材料力学概念整理
材料力学概念总结
![材料力学概念总结](https://img.taocdn.com/s3/m/7f0b60b4cc7931b764ce1512.png)
材料力学一、基本概念1 材料力学的任务是:研究构件的强度、刚度、稳定性的问题,解决安全与经济的矛盾。
2 强度:构件抵抗破坏的能力。
3 刚度:构件抵抗变形的能力。
4 稳定性:构件保持初始直线平衡形式的能力。
5 连续均匀假设:构件内均匀地充满物质。
6 各项同性假设:各个方向力学性质相同。
7 内力:以某个截面为分界,构件一部分与另一部分的相互作用力。
8 截面法:计算内力的方法,共四个步骤:截、留、代、平。
9 应力:在某面积上,内力分布的集度(或单位面积的内力值)、单位Pa。
10 正应力:垂直于截面的应力(σ)11 剪应力:平行于截面的应力()12 弹性变形:去掉外力后,能够恢复的那部分变形。
13 塑性变形:去掉外力后,不能够恢复的那部分变形。
14 四种基本变形:拉伸或压缩、剪切、扭转、弯曲。
二、拉压变形15 当外力的作用线与构件轴线重合时产生拉压变形。
16 轴力:拉压变形时产生的内力。
17 计算某个截面上轴力的方法是:某个截面上轴力的大小等于该截面的一侧各个轴向外力的代数和,其中离开该截面的外力取正。
18 画轴力图的步骤是:①画水平线,为X轴,代表各截面位置;②以外力的作用点为界,将轴线分段;③计算各段上的轴力;④在水平线上画出对应的轴力值。
(包括正负和单位)19 平面假设:变形后横截面仍保持在一个平面上。
20 拉(压)时横截面的应力是正应力,σ=N/A21 斜截面上的正应力:σα=σcos²α22 斜截面上的切应力:α=σSin2α/223 胡克定律:杆件的变形时与其轴力和长度成正比,与其截面面积成反比,计算式△L=NL/EA(适用范围σ≤σp)24 胡克定律的微观表达式是σ=Eε。
25 弹性模量(E)代表材料抵抗变形的能力(单位P a)。
26 应变:变形量与原长度的比值ε=△L/L(无单位),表示变形的程度。
27 泊松比(横向变形与轴向变形之比)μ=∣ε1/ε∣28 钢(塑)材拉伸试验的四个过程:比例阶段、屈服阶段、强化阶段、劲缩阶段。
(完整版)材料力学重点总结
![(完整版)材料力学重点总结](https://img.taocdn.com/s3/m/5d83e8fef78a6529657d5368.png)
(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3。
材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。
5。
材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。
材料力学基础知识点整理
![材料力学基础知识点整理](https://img.taocdn.com/s3/m/56246721a66e58fafab069dc5022aaea988f414d.png)
材料力学基础知识点整理引言本文旨在整理材料力学的基础知识点,帮助读者更好地理解和掌握这一领域的基本概念和原理。
1. 应力和应变- 应力:应力是物体内部的力与物体横截面积的比值,描述了单位面积内的力的大小和方向。
- 应变:应变是物体在受到外力作用下产生的形变或变形量,描述了物体形变程度的量度。
2. 弹性力学- 弹性材料:弹性材料受到外力作用后可以恢复原来形状和大小的材料。
- 弹性常数:描述了材料的弹性性质,包括弹性模量、剪切模量和泊松比等。
- 弹性变形:弹性变形是指材料在受到外力作用下产生的可恢复的形变。
- 胡克定律:弹性力学中的基本定律,描述了弹性材料应力与应变之间的线性关系。
3. 塑性力学- 塑性材料:塑性材料在受到外力作用后会发生不可逆的形变和破坏。
- 屈服点:塑性材料受到应力作用达到一定值时开始发生可观察的塑性变形的应力值。
- 塑性变形:塑性变形是指材料在受到外力作用下产生的不可恢复的形变。
- 塑性流动:塑性材料在受到应力作用下发生塑性变形的过程。
4. 破裂力学- 破裂点:材料在受到应力作用下失效的应力值,也是材料破裂的起始点。
- 断裂韧性:材料抵御破裂的能力,即材料在受到应力作用下能吸收的能量大小。
- 破裂模式:根据材料破裂的形式和特征进行分类,如脆性破裂和韧性破裂等。
5. 疲劳力学- 疲劳现象:材料在循环加载下产生的疲劳破坏现象,即反复加载引起的损伤和破裂。
- 疲劳寿命:材料在特定加载条件下能够承受的循环次数或应力循环次数。
- 疲劳强度:材料在特定寿命下能够承受的最大应力。
结论本文对材料力学基础知识点进行了整理和概述,包括应力和应变、弹性力学、塑性力学、破裂力学和疲劳力学等内容。
希望这些知识点能够帮助读者建立对材料力学基础的扎实理解,为进一步学习和研究提供基础。
材料力学基本概念和公式
![材料力学基本概念和公式](https://img.taocdn.com/s3/m/1b4a4b02bf1e650e52ea551810a6f524ccbfcbdb.png)
材料力学基本概念和公式
材料力学是一门应用物理学,研究的是将外力和结构结合在一起的物
理学问题。
它研究物体的外部力和内部应力、应变之间的关系,并研究这
种关系如何影响物体的力学性能。
材料力学的基本概念与公式包括:(1)力:力是一个向量,表示对物体做了其中一种操作的作用,其
大小决定了物体的变形和变化。
它的单位是牛顿,记作F。
力的方向由它
的向量指示。
例如,F=10N,表示牛顿单位中有10N的力沿着它的方向作用。
(2)应力:应力是物体力的结果,它是由外部力对物体施加的压力,表现为物体表面内的力矩的大小。
由于应力是由外部力引起的,它的单位
也是牛顿,记作σ。
应力的方向依赖于外部力的大小和方向,也可以由
向量表示。
例如,σ=20N,表示牛顿单位中有20N的应力沿着它的方向
施加。
(3)应变:应变是物体因外力的作用而发生变形的程度。
它由物体
表面受力的区域的形状、位置和尺寸来表示,它的单位是厘米,记作ε。
应变的方向与应力的方向是正相关的,也可以由向量表示。
例如,ε=
0.02cm,表示物体表面受力的区域的形状、位置和尺寸变化了0.02cm。
(4)抗压强度:抗压强度是指物体在受到压力的作用时,能承受多
少应力而不发生破坏。
它的单位是牛顿每厘米,记作σ=fp。
材料力学概念整理
![材料力学概念整理](https://img.taocdn.com/s3/m/c8eca56d59fb770bf78a6529647d27284b7337ba.png)
材料力学概念整理材料力学是研究材料的力学性质和行为的一门学科。
它是工程力学的重要组成部分,与材料科学和工程密切相关。
材料力学主要研究材料的变形、破坏和疲劳等力学性质,揭示材料内部的微观结构与力学性能之间的关系,为材料设计和工程应用提供理论依据。
1.弹性力学弹性力学是材料力学的基础。
弹性力学研究材料在受力作用下的变形行为,弹性变形和弹性力学的关系遵循胡克定律。
弹性变形是指在外力作用下,材料会发生可逆的形变,当外力消除后,材料会恢复其初始形状。
弹性力学的经典理论主要包括拉压力学、剪切力学和折弯力学等。
2.塑性力学塑性力学研究材料在受力作用下的塑性变形行为。
与弹性变形不同,塑性变形一旦发生,材料无法恢复其初始形状。
塑性变形的机制主要包括滑移、位错移动和晶粒形变等。
塑性力学的经典理论主要包括单轴拉伸、多轴变形和硬化等。
3.破坏力学破坏力学研究材料在受力作用下的破坏行为。
材料的破坏可表现为断裂、裂纹扩展和脆性破坏等形式。
破坏力学的研究可通过断裂力学、裂纹力学和损伤力学等方法来解释材料的破坏行为,例如断裂力学中的强度理论和断裂韧性的表征。
4.疲劳力学疲劳力学研究材料在交变循环载荷下的疲劳行为。
疲劳是材料由于反复载荷引起的局部损伤积累而导致的失效现象。
疲劳失效通常可通过疲劳寿命和疲劳强度等指标来评价。
疲劳力学的研究主要包括S-N曲线、疲劳寿命预测和疲劳裂纹扩展等。
5.蠕变力学蠕变力学研究材料在长时间高温下的蠕变变形行为。
蠕变是材料在高温下由于内部应力的作用而发生的不可逆变形。
蠕变力学的研究可通过蠕变曲线、蠕变寿命和蠕变机制等方面来描述材料的蠕变特性。
6.微观力学微观力学是研究材料内部微观结构与力学性能之间关系的力学分支。
它涉及到材料的原子、晶格和位错等微观结构,并通过探索这些微观结构对材料强度、塑性和破坏等性能的影响,了解材料的力学行为的基本机制。
总结:材料力学作为一门重要的工程力学学科,涵盖了弹性、塑性、破坏、疲劳、蠕变和微观力学等诸多概念。
材料力学主要知识点归纳
![材料力学主要知识点归纳](https://img.taocdn.com/s3/m/bcc662cf4028915f814dc20f.png)
材料力学主要知识点一、基本概念1、构件正常工作的要求:强度、刚度、稳定性。
2、可变形固体的两个基本假设:连续性假设、均匀性假设。
另外对于常用工程材料(如钢材),还有各向同性假设。
3、什么是应力、正应力、切应力、线应变、切应变。
杆件截面上的分布内力集度,称为应力。
应力的法向分量σ称为正应力,切向分量τ称为切应力。
杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。
4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。
5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。
6、强度理论及其相当应力(详见材料力学ⅠP229)。
7、截面几何性质A 、截面的静矩及形心①对x 轴静矩⎰=A x ydA S ,对y 轴静矩⎰=Ay xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。
B 、极惯性矩、惯性矩、惯性积、惯性半径① 极惯性矩:⎰=A P dA I 2ρ② 对x 轴惯性矩:⎰=A x dA y I 2,对y 轴惯性矩:⎰=A y dA x I 2 ③ 惯性积:⎰=Axy xydA I ④ 惯性半径:A I i x x =,A I i y y =。
C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b为y c 距y 轴距离。
② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离,b 为截面形心距y 轴距离。
二、杆件变形的基本形式1、轴向拉伸或轴向压缩:A 、应力公式 AF =σ B 、杆件伸长量EA F N l l =∆,E 为弹性模量。
C 、应变公式E σε=D 、对于偏心拉压时,通常将荷载转换为轴心受力与偏心矩进行叠加。
材料力学知识点总结免费版
![材料力学知识点总结免费版](https://img.taocdn.com/s3/m/e290f450cd7931b765ce0508763231126fdb777a.png)
材料力学知识点总结材料力学是研究物质内部力学行为以及材料的变形和破坏的学科。
它是工程领域中非常重要的基础学科,涉及材料的结构、性能和应用等方面。
本文将从基本概念、力学性质、变形与破坏等方面对材料力学的知识点进行总结。
1.弹性力学弹性力学是材料力学的基础,研究材料在外力作用下的变形与恢复过程。
弹性力学主要关注材料的弹性性质,即材料在外力作用下是否能够发生恢复性变形。
弹性力学的基本理论包括胡克定律、泊松比等。
2.塑性力学塑性力学研究材料的塑性行为,即材料在外力作用下会发生永久性变形的能力。
塑性力学主要关注材料的塑性应变、塑性流动规律等。
常见的塑性变形方式包括屈服、硬化、流变等。
3.破裂力学破裂力学研究材料的破裂行为,即材料在外力作用下发生破裂的过程。
破裂力学主要关注材料的断裂韧性、断口形貌等。
常见的破裂失效方式包括断裂、断裂韧性减小、疲劳等。
4.疲劳力学疲劳力学研究材料在交变应力作用下的疲劳失效行为。
疲劳力学主要关注材料的疲劳寿命、疲劳强度等。
材料在交变应力作用下会逐渐积累微小损伤,最终导致疲劳失效。
5.断裂力学断裂力学研究材料在应力集中区域的破裂行为。
断裂力学主要关注材料的应力集中系数、应力集中因子等。
在材料中存在裂纹等缺陷时,应力集中会导致裂纹扩展,最终引发断裂失效。
6.成形加工力学成形加工力学研究材料在加工过程中的变形行为。
成形加工力学主要关注材料的流变性质、加工硬化等。
常见的成形加工方式包括挤压、拉伸、压缩等。
7.热力学力学热力学力学研究材料在高温条件下的力学行为。
热力学力学主要关注材料的热膨胀、热应力等。
材料在高温条件下,由于热膨胀不均匀等因素,会产生热应力,从而影响材料的力学性能。
通过以上对材料力学的知识点的总结,我们可以了解到材料力学对工程领域的重要性。
在工程实践中,需要根据材料的力学性质来设计和制造材料的结构,以保证其性能和安全性。
因此,掌握材料力学的基本概念和原理对于工程师和科研人员来说是至关重要的。
材料力学基本概念知识点总结
![材料力学基本概念知识点总结](https://img.taocdn.com/s3/m/84bc475b49d7c1c708a1284ac850ad02df800747.png)
材料力学基本概念知识点总结材料力学是研究物质材料的力学性质和行为的学科,是许多工程学科的基础和核心内容之一。
本文将对材料力学的基本概念进行总结,包括应力、应变、弹性、塑性等方面。
一、应力与应变1.1 应力应力是描述物体内部受力情况的物理量。
一般分为法向应力和切应力两个方向,分别表示作用在物体上的垂直和平行于截面的力。
法向应力可进一步分为压应力和拉应力,分别表示作用在物体上的压缩力和拉伸力。
1.2 应变应变是物体在受力作用下发生形变的度量。
一般分为线性应变和剪切应变两类,分别表示物体长度或体积的变化以及物体形状的变化。
线性应变可进一步分为正应变和负应变,分别表示物体拉伸或压缩时的形变情况。
二、弹性与塑性2.1 弹性弹性是材料的一种特性,指材料在受力作用下能够恢复原先形状和大小的能力。
即当外力停止作用时,材料能够完全恢复到初始状态。
弹性按照应力-应变关系可分为线弹性和非线弹性,前者表示应力与应变之间呈线性关系,后者表示应力与应变之间不呈线性关系。
2.2 塑性塑性是材料的另一种特性,指材料在受力作用下会发生形变并保持在一定程度上的能力。
即当外力停止作用时,材料只能部分恢复到初始状态。
塑性按照塑性变形的特点可分为可逆塑性和不可逆塑性,前者表示形变能够通过去应力恢复到初始状态,后者表示形变无法通过去应力完全恢复。
三、应力-应变关系应力-应变关系是描述材料力学行为的重要概念之一。
在材料的弹性范围内,应力与应变之间满足线性比例关系,也就是胡克定律。
根据胡克定律,应力等于弹性模量与应变的乘积。
四、杨氏模量与剪切模量4.1 杨氏模量杨氏模量是衡量材料抵抗线弹性形变的能力,也叫做弹性模量。
杨氏模量越大,材料的刚性越高,抗拉伸和抗压缩的能力越强。
4.2 剪切模量剪切模量是衡量材料抵抗剪切形变的能力,也叫做切变模量。
剪切模量越大,材料的抗剪强度越高,抗剪形变的能力越强。
五、破坏力学破坏力学是研究材料在外力作用下失效的学科。
材料力学的一些基本概念
![材料力学的一些基本概念](https://img.taocdn.com/s3/m/615ddefb04a1b0717fd5ddb2.png)
材料力学材料力学基本概念基本概念Simwe :lian20041、强度:在载荷作用下构件抵抗破坏的能力;刚度:在载荷作用下构件抵抗变形的能力;稳定性:在载荷作用下构件保持稳定平衡的能力;2、基本假设:连续性假设:物体在其整个体积内充满了物质而毫无空隙,其结构是密实的; 均匀性假设:从物体内任意一点处取出的体积单元,其力学性能都能代表整个物体的力学性能;各向同性假设:材料沿各个方向的力学性能相同。
3、力学性能:材料在外力作用下所表现出来的变形和破坏方面的特征。
4、应力:受力杆件某一截面上一点处的内力集度。
正应力:垂直于截面的法向分量切应力:与截面相切的切向分量5、圣维南原理:力作用于杆端方式的不同,只会使与杆端距离不大于杆的横向尺寸的范围内受到影响。
6、一点处的应力状态:通过一点的所有不同方位截面上应力的全部情况。
7、线应变:每单位长度的伸长(或缩短)。
LL ∆=ε 8、胡克定律:当杆内的应力不超过材料的某一极限值(比例极限)时,杆的伸长△L 与其所受外力F 、杆的原长L 成正比,而与其横截面面积A 成反比。
引进比例常数E ,故有:EAL F L N =∆ 9、泊松比:当拉(压)杆内的应力不超过材料的比例极限时,横向线应变ε’与纵向线应变ε的绝对值之比为一常数,称此值为横向变形因数或泊松比。
εεµ'= 10、应变能:伴随弹性变形的增减而改变的能量称为应变能。
11、应力应变曲线:纵坐标表示名义应力,横坐标表示名义应变,这种能反应材料的力学性能的曲线图称为应力应变曲线。
比例极限:在弹性阶段内,应力应变符合胡克定律的最高限,与之对应的应力称为比例极限;弹性极限:弹性阶段的最高点卸载后不发生塑性变形的极限,与之对应的应力称为弹性极限;屈服极限:在屈服阶段内,应力有幅度不大的波动,最高点的应力为上屈服极限,最低点的应力为下屈服极限,通常将下屈服极限称为屈服极限;强度极限:在强化阶段,最高点对应的应力称为强度极限。
材料力学的基本概念
![材料力学的基本概念](https://img.taocdn.com/s3/m/e7554db49f3143323968011ca300a6c30c22f137.png)
材料力学的基本概念
材料力学是一种研究材料承受外力的理论和实验结合的一门工程学科,是力学专业下的一个分支学科。
材料力学研究的内容包括:材料的机械性质、结构的力学参数、材料及其结构的强度和稳定性、受外力作用的断裂、疲劳、振动及其相关数学模型的分析等。
一、材料的机械性质。
材料机械性质是指材料本身的特性,它可以描
述材料在在力学作用下的变形特性和强度特性,其中包括材料的塑性性能、韧性特性及耐久性特性等,这些特性决定了材料和结构在受力作用下的行为。
二、结构的力学参数。
结构的力学参数是指结构系统的一些力学指标,它可以使用材料本身的物理性能、结构的几何形状、材料的实际表现等特
性来描述,例如接缝的连续性、材料的屈服强度和断裂强度的影响、接缝
结构的稳定性等,这些参数将确定结构对外力的响应。
三、材料及其结构的强度和稳定性。
材料及其结构的强度和稳定性是
指结构对外力的响应能力,这些参数将决定结构对外力的强度以及承受这
种外力的稳定性,它们包括材料的强度、结构的几何形状、结构的连续性
和材料的实际表现等方面的参数,其中材料的强度,特殊情况下,设计极
限可以达到材料的理论屈服点延长。
材料力学知识点归纳总结(完整版)
![材料力学知识点归纳总结(完整版)](https://img.taocdn.com/s3/m/b58dff06240c844768eaeebb.png)
材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。
3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。
按照外力作用方式的不同,外力又可分为分布力和集中力。
2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。
已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。
首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。
因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。
由平衡条件就可以确定内力。
例如在左段杆上由平衡方程N-F=0 可得N=F3.综上所述,截面法可归纳为以下三个步骤:1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。
2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。
3、平衡求力对留下部分建立平衡方程,求解内力。
4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。
材料力学概念整理
![材料力学概念整理](https://img.taocdn.com/s3/m/dc563ccbf9c75fbfc77da26925c52cc58bd69021.png)
1.强度:抵抗破坏的能力;刚度:抵抗变形的能力;稳定性:构建抵抗失稳、维持原有平衡状态的能力;2.材料的三个基本假设:连续性假设、均匀性假设、各向同性假设变形的两个基本假设:小变形假设、线弹性假设3.基本变形:轴向拉伸压缩、剪切、扭转、弯曲;4.内力:因外力作用而引起的物体内部各质点相互作用的内力的该变量,即由外力引起的“附加内力”,简称内力;5.应力:受力杆件在截面上各点处的内力的大小和方向一点处分布内力的集度,来表明内力左右在该点处的强弱程度;6.低碳钢拉伸四个阶段:弹性阶段、屈服阶段滑移线、强化阶段、紧缩阶段;7.冷作硬化:在常温下降钢材拉伸超过屈服阶段,卸载再重新加载时,比例极限提高而塑性降低的现象提高强度,降低塑性;8.应力集中:由于截面尺寸突然改变而引起的局部应力急剧增大的现象;9.轴:工程中常把以扭转为主要变形构件;10.扭转;杆件两端受到两个作用面垂直于杆轴线的力偶的作用,两力偶大小相等,转向相反,使杆的各截面绕轴线做相对转动产生的变形;11.切应力互等定理:在单元体相互垂直的两个平面上,沿垂直于两面交线作用的切应力必然成对出现,且大小相等,方向共同指向或背离该两面的交线;12.梁:凡是以弯曲变形为主要变形的构件通常称为梁;13.弯曲:在一对转向相反,作用在杆的纵向平面内的外力偶作用下,直杆将在该轴向平面内发生弯曲,变形后的杆轴线将弯成曲线,这种变形形式称为弯曲;14.叠加原理:几个外力共同作用所引起的某一量值支座反力,内力,应力,变形,位移值等于每个外力单独作用所引起的该量量值的代数和,这是力学分析的一个普遍原理,称为叠加原理;15.纯弯曲:平面弯曲梁的横截面上,只有弯矩,而无剪力;横力弯曲:既有弯矩又有剪力的弯曲;16.中性层:由于变形的连续性,纵向纤维从受压缩到受拉伸的变化之间,必然存在着一层既不受压缩、又不受拉伸的纤维,这层纤维称为中性层;17.挠度:用垂直于梁轴线的线位移代表横截面形心的线位移;转角:绕本身的中性轴转过一个角度;18.应力状态:受力构件内一点处各个不同方位截面上的应力的大小和方向情况,称为一点出的应力状态;19.单元体:为了研究受力构件一点处的应力状体,可围绕该点取出一微小,正六面体,称为单元体;20.主平面、主应力:对于受力构件内任一点,总可以找到三对相对垂直的平面,在这些面上只有正应力而没有切应力,这些切应力为零的平面的平面称为主平面,其上正应力称为主应力;21.截面核心:压杆横截面上只产生压应力时压力作用区域;对于偏心受压构件,为避免截面产生拉应力,要求偏心压力作用在横截面性心附近的某个区域内,此区域称为截面核心22.临界压力:23.失稳:压杆从稳定平衡状态转化为不稳定平衡状态,这种现象称为丧失稳定性,简称失稳;材料力学的简答题1、中材料的三个弹性常数是什么它们有何关系材料的三个弹性常数是弹性模量E,剪切弹性模量G和泊松比μ,它们的关系是G=E/21+μ;2、何谓挠度、转角挠度:横截面形心在垂直于梁轴线方向上的线位移; 转角:横截面绕其中性轴旋转的角位移;3、强度理论分哪两类最大应切力理论属于哪一类强度理论Ⅰ.研究脆性断裂力学因素的第一类强度理论,其中包括最大拉应力理论和最大伸长线应变理论;Ⅱ. 研究塑性屈服力学因素的第二类强度理论,其中包括最大切应力理论和形状改变能密度理论;4、何谓变形固体在材料力学中对变形固体有哪些基本假设在外力作用下,会产生变形的固体材料称为变形固体;变形固体有多种多样,其组成和性质是复杂的;对于用变形固体材料做成的构件进行强度、刚度和稳定性计算时,为了使问题得到简化,常略去一些次要的性质,而保留其主要性质;根据其主要的性质对变形固体材料作出下列假设;1.均匀连续假设;2.各向同性假设;3.小变形假设;5、为了保证机器或结构物正常地工作,每个构件都有哪些性能要求强度要求、刚度要求和稳定性要求;6、用叠加法求梁的位移,应具备什么条件用叠加法计算梁的位移,其限制条件是,梁在荷载作用下产生的变形是微小的,且材料在线弹性范围内工作;具备了这两个条件后,梁的位移与荷载成线性关系,因此梁上每个荷载引起的位移将不受其他荷载的影响; 7、列举静定梁的基本形式简支梁、外伸梁、悬臂梁; 8、列举减小压杆柔度的措施1加强杆端约束2减小压杆长度,如在中间增设支座3选择合理的截面形状,在截面面积一定时,尽可能使用那些惯性矩大的截面; 9、欧拉公式的适用范围只适用于压杆处于弹性变形范围,且压杆的柔度应满足:λ≥λ1= 10、列举图示情况下挤压破坏的结果一种是钢板的圆孔局部发生塑性变形,圆孔被拉长;另一种是铆钉产生局部变形,铆钉的侧面被压扁;11、简述疲劳破坏的特征1构件的最大应力在远小于静应力的强度极限时,就可能发生破坏;2即使是塑性材料,在没有显著的塑性变形下就可能发生突变的断裂破坏;3断口明显地呈现两具区域:光滑区和粗糙区;12、杆件轴向拉伸压缩时的强度条件可以解决哪几面的问题1强度校核;已知杆件的尺寸、承受的载荷以及材料的许用应力,验证强度条件不等式是否成立;2截面设计;已知杆件承受的载荷以及材料的许用应力,确定杆件的横截面尺寸,再由横截面积进而计算出相关的尺寸;3确定许可载荷;已知杆件的尺寸及材料的许用应力,确定结构或机器的最大载荷,得到最大轴力后,再由平衡条件确定机器或结构的许可载荷; 13、在推导纯弯曲正应力公式时,作了哪些基本假设平面假设:梁弯曲变形后,其横截面仍然保持为一平面,并仍与变形后梁的轴线垂直,只是转了一个角度;这个假设称为平面假设;14、正应力的“正”指的是正负的意思,所以正应力恒大于零,这种说法对吗为什么这种说法不对;正应力的“正”指的是正交的意思,即垂直于截面;其本身有正负规定:拉为正,压为负;15、简述梁弯曲时,横截面上的内力剪力和弯矩的正负符号的规定1剪力如对梁段内任意点有产生顺时针转向趋势为正,反之为负;2弯矩如使梁段弯曲变形的下凸者为正,反之为负; 16、试述影响构件疲劳极限的因素因素:1构件的外形的影响2构件尺寸的影响3表面质量的影响4表面强度的影响;17、何谓弹性变形和塑性变形弹性变形——载荷撤除后,可完全恢复的变形塑性变形——载荷撤除后,不可恢复的变形18、试简述提高梁高弯曲强度的主要措施;1选用合理的截面2采用变截面梁3适当布置载荷和支座位置19、内力和应力有何区别有何联系1两者概念不同:内力是杆件收到外力后,杆件相连两部分之间的相互作用力:应力是受力杆件截面上某一点处的内力分布集度,提及时必须明确指出指出杆件、截面和点的位置2两者单位不同:内力——KN、KN·m,同力或力偶的单位;应力——N/m2或N/mm2,Pa帕或MPa兆帕3两者的关系:整个截面上各点处的应力总和等于该截面上的内力;在弹性范围内,应力与内力成正比; 20、为什么不用危险应力作为许用应力不允许超过的应力值统称为极限应力,也叫危险应力;为了保证构件能安全地工作,还须将其工作应力限制在比极限应力危险应力更低的范围内,也就是将材料的破坏应力危险应力打一个折扣,即除以一个大于1的系数n以后,作为构件工作应力所不允许超过的数值,这个应力值称为材料的许用应力;如果直接把危险应力作为许用应力,构件破坏的几率大些,不能保证构件充分的安全; 21、当传递的功率不变时,改变轴的转速对轴的强度和刚度有什么影响M=9550N/n,τ=T/Wτ≤τΦ=T/GIP×180/π≤Φ;①n提高,M降低;T降低,则τ、Φ都降低,提高了轴的强度和刚度;②n降低,M提高;T提高,则τ、Φ都提高,降低了轴的强度和刚度; 22、何为主应力何为主平面剪应力等于零的平面,叫主平面;主平面上的正应力叫主应力;23、材料有哪两种基本破坏形式铸铁试件的扭转破坏,属于哪一种破坏形式各种材料因强度不足而发生的破坏形式是不同的,但主要的破坏形式有两类,一是屈服破坏,另一类是断裂破坏;试件受扭,材料处于纯剪切应力状态,在试件的横截面上作用有剪应力,同时在与轴线成±450的斜截面上,会出现与剪应力等值的主拉应力和主压应力; 低碳钢的抗剪能力比抗拉和抗压能力差,试件将会从最外层开始,沿横截面发生剪断破坏,而铸铁的抗拉能力比抗剪和抗压能力差,则试件将会在与杆轴成450的螺旋面上发生拉断破坏;铸铁试件的扭转碱坏,属于断裂破坏.24、强度理论解决问题的步骤解决问题的步骤:如果一点处于复杂应力状态下,可以先求出该点处的三个主应力σ1,σ2和σ3;它们可以计算出与某个强度理论相应的相当应力σxd,则强度条件要求σxd≤σ;25、什么事失效材料力学中失效包括哪几种形式不能保持原有的形状和尺寸,构件已不能正常工作,叫失效;材料力学中的失效包括强度失效、刚度失效和稳定性失效三种; 26、如何解释超静定问题未知数多于可被应用的独立平衡方程数,不能用静力学平衡方程完全确定全部未知数的问题;27、实际挤压面是半圆柱面时,计算挤压应力时如何确定挤压面的面积是否按半圆柱面来计算面积挤压面是半圆柱面时,挤压面面积按其正投影计算;28、拉压杆通过铆钉连接时,连接处的强度计算包括哪些计算包括1铆钉的剪切强度计算;2铆钉的挤压强度计算:3拉压杆的抗拉压强度计算;29、什么是塑性材料和脆性材料一般把延伸率大于5%的金属材料称为塑性材料如低碳钢等;而把延伸率小于5%的金属材料称为脆性材料如灰口铸铁等;在外力作用下,虽然产生较显著变形而不被破坏的材料,称为塑性材料;在外力作用下,发生微小变形即被破坏的材料,称为脆性材料; 30、30.简述应力集中的概念实际上很多构件由于结构或工艺等方面的要求,一般常有键槽、切口、油孔、螺纹、轴肩等,因而造成在这些部位上截面尺寸发生突然变化;这种由于截面尺寸的突变而产生的应力局部骤增的现象,工程上称为应力集中;1、低碳钢的拉伸试验答:使用试验机及相关的试件设备仪器绘制出试件的拉伸图,即:P-△L曲线,形象的饭引出低碳钢材料的变形特点以及各阶段受力和变形的关系,并分析得出低碳钢的相关参数,由此来分析判断低碳钢材料的弹性与塑性性能与承载能力;试验过程分为四个阶段:1.弹性阶段;2.屈服阶段;3.强化阶段;4.颈缩阶段;综上:分析低碳钢材料的变形过程,通过绘制并分析P-△L曲线以及相关的参数,求解得到低碳钢材料的强度极限、拉伸强度极限、延伸率和截面收缩率;2、为什么轴向拉伸时,横截面的正应力分布式平均分布的; 答:受拉伸的杆件变形前为平面的很截面,变形后仍为平面,仅沿着轴线产生了相对的评议且仍与杆件的轴线垂直,犹豫材料的均匀性、连续性假设可以推断出轴力在横截面上的分布式均匀的,且都垂直于横截面,故横街面上的正应力也是均匀分布的;3、剪应力互等定理;答:剪应力互等定理:在材料中取一个正六面单元体,在这个单元体上两个相互垂直的平面上,剪应力必然成对存在,且数值相等,其方向共同指向或共同背离这两个平面的交线棱线;4、叠加原理及其运用答:由力的作用独立性知,在材料的位移、应力、应变、内力等与外力成线性关系的条件下,力的作用是相互独立的,可以把每一个力的效果矢量叠加,得到一等效合力,或合力偶;在材料力学里面,用到的地方是:叠加法求挠度,转角;叠加法求弯矩;超静定问题的求解;5、冬天水管冻裂的原因;答:在冬天低温条件下,水由液态凝结成固态,体积膨胀,由此产生对水管的膨胀挤压应力,将水管看成薄壁构建,由于水管本身的材料属性原因,在低温条件下,水管的脆性增强,强度极限降低,塑性抗拉强度降低,在一定条件下水管承受不住水结冰后产生的应力,发生破裂现象;6、连接杆的三种可能的破坏形式答:1.剪切破坏形式;2.挤压破坏形式;3.塑性变形扭转破坏形式;。
材料力学知识点总结
![材料力学知识点总结](https://img.taocdn.com/s3/m/4ffde845a200a6c30c22590102020740be1ecdbe.png)
材料力学知识点总结材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科,它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域有着至关重要的作用。
以下是对材料力学主要知识点的总结。
一、基本概念1、外力:作用在物体上的力,包括载荷和约束力。
2、内力:物体内部各部分之间相互作用的力。
3、应力:单位面积上的内力。
4、应变:物体在受力时发生的相对变形。
二、轴向拉伸与压缩1、轴力:杆件沿轴线方向的内力。
轴力的计算通过截面法,即假想地将杆件沿某一截面切开,取其中一部分为研究对象,根据平衡条件求出截面处的内力。
2、拉压杆的应力正应力计算公式为:σ = N / A,其中 N 为轴力,A 为横截面面积。
应力在横截面上均匀分布。
3、拉压杆的变形纵向变形:Δl = Nl / EA,其中 E 为弹性模量,l 为杆件长度。
横向变形:Δd =μΔl,μ 为泊松比。
三、剪切与挤压1、剪切:在一对相距很近、大小相等、方向相反的横向外力作用下,杆件的横截面沿外力作用方向发生相对错动的变形。
2、剪切力:平行于横截面的内力。
3、切应力:τ = Q / A,Q 为剪切力,A 为剪切面面积。
4、挤压:连接件在接触面上相互压紧的现象。
5、挤压应力:σbs = Pbs / Abs,Pbs 为挤压力,Abs 为挤压面面积。
四、扭转1、扭矩:杆件受扭时,横截面上的内力偶矩。
扭矩的计算同样使用截面法。
2、圆轴扭转时的应力横截面上的切应力沿半径线性分布,最大切应力在圆周处,计算公式为:τmax = T / Wp,T 为扭矩,Wp 为抗扭截面系数。
3、圆轴扭转时的变形扭转角:φ = TL / GIp,G 为剪切模量,Ip 为极惯性矩。
五、弯曲内力1、平面弯曲:梁在垂直于轴线的平面内发生弯曲变形,且外力和外力偶都作用在该平面内。
2、剪力和弯矩剪力:梁横截面上切向分布内力的合力。
弯矩:梁横截面上法向分布内力的合力偶矩。
材料力学知识点
![材料力学知识点](https://img.taocdn.com/s3/m/b0c273dab14e852458fb571b.png)
材料力学 一、基本概念: 理论力学——研究刚体,研究力与运动的关系。 材料力学——研究变形体,研究力与变形的关系。 1、构件:工程结构或机械的每一组成部分。 (例如:行车结构中的横梁、吊索等) 2、变形:在外力作用下,固体内各点相对位置的改变。(宏观上看就是物体尺寸和形状的改 变) 弹性变形——随外力解除而消失 塑性变形(残余变形)—外力解除后不能消失 3、内力:构件内由于发生变形而产生的相互作用力。 (内力随外力的增大而增大) 4、应力:截面某一点单位面积上的内力称为应力。同截面垂直的称为正应力或法向应力, 同截面相切的称为剪应力或切应力。 5、刚度:在载荷作用下,构件抵抗变形的能力。 6、强度:在载荷作用下,构件抵抗破坏的能力。 7、稳定性:在载荷作用下,构件保持原有平衡状态的能力。 强度、刚度、稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承载能力的一 门科学。 材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件,提 供必要的理论基础和计算方法。研究构件的强度、刚度和稳定性,还需要了解材料的力学性 能。因此在进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。 二、变形固体的基本假设 1、连续性假设:认为整个物体体积内毫无空隙地充满物质 2、均匀性假设:认为物体内的任何部分,其力学性能相同 3、各向同性假设:认为在物体内各个不同方向的力学性能相同 (沿不同方向力学性能不同的材料称为各向异性材料。如木材、胶合板、纤维增强材料等) 3、各向同性假设:认为在物体内各个不同方向的力学性能相同 (沿不同方向力学性能不同的材料称为各向异性材料。如木材、胶合板、纤维增强材料等) 4、小变形与线弹性范围:认为构件的变形极其微小,比构件本身尺寸要小得多。 三、外力及其分类 外力:来自构件外部的力(载荷、约束反力) 按外力作用的方式分类: 1、 体积力:连续分布于物体内部各点的力。如重力和惯性力 2、 表面力:1)分布力:连续分布于物体表面上的力。如油缸内壁的压力,水坝受到的水 压力等均为分布力 2)集中力:若外力作用面积远小于物体表面的尺寸,可作为作用于 一点的集中力。如火车轮对钢轨的压力等 按外力与时间的关系分类 1、 静载:载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著,称为静载。 2、 动载:载荷随时间而变化。如交变载荷和冲击载荷 四、变形与应变 1、变形:物体内任意两点的相对位置发生变化。 取一微正六面体 两种基本变形: 1) 线变形——线段长度的变化 2) 角变形——线段间夹角的变化
材料力学重点总结
![材料力学重点总结](https://img.taocdn.com/s3/m/9243d4d96aec0975f46527d3240c844769eaa01f.png)
材料力学重点总结材料力学是研究材料在外力作用下的力学性能及其相互关系的学科。
它是工程力学的重要分支之一,对于了解材料的力学特性以及工程结构的设计和优化具有重要意义。
以下是材料力学的重点总结。
一、材料的应力和应变1.应力:指材料内部的内力,由外力作用引起,分为正应力和剪应力。
正应力指垂直于截面的力与截面面积的比值,剪应力指与截面平行的截面积的比值。
2.应变:指材料在外力作用下的变形程度,分为线性弹性应变和非线性塑性应变。
线性弹性应变指应力与应变呈线性关系,非线性塑性应变指应力与应变不呈线性关系。
3.弹性模量:指材料在弹性阶段内应力与应变之间的比值,用于衡量材料的刚度。
二、材料的弹性力学行为1.长度-应力关系:根据胡克定律,应力与应变成正比,比例系数为弹性模量。
2.应力-应变关系:应力与应变呈线性关系,斜率为弹性模量。
当材料处于线性弹性阶段时,可以使用胡克定律进行分析和计算。
3.杨氏模量:指材料在线性弹性阶段内应力与应变沿任意方向之比,衡量材料的各向同性。
三、材料的塑性力学行为1.屈服强度:指材料开始发生塑性变形的临界应力值。
在应力达到屈服强度后,材料开始发生塑性应变。
2.延伸率和断裂应变:延伸率是材料拉伸至破坏前的变形倍数,断裂应变是材料发生破坏时的应变。
3.曲线弹性模量:由于塑性变形引起曲线弹性阶段的模量发生变化,称为曲线弹性模量。
四、材料的断裂力学行为1.断裂韧性:指材料在断裂前吸收的能量。
韧性高的材料能够承受较大的变形和吸能。
2.断裂强度:指材料在断裂前所能承受的最大应力值。
断裂强度高的材料具有较好的抗拉强度。
3.断裂模式:材料断裂具有不同的模式,如拉断、剪断、脱层、断裂面韧裂等。
五、材料的疲劳力学行为1.疲劳强度:指材料在循环载荷下发生疲劳破坏的临界应力水平。
疲劳强度与材料的强度和韧性都有关。
2.疲劳寿命:指材料在特定应力水平下能够循环载荷的次数。
疲劳寿命与材料的疲劳强度和循环载荷有关。
3.疲劳断口特征:材料在发生疲劳破坏时产生的断裂面特征,如河床样貌、斜粒子形貌等。
材料力学基本概念
![材料力学基本概念](https://img.taocdn.com/s3/m/33438e6cbc64783e0912a21614791711cd797977.png)
材料力学基本概念材料力学是研究材料受力和变形规律的一门学科,它是现代工程学和科学研究中不可或缺的基础学科之一。
材料力学的基本概念包括应力、应变、弹性模量、屈服强度、断裂韧性等。
本文将从这些基本概念入手,对材料力学进行简要介绍。
应力是材料内部单位面积上的受力情况,通常用σ表示。
应力分为正应力和剪切应力两种。
正应力是垂直于截面的应力,而剪切应力是平行于截面的应力。
应力的大小可以通过受力面积来计算,是描述材料受力情况的重要参数。
应变是材料在受力作用下产生的形变,通常用ε表示。
应变也分为正应变和剪切应变两种。
正应变是材料在受力作用下产生的长度变化与原始长度的比值,而剪切应变是材料在受力作用下产生的形变角与原始形变角的差值。
应变是描述材料变形情况的重要参数。
弹性模量是描述材料在受力作用下的变形能力的物理量,通常用E表示。
弹性模量越大,表示材料的刚度越大,抗变形能力越强。
弹性模量是材料力学中的重要参数,对于材料的选择和设计具有重要意义。
屈服强度是材料在受力作用下开始产生塑性变形的应力值,通常用σy表示。
超过屈服强度后,材料会产生塑性变形,而不再能够完全恢复原状。
屈服强度是材料抗塑性变形的重要参数,对于材料的强度设计具有重要意义。
断裂韧性是描述材料抗断裂能力的物理量,通常用KIC表示。
断裂韧性越大,表示材料抗断裂能力越强。
断裂韧性是材料力学中的重要参数,对于材料的耐久性和可靠性具有重要意义。
综上所述,材料力学的基本概念包括应力、应变、弹性模量、屈服强度、断裂韧性等。
这些基本概念是材料力学研究的基础,对于材料的选择、设计和应用具有重要意义。
通过对这些基本概念的理解和掌握,可以更好地应用材料力学知识,为工程实践和科学研究提供有力支持。
希望本文能够对材料力学的学习和应用有所帮助。
材料力学基本概念和公式
![材料力学基本概念和公式](https://img.taocdn.com/s3/m/90dd0b5f0a4e767f5acfa1c7aa00b52acfc79c88.png)
材料力学基本概念和公式材料力学是研究材料在受到外力作用下的变形和破坏行为的一门学科。
下面将简要介绍材料力学的基本概念和公式。
1.伸长量(ε):伸长量是材料在受到拉伸力作用下的长度变化与原始长度之比,可以表示为ε=ΔL/L0,其中ΔL是材料受力后的长度变化,L0是材料的原始长度。
2.弹性模量(E):弹性模量是材料表征其抵抗拉伸或压缩变形能力的物理量,定义为材料受应力作用下的应力与应变之比,可以表示为E=σ/ε,其中σ是材料受到的应力。
3.屈服强度(σy):屈服强度是材料在受力过程中产生塑性变形的应力阈值,物理上可以看作是材料从弹性到塑性变形的过程。
屈服强度可以表示为σy=Fy/A,其中Fy是材料引起塑性变形的应力,A是材料的横截面积。
4.断裂强度(σf):断裂强度是材料在受到应力作用下发生破坏的最大阈值,表示材料的抗拉抗压能力。
断裂强度可以表示为σf=Ff/A,其中Ff是材料破坏时受到的应力。
5. 牛顿第二定律(F = ma):材料力学中的牛顿第二定律与经典物理学中的类似,描述了材料在受到外力作用下的加速度与作用力之间的关系。
6.雪松方程(σ=Eε):雪松方程是描述线性弹性材料受力变形关系的基本公式,其中σ为材料受到的应力,E为弹性模量,ε为材料的应变。
7.线性弹性材料的胡克定律(σ=Eε):对于线弹性材料来说,应力和应变之间的关系可以遵循胡克定律。
即材料的应力是弹性模量和应变的乘积。
8.悬臂梁挠度公式(δ=(Fl^3)/(3EI)):悬臂梁的挠度可以通过公式计算,其中F为外力作用在梁上的力,l为悬臂梁的长度,E为横截面的弹性模量,I为横截面关于挠曲轴的转动惯量。
9.铰接梁挠度公式(δ=(Fl^3)/(48EI)):铰接梁的挠度可以通过公式计算,其中F为外力作用在梁上的力,l为铰接梁的长度,E为横截面的弹性模量,I为横截面关于挠曲轴的转动惯量。
10.压缩应力(σc):压缩应力是材料在受到压缩力作用下的应力,可以表示为σc=F/A,其中F为材料受到的压缩力。
材料力学基础
![材料力学基础](https://img.taocdn.com/s3/m/ed8fb2a2541810a6f524ccbff121dd36a32dc49b.png)
材料力学基础材料力学是研究材料内部结构与性能之间关系的学科,它提供了理解和预测材料行为的基础。
在本文中,我们将介绍材料力学的基本概念和原理,以及材料力学在工程领域中的应用。
一、材料力学概述材料力学是工程力学的一个重要分支,研究材料内部原子与分子之间力的作用和材料在外力作用下的响应。
它涉及到材料的强度、刚度、断裂等性能,对于设计和制造高性能材料和结构具有重要意义。
二、材料力学的基本概念1. 应力和应变应力指物体单位面积上的力,可以分为正应力和剪应力。
应变指物体在受到力作用下产生的形变程度,可以分为线性应变和剪切应变。
2. 弹性行为当材料受力作用时,如果能够恢复到原始形状,我们称之为弹性变形。
弹性行为遵循胡克定律,即应力与应变成正比。
3. 塑性行为当材料受到较大应力作用时,会发生塑性变形,材料无法完全恢复到原始形状。
塑性行为与应力应变曲线的屈服点有关。
4. 破坏行为当应力达到材料的极限时,材料会发生破坏,破坏形式可以是断裂、脆断等。
三、材料力学的应用1. 材料设计与优化通过材料力学的研究,可以了解材料的强度和刚度等性能,为材料的设计和优化提供依据。
例如,在航空航天领域,需要开发高强度和轻量化的材料,以提高飞机的性能。
2. 结构分析与设计材料力学也被广泛应用于结构分析与设计中。
通过对材料的力学性能及受力分析,可以计算结构的应力、应变和变形情况,进而评估结构的安全性和可靠性。
3. 材料损伤与断裂研究材料的损伤与断裂行为,有助于了解材料的强度极限和疲劳寿命。
在工程实践中,需要对材料进行断裂韧性和疲劳寿命的测试和评估,以确保结构的安全使用。
4. 材料加工和成形材料力学对于材料的加工和成形过程也具有重要意义。
通过了解材料的力学行为,可以为材料的加工过程提供指导,确保材料的成形质量和工艺可靠性。
总结:材料力学作为研究材料行为的基础学科,对于工程领域具有重要意义。
通过研究材料的力学性能,可以为材料的设计、结构分析、材料损伤与断裂等问题提供基础知识和实用工具。
材料力学的基本概念
![材料力学的基本概念](https://img.taocdn.com/s3/m/686bb6482a160b4e767f5acfa1c7aa00b52a9d6b.png)
三、胡克定律 应力 正应力 切应力
正应变 应变
切应变
1、单向应力状态:
E
E 称为弹性模量
2、纯剪切
G
G 称为切变模量
ε :M点沿Ma方向的正应变。
正应变:即单位长度的变形量。无量纲量,其 物理意义是构件上一点沿某一方向变形量的大小。
切应变:即一点单元体两棱边直 角的改变量。无量纲量,单位为: rad
思考题
二、单向应力、纯剪切与切应力互等定理 在构件的同一截面上,不同点的应力一般不同,
同时,在通过同一点的不同方位的截面上,应力 一般也不同。 最基本、最简单的两种形式:单向应力状态和纯剪切。
1)截:欲求某一截面的内力, 沿该截面将构件假想地截成两 部分。 2)取:取其中任意部分为研 究对象,而弃去另一部分。
3)代:用作用于截面上的内 力,代替弃去部分对留下部分 的作用力。 4)平:建立留下部分的平衡 条件,确定未知的内力。
3.应力
定义:横截面上单位面积的内力集
度。
pm
F A
pm —— 在ΔA上的平均应力,矢量。
pLeabharlann limA0pm
lim
A0
F A
dF dA
M A
p —— M点的应力,矢量。
垂直于截面的分量——正应力—— 相切于截面的分量——切应力——
国际单位制:Pa(N/m2)、 MPa 、GPa
5.应变
在变形固体中取一微单元体。 = u s
:平均线应变(线段Ma单位长度的 平均变形)。 lim u s0 s
材料力学笔记整理
![材料力学笔记整理](https://img.taocdn.com/s3/m/a507cdf5a300a6c30d229f5c.png)
a. 数值上等于截面侧所有扭转外力偶矩代数和
分区 第二章 的第 3 页
方向:右手螺旋,外法线方向为正 6) 扭矩图
a. 数值上等于截面侧所有扭转外力偶矩代数和 b. 外力偶矩转向与正扭矩相反为正
3、平面弯曲梁的内力 a. 受力特征:外力垂直于轴线 b. 变形特征:轴线由直线变为曲线 c. 横向荷载 d. 梁:以弯曲变形为主 e. 平面弯曲: i. 对称弯曲 ii. 不对称弯曲 f. 梁的计算简图: i. 梁 ii. 荷载 iii. 支座 1) 滚动铰支座 2) 固定铰支座
分区 第二章 的第 4 页
1) 写平衡方程,求支座约束力 2) 列弯力,弯矩方程 3) 求各控制截面弯力/弯矩值 4) 画图
5、梁的平衡微分方程 1) 导出: 2) 平衡微分方程
q(x):荷载集度
a. 剪力图任一点切线斜率=该点荷载集度 b. 弯矩图任一点切线斜率=该点截面剪力 c. 弯矩图凸向=分布荷载作用方向 3) 推论: a. q(x)=C,剪力图为直线,弯矩图为二次曲线 b. 无载荷,剪力图为水平线,弯矩图为直线 c. 集中力作用点,剪力图突变,(等于集中力的大小),弯矩图有折点 d. 集中力偶,弯矩图突变(等于集中力偶大小),剪力图不变 e. 最大弯矩可能位置:
第一章:材料力学基本概念
一、基本概念 1. 材料力学研究对象是变形杆件,仅研究弹性体的变形 2. 构件 a. 杆件:长度远大于横向尺寸 i. 直杆 ii. 折杆/曲杆 iii. 等截面杆 iv. 变截面杆 b. 板(壳) c. 实体 3. 设计要求 a. 强度:构件抵抗破坏的能力 塑性变形 b. 刚度:构件抵抗变形的能力 弹性变形 c. 稳定性:在荷载作用下保持平衡形式不突然发生转变 4. 可变形固体(变形固体) a. 变形固体的变形: i. 弹性变形 ii. 塑性变形 iii. 只发生弹性变形——弹性体 b. 变形固体的假设 i. 连续性假设:组成固体的物质不留空隙地充满了固体的体积 ii. 均匀性假设:组成固体的物质在物体内均匀分布且在各处具有相同的力学性能 (有助于将小试样测得的力学性能作为材料的力学性能) iii. 各向同性假设:材料沿任何方向力学性能相同 iv. 小变形假设:变形远小于原始 5. 杆件内力与截面法 a. 附加内力(内力):外力引起,与变形同时产生,随外力变化而变化 b. 截面法:一分为二——确定内力——静力平衡 c. 力系的简化理论(内力)——内力主矢,内力主矩 d. 拉力为正,压力为负 6. 杆件变形基本形式 a. 轴向拉伸/压缩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.强度:抵抗破坏的能力;刚度:抵抗变形的能力;稳定性:构建抵抗失稳、维持原有平衡状态的能力。
2.材料的三个基本假设:连续性假设、均匀性假设、各向同性假设变形的两个基本假设:小变形假设、线弹性假设3.基本变形:轴向拉伸(压缩)、剪切、扭转、弯曲。
4.内力:因外力作用而引起的物体内部各质点相互作用的内力的该变量,即由外力引起的“附加内力”,简称内力。
5.应力:受力杆件在截面上各点处的内力的大小和方向(一点处分布内力的集度),来表明内力左右在该点处的强弱程度。
6.低碳钢拉伸四个阶段:弹性阶段、屈服阶段(滑移线)、强化阶段、紧缩阶段。
7.冷作硬化:在常温下降钢材拉伸超过屈服阶段,卸载再重新加载时,比例极限提高而塑性降低的现象(提高强度,降低塑性)。
8.应力集中:由于截面尺寸突然改变而引起的局部应力急剧增大的现象。
9.轴:工程中常把以扭转为主要变形构件。
10.扭转;杆件两端受到两个作用面垂直于杆轴线的力偶的作用,两力偶大小相等,转向相反,使杆的各截面绕轴线做相对转动产生的变形。
11.切应力互等定理:在单元体相互垂直的两个平面上,沿垂直于两面交线作用的切应力必然成对出现,且大小相等,方向共同指向或背离该两面的交线。
12.梁:凡是以弯曲变形为主要变形的构件通常称为梁。
13.弯曲:在一对转向相反,作用在杆的纵向平面内的外力偶作用下,直杆将在该轴向平面内发生弯曲,变形后的杆轴线将弯成曲线,这种变形形式称为弯曲。
14.叠加原理:几个外力共同作用所引起的某一量值(支座反力,内力,应力,变形,位移值)等于每个外力单独作用所引起的该量量值的代数和,这是力学分析的一个普遍原理,称为叠加原理。
15.纯弯曲:平面弯曲梁的横截面上,只有弯矩,而无剪力。
横力弯曲:既有弯矩又有剪力的弯曲。
16.中性层:由于变形的连续性,纵向纤维从受压缩到受拉伸的变化之间,必然存在着一层既不受压缩、又不受拉伸的纤维,这层纤维称为中性层。
17.挠度:用垂直于梁轴线的线位移代表横截面形心的线位移。
转角:绕本身的中性轴转过一个角度。
18.应力状态:受力构件内一点处各个不同方位截面上的应力的大小和方向情况,称为一点出的应力状态。
19.单元体:为了研究受力构件一点处的应力状体,可围绕该点取出一微小,正六面体,称为单元体。
20.主平面、主应力:对于受力构件内任一点,总可以找到三对相对垂直的平面,在这些面上只有正应力而没有切应力,这些切应力为零的平面的平面称为主平面,其上正应力称为主应力。
21.截面核心:压杆横截面上只产生压应力时压力作用区域。
(对于偏心受压构件,为避免截面产生拉应力,要求偏心压力作用在横截面性心附近的某个区域内,此区域称为截面核心)22.临界压力:23.失稳:压杆从稳定平衡状态转化为不稳定平衡状态,这种现象称为丧失稳定性,简称失稳。
材料力学的简答题1、(中)材料的三个弹性常数是什么?它们有何关系?材料的三个弹性常数是弹性模量E,剪切弹性模量G和泊松比μ,它们的关系是G=E/2(1+μ)。
2、何谓挠度、转角?挠度:横截面形心在垂直于梁轴线方向上的线位移。
转角:横截面绕其中性轴旋转的角位移。
3、强度理论分哪两类?最大应切力理论属于哪一类强度理论?Ⅰ.研究脆性断裂力学因素的第一类强度理论,其中包括最大拉应力理论和最大伸长线应变理论;Ⅱ. 研究塑性屈服力学因素的第二类强度理论,其中包括最大切应力理论和形状改变能密度理论。
4、何谓变形固体?在材料力学中对变形固体有哪些基本假设?在外力作用下,会产生变形的固体材料称为变形固体。
变形固体有多种多样,其组成和性质是复杂的。
对于用变形固体材料做成的构件进行强度、刚度和稳定性计算时,为了使问题得到简化,常略去一些次要的性质,而保留其主要性质。
根据其主要的性质对变形固体材料作出下列假设。
1.均匀连续假设。
2.各向同性假设。
3.小变形假设。
5、为了保证机器或结构物正常地工作,每个构件都有哪些性能要求?强度要求、刚度要求和稳定性要求。
6、用叠加法求梁的位移,应具备什么条件?用叠加法计算梁的位移,其限制条件是,梁在荷载作用下产生的变形是微小的,且材料在线弹性范围内工作。
具备了这两个条件后,梁的位移与荷载成线性关系,因此梁上每个荷载引起的位移将不受其他荷载的影响。
7、列举静定梁的基本形式?简支梁、外伸梁、悬臂梁。
8、列举减小压杆柔度的措施?(1)加强杆端约束(2)减小压杆长度,如在中间增设支座(3)选择合理的截面形状,在截面面积一定时,尽可能使用那些惯性矩大的截面。
9、欧拉公式的适用范围?只适用于压杆处于弹性变形范围,且压杆的柔度应满足:λ≥λ1= 10、列举图示情况下挤压破坏的结果?一种是钢板的圆孔局部发生塑性变形,圆孔被拉长;另一种是铆钉产生局部变形,铆钉的侧面被压扁。
11、简述疲劳破坏的特征?(1)构件的最大应力在远小于静应力的强度极限时,就可能发生破坏;(2)即使是塑性材料,在没有显著的塑性变形下就可能发生突变的断裂破坏;(3)断口明显地呈现两具区域:光滑区和粗糙区。
12、杆件轴向拉伸(压缩)时的强度条件可以解决哪几面的问题?(1)强度校核。
已知杆件的尺寸、承受的载荷以及材料的许用应力,验证强度条件不等式是否成立。
(2)截面设计。
已知杆件承受的载荷以及材料的许用应力,确定杆件的横截面尺寸,再由横截面积进而计算出相关的尺寸。
(3)确定许可载荷。
已知杆件的尺寸及材料的许用应力,确定结构或机器的最大载荷,得到最大轴力后,再由平衡条件确定机器或结构的许可载荷。
13、在推导纯弯曲正应力公式时,作了哪些基本假设?平面假设:梁弯曲变形后,其横截面仍然保持为一平面,并仍与变形后梁的轴线垂直,只是转了一个角度。
这个假设称为平面假设。
14、正应力的“正”指的是正负的意思,所以正应力恒大于零,这种说法对吗?为什么?这种说法不对。
正应力的“正”指的是正交的意思,即垂直于截面。
其本身有正负规定:拉为正,压为负。
15、简述梁弯曲时,横截面上的内力剪力和弯矩的正负符号的规定?(1)剪力如对梁段内任意点有产生顺时针转向趋势为正,反之为负。
(2)弯矩如使梁段弯曲变形的下凸者为正,反之为负。
16、试述影响构件疲劳极限的因素?因素:(1)构件的外形的影响(2)构件尺寸的影响(3)表面质量的影响(4)表面强度的影响。
17、何谓弹性变形和塑性变形?弹性变形——载荷撤除后,可完全恢复的变形塑性变形——载荷撤除后,不可恢复的变形18、试简述提高梁高弯曲强度的主要措施。
(1)选用合理的截面(2)采用变截面梁(3)适当布置载荷和支座位置19、内力和应力有何区别?有何联系?(1)两者概念不同:内力是杆件收到外力后,杆件相连两部分之间的相互作用力:应力是受力杆件截面上某一点处的内力分布集度,提及时必须明确指出指出杆件、截面和点的位置(2)两者单位不同:内力——KN、KN·m,同力或力偶的单位;应力——N/m2或N/mm2,Pa(帕)或MPa(兆帕)(3)两者的关系:整个截面上各点处的应力总和等于该截面上的内力。
在弹性范围内,应力与内力成正比。
20、为什么不用危险应力作为许用应力?不允许超过的应力值统称为极限应力,也叫危险应力。
为了保证构件能安全地工作,还须将其工作应力限制在比极限应力(危险应力)更低的范围内,也就是将材料的破坏应力(危险应力)打一个折扣,即除以一个大于1的系数n以后,作为构件工作应力所不允许超过的数值,这个应力值称为材料的许用应力。
如果直接把危险应力作为许用应力,构件破坏的几率大些,不能保证构件充分的安全。
21、当传递的功率不变时,改变轴的转速对轴的强度和刚度有什么影响?M=9550N/n,τ=T/Wτ≤[τ] Φ=T/GIP×180/π≤[Φ]。
①n提高,M降低;T降低,则τ、Φ都降低,提高了轴的强度和刚度。
②n降低,M提高;T提高,则τ、Φ都提高,降低了轴的强度和刚度。
22、何为主应力?何为主平面?剪应力等于零的平面,叫主平面;主平面上的正应力叫主应力。
23、材料有哪两种基本破坏形式?铸铁试件的扭转破坏,属于哪一种破坏形式?各种材料因强度不足而发生的破坏形式是不同的,但主要的破坏形式有两类,一是屈服破坏,另一类是断裂破坏。
试件受扭,材料处于纯剪切应力状态,在试件的横截面上作用有剪应力,同时在与轴线成±450的斜截面上,会出现与剪应力等值的主拉应力和主压应力。
低碳钢的抗剪能力比抗拉和抗压能力差,试件将会从最外层开始,沿横截面发生剪断破坏,而铸铁的抗拉能力比抗剪和抗压能力差,则试件将会在与杆轴成450的螺旋面上发生拉断破坏。
铸铁试件的扭转碱坏,属于断裂破坏.24、强度理论解决问题的步骤?解决问题的步骤:如果一点处于复杂应力状态下,可以先求出该点处的三个主应力σ1,σ2和σ3。
它们可以计算出与某个强度理论相应的相当应力σxd,则强度条件要求σxd≤[σ]。
25、什么事失效?材料力学中失效包括哪几种形式?不能保持原有的形状和尺寸,构件已不能正常工作,叫失效。
材料力学中的失效包括强度失效、刚度失效和稳定性失效三种。
26、如何解释超静定问题?未知数多于可被应用的独立平衡方程数,不能用静力学平衡方程完全确定全部未知数的问题。
27、实际挤压面是半圆柱面时,计算挤压应力时如何确定挤压面的面积?是否按半圆柱面来计算面积?挤压面是半圆柱面时,挤压面面积按其正投影计算。
28、拉(压)杆通过铆钉连接时,连接处的强度计算包括哪些计算?包括(1)铆钉的剪切强度计算;(2)铆钉的挤压强度计算:(3)拉(压)杆的抗拉(压)强度计算。
29、什么是塑性材料和脆性材料?一般把延伸率大于5%的金属材料称为塑性材料(如低碳钢等)。
而把延伸率小于5%的金属材料称为脆性材料(如灰口铸铁等)。
在外力作用下,虽然产生较显著变形而不被破坏的材料,称为塑性材料。
在外力作用下,发生微小变形即被破坏的材料,称为脆性材料。
30、30.简述应力集中的概念?实际上很多构件由于结构或工艺等方面的要求,一般常有键槽、切口、油孔、螺纹、轴肩等,因而造成在这些部位上截面尺寸发生突然变化。
这种由于截面尺寸的突变而产生的应力局部骤增的现象,工程上称为应力集中。
1、低碳钢的拉伸试验答:使用试验机及相关的试件设备仪器绘制出试件的拉伸图,即:P-△L曲线,形象的饭引出低碳钢材料的变形特点以及各阶段受力和变形的关系,并分析得出低碳钢的相关参数,由此来分析判断低碳钢材料的弹性与塑性性能与承载能力。
试验过程分为四个阶段:1.弹性阶段;2.屈服阶段;3.强化阶段;4.颈缩阶段。
综上:分析低碳钢材料的变形过程,通过绘制并分析P-△L曲线以及相关的参数,求解得到低碳钢材料的强度极限、拉伸强度极限、延伸率和截面收缩率。
2、为什么轴向拉伸时,横截面的正应力分布式平均分布的。