 Nhomakorabea技术规范
2 术语
2.0.25 土热响应试验 rock-soil thermal response test 通过测试仪器,对项目所在场区的测试孔进行一定时间的连续加热, 获得岩土综合热物性参数及岩土初始平均温度的试验。
2.0.26 岩土综合热物性参数 parameter of the rock-soil thermal properties 是指不含回填材料在内的,地埋管换热器深度范围内,岩土的综合 导热系数、综合比热容。
2.0.7 地埋管换热器 ground heat exchanger 供传热介质与岩土体换热用的,由埋于地下的密闭循环管 组构成的换热器,又称土壤热交换器。根据管路埋置方式不同, 分为水平地埋管换热器和竖直地埋管换热器。 2.0.8 水平地埋管换热器 horizontal ground heat exchanger 换热管路埋置在水平管沟内的地埋管换热器,又称水平土 壤热交换器。
3.1.3 工程勘察应由具有勘察资质的专业队伍承 担。工程勘察完成后,应编写工程勘察报告,并 对资源可利用情况提出建议。
14
地源热泵系统工程技术规范
3.1 一般规定
3.1.4 工程场地状况调查应包括下列内容:
1 场地规划面积、形状及坡度;(是否满足打井或埋管面
积和位置要求) 2 场地内已有建筑物和规划建筑物的占地面积及其分布;
地埋管设计计算
地热换热器长度计算竖直地埋管换热器的热阻计算宜符合下列要求:(1)传热介质与U 形管内壁的对流换热热阻可按下式计算:110.00450.02043500f i R d K ππ===⨯⨯ 式中R f ——传热介质与U 形管内壁的对流换热热阻(m·K /W )d i ——U 形管的内径(m )K ——传热介质与U 形管内壁的对流换热系数( W /m2·K )(2)U 形管的管壁热阻可按下列公式计算:()11ln ln 221ln 0.03720.42e pe p e o i p d R d d d πλπλπ⎛⎫== ⎪--⎝⎭==⨯式中R pe ——U 形管的管壁热阻(m·K /W);λp ——U 形管导热系数d 0——U 形管的外径(m );d e ——U 形管的当量直径(m );对单U 形管, n =2;对双U 形管, n =4。
(3)钻孔灌浆回填材料的热阻可按下式计算:1110.15ln ln ln 0.079222 2.220.025b b b e b d R d πλπλπ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪⨯⨯⎝⎭⎝⎭ 式中R b ——钻孔灌浆回填材料的热阻(m·K /W )λb ——灌浆材料导热系数d b ——钻孔的直径(m )(4)地层热阻:即从孔壁到无穷远处的热阻可按下列公式计算:对于多个钻孔:N i=21+2S s R I I πλ⎡⎤=⎢⎥⎣⎦∑=0.217 R s ——地层热阻(m·K /W ); I ——指数积分公式λs ——岩土体的平均导热系数a ——岩土体的热扩散率(m2/s )r b ——钻孔的半径(m )τ——运行时间(s )x i ——第i 个钻孔与所计算钻孔之间的距离(m )(5)短期连续脉冲负荷引起的附加热阻可按下式计算:12sp s R I πλ⎛⎫==0.097 τp ——短期脉冲负荷连续运行的时间,例如8h(6)制冷工况下,竖直地埋管换热器钻孔的长度可按下列公式计算:()()max 100011c f pe b s c sp c c Q R R R R F R F EER L t t EER ∞⎡⎤+++⨯+⨯-+⎛⎫⎣⎦= ⎪-⎝⎭ 12c c c F T =式中:Q c ——水源热泵机组的额定冷负荷(kW )EER ——水源热泵机组的制冷性能系数t max ——制冷工况下,地埋管换热器中传热介质的设计平均温度,通常取33~36℃; T ∞——埋管区域岩土体的初始温度(℃)F c ——制冷运行份额T c1——一个制冷季中水源热泵机组的运行小时数,当运行时间取一个月时,为最热月份水源热泵机组的运行小时数T c2——一个制冷季中的小时数,当运行时间取一个月时为最热月份的小时数则制冷工况下,竖直地埋管换热器钻孔的长度为:[]()max 10000.00450.0370.0790.2170.60.0970.41c c Q EER L t t EER ∞⨯⨯+++⨯+⨯+⎛⎫=⨯ ⎪-⎝⎭= ? m(7)供热工况下,竖直地埋管换热器钻孔的长度可按下列公式计算:()()min 100011h f pe b s c sp c h Q R R R R F R F COP L t t COP ∞⎡⎤+++⨯+⨯--⎛⎫⎣⎦= ⎪-⎝⎭ 12h h h F T T =式中:Q h ——水源热泵机组的额定热负荷(kW )COP ——水源热泵机组的供热性能系数t max ——供热工况下,地埋管换热器中传热介质的设计平均温度,通常取-2~6℃ F h ——供热运行份额T h1——一个供热季中水源热泵机组的运行小时数,当运行时间取一个月时,为最冷月份水源热泵机组的运行小时数T h2——一个供热季中的小时数,当运行时间取一个月时为最冷月份小时数则供热工况下,竖直地埋管换热器钻孔的长度为:[]()min 10000.00450.0370.0790.3110.30.0970.71h h Q COP L t t COP ∞⨯⨯+++⨯+⨯-⎛⎫=⨯ ⎪-⎝⎭ = ? m经比较后选择制冷工况下所需的钻孔长度作为设计竖直地埋管换热器的钻孔长度。
地源热泵地埋管计算方法(知识浅析)
•地源热泵地埋管计算方法地埋部分设计(一)管材选择及流体介质一、管材一般来讲,一旦将地下埋管系统换热器埋入地下后,基本不可能进行维修或更换,因此地下的管材应首先要保证其具有良好的化学稳定性、耐腐性。
1、聚乙烯(PE)和聚丁烯(PB)在国外地源热泵系统中得到了广泛应用。
2、PVC(聚氯乙烯)管的导热性差和可塑性不好,不易弯曲,接头处耐压能力差,容易导致泄漏,因此在地源热泵系统中不推荐用PVC 管。
3、为了强化地下埋管的换热,国外有的提出采用薄壁(0.5mm)的不锈钢钢管,但目前实际应用不多。
4、管件公称压力不得小于1.0Mpa,工作温度应在-20℃~50℃范围内。
5、地埋管壁厚宜按外径与壁厚之比为11倍选择。
6、地埋管应能按设计要求长度成捆供应,中间不得有机械接口及金属接头。
二、连接1、热熔联接(承接联接和对接联接,对于小管径常采用)2、电熔联结三、流体介质及回填料流体介质南方地区:由于地温高,冬季地下埋管进水温度在0℃以上,因此多采用水作为工作流体;北方地区:冬季地温低,地下埋管进水温度一般均低于0℃,因此一般均需使用防冻液。
(①盐类溶液--氯化钙和氯化钠水溶液;②乙二醇水溶液;③酒精水溶液等)。
埋管水温:1、热泵机组夏季向末端系统供冷水,设计供回水温度为7-12℃,与普通冷水机组相同。
地埋管中循环水进入U管的最高温度应<37℃,与冷却塔进水温度相同。
2、热泵机组冬季向末端系统供水温度与常规空调不同,在满足供热条件下,应尽量减低供热水温度,这样可改善热泵机组运行工况、减小压缩比、提高cop值,并降低能耗。
地埋管中循环水冬季进水温度,以水不冻结并留安全余地为好,可取3-4℃。
当然为了使地埋管换热器获得更多热量,可加大循环水与大地间温差传热,然而大地的温度是不变的,因此只有将循环水温降至0℃以下,为此循环水必须使用防冻液,如乙二醇溶液或食盐水。
但这样会提高工程造价、增加对设备的腐蚀。
在严寒地区不得不这样做,而在华北地区的工程中用水就可满足要求,不一定要加防冻液。
地源热泵埋管方式及埋管深度常见问题
地源热泵埋管方式及埋管深度常见问题地源热泵地埋管在整个系统中起着集热散热的重要作用,地埋管要是安装不好就会直接对整个系统的效果造成影响。
现在随着人们生活的不断提高,人们对自己家庭的生活质量也有了新的要求。
现在人们普遍使用地源热泵,可是对于地源热泵埋管的方式却很少有人知道。
地源热泵埋管-地源热泵埋管的注意事项1、若建筑物周围可利用地表面积充足,应首先考虑采用比较经济的水平埋管方式;相反,若建筑物周围可利用地表面积有限,应采用竖直U型埋管方式。
2、尽管可以采用串联、并联方式连接埋管,但并联方式采用小管径,初投资及运行费用均较低,所以在实际工程中常用,且为了保持各并联环路之间阻力平衡,最好设计成同程式。
3、选择管径时,除考虑安装成本外,一般把各管段压力损失控制在4mH2O/100m (当量长度)以下,同时应使管内流动处于紊流过渡区。
4、地源热泵地埋管换热系统在设计时应该首先对当地的地质实际情况进行计算,并根据条件作出准确的判断,完成整个换热量的计算。
5、地源热泵地埋管换热器最好要设泄漏警报和自动补水系统,需要防冻的地方还要设置防冻保护装置,避免后期系统运行时出现各种问题。
6、在换热系统上最好是采用变流量的设计,管内传热介质流速最好不要低于最低流速限值。
7、关于地源热泵地埋管的安装最好是要靠近机房或是以机房为中心设置,避免过远导致热量在管路中的散失。
8、地源热泵管路在没有安装之前尽量避免阳光直射,最好是避光存放,以防止管道受热发生热形变问题。
9、若是地源热泵的使用地冬夏对热量的取放不均,那么可以根据具体的实际情况通过采用辅助冷源或热源的方式实现调节目的。
地源热泵地下埋管的几种形式目前地源热泵地下埋管换热器主要有两种形式,即水平埋管和垂直埋管。
水平埋管主要有单沟单管、单沟双管、单沟二层双管、单沟二层四管、单沟二层六管等形式,由于多层埋管的下层管处于一个较稳定的温度场,换热效率好于单层,而且占地面积较少。
水平埋管主要有单沟单管、单沟双管、单沟二层双管、单沟二层四管、单沟二层六管等形式,由于多层埋管的下层管处于一个较稳定的温度场,换热效率好于单层,而且占地面积较少,因此应用多层管的较多。
地源热泵埋管数、配电量以及投资计算
1 钻井埋管埋管数量的确定热负荷埋管数量Qr * 0.78 = L * K * n冷负荷埋管数量Ql * 1.2 = L * K * n其中:Qr---------------------冬季热负荷Ql---------------------夏季冷负荷0.78,1.2-------------系数L----------------------单孔埋管深度K----------------------单位管长换热系数N----------------------埋管数量计算后应乘以1.05的余量2 机房及配电量一般可取建筑冷负荷的三分之一(不建议采用,此句话的由来为:冷负荷/cop 。
一般地源热泵cop为6左右,通常制冷机取5.因此建议:机房设备总的功率乘上需用系数0.9-0.95,或者当设备较少时取需用系数为1 .)机房的配电量一般根据工艺的要求把同一时间可能开启的的所有设备电功率加起来乘0.9-0.95就行。
注意冬夏季负荷功率及设备运行台数会有变化,分冬夏两个工况,分开计算,最后两者取其较大值就行。
3 机房面积机房占地面积宜为空调区域建筑面积的千分之五4 冷冻水量和冷却水量冷冻水量CMH=制冷量(KW)X 0.172冷却水量CMH=制冷量(KW)X 0.2245参考资料做建筑给排水不用算商场的人数的,按面积算,最高日生活用水定额取X,其中X取5~8,单位为每平方米营业厅面积每日(L/m2 ·d),使用时数为12h,小时变化系数为1.5~1.2,具体参见《建筑给水排水设计规范》.(1)确定主机类型;根据户式中央空调系统的选择原则和用户所在之区域,确定空调系统方式和主机类型(单冷或热泵)。
(2)计算住宅夏季冷负荷 Ql 和冬季热负荷 QR ;根据用户住宅的建筑面积和用户所处区域内建筑冷、热负荷指标按下式计算住宅冷负荷Ql 和热负荷 QR 。
QL = 建筑面积×冷指标(w) ,QR = 建筑面积×热指标(w) 。
地源热泵打井计算及方案
地源热泵打井计算及方案一、打井计算。
# (一)负荷计算。
1. 建筑物热负荷。
首先得知道这房子冬天有多“怕冷”。
要考虑房子的面积、朝向、保温情况啥的。
比如说,一个100平方米的房子,如果保温一般,每平方米大概需要80 100瓦的热量来保暖(这只是个大概数哦,不同地区差别可大了)。
那这个房子冬天的热负荷可能就是8000 10000瓦。
夏天呢,就是冷负荷啦。
同样的房子,考虑到太阳晒啊,人散热啊这些因素,每平方米可能需要100 120瓦的制冷量。
那这个房子夏天的冷负荷就是10000 12000瓦。
2. 地源热泵的能力。
地源热泵的能力得跟建筑物的冷热负荷匹配上。
一般来说,地源热泵的制热和制冷能力是有个范围的。
就像挑衣服得合身一样,热泵的能力得能满足房子的需求。
如果热泵能力太小,冬天不够暖,夏天不够凉;太大了呢,又浪费钱。
# (二)地埋管换热量计算。
1. 确定换热量。
地源热泵是靠地埋管和大地换热的。
这个换热量得根据建筑物的冷热负荷来算。
通常,我们要考虑一个安全系数,不能刚刚好,得稍微多算一点,就像吃饭得留个底,以防万一嘛。
一般安全系数取1.1 1.3左右。
比如说建筑物热负荷是10000瓦,那换热量可能就按11000 13000瓦来设计。
2. 根据换热量计算管长。
这里面有个公式,不过咱就简单说。
换热量和地埋管的长度、管材的导热性、地下土壤的温度啥的都有关系。
一般每米地埋管的换热量大概在30 50瓦/米(这也得看土壤情况,不同的土就像不同性格的人,换热能力不一样)。
如果换热量是12000瓦,按每米40瓦/米算,那大概就需要12000÷40 = 300米的地埋管。
# (三)井数计算。
1. 单井换热量。
每口井的换热量也不是个固定值,它和井的深度、直径、周围土壤情况都有关。
一般一口井的换热量在3 8千瓦左右。
比如说我们取5千瓦每口井。
2. 计算井数。
还是用前面算出来的总换热量来算井数。
如果总换热量是15千瓦,每口井换热量是5千瓦,那大概就需要15÷5 = 3口井。
土壤源热泵地下埋管长度计算分析
土壤源热泵地下埋管长度计算分析1 管长计算公式使用地下换热器管长计算如下:1011,,2h b y y m m h h in ground out groundg p q R q R q R q R L T T T T +++=++-(1)其中,L 是钻孔总长(m ),其值等于地下换热器管长的1/2。
h q 表示每小时土壤传热率的最大值(W )(包括吸收热量和释放热量);m q 表示每月的土壤平均传热率(W ),如果方程1用于确定制冷工况下的设计管长,那么m q 即是夏季最热月的平均土壤传热率。
相反,如果是计算制热工况的管长,m q 就是冬季最冷月的平均土壤传热率。
y q 表示每年的平均土壤传热率(W )。
b R 表示有效钻孔热阻(m ⋅K/W ),10y R 表示10年热扰动的有效传热热阻,1m R 表示1个月热扰动的有效传热热阻,1h R 表示1小时热扰动的有效传热热阻;影响以上三个热扰动因数有:钻孔直径(d),土壤导热系数(s k ),土壤热扩散率(s α),以及热扰动时间间隔。
b R 的影响因素[3]有:钻孔直径,U型管直径,U 型管支管间距,回填材料导热系数(g k ),管壁导热系数(p k ),以及流体流速。
p T表示管壁温度(C ),它对应于相邻钻孔内两地下换热器间热干扰[4]后达到的稳定温度,要注意的是p T 的值在供热时越来越大而在制冷时其值越来越小;g T 表示无扰动土壤温度(C ),其值会因pT 的变化而上升或下降; ,in ground T 表示U 型管进水温度, ,out ground T 表示出水温度; 2 不定性分析在公式(1)中可能只有,in ground T 和,out ground T 值是可以定性的设计初始条件,其他的参数都不能100%准确的获得。
这就使得在实际的工程设计中,设计者很难确定那些因素可以直接用于公式计算。
这里,我们介绍一种更具有概括性的计算方法,该方法利用经典的不定性分析法[4,6]测定每个参数的单个不定性因子如何产生L 值的总体不定性值。
地源热泵打井计算及方案
地源热泵方案●项目概况项目共分三期;其中,二期办公楼建筑面积为3200㎡,空调面积约为3000㎡;二期厂房一层建筑面积为11218㎡,空调面积约为8918㎡,夹层建筑面积6880㎡,空调面积约为4780㎡;三期厂房建筑面积6648㎡,空调面积约为1600㎡。
二期和三期总建筑面积为27946㎡,总空调面积约为18298㎡。
根据甲方要求,现需为二期和三期的厂房及办公室配置空调系统。
●设计依据1、《民用建筑节能设计标准》2、《采暖通风与空气调节设计规范》(GB50019-2003)3、《公共建筑节能设计标准》 (GB50189-2005)4、《地源热泵系统工程技术规范》 (GB50366-2005)5、《埋地聚乙烯(PE)管材》(CJJ101-2004)6、《实用供暖空调设计手册》7、《空气调节设计手册》8、《通风与空调工程施工质量验收规范》(GB50243-2002)9、《地源热泵工程技术指南》,徐伟译10、国际热湿环境ISO7730《室内热湿环境的相关标准》11、世界卫生组织《室内空气品质WHO标准》12、甲方提供的建筑平面图●暖通专业范围本项目单位空调冷指标取120W/㎡,空调热指标取85W/㎡;则总冷负荷为2196KW,总热负荷为1555KW。
采用节能、环保的地源热泵系统为空调系统提供冷热源,夏天制冷、冬天采暖,选用两台制冷量为1100KW的地源热泵冷水机组。
二期办公区及厂房夹层空调末端主要采用风机盘管+新风的形式,二期、三期厂房部分空调末端主要采用组合式空气处理机组+新风的形式。
本项目室外地埋管采用垂直双U型埋管,共360口,有效埋管深度为100米,埋管井间距取4.5米;单位孔深排热量按56W/m,单位孔深吸热量按34W/m(根据北京威乐项目地质勘探报告);室外打井位置为三期厂房区域及室外绿化带。
除此之外,考虑到地源热泵地下热平衡性,需额外配置一台闭式辅助冷却塔,冷却塔水流量为110m3/h。
地源热泵地埋管长度计算
地源热泵地埋管长度计算1. 什么是地源热泵?嘿,朋友们!今天咱们聊聊地源热泵,听起来高大上吧?其实就是利用地下土壤或水体的恒温来为我们提供暖气和冷气的神奇装置。
简单说,它像是个“地下空调”,无论是夏天热得冒汗,还是冬天冷得直打哆嗦,它都能给你提供舒适的环境。
想想看,夏天开着它,凉爽透心;冬天暖暖的,简直就像抱着个大热水袋,舒服得不得了!那么,关键是要安装地埋管,而这些管子的长度该怎么计算呢?咱们今天就来聊聊这其中的门道。
2. 地埋管的作用2.1 地埋管的基本原理先来点干货,地埋管的作用是什么呢?它主要是把地下的热量(不管是冷还是热)输送到地源热泵中,再通过风机把空气送到你的小窝里。
你知道吗?地下温度通常比地面温度稳定得多,冬天暖、夏天凉,这就是地埋管的魔力所在。
它的“长处”就是能有效利用自然资源,环保又省钱,真是一举两得,何乐而不为呢?2.2 为什么长度重要?那么,管子的长度为什么那么重要呢?你想啊,长度决定了它能吸收和释放多少热量。
如果长度不够,那可就“量入为出”了,热量就会像水流一样,来得快去得也快,根本没法保持房间的舒适度。
而且,管子太长了,虽然可以增加热量的吸收,但也会增加成本和施工难度,真是“过犹不及”。
所以,找到一个合适的长度,就像做菜时的调料,恰到好处才是关键。
3. 如何计算地埋管的长度3.1 影响因素那么,如何计算这条神奇的地埋管长度呢?首先,我们要考虑几个关键因素。
比如,房子的大小、保温效果、周围土壤的热导率、甚至是你家附近的水位。
每个地方的情况都不一样,简直就像每个人的口味各有千秋。
房子大需要的管子长,房子小的话,管子就可以短一些。
3.2 计算方法接下来,我们来点实际的计算方法吧。
通常,我们会用“热负荷”来作为基础,计算出所需的热量。
然后根据每米管子可以交换的热量,再结合土壤的热导率来得出总的管子长度。
听起来复杂,其实就像是在做一道数学题,稍微努力点就能搞定。
你可以请教专业的工程师,他们会用一些专业的工具和软件来帮助你计算,简直就是“高人一筹”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•地源热泵地埋管计算方法地埋部分设计(一)管材选择及流体介质一、管材一般来讲,一旦将地下埋管系统换热器埋入地下后,基本不可能进行维修或更换,因此地下的管材应首先要保证其具有良好的化学稳定性、耐腐性。
1、聚乙烯(PE)和聚丁烯(PB)在国外地源热泵系统中得到了广泛应用。
2、PVC(聚氯乙烯)管的导热性差和可塑性不好,不易弯曲,接头处耐压能力差,容易导致泄漏,因此在地源热泵系统中不推荐用PVC 管。
3、为了强化地下埋管的换热,国外有的提出采用薄壁(0.5mm)的不锈钢钢管,但目前实际应用不多。
4、管件公称压力不得小于1.0Mpa,工作温度应在-20℃~50℃围。
5、地埋管壁厚宜按外径与壁厚之比为11倍选择。
6、地埋管应能按设计要求长度成捆供应,中间不得有机械接口及金属接头。
二、连接1、热熔联接(承接联接和对接联接,对于小管径常采用)2、电熔联结三、流体介质及回填料流体介质南方地区:由于地温高,冬季地下埋管进水温度在0℃以上,因此多采用水作为工作流体;北方地区:冬季地温低,地下埋管进水温度一般均低于0℃,因此一般均需使用防冻液。
(①盐类溶液--氯化钙和氯化钠水溶液;②乙二醇水溶液;③酒精水溶液等)。
埋管水温:1、热泵机组夏季向末端系统供冷水,设计供回水温度为7-12℃,与普通冷水机组相同。
地埋管中循环水进入U管的最高温度应<37℃,与冷却塔进水温度相同。
2、热泵机组冬季向末端系统供水温度与常规空调不同,在满足供热条件下,应尽量减低供热水温度,这样可改善热泵机组运行工况、减小压缩比、提高cop值,并降低能耗。
地埋管中循环水冬季进水温度,以水不冻结并留安全余地为好,可取3-4℃。
当然为了使地埋管换热器获得更多热量,可加大循环水与间温差传热,然而的温度是不变的,因此只有将循环水温降至0℃以下,为此循环水必须使用防冻液,如乙二醇溶液或食盐水。
但这样会提高工程造价、增加对设备的腐蚀。
在严寒地区不得不这样做,而在华北地区的工程中用水就可满足要求,不一定要加防冻液。
地温是恒定值,可通过测井实测。
有关资料介绍某地地下约100米的地温是当地年平均气温加4℃左右。
天津市年平均气温是12.2℃,实测天津市地下约100米的地温约为16℃,基本符合以上规律。
回填材料可以选用浇铸混凝土、回填沙石散料或回填土壤等。
材料选择要兼顾工程造价、传热性能、施工方便等因素。
从实际测试比较浇铸混凝土换热性能最好,但造价高、施工难度大,但可结合建筑物桩基一起施工。
回填沙石或碎石换热效果比较好,而且施工容易、造价低,可广泛采用。
(二)埋管系统环路一、埋管方式1、水平埋管水平埋管主要有单沟单管、单沟双管、单沟二层双管、单沟二层四管、单沟二层六管等形式,由于多层埋管的下层管处于一个较稳定的温度场,换热效率好于单层,而且占地面积较少,因此应用多层管的较多。
(单层管最佳深度1.2~2.0m,双层管1.6~2.4m)近年来国外又新开发了两种水平埋管形式,一种是扁平曲线状管,另一种是螺旋状管。
它们的优点是使地沟长度缩短,而可埋设的管子长度增加。
2 、垂直埋管根据埋管形式的不同,一般有单U 形管,双U 形管,套管式管,小直径螺旋盘管和大直径螺旋盘管,立式柱状管、蜘蛛状管等形式;按埋设深度不同分为浅埋(≤30m)、中埋(31~80m)和深埋(>80m)。
1)U 形管型:是在钻孔的管井安装U 形管,一般管井直径为100~150mm,井深10~200m,U 形管径一般在φ50mm 以下。
2)套管式换热器:的外管直径一般为100~200mm,管为φ15~φ25mm。
其换热效率较U 形管提高16.7%。
缺点:⑴下管比较困难,初投资比U 形管高。
⑵在套管端部与管进、出水连接处不好处理,易泄漏,因此适用于深度≤30m 的竖埋直管,对中埋采用此种形式宜慎重。
二、地下埋管系统环路方式1、串联方式优点:①一个回路具有单一流通通路,管积存的空气容易排出;②串联方式一般需采用较大直径的管子,因此对于单位长度埋管换热量来讲,串联方式换热性能略高缺点:①串联方式需采用较大管径的管子,因而成本较高;②由于系统管径大,在冬季气温低地区,系统需充注的防冻液(如乙醇水溶液)多;③安装劳动成本增大;④管路系统不能太长,否则系统阻力损失太大。
2、并联方式优点:①由于可用较小管径的管子,因此成本较串联方式低;②所需防冻液少;③安装劳动成本低。
缺点:①设计安装中必须特别注意确保管流体流速较高,以充分排出空气;②各并联管道的长度尽量一致(偏差应≤10%),以保证每个并联回路有相同的流量;③确保每个并联回路的进口与出口有相同的压力,使用较大管径的管子做集箱,可达到此目的。
从国外工程实践来看,中、深埋管采用并联方式者居多;浅埋管采用串联方式的多三、地埋管打孔孔径孔径:根据地质结构不同,钻孔孔径可以是Ф100、Ф150、Ф200或Ф300,天津地区地表土壤层很厚,为了钻孔、下管方便多采用Ф300孔径。
(三)地下埋管系统设计一.地下换热量计算地下换热量可以由下述公式计算:Q1'= Q1*(1+1/COP1) kW (1)Q2'= Q2*(1-1/COP2) kW (2)其中Q1'--夏季向土壤排放的热量,kWQ1--夏季设计总冷负荷,kWQ2'--冬季从土壤吸收的热量,kWQ2--冬季设计总热负荷,kWCOP1--设计工况下水源热泵机组的制冷系数COP2--设计工况下水源热泵机组的供热系数一般地,水源热泵机组的产品样本中都给出不同进出水温度下的制冷量、制热量以及制冷系数、供热系数,计算时应从样本中选用设计工况下的、。
若样本中无所需的设计工况,可以采用插值法计算。
二、地下热交换设计1.水平埋管:确定管沟数目:埋管管长的估算:利用管材“换热能力”,即单位埋管管长的换热量。
水平埋管单位管材“换热能力”在20~40W/m(管长)左右,;设计时可取换热能力的下限值,即20 W/m。
单沟单管埋管总长具体计算公式如下: L=Q/20其中L --埋管总长,mQ --冬季从土壤取出的热量,w分母“20”是每m 管长冬季从土壤取出的热量,W/m单沟双管、单沟二层双管、单沟二层四管、单沟二层六管布置时分别乘上0.9、0.85、0.75、0.70 的热干扰系数(热协调系数)。
确定管沟间距:为了防止埋管间的热干扰,必须保证埋管之间有一定的间距。
该间距的大小与运行状况(如连续运行还是间歇运行;间歇运行的开、停机比等)、埋管的布置形式(如单行布置,只有两边有热干扰;多排布置,四面均有热干扰)等等有关。
建议串联每沟1 管,管径1/4"~2";串联每沟2 管, 1 又1/4"~1 又1/2"。
并联每沟2 管, 1"~1 又1/4";并联每沟4~6 管,管径13/4"~1"。
管沟间距:每沟1 管的间距1.2m,每沟2 管的间距1.8m,每沟4 管间距3.6m。
管沟最上面管子的管顶到地面的的最小高度不小于1.2m。
2、竖直埋管确定竖井埋管管长一般垂直单U 形管埋管的换热能力为60~80 W/m(井深),垂直双U 形管为80~100W/m(井深)左右,设计时可取换热能力的下限值。
一般垂直埋管为70~110W/m(井深),或35~55W/m(管长),水平埋管为20~40W/m(管长)左右。
设计时可取换热能力的下限值,即35W/m(管长),双U管设计具体计算公式如下:L=Q1/25 (3)其中 L--竖井埋管总长,mQ1--夏季向土壤排放的热量, W分母“35”是夏季每m管长散热量,W/m确定竖井数目及间距国外,竖井深度多数采用50~100m[2],设计者可以在此围选择一个竖井深度H,代入下式计算竖井数目:N=L/(4*H) (4)其中 N--竖井总数,个L--竖井埋管总长,mH--竖井深度,m分母“2”是考虑到竖井埋管管长约等于竖井深度的2倍。
然后对计算结果进行圆整,若计算结果偏大,可以增加竖井深度,但不能太深,否则钻孔和安装成本大大增加。
关于竖井间距有资料指出:U型管竖井的水平间距一般为4.5m[3],也有实例中提到DN25的U型管,其竖井水平间距为6m,而DN20的U型管,其竖井水平间距为3m[4]。
若采用串联连接方式,可采用三角形布置(详见[2])来节约占地面积。
工程较小,埋管单排布置,地源热泵间歇运行,埋管间距可取3.0m;工程较大,埋管多排布置,地源热泵间歇运行,建议取间距4.5m;若连续运行(或停机时间较少)建议取5~6m注意事项1、垂直地埋管换热器埋管深度应大于30m,宜为60m~150m;钻孔间距宜为3m~6m。
水平管埋深应不小于1.2m。
2、地埋管换热器水平干管坡度宜为0.3%,不应小于0.2%。
3、地埋管环路之间应并联且同程布置,两端应分别与供、回水管路集管相连接。
每个环路集管连接的环路数宜相同。
4、地埋管换热器宜靠近机房或以机房为中心设置。
铺设供、回水集管的管沟宜分开布置;供、回水集管的间距不应小于0.6m。
三、管径与流速设计1、确定管径在实际工程中确定管径必须满足两个要求:(1)管道要大到足够保持最小输送功率;(2)管道要小到足够使管道保持紊流以保证流体与管道壁之间的传热。
显然,上述两个要求相互矛盾,需要综合考虑。
一般并联环路用小管径,集管用大管径,地下热交换器埋管常用管径有20mm、25mm、32mm、40mm、50mm,管流速控制在1.22m/s以下,对更大管径的管道,管流速控制在2.44m/s以下或一般把各管段压力损失控制在4mH2O/100m当量长度以下。
备注:① 地下埋管换热器环路压力损失限制在30~50kPa/100m 为好,最大不超过50kPa/100m。
同时应使管流动处于紊流过渡区。
② 地下埋管系统单位冷吨(1 冷吨=3024kcal/h=3.52kW)水流量控制在0.16~0.19L/s.t③ 最小管流速(流量):在相同管径、相同流速下,水的雷诺数最大大。
所以采用CaCl2 和乙二醇水溶液时,为了保证管的紊流流动,与水相比需采用大的流速和流量。
2、校核管材承压能力管路最大压力应小于管材的承压能力。
若不计竖井灌浆引起的静压抵消,管路所需承受的最大压力等于大气压力、重力作用静压和水泵扬程一半的总和[1],即:P=P0+ρgH+0.5Ph其中 p--管路最大压力,PaP0--建筑物所在的当地大气压,Paρ--地下埋管中流体密度,kg/m3g--当地重力加速度,m/s2H--地下埋管最低点与闭式循环系统最高点的高度差,mPh--水泵扬程,Pa3其它3.1与常规空调系统类似,需在高于闭式循环系统最高点处(一般为1m)设计膨胀水箱或膨胀罐,放气阀等附件。