全等三角形复习课 教案

合集下载

人教版数学八年级上册第十二章全等三角形复习教案--构造全等三角形

人教版数学八年级上册第十二章全等三角形复习教案--构造全等三角形

全等三角形复习 —构造全等三角形一、教学目标:1、学生能依据题目条件添加适当的辅助线,构造全等三角形.2、经历猜想论证的过程,体会由特殊到一般的探究问题的方法,感悟全等变换在研究几何问题中的作用.3、通过探究激发学生的探究意识,激发学生的学习兴趣. 二、教学重难点:如何添加辅助线构造全等三角形.三、学情分析1、学生已有知识:全等三角形,三种全等变换(平移、轴对称、旋转);2、学生基本情况:对图中没有直接给出全等三角形,需要通过添加辅助线构造全等三角形求角的度数存在一定的障碍.3、在复习了全等三角形的性质、判定及简单应用的基础上,进一步复习全等三角形的常考做题技巧--如何构造全等三角形 四、教学过程 活动1 出示问题问题1 如图,四边形ABCD 中AD=AB ,90DAB BCD ∠=∠=︒.求ACB ∠的度数.【师】出示问题 【生】=45ACB ∠︒【师】追问1“=45ACB ∠︒”这个结论是怎样得到的?【设计意图】引导学生用度量、特殊化等方法探究结论,在这个过程中体会变化过程中的不变量——“ACB ∠=45︒”.【活动2】分享与提升 【生】展示做法 方法1:过点A 作AF ⊥BC 于F ,AE ⊥CD 延长线于E ,90AFB E ∴∠=∠=︒. 90DAB BCD ∠=∠=︒, 180B ADC ∴∠+∠=︒.又180ADE ADC ∠+∠=︒,B ADE ∴∠=∠.在△ABF 和△ADE 中,DBE BAFB E B ADE AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△ADE (AAS ). ∴AF=AE∴112452BCD ∠=∠=∠=︒. 【小结】这种方法是从结论“ACB ∠=45︒”出发,得出CA 为ACD ∠的平分线,运用角平分线的轴对称性构造全等三角形解决问题.方法2: 延长CB 到点C’,使C’B=CD ,连接AC ’ 易证△AC ’B ≌△ACD 得AC ’=AC得∠C ’=∠ACB =45°教师依据学生的回答,适时进行点评.【小结】题目中出现“AD=AB ”可能有两种解决办法: 1、利用等腰三角形;2、利用全等三角形.依据已知条件和目前已有的知识选择第二种办法解决.【设计意图】通过两种方法的分析,学生体会全等变换在研究几何问题中的作用,能依据题目中的条件添加适当的辅助线,构造全等三角形.追问2 在以上的几种方法中,已知条件“90DAB BCD ∠=∠=︒”起到了怎样的作用? 【分析】90AFB E ∴∠=∠=︒. 90DAB BCD ∠=∠=︒,180B ADC ∴∠+∠=︒.又180ADE ADC ∠+∠=︒,B ADE ∴∠=∠.即互补的两个角转化为了等角.E BB'B【师生】共同分析以上几种方法,体会从已知条件“90DAB BCD ∠=∠=︒”入手解决问题的方法.小结与思考 课堂小结如何添加辅助线构造全等三角形1、 出现等腰直角三角形(共端点等线段)时怎么构造?2、 出现角平分线时怎么构造?3、 出现互补角时怎么构造?思考1 如图,这样可以得到结论吗?B思考2 如图,四边形ABCD 中AD=AB ,∠DAB +∠BCD =180°.求证:CA 平分∠DCB .【设计意图】通过小结,学生梳理本节课所学内容和研究方法,体会全等变换在研究几何问题中的作用.五、课后作业把本节课不懂之处整理成笔记。

人教版八年级数学上学期 第十二章 《全等三角形》章末复习名师教案

人教版八年级数学上学期 第十二章 《全等三角形》章末复习名师教案

°.
【知识点】三角形全等的性质;三角形内角和定理. 【思路点拨】由△ABC≌△A′B′C′,其中∠C′=24°可得∠C=24°,所以∠ B=180°-∠A-∠C=180°-36°-24°=1200 【解答过程】解:∵△ABC≌△A′B′C′, ∴∠C=∠C′=24° ∵∠A+∠B+∠C=1800
∠A=36° ∴∠B=180°-∠A-∠C=180°-36°-24°=1200 【答案】1200 14.如图 BC=EF,AC=DF,要证明△ABC≌△DEF,还需添加一个条件: (1)若以“ ”为依据,需添加的条件是 ; (2)若以“ ”为依据,需添加的条件是 .
【考点】全等三角形的判定与性质. 【思路点拨】延长 BA 交 CE 的延长线于 F,证明△BCE≌△BFE,由全等可证 CE=EF, 再证△ACF≌△ABD,可得 BD=CF 【数学思想】截长补短. 【解答过程】 证明:延长 BA 交 CE 的延长线于 F, ∵BE 平分∠ABC,CE⊥BE, ∴△BCE≌△BFE, ∴CE=EF, ∵在△ABC 中,∠BAC=90°,CE⊥BE, ∴∠FCA=∠ABD, 又∵ AB=AC ∠FAC=∠BAD ∴△ACF≌△ABD, ∴BD=CF, ∴BD=2CE.
2
三、章末检测题
一、选择题 (每题 4 分,共 48 分)
1.如图,在△ABC 和△DEF 中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍
然不能证明△ABC≌△DEF,这个条件是( )
A.∠A=∠D
B.BC=EF
C.∠ACB=∠F
D.AC=DF
【知识点】三角形全等的判定 【思路点拨】已知有一条边和相邻的一个角对应相等,可以添∠A=∠D(依据 ASA) 或∠ACB=∠F(依据 AAS),也可以添边 BC=EF(依据 SAS) 【解答过程】选项 A 的依据为 ASA; 选项 B 的依据为 SAS;选项 C 的依据为 AAS; 选项 D 不能判断两个三角形全等. 【答案】D 2.下列说法正确的是( ) A.周长相等的两个三角形全等; B.有两边和其中一边的对角对应相等的两个三角形全等; C.面积相等的两个三角形全等; D.有两角和其中一角的对边对应相等的两个三角形全等. 【知识点】三角形全等的判定和性质. 【思路点拨】三角形全等的判定方法有:SSS;SAS;AAS;ASA;HL. 【解答过程】选项 A 周长相等不能判断三角形全等;选项 B 两边和一个角对应相 等,只能是两边和两边的夹角对应相等才能判定三角形全等;选项 C 面积相等的 两个三角形不一定全等;选项 D 对,依据为 AAS.

初中数学人教八年级上册(2023年更新)第十二章 全等三角形全等三角形 教案

初中数学人教八年级上册(2023年更新)第十二章 全等三角形全等三角形  教案

全等三角形的判定复题课教学目标:熟练运用适当的方法判定两三角形全等通过探究与交流培养学生几何逻辑思维能力让学生感受和发现数学中的几何图形直观美教学重点:能够判定两个三角形的全等教学难点:能够利用条件熟练的应用适当的方法迅速的解题教学过程:教学环节、内容、步骤师生互动策划备注(活动目的)教师活动学生活动引入展导知识梳理:引导学生复习全等三角形的判定方法1、通常用于判定两三角形全等的一般方法有方法有种,分别简记为____,______,____ ,____2、对于直角三角形(即Rt△),除了一般方法外:当两直角三角形有一组斜边和直角边分别相等时,两三角形______,简记______。

3、全等三角形的______相等,______相等。

回顾旧知,为后面的学习埋下伏笔主题展导1.合作探究2.学生展评证明全等三角形全等的基本思路:一、挖掘“隐含条件”判全等引导学生总结:公共边,公共角,对顶角这些都是隐含的边,角相等的条件思考:(1)已知两边:SSS, SAS, HL(2)已知两角:ASA, AAS(3)已知一边一角:SAS, ASA,AAS, HL1.如图(1),AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由2.如图(2),点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB若∠B=20°,CD=5cm,则∠C= __,BE=__,说说理由.3.如图(3),AC与BD相交于O,若OB=OD,∠A=∠C,若AB=3cm,则CD= __. 说说理由.学生通过自己探讨获得新知,使学生成为学习的主体,使学生学会学习,交流与合作。

3. 教师指导4. 反馈练习5.拓展延伸二、熟练转化“间接条件”判全等引导学生总结:等量加等量和相等,等量减等量差相等,都是用来间接找边和角相等的方法!5,AB=AC,DB=DC,F是AD的延长线上的一点,试说明:BF=CF.能力提升:如图,在△ABC中, AC=BC,∠ACB=90°, ∠CAB的角平分线AE交边CB于E点,过E点作EF⊥AB于F,已知AB等于10㎝,求△EFB的周长?课后闯关: 略4.如图在△ABC、△ADE中∠B=∠D,AC=AE, 且∠CAE=∠BAD,1.独立思考2.小组讨论3.展示成果1.独立思考2.小组讨论3.展示成果略在教师的指导下主动构建知识的过程。

第十二章全等三角形章末复(教案)

第十二章全等三角形章末复(教案)
6.章末总结与拓展
-对全等三角形的知识点进行梳理
-引导学生探讨全等三角形在其他学科领域的应用
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的判定与性质的探讨,使学生能够运用逻辑思维进行推理,形成严谨的证明过程。
2.提升学生的空间想象力:通过全等三角形的作图与分析,培养学生的空间想象力,提高对几何图形的理解与识别能力。
2.全等三角形的性质
-对应角相等
-对应边相等
3.应用全等三角形解决实际问题的方法
-识别图形中的全等三角形
-利用全等三角形的性质进行计算
4.全等三角形的作图
-已知两边一角作全等三角形
-已知两角一边作全等三角形
5.综合习题
-设计具有代表性的习题,巩固全等三角形的判定与性质
-结合生活实际,设计应用题,培养学生的实际应用能力
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等三角形的基本概念。全等三角形是指在大小和形状上完全相同的两个三角形。它是解决几何问题的重要工具,广泛应用于工程、建筑等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了全等三角形在实际中的应用,以及它如何帮助我们解决问题。
-例:给出一个三角形ABC,其中AB=AC,点D是BC上的一个点,且BD=DC。要求证明三角形ABD全等于三角形ACD。
-突破方法:引导学生观察图形,识别出已知信息,然后选择合适的判定方法(SSS或SAS)进行证明。
-难点二:全等三角形的作图。学生在根据给定条件作全等三角形时,可能会对如何准确画出全等图形感到困难。
6.培养学生的几何审美观念:通过对全等三角形的学习,使学生感受几何图形的和谐美,提高对几何美的鉴赏能力。

最新人教版初中八年级上册数学第十二章《全等三角形(小结复习课)》精品教案

最新人教版初中八年级上册数学第十二章《全等三角形(小结复习课)》精品教案

Q
P
B
C
本题源自《教材帮》
深化练习 3
如图,已知△ABC中,AB=AC=10,BC=8,点D为AB的中点,点P在线段BC上以每秒
3个单位长度的速度由点B向点C运动,同时点Q在线段CA上由点C向点A以每秒a个单
位长度的速度运动,设运动时间为t秒.
A
解:(1)由题意得:BP=3t.
∵BC=8,
∴CP=BC-BP=8-3t.
A
∠ACN=∠M+∠N =80° ,∠BCN=∠ACB-∠ACN=20° .
M
C
本题源自《教材帮》
重点解析 6
动脑想一想,动手练一练
6、如图,沿着AM折叠,使得点D落在BC的N点处,如果AD=7cm,DM=5cm,
∠DAM=30°,则AN、NM的长度以及∠NAM的度数分别是多少?
A
D
解:∵△ADM沿着AM折叠得到△ANM,
∴△BCD的面积和△ACE的面积相等.
∴四边形AECD的面积
=△ACD的面积+△ACE的面积
=△ACD的面积+△BCD的面积 =△ABC的面积= 1 ×4×4=8cm2.
2
D
C
B
本题源自《教材帮》
深化练习 1
如图,已知△ABD≌△ACE,点B、D、E、C在同一条直线上.
(1)∠BAE和∠CAD有什么关系?说明理由; A
位长度的速度运动,设运动时间为t秒.
A
(1)求CP的长(用含有t的式子表示); (2)若以点C、P、Q为顶点的三角形和以点B、D、P 为顶点的三角形全等,且∠B和∠C是对应角,求a和t 的值.
D
Q
P
B
C
本题源自《教材帮》

青岛版八年级上册数学 第一章 《全等三角形复习》教案设计

青岛版八年级上册数学 第一章 《全等三角形复习》教案设计

第一章 《全等三角形复习》教案教材分析:本章主要学习了全等形、全等三角形的概念,全等三角形的判定方法及尺规作图,其中全等三角形的判定、基本作图和用尺规作三角形是本章的主要内容。

通过复习和小结,应使学生进一步理解全等三角形的概念,能识别全等三角形的对应边和对应角,掌握全等三角形的四个判定方法,了解三角形的稳定性和四边形的不稳定性,能利用尺规完成两种基本作图:做一条线段等于已知线段,做一个角等于已知角,并会利用基本作图完成已知三边、两边及其夹角、两角及其夹边做三角形,了解上述作图道理,初步掌握基本的作图技能。

教学目标:1.了解图形的全等,经历探索三角形全等条件及性质的学习过程,掌握两个三角形全等的条件与性质.2.能用三角形的全等解决实际问题3.培养逻辑思维能力,发展基本的创新意识和能力教学重点难点:1.重点:掌握全等三角形的性质与判定方法2.难点:对全等三角形性质及判定方法的运用教学过程:1、全等三角形的概念及其性质1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形 .2)全等三角形性质:(1)对应边相等 (2)对应角相等(3)周长相等 (4)面积相等例1.已知如图(1),A B C ∆≌DCB ∆,其中的对应边:____与____,____与____,____与____,对应角:______与_______,______与_______,______与_______.例2.如图(2),若BOD ∆≌C B COE ∠=∠∆,.指出这两个全等三角形的对应边; 若ADO ∆≌AEO ∆,指出这两个三角形的对应角.(图1) (图2) ( 图3)例3.如图(3), ABC ∆≌ADE ∆,BC 的延长线交DA 于F ,交DE 于G,105=∠=∠AED ACB , 25,10=∠=∠=∠D B CAD ,求DFB ∠、DGB ∠的度数.2、全等三角形的判定方法1)三边对应相等的两个三角形全等 ( SSS )例1.如图,在ABC ∆中,90=∠C ,D 、E 分别为AC 、AB 上的点,且AD=BD,AE=BC,DE=DC.求证:DE ⊥AB .例2.如图,AB=AC,BE 和CD 相交于P ,PB=PC,求证:PD=PE.例3. 如图,在ABC ∆中,M 在BC 上,D 在AM 上,AB=AC , DB=DC .求证:MB=MC2)两边和夹角对应相等的两个三角形全等( SAS )例4.如图,AD 与BC 相交于O,OC=OD,OA=OB,求证:DBA CAB ∠=∠3)两角和夹边对应相等的两个三角形全等 ( ASA )例5.如图,梯形ABCD 中,AB//CD ,E 是BC 的中点,直线AE 交DC 的延长线于F ,求证:ABE ∆≌FCE ∆4)两角和夹边对应相等的两个三角形全等 ( AAS )例6.如图,在ABC ∆中,AB=AC ,D 、E 分别在BC 、AC 边上.且B ADE ∠=∠,AD=DE 求证:ADB ∆≌DEC ∆.3、尺规作图(1)尺规作图是指限定用无刻度的直尺和圆规作为工具的作图.(2)尺规作图举例例1.(长沙)如图,已知AOB ∠和射线O B '',用尺规作图法作A O B AOB '''∠=∠(要求保留作图痕迹).例2. 如图,Rt △ABC 中,∠C=90°, ∠CAB=30°, 用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形.(保留作图痕迹,不要求写作法和证明).4、课堂小结1)、注意三角形全等中的对应关系,灵活运用三角形全等的判定方法2)、证明线段相等或角相等,可以转化为证明三角形全等3)、关注公共线段、公共角、对顶角等隐含条件4)、尺规作图的应用 A B B 'O 'A BC C B A。

三角形全等判定复习课件

三角形全等判定复习课件

三角形全等判定复习课件一、教学内容本课件主要依据教材第十章“三角形全等判定”进行复习。

详细内容包括:SSS(SideSideSide)全等定理、SAS(SideAngleSide)全等定理、ASA(AngleSideAngle)全等定理、AAS(AngleAngleSide)全等定理以及直角三角形的判定方法HL(HypotenuseLeg)。

二、教学目标1. 熟练掌握三角形全等的四个判定方法,并能灵活运用。

2. 能够运用三角形全等判定解决实际问题,提高解决问题的能力。

3. 培养学生的空间想象能力和逻辑推理能力。

三、教学难点与重点重点:三角形全等的判定方法及运用。

难点:如何在实际问题中灵活运用三角形全等判定。

四、教具与学具准备1. 课件PPT2. 直尺、圆规、量角器3. 练习题五、教学过程1. 导入:通过展示实际生活中的全等三角形现象,激发学生兴趣,引入课题。

2. 讲解:复习三角形全等的判定方法,结合实例进行讲解。

a. SSS全等定理:三边对应相等的两个三角形全等。

b. SAS全等定理:两边和夹角对应相等的两个三角形全等。

c. ASA全等定理:两角和一边对应相等的两个三角形全等。

d. AAS全等定理:两角和一边对应相等的两个三角形全等。

e. HL全等定理:斜边和一直角边对应相等的两个直角三角形全等。

3. 例题讲解:讲解典型例题,引导学生运用全等判定方法解决问题。

4. 随堂练习:布置练习题,学生独立完成,教师进行讲解。

六、板书设计1. 三角形全等的判定方法:SSS、SAS、ASA、AAS、HL2. 典型例题及解题步骤3. 练习题及答案七、作业设计1. 作业题目:a. 已知三角形ABC中,AB=AC,BC=8cm,角A=60°,求三角形ABC的面积。

b. 在直角坐标系中,已知点A(2,3),B(4,0),C(0,1),判断三角形ABC是否为直角三角形。

2. 答案:a. 面积=16√3cm²b. 是直角三角形八、课后反思及拓展延伸1. 反思:本节课学生对三角形全等判定方法的掌握程度,以及对实际问题的解决能力。

全等三角形复习课教案

全等三角形复习课教案

《全等三角形复习》教学设计市桥中学 数学科 梁仲宁一、教学目标1、 使学生能综合运用三角形全等的各种识别方法解题。

2、 让学生学会从多角度,多方位观察图形。

3、 培养学生将生活实际问题转化为数学问题去思考。

4、 培养学生合作交流,自主探究的能力。

二、教学重点与难点重点难点:三角形全等的各种识别方法的综合运用。

三、教具准备电脑、实物投影、相关课件。

四、教学过程设计 (一)知识回顾利用课件回顾三角形全等的各种识别方法。

(SSS 、SAS 、ASA 、AAS 、HL )(二)师生互动,熟悉全等三角形识别方法的基础应用1、投影以下图形,提供开放的教学平台,让学生自主编题与解题。

(图1) (图2) (图3)2、提醒学生注意发掘图中的隐含条件(公共边、对顶角、公共角)。

3、如有需要,教师对学生所编题目作出适当补充。

DCBAA BCDOOABCDE(三)全等知识在其他知识领域中的应用1、测量如图河的宽度,某人在河 的对岸找到一参照物树木A,视线AB 与河岸垂直,然后该人沿河岸步行7米 到O 处,进行标记,再向前7米到D 处, 最后背对河岸向前步行15米到C 点, 此时A ,O ,C 三点恰好在同一视线上, 则河的宽度为_________米.2、直线l 经过正方形ABCD 的顶点B , 点A 、C 到直线l 的距离分别是3和4,则 正方形的边长是______________.3、如图,AB 是⊙O 的直径,BC 是⊙O 的 切线,D 是⊙O 上一点,且∠ABD= ∠C=30°, 求证:ΔADB ≌ ΔOBC4、 将平行四边形纸片ABCD 按如图方式 折叠,使点C 与点A 重合,点D 落到D'处, 折痕为EF. 求证ΔABE ≌ΔAD'F(四)掌握全等的变换思想,深化提高5、 将两个全等的等腰直角三角板按如图所示摆放,令两个三角形的斜边在同一直线上,C 为两个三角形的公共顶点,连结AE 、DB ,试猜想AE 与DB 的关系。

初中数学《全等三角形》教案优秀6篇

初中数学《全等三角形》教案优秀6篇
课前准备全等三角形纸片、三角板、
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

冯瑞刚,三角形全等

冯瑞刚,三角形全等

三角形全等复习教案 弥河初中 冯瑞刚一、教案背景1,面向学生: □中学 2,学科:数学 2,课时:13,学生课前准备: 二、教学课题1.了解图形的全等,经历探索三角形全等条件及性质的学习过程,掌握两个三角形全等的条件与性质。

2.能用三角形的全等和角平分线性质解决实际问题 3.培养逻辑思维能力,发展基本的创新意识和能力 三、教材分析/s/blog_60d65bfe0100fasy.html全等三角形是在学习了线段,角,平行线,对称图形的基础上,进一步对初中数学中几何部分内容的继续研究,也是为以后学习相似,学习四边形学习圆打下基础。

特别是下一步对相似的研究提供了基本的思路和方法。

四、教学方法应用了演示法,讨论法,启发法,练习法。

五、教学过程: 1、全等三角形的判定方法/view/7a294cfd910ef12d2af9e7aa.html 。

例1.已知如图(1),AB C ∆≌DCB ∆,其中的对应边:____与____,____与____,____与____,对应角:______与_______,______与_______,______与_______.例2.如图(2),若BOD ∆≌C B COE ∠=∠∆,.指出这两个全等三角形的对应边;若ADO ∆≌AEO ∆,指出这两个三角形的对应角。

(图1) (图2) ( 图3)例3.如图(3), ABC ∆≌ADE ∆,BC 的延长线交DA 于F ,交DE 于G ,105=∠=∠AED ACB ,25,10=∠=∠=∠D B CAD ,求DFB ∠、DGB ∠的度数.2.全等三角形的判定方法 1)、三边对应相等的两个三角形全等 ( SSS )例1.如图,在ABC ∆中,90=∠C ,D 、E 分别为AC 、AB 上的点,且AD=BD,AE=BC,DE=DC.求证:DE ⊥AB 。

2)两边和夹角对应相等的两个三角形全等( SAS )例2.如图,AD 与BC 相交于O,OC=OD,OA=OB,求证:DBA CAB ∠=∠3)、两角和夹边对应相等的两个三角形全等 ( ASA )例3.如图,梯形ABCD 中,AB//CD ,E 是BC 的中点,直线AE 交DC 的延长线于F求证:ABE ∆≌FCE ∆4)、两角和夹边对应相等的两个三角形全等 ( AAS )例4:如图,在AB C ∆中,AB=AC ,D 、E 分别在BC 、AC 边上。

直角三角形全等判定教案

直角三角形全等判定教案

直角三角形全等判定教案教案:直角三角形全等判定一、教学目标:1.知识与技能:学习直角三角形全等的判定方法,掌握直角三角形的性质和特点。

2.过程与方法:通过观察、比较和推理的方法,学会运用直角三角形全等的判定方法进行问题求解。

3.情感态度与价值观:培养学生观察、分析和解决问题的能力,提高学生的逻辑思维能力。

二、教学重点和难点:1.教学重点:直角三角形的全等判定方法。

2.教学难点:运用全等判定方法解决问题。

三、教学过程:步骤一:引入新知识(5分钟)1.激发学生兴趣,通过播放有关直角三角形的视频或图片,引起学生的兴趣和好奇心。

2.提问:你们对直角三角形有什么了解?它有什么特点?步骤二:探究全等判定方法(15分钟)1.教师出示两个直角三角形,并提问学生:观察这两个三角形,你们看出它们有什么相同的地方?2.让学生观察并比较这两个直角三角形的边长、角度等特点。

3.提示学生注意直角、斜边和两条直角边等特征,进一步引导学生总结直角三角形的全等判定方法。

步骤三:全等判定方法的学习(20分钟)1.教师向学生讲解直角三角形的全等判定方法,并通过实例进行解释。

2.学生跟随教师的指导,尝试用全等判定方法来判断一些直角三角形是否全等。

3.教师对学生的思考和解决方法进行点评。

步骤四:巩固和拓展(30分钟)1.教师设计一些练习题,让学生运用全等判定方法判断两个直角三角形是否全等。

2.学生进行小组活动,互相提问和讨论问题,共同解决问题。

3.教师对学生的答案进行点评和讲解,解决学生在解题过程中遇到的问题。

步骤五:归纳总结(10分钟)1.教师和学生共同总结直角三角形的全等判定方法,让学生复习和巩固所学的知识。

2.学生互相分享自己的思考和解题方法,加深对知识的理解和记忆。

步骤六:拓展延伸(10分钟)1.教师提供一些拓展题,让学生运用全等判定方法解决问题。

2.学生进行个人或小组活动,进行探究和解答问题。

3.学生对解题过程进行总结和分享。

全等三角形判定复习教案

全等三角形判定复习教案

全等三角形判定复习教案教案:全等三角形判定的复习一、教学目标:1.复习全等三角形的判定方法和性质。

2.掌握使用全等三角形的判定方法解决相关问题。

3.培养学生的逻辑思维能力和分析问题的能力。

二、教学重点:1.全等三角形的判定方法和性质。

2.全等三角形的相关题目解答。

三、教学难点:1.通过给出的条件判定三角形是否全等。

2.通过给出的三角形判定是否全等。

四、教学过程:Step 1:复习全等三角形的判定方法1.提问:回顾一下全等三角形的判定方法有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的判定方法有以下几种:a.SSS判定法:三边相等的两个三角形全等。

b.SAS判定法:两边和夹角相等的两个三角形全等。

c.ASA判定法:两角和边相等的两个三角形全等。

d.AAS判定法:两角和对边相等的两个三角形全等。

e.RHS判定法:直角边和斜边相等的两个三角形全等。

Step 2:练习全等三角形的判定方法1.提问:根据给出的条件,判断以下三角形是否全等。

a.△ABC≌△DEF,AB=DE,BC=EF,∠B=∠E。

b.△ABC≌△DEF,AB=DE,BC=DF,AC=EF。

c.△ABC≌△DEF,AC=DE,∠A=∠D,∠C=∠F。

2.学生回答:请学生根据给出的条件,结合全等三角形的判定方法,回答问题。

3.教师解释和点评:让学生进行回答,并解释判断的依据和结果。

Step 3:复习全等三角形的性质1.提问:回顾一下全等三角形的性质有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的性质包括以下几个方面:a.对应角相等:全等三角形的对应角相等。

b.对应边相等:全等三角形的对应边相等。

c.对应中线相等:全等三角形的对应中线相等。

d.对应角平分线相等:全等三角形的对应角平分线相等。

Step 4:练习全等三角形的性质1.提问:根据给出的全等三角形,判断下列几组线段是否相等。

a.AB≌DE,AC≌DF,∠B≌∠E,∠C≌∠F,AD≌DG,BE≌EH。

《全等三角形的复习课》教案

《全等三角形的复习课》教案

《全等三角形的判定复习课》教案老湾回族乡中心学校:吕梅一、教学目标1、了解判定两个三角形全等的5种方法,并能应用它们解决简单问题;2、学会用全等的方法证明线段(角)的相等,了解全等的证明思路;3、培养学生观察和理解能力,几何语言的叙述能力。

二、教学的重点和难点重点:学会用全等的方法证明线段(角)的相等。

难点:1:如何灵活运用合适的判定方法进行全等证明;2:初步认识并获得全等的证明思路。

三、教学过程(一)温故知新:(直接导入复习内容)学生回顾旧知识1、全等三角形的定义2、全等三角形的性质3、全等三角形的判定方法4、全等三角形的应用(二)基础训练已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC ≌ ΔDEF(1)如图一,若要以“SAS ”为依据,还缺条件 ____(2)如图一,若要以“ASA ”为依据,还缺条件____(3)如图一,若要以“AAS ”为依据,还缺条件____(4)如图二,若∠B=∠DEF=90°要以“HL ” 为依据,还缺条件_____图一 (三)探求新知例1:已知:如图AB=AE,∠B=∠E ,BC=ED , AF ⊥CD ,垂足为F ,求证:点F 是CD 的中点【变式训练】:已知:如图AB=AE,∠B=∠E ,BC=ED ,点F 是CD 的中点 , 求证:AF ⊥CD F DEA B C 图二例2 已知AD ∥BC , ∠1=∠2, ∠3=∠4, 直线DC 过点E 交AD 于D ,交BC 于C.求证:AD+BC=AB你还有其它的解题方法吗?【方法归纳】要证明两条线段的和与一条线段相等时常用的两种方法:1、截长法 :可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。

2、补短法 :将两线段中的一条延长,使延长部分等于另一线段,再证它与较长线段相等。

【变式训练】已知:AC 平分∠BAD ,CE ⊥AB ,垂足为E ,∠B+∠D=180°,求证:AE=AD+BE(四)课堂小结通过本节的学习,谈谈你在全等证明问题中的收获和经验。

全等三角形复习-教案

全等三角形复习-教案

**教育个性化辅导教案授课老师学生姓名课型一对一学科数学年级初二上课时间10:00-12:00 课题名称全等三角形知识点教学目标1.了解全等形及全等三角形的概念。

2.理解全等三角形的性质。

3.掌握全等三角形的判定。

4.灵活运用全等三角形的判定定理和性质定理,5证明简单的全等三角形问题。

6.掌握角平分线的性质与判定以及综合运用。

教学重点全等三角形的性质和条件以及所学知识的综合应用教学难点加强应用型与探究型题型训练课前检查作业完成情况:优□良□中□差□建议:第一章三角形全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等..;③三角形全等不因位置发生变化而改变。

2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

⑵全等三角形的周长相等、面积相等。

⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定:①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。

②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。

③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。

④边边边公理(SSS) 有三边对应相等的两个三角形全等。

⑤斜边、直角边公理(HL)有斜边和一条直0,吗,角边对应相等的两个直角三角形全等。

4、证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).⑵已知一边一角:①找一角(AAS或ASA);②找夹边(SAS).⑶已知两角:①找夹边(ASA);②找其它边(AAS).例题评析例1 已知:如图,点D、E在BC上,且BD=CE,AD=AE,求证:AB=AC.例2 已知:如图,A、C、F、D在同一直线上,AF=D C,AB=DE,BC=EF,求证:△ABC≌△DEF.AAB CD EDCBAO 1 234 例3已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:①△BEC ≌△DEA ;②DF ⊥BC .(2)达标检测1、如图,∠DCE=90o,CD=CE ,AD ⊥AC ,BE ⊥AC ,垂足分别为A 、B ,试说明AD+AB =BE.2 、如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ;(2)BO =DO .BC DEFA3、如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1) △ABC≌△AED;(2) OB=OE .4、已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.求证:OA=OD.5、已知:如图3-50,AB=DE,直线AE,BD相交于C,∠B+∠D=180°,AF∥DE,交BD于F.求证:CF=CD.学生对本次课的小结及评价1、本次课你学到了什么知识2、你对老师下次上课的建议⊙特别满意⊙满意⊙一般⊙差学生签字:课后小结教师签字:审阅签字: 时间:教学主管签字: 时间:出门测:一、选择题1.如图,已知△ACB≌△A'CB',若∠BCB'=30°,则∠ACA'的度数为( ) A.20°B.30°C.35°D.40°2.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取点M,N,使OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由做法得△MOC≌△NOC的依据是( )A.AAS B.SAS C.ASA D.SSS3.如图,在△ABC和△DEC中,已知AB=DE,还需要添加两个条件才能使△ABC≌△DEC,不能添加的一组是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D5.在如图所示的4×4的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数为( )A.330°B.315°C.310°D.320°课后作业:一、选择题(在每小题所给出的四个选项中恰有一项是符合题目要求的)1.下列条件中,不能判定△ABC≌△A′B′C′的是()A.AB=A′B′,∠A=∠A′,AC=A′C′B.AB=A′B′,∠A=∠A′,∠B=∠B′C.AB=A′B′,∠A=∠A′,∠C=∠C′D.∠A=∠A′,∠B=∠B′,∠C=∠C′2.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE 就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS3.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F4.如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A.全部正确 B.仅①和②正确 C.仅①正确 D.仅①和③正确5.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是()A.△ABD≌△CBD B.△ABC是等边三角形C.△AOB≌△COB D.△AOD≌△COD6.下列命题中,不正确的是()A.各有一个角为95°,且底边相等的两个等腰三角形全等B.各有一个角为40°,且底边相等的两个等腰三角形全等C.各有一个角为40°,且其所对的直角边相等的两个直角三角形全等D.各有一个角为40°,且有斜边相等的两个直角三角形全等二、填空题(不需写出解答过程,请把答案直接填写在相应位的置上)7.如图,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP= 时,才能使△ABC和△APQ全等.8.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中正确的是.9.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,∠1=30°,则∠2的度数为.10.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题(请在答题的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)11.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.12.如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.(1)求证:△CBD≌△CAE.(2)判断AE与BC的位置关系,并说明理由.13.如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于P.(1)求证:△ABE≌△CAD;(2)求∠PBQ的度数.。

5 全等三角形的判定 复习课 一等奖创新教案

5 全等三角形的判定 复习课 一等奖创新教案

5 全等三角形的判定复习课一等奖创新教案《全等三角形的判定复习课》教学设计教学内容:新湘教版八年级上册第2单元第5小节《全等三角形的判定》教学目标:熟练掌握全等三角形的判定方法。

能准确、灵活的运用三角形全等的判定方法解决问题。

3、通过变式练习提高分析问题和解决问题的能力。

训练学生解题的严谨性。

重、难点:重点:利用三角形全等的判定方法正确的解题。

难点:能准确、灵活的运用三角形全等的判定方法解决问题。

教法学法:讲练结合、小组合作教学手段;多媒体辅助教学教学过程:一、解读目标(2分钟)采用了课前将学习目标写在导学案上,课上让学生先齐读,教师再解析的方法来完成。

在这个环节中,让学生通过齐读,教师解读目标的过程在课的开始就明确本节课的学习目标及学习的重、难点,带着目标进行学习,为学生指明了学习的方向。

二、自主学习(6分钟)知识点梳理:能够两个三角形叫做全等三角形;全等三角形的对应边,对应角;三角形全等的判定方法(简写)、、、;的两个直角三角形全等,简写为。

简单应用(如图1所示):由DE=DG, 、DF=DF根据SAS可以判定△DEF≌△DGF;由、DE=DG、根据ASA可以判定△DEF≌△DGF;由、∠E=∠G、DE=DG,根据AAS可以判定△DEF≌△DGF;由DE=DG、、根据SSS可以判定△DEF≌△DGF;由∠E=∠G=90°、DF=DF、根据HL可以判定Rt△DEF≌Rt△DGF。

对这9个小问题的思考与解答,学生既能回顾学过的三角形全等的几种判定方法,又能通过图形明确三角形全等的具体条件。

三、合作探究挖掘“隐含条件”判定三角形全等例1 如图2所示,AB=CD,AC=BD,则△ABC≌△DCB吗?请说明理由。

熟练转化“间接条件”判定三角形全等例2 如图3所示,AE=CF,∠AFD=∠CEB,DF=BE,△AFD≌△CEB 吗?请说明理由。

“添加辅助线”判定三角形全等例3 如图4所示,AB=AE,∠B=∠E,BC=ED,AF⊥CD。

中考数学第五章《全等三角形》复习教案新人教版

中考数学第五章《全等三角形》复习教案新人教版

章节第五章课题全等三角形课型复习课教法讲练结合教学目标(知1。

了解图形全等的概念,能利用全等图形解决有关问题。

识、能力、教育)2.掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题.3.体会在证明过程中,所运用的归纳、转化等数学思想方法.教学重点掌握两个三角形全等的条件教学难点应用三角形的全等解决一些实际问题.教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1。

全等三角形的判定方法(1)三边对应相等的两个三角形全等,简写成“边边边”或“SSS".(2)两角和它们的夹边对应相等的两个二角形全等,简写成“角边角”或"ASA”(3)两角和其中一角的对边对应角相等的两个三角形全等,简写成“角角边"或“AAS”.(4)两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”. (5)有斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜过直角边定理"或“HL”.2。

全等三角形的性质:全等三角形的对应边相等,对应角相等.3.注意事项:(1)说明两个三角形全等时,应注意紧扣判定的方法,找出相应的条件,同时要从实际图形出发,弄清对应关系,把表示对应顶点的字母写在对应的位置上.(2)注意三个内角对应相等的两个三角形不一定全等,另外已知两个三角形的两边与一角对应相等的两个三角形也不一定全等.(二):【课前练习】1.如图,若△ABC≌△DEF,∠E等于( )A.30° B.50° C.60° D、100°2.如图,在△ABC中,AD⊥BC于 D,再添加一个条件____,就可确定△ABD≌△ACD3。

在下列各组几何图形中,一定全等的是( )A.各有一个角是45°的两个等腰三角形;B.两个等边三角形C.腰长相等的两个等腰直角三角形D.各有一个角是40°腰长都是5cm的两个等腰三角形4。

下列说法中不正确的是()A.有两角和其中一角的对边对应相等的两个三角形全等B.有两边和其中一边上的中线对应相等的两个三角形全等C.有一边对应相等的两个等边三角形全等D.面积相等的两个直角三角形全等5。

《三角形复习课》教案

《三角形复习课》教案
(3)三角形全等的条件与性质:掌握三角形全等的判定方法(SSS、SAS、ASA、AAS),理解全等三角形的性质。
举例:若两个三角形的三组对应边分别相等,则这两个三角形全等。
2.教学难点
(1)三角形内角和定理的应用:如何运用内角和定理解决实际问题,如求三角形未知角度等。
举例:已知三角形的两个内角,求第三个内角。
1.教学重点
(1)三角形的性质:熟练掌握三角形的定义、分类及性质,特别是三角形的内角和定理、三边关系。
举例:三角形内角和形与等边三角形的判定与性质:区分等腰三角形与等边三角形,了解它们的性质及应用。
举例:等腰三角形两腰相等,等边三角形三边相等,且对应角相等。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
《三角形复习课》教案
一、教学内容
《三角形复习课》教案
本节课我们将复习人教版八年级数学下册第七章《三角形》的相关内容。主要包括以下知识点:
1.三角形的定义、分类及性质;
2.三角形的内角和定理;
3.三角形的三边关系;
4.等腰三角形的性质与判定;
5.等边三角形的性质与判定;
6.三角形全等的条件与性质;
7.直角三角形的性质与判定。
4.培养学生的数学建模素养,通过等腰三角形、等边三角形和全等三角形的性质学习,使学生能够构建数学模型,解决相关问题。

全等三角形判定复习教案

全等三角形判定复习教案

11.2一般三角形全等的判定(复习)【学习目标】:1、熟记三角形全等的判定条件,能灵活使用各种方法判定两个三角形全等。

2、使用各种全等判定法实行说理。

【重点难点】:重点:灵活应用各种判定法识别全等三角形。

难点:判定三角形全等的准确的思维方法及准确的数学表述。

【教学过程】:一、预习作业(二)、基本练习:练习1、如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加条件A DB C3、 如图,点E 在AB 上,∠1=∠2,∠3=∠4,那么CB 等于DB 吗?为什么?4、如图,已知AB=AC ,∠B=∠C,∠BAC=∠DAE , 求证:△ABD ≌△ACE 。

5、如图,已知AB=AC ,∠B=∠C,∠BAE=∠CAD , 求证:△ABD ≌△ACE 。

练习2、如上图,点E 在AB 上,AC=AD ,请你添一个条件,使图中存有全等三角形,并予以证明。

A BC D E )1 ABC DE)2 ) (3 4 D A B E C AB DEC二、展示探究:(2)取BD 的中点O ,过O 作直线EF ,交AB 于E ,交CD 于F ,那么你能得出哪些结论?(3) 若将(2)中的直线EF 绕点O 旋转,且与直线AB 交于点E ,与直线CD 交于点F ,请问OE=OF 一定成立吗?说明理由。

3、如图,已知在Rt △ABC ,AB=AC ,∠BAC=90°,AN 是过点A 的任一条直线,BD ⊥AN 于D ,CE1、已知:AD=BC,AB=CD.求证:(1)∠A=∠C2、已知:AB//CD ,且AB=CD ,BF=DE 求证:AF//CE ;AE=CF 。

B A C D OA B C D E F⊥AN于E.(1)求证:DE=BD-CE(2)如将直线AN绕A点沿顺时针方向旋转,使它不经过△ABC的内部,再作BD⊥AN于D,CE⊥AN 于E,那么DE、DB、CE之间还存在等量关系吗?如存在,请证明你的结论.三、当堂检测:1、如图,在ΔABC和ΔDCB中,AC与BD相交于点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【教学重点】:把全等三角形全章系统化和全等三角形开放性问题。
【教学难点】:全等三角形开放性问题
【教学突破点】:提出问题让学生回忆已学知识,并通过相应练习进行巩固,最后学生用 图表小结来构建知识框架。
【教法、学法设计】:合作探究式分层次教学,教师引导归纳,学生以练习巩固为主。
【课前准备】:课件
【教学过程设计】:
第十一章 全等三角形复习课
【课题】:第十一章 全等三角形复习课 2(特色班)
【设计与执教者】:增城市新塘镇第一中学,刘宝芝,liu_baozhi@
【教学时间】:45 分钟
【学情分析】:全等三角形是研究图形的重要工具,学生只有掌握好全等三角形的内容, 并且能灵活地运用它们,才能学好四边形、圆等内容。学生已学习全等三角形的性质及各 种三角形全等的判定方法,并学会如何利用全等三角形进行证明。学生在七年级已学习证 明和证明格式的基础上,本学期要求学生能有理有据地推理证明,精练准确地表达推理过 程,但同时要注意坡度,循序渐进,明确证明的方向,同时注重联系实际,使学生易于理 解相关概念,并调动他们学习的积极性。
【教学目标】: (1)知识与技能目标:灵活运用三角形全等的判定、性质和角的平分线性质解决问题;体 会构建知识框架。 (2)过程与方法目标:让学生建立整章框架的过程,领会分析、总结的方法。 (3)情感与态度目标:在掌握知识的同时,关注学生在观察、思考、探究、交流中主动参 与的程度以及交流的意识,从而启迪思维,提高创新能力,培养团队合作精神。
巩固练习:
A组 1、如图,已知 AB=AD,要使△ABC≌△ADC,可增加条件 BC=DC , 理由是 SSS 定理。或∠BAC=∠DAC,SAS 或∠B=∠D=90°,HL. 2、如图,△ABC 中,∠C=90º,AD 平分∠CAB 交 BC 于点 D,DE⊥AB,垂足为 E, 且 CD=6cm,则 DE 的长为( B ) A、4cm B、6cm C、8cm D、10cm
E
及时运 用知识, 巩固练 习,让学 生体验成 功,为了 使学生实 现从掌握 知识到运 用知识的 转化,使 知识教育 与能力培 养结合起 来,设计 分层练习
D
F
3.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一
块完全一样的玻璃,那么最省事的办法是拿(
)去配.



3
4.如图,已知 MB=ND,∠MBA=∠NDC,下列哪些条件不能判定
的定 理
B
通过提 出问题的 方式使学 生回忆知 识
七、 相应 练习 三
1. 如图,在△ABC 中,∠C = 90°,AD 平分∠BAC,BC = 10 cm,BD = 6 cm, 及时运
则点 D 到 AB 的距离为___________
用知识,
巩固练
A
习,让学
生体验成
功,为了
使学生实
C
B
D
A
现从掌握 知识到运 用知识的
≌△CDN( )
A.∠M=∠N
B.AB=CD
C.AM=CN
D.∠AMB=∠NCD
△ABM
M
N
A
C
B
D
5.如图,AB=AD,BC=CD,AC 和 BD 相交于 E。由这些条件可以得出若干
结论,请你写出其中 3 个正确结论。(不要添加字母和辅助线,不要求证明)
结论 1:
结论 2:
D
Hale Waihona Puke 结论 3:EA
C
B
(前面 5 小题作为训练学生做题速度的堂上小测,然后比谁做得又快又对, 其中第 2、5 题是开放性题目,评讲时尽可能地写出所有情况,最后引入第 6 题。)
教学 环节
一、 导入
教学活动
今天我们来复习第十一章,首先请同学们回忆一下,这章主要学习了什么内 容?
(让学生回忆、讨论,教师可提问) 下面我们一起来解决以下几个问题——
设计意图
明确 本课目 标,使学 生有目的 地学习,
1
二、 全等 三角 形的 性质
什么是全等三角形? 全等三角形有什么性质?
通过 提出问题 的方式使 学生回忆 知识
2. 如图,BD = CD,BF⊥AC,CE⊥AB。求证:点 D 在∠BAC 的平分线上。 转化,使
B
知识教育
与能力培
养结合起
E
D
来,设计 分层练习
A
F
C
5
八、 小结
试用图表把这章知识归纳,看谁归纳得最好?
九、 布置 作业
1、 课后作业。 2、设计题可根据自己的喜好和学有余力的同学完成。
通过学生 自己归纳 建构知识 体系
6.如图,在△AFD 和△BEC 中,点 A、E、F、C 在同一直线上,有下列四个 论断:
①AD=CB,②AE=CF,③∠B=∠D,④ ∠A=∠C.请用其中三个作为条 件,余下一个作为结论,编一道数学问题,并写出解答过程。
4
A
D
E
F
B
C
六、 角平分线的性质定理是什么?逆定理是什么?
角平
分线 (教师结合图形再次让学生更深刻地理解这两个定理。)
三、
已知如图
CD⊥AB 于 D,BE⊥AC 于 E,△ABE≌△ACD,∠C=20º,AB=10, 通过相应
相应 AD=4,G 为 AB 延长线上的一点,则∠EBG = _________,CE = ________。
练习巩固
练习
复习内
1
容。
C
E
F
A
D BG
四、 三角 形全 等的 判定
提醒:先让学生找出 △ABE、 △ACD 的对应边和对应角。 三角形全等的判定有哪几个? 对于特殊的直角三角形呢?
D
A
C
C D
第 1第 B
A 第 2第 E
B
3、下列说法中正确的是( D )
A、两个直角三角形全等 B、两个等腰三角形全等
C、两个等边三角形全等 D、两条直角边对应相等的直角三角形全等
4、三角形内到三条边的距离相等的点是(A )
A、三角形的三条角平分线的交点 B、三角形的三条高的交点
C、三角形的三条中线的交点
D、三角形的三边的垂直平分线的交点
5、在△ABC 中,∠A=70º,∠B=40º,则△ABC 是( B)
( 教师注意强调,SSA 不成立,直角三角形已有什么条件相等?)
通过提 出问题 的方式 使学生 回忆知 识
2
五、
1. 如图,已知 AD 平分∠BAC,
相应
要使△ABD≌△ACD,
练习
• 根据“SAS”需要添加条件

2
• 根据“ASA”需要添加条件

• 根据“AAS”需要添加条件
B
A
D
C
2.如图,方格纸中△DEF 的三个顶点分别在小正方形的顶点(格点) 上,请你在图中再画一个顶点都在格点上的△ABC,且使△ABC≌△DEF。
相关文档
最新文档