6种方法解决一道超经典几何题的证明

合集下载

初一数学几何证明题的常见解题方法

初一数学几何证明题的常见解题方法

初一数学几何证明题的常见解题方法初一数学几何证明题的常见解题方法初一是刚接触几何的知识,关于几何的证明题是很多的,这些该怎么解答呢?下面就是给大家的初一几何证明题内容,希望大家喜欢。

1)D是三角形ABC的BC边上的点且CD=AB,角ADB=角BAD,AE 是三角形ABD的中线,求证AC=2AE。

(2)在直角三角形ABC中,角C=90度,BD是角B的平分线,交AC于D,CE垂直AB于E,交BD于O,过O作FG平行AB,交BC 于F,交AC于G。

求证CD=GA。

延长AE至F,使AE=EF。

BE=ED,对顶角。

证明ABE全等于DEF。

=》AB=DF,角B=角EDF角ADB=角BAD=》AB=BD,CD=AB=》CD=DF。

角ADE=BAD+B=ADB+EDF。

AD=AD=》三角形ADF全等于ADC=》AC=AF=2AE。

题干中可能有笔误地方:第一题右边的E点应为C点,第二题求证的CD不可能等于GA,是否是求证CD=FA或CD=CO。

如上猜测准确,证法如下:第一题证明:设F是AB边上中点,连接EF角ADB=角BAD,则三角形ABD为等腰三角形,AB=BD;∵ AE是三角形ABD的中线,F是AB边上中点。

∴ EF为三角形ABD对应DA边的中位线,EF∥DA,则∠FED=∠ADC,且EF=1/2DA。

∵∠FED=∠ADC,且EF=1/2DA,AF=1/2AB=1/2CD∴△AFE∽△CDA∴ AE:CA=FE:DA=AF:CD=1:2AC=2AE得证第二题:证明:过D点作DH⊥AB交AB于H,连接OH,则∠DHB=90°;∵∠ACB=90°=∠DHB,且BD是角B的平分线,则∠DBC=∠DBH,直角△DBC与直角△DBH有公共边DB;∴△DBC≌△DBH,得∠CDB=∠HDB,CD=HD;∵ DH⊥AB,CE⊥AB;∴ DH∥CE,得∠HDB=∠COD=∠CDB,△CDO 为等腰三角形,CD=CO=DH;四边形CDHO中CO与DH两边平行且相等,则四边形CDHO为平行四边形,HO∥CD且HO=CD∵ GF∥AB,四边形AHOF中,AH∥OF,HO∥AF,则四边形AHOF为平行四边形,HO=FA∴CD=FA得证有很多题1.已知在三角形ABC中,BE,CF分别是角平分线,D是EF中点,若D到三角形三边BC,AB,AC的距离分别为x,y,z,求证:x=y+z 证明;过E点分别作AB,BC上的高交AB,BC于M,N点.过F点分别作AC,BC上的高交于P,Q点.根据角平分线上的点到角的2边距离相等可以知道FQ=FP,EM=EN.过D点做BC上的高交BC于O点.过D点作AB上的高交AB于H点,过D点作AB上的高交AC于J 点.则X=DO,Y=HY,Z=DJ.因为D 是中点,角ANE=角AHD=90度.所以HD平行ME,ME=2HD 同理可证FP=2DJ。

一道几何题的多种证明方法及启示

一道几何题的多种证明方法及启示

一道几何题的多种证法及启示在日常的教学工作中,有这样一个问题:已知如图在Rt ABC ∆中,90O ACB ∠=,30O B ∠=,,D E 分别是,AB CD 的中点,则12AE BC =. 这道题目的条件、结论都非常简单,具有数学问题的简洁美,而结论的证明也并不难。

经过分析探究,发现该题的证法比较丰富,同时能从不同的角度去训练学生思维能力。

不失为进行“一题多解”教学的一个好例题。

一、证法探究1.“长截短补”法.一般而言,当我们遇到解决两条或两条以上线段之间的数量关系问题时,均会采用这种方法。

下面看这道题的两个证明过程:证法1. 取BC 的中点F ,连接DF ,如图所示.则12BF BC =. 那么下面只要说明BF AE =或CF AE =. 在Rt ABC ∆中,90OACB ∠=,D 是AB 的中点,AD CD DB ∴==. CDB ∴∆是等腰三角形.30OB ∠= ,60OA ∴∠=.ACD ∴∆是等边三角形.又E 为CD 的中点,F 为BC 的中点.AE CD ∴⊥,DF BC ⊥.90O AED BFD ∴∠==∠. 30O EAD B ∠==∠ ,AED BFD ∴∆≅∆ ()AAS .12AE BF BC ∴==. 证毕.证法2. 延长AE 至点G ,使EG AE =,连接DG ,如图所示.易知AC AD CD DB ===. 又E 是CD 的中点,AE CD ∴⊥.AE EG = ,CD ∴是AG 的垂直平分线.DG AD ∴=,60O GDE ADE ∠=∠=.120O ADG CDB ∴∠==∠.再由DG AD CD BD ===,可得ADG CDB ∆≅∆()SASAG BC ∴=,12AE BC ∴=. 证毕. 点评:可以看出“长截短补”这种方法对于证明线段之间的数量关系是十分奏效的。

但是 “截ABBABA(补)”不能乱截(补),是有目的的截(补),要朝着题目的结论或条件进行以便于解题。

几何证明题的技巧

几何证明题的技巧

几何证明题的技巧1)证明线段相等,角相等的题,通常找到线段所在图形,证明全等2)隐藏条件:比如特殊图形的性质自己要清楚,有些时候几何题做不出来就是因为没有利用好隐藏条件3)辅助线起到关键作用4)几何证明步骤:依据—结论—定理切记勿忽略细微条件5)遇到面积问题,辅助线通常做高,遇到圆,多为做半径,切线6)个别题型做辅助线:1通过连结,延长,作垂直,作平行线等添加辅助线的方法,构造全等三角形。

2遇到有中点条件时,常常延长中线(即倍长中线),或以中点为旋转中心,使分散的条件汇集起来。

3遇到求边之间的和,差,倍数关系时,通常采用截长补短的方法,求角度之间的关系时,也一样。

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。

下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。

一、证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

*12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

二、证明两个角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

(word完整版)八年级数学几何证明题技巧(含答案),推荐文档

(word完整版)八年级数学几何证明题技巧(含答案),推荐文档

D 几何证明题的技巧1.几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1 所示,∆ABC 中,∠C = 90︒,AC =BC,AD =DB,AE =CF 。

求证:DE=DF AEC F B图1分析:由∆ABC 是等腰直角三角形可知,∠A =∠B = 45︒,由D 是AB 中点,可考虑连结CD,易得CD =AD ,∠DCF = 45︒。

从而不难发现∆DCF ≅∆DAE证明:连结CDAC =BC∴∠A =∠B∠ACB = 90︒,AD =DB∴CD =BD =AD,∠DCB =∠B =∠AAE =CF,∠A =∠DCB,AD =CD∴∆ADE ≅∆CDF∴DE =DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中EF2 3 1线或高是常用的辅助线。

一道经典几何题的六种证明方法(郑荣国2012.5.9)

一道经典几何题的六种证明方法(郑荣国2012.5.9)

【例23】如图,已知等腰直角三角形ABC ,BD 平分ABC ∠,CE BD ⊥,垂足为E ,求证:2BD CE =.B AEDC【解析】解法一:如图,延长BA 、CE 于F .B AEDCF∵FBE CBE ∠=∠,BE CF ⊥,∴12CE EF CF ==.∵90FCA F ∠+∠=︒,90DBA F ∠+∠=︒, ∴FCA DBA ∠=∠.又∵AC AB =,90FAC DAB ∠=∠=︒, ∴FCA DBA ∆∆≌, ∴CF BD =. ∵2CF CE =, ∴2BD CE =.解法二:如图,作ACB ∠的平分线CF ,则CF BD =.过D 作DH CF ⊥,垂足为H ,连接FD .BA HFEDC∵ABC ACB ∠=∠,∴BD CF =,BF CD =, ∴FD BC ∥.∴45AFD ABC ∠=∠=︒,122.52DFC BCF ACB ∠=∠=∠=︒.∴DFC DCF ∠=∠,故DF DC =. ∴DH 是CF 的中垂线,∴1122HC HF CF BD ===.∵90ECD CDE ∠+∠=︒,90ABD ADB ∠+∠=︒,CDE ADB ∠=∠, ∴22.5ECD ABD ∠=∠=︒, ∴ECD HCD ∠=∠.又∵90DEC DHC ∠=∠=︒,DC 公共, ∴DCE DHC ∆∆≌,∴12CE HC BD ==,即2BD CE =.解法三:如图,过D 作DH BC ∥交AB 于H .过H 作HF BD ⊥,垂足为F .BA EDC HF∴45AHD ABC ∠=∠=︒,HDB DBC HBD ∠=∠=∠, ∴HB HD =.∴HF 是BD 的中垂线,∴12F BD =.又∵AH AD =,AB AC =,∴HB CD =.∵BHF BDA CDE ∠=∠=∠,∴Rt Rt BFH CED ∆∆≌.∴BF CE =,12CE BD =,即2BD CE =.解法四:如图,作BD 的中垂线GH 交BC 于H ,则BH DH =,HDG HBG ∠=∠.C DEABGH而ABG HBG ∠=∠,∴HDG ABG ∠=∠,从而HD AB ∥. ∴45DHC ABC ∠=∠=︒, ∴HD CD =,即BH CD =.又∵90ECD CDE ∠+∠=︒,90ABD ADB ∠+∠=︒,ADB CDE ∠=∠. ∴ECD ABD ∠=∠,即ECD GBH ∠=∠. ∴Rt Rt CED BGH ∆∆≌.∴12CE BG BD ==,故2BD CE =.解法五:如图,取BD 的中点F ,连接AF 、AE .FBAE D C∵AF 是Rt ABD ∆斜边上的中线,∴12AF BF BD ==,245AFE ABF BAF ABF ABC ∠=∠+∠=∠=∠=︒.∵AB AC ⊥,CE BE ⊥,∴90BAC BEC ∠=∠=︒, ∴A 、B 、C 、E 4点共圆.∴45AEB ACB ∠=∠=︒,∴AF AE =. 又∵ABE EBC ∠=∠,∴AE CE =.即12CE BD =,∴2BD CE =.解法六:如图,作BC 的中线AM ,则A M B C ⊥,AM 平分BAC ∠,取CD 的中点F ,连接MF 、ME ,则12MF BD =.CDE ABFM∵ME 是Rt BCE ∆斜边上的中线,∴ME BM =,∴122.52MEB DBM ABC ∠=∠=∠=︒,∴45CME MEB DBM ∠=∠+∠=︒, ∴45CME MAF ∠=∠=︒.又∵90ECB CBE ∠+∠=︒,90ADB ABD ∠+∠=︒,CBE ABD ∠=∠, ∴ECB ADB ∠=∠.∵MF BD ∥,∴MFA ADB ∠=∠.即MFA ECB ∠=∠. ∴AMF MEC ∆∆≌,∴MF CE =,即12CE BD =,故2BD CE =.。

初中几何证明题的解题思路

初中几何证明题的解题思路

初中几何证明题的解题思路初中几何证明题是初中几何中很重要的一部分,加强知识储备和运用技能也必须掌握几何证明题的解题思路和方法。

解决几何证明题,除了要掌握基础的定理、定义、规则和基本的计算技巧外,还应注意以下几点:一、熟练掌握几何证明的基本方法1.逆否命题法:当一个命题成立时,其逆命题不成立,反之亦然,因此,可用该法证明:先把命题的否定形式表达出来,然后用简单的数学推导证明它是有悖常理的,从而由“逆否律”证明原命题的正确性。

2.抽象法:有时可通过抽象的方法,让问题变得更容易解决。

比如,将几何问题抽象成代数问题,或者将几何图形抽象成抽象的风范,可以使得问题变得更加容易理解。

3.反证法:即依据一定的前提,证明假设不符合要求,即可以知识前提及充分条件,利用反证法,证明假设是错误的。

反证法按逻辑关系可分为“反证正确”和“反证错误”两类。

通过反证法,我们可以得到几何定理证明的结论,从而解决几何证明题。

4.归纳法:归纳法也称归绕法,是几何证明题的解决方法之一,是依据一个事实、一个特性或一个定理,从而推出其他一些事实或定理的过程。

它的解法具有一般性,可以应用在各种形式的几何证明题中。

二、逐步解决几何证明题1.第一步:识别几何图形:首先要明确几何图形的形状、大小、位置等特征,然后把图形上的角、弧、线段和点等标出来,注明它们的名称和特点,以及它们之间的关系。

2.第二步:分析题意:要弄清题目所提出的问题,明确要证明的是什么,并对问题和其它已知条件进行分析,总结出题目的本质,找出和解决问题的重点。

3.第三步:确定证明步骤:根据题目的条件和要证明的内容,结合定义、定理和基本性质,确定出证明步骤,并画出证明图形,默写证明式。

4.第四步:设立并证明中间结论:根据证明步骤,依次针对每一步进行证明,首先得出一个中间结论,然后按定义、定理及基本性质等,写出证明式,再根据前一步得出的中间结论,将其作为充分条件,以此推出下一步的中间结论,依次重复反复证明,最终推出原结论。

几何证明中常用的方法

几何证明中常用的方法

几何证明中常用的方法在几何证明中,有很多常用的方法。

以下是其中一些常用的方法:1.直接证明法:这是最常见的证明方法之一,使用已知的事实和定义,逐步推导出结论。

这个方法通常用于证明简单的几何问题,例如两个角度相等、两个线段相等等。

2.反证法:也被称为间接证明法,这个方法假设待证明的结论是错误的,然后通过逻辑推理推出不可能的结论,从而反驳原本的假设。

这种证明方法常用于证明一个角度不可能是一些值或条线段不可能与另一条线段相等等问题。

3.构造法:这个方法通过构造出一个满足条件的几何图形来证明一个结论。

构造法对于证明条线段等于另一条线段、一些角度等于另一个角度等问题非常有效。

4.数学归纳法:这个方法通常用于证明一些结论对于所有正整数或自然数都成立。

证明从基础情况开始,然后通过推理证明结论对于所有数都成立。

5.三角形的证明方法:这些方法是专门用于证明三角形性质的。

其中一种常用的方法是相似三角形的证明方法,利用三角形的相似性质来推导出结论。

6.平行线的证明方法:证明两条线段平行的方法有很多种。

其中一种常用的方法是使用平行线的性质,例如同位角、内错角、同旁内角等来证明两条线段平行。

7.垂直线的证明方法:证明两条线段垂直的方法也有很多种。

其中一种常用的方法是使用垂直线的性质,例如互补角、直角等来证明两条线段垂直。

8.三角形全等的证明方法:证明两个三角形全等的方法有很多种。

其中一种常用的方法是使用SSS(边边边)法则、SAS(边角边)法则、ASA (角边角)法则等来证明三角形全等。

9.圆的证明方法:证明圆的性质的方法也有很多种。

其中一种常用的方法是使用圆的定义和性质,例如圆心角、等弧、切线等来证明圆的性质。

总体而言,几何证明的方法有很多种,每种方法都有其特定的应用场景。

熟悉这些方法可以帮助我们更好地进行几何证明。

几何证明中的几种技巧(教师用)

几何证明中的几种技巧(教师用)

几何证明中的几种技巧一.角平分线--轴对称1.已知在ΔABC 中,E为BC的中点,AD平分BAC ∠,BD AD ⊥于D.AB=9,AC=13.求DE的长.CBADECBADEF分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD=DF.又BE=EC,即DE为ΔBCF 的中位线.∴11()222DE FC AC AB ==-=.2.已知在ΔABC 中,108A ∠=,AB=AC,BD平分ABC ∠.求证:BC=AB+CD.DABCDABCE分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=,108A BED ∠=∠= ,36C ABC ∠=∠= .∴72DEC EDC ∠=∠=,∴CD=CE,∴BC=AB+CD.3.已知在ΔABC 中,100A ∠=,AB=AC,BD平分ABC ∠.求证:BC=BD+AD.ABCDABCDEF分析:在BC上分别截取BE=BA,BF=BD.易证ΔABD ≌ΔEBD .∴AD=ED,100A BED ∠=∠= .由已知可得:40C ∠= ,20DBF ∠= .由∵BF=BD,∴80BFD ∠=.由三角形外角性质可得:40CDF C ∠==∠.∴CF=DF. ∵100BED ∠=,∴80BFD DEF ∠=∠=,∴ED=FD=CF,∴AD=CF,∴BC=BD+AD.4.已知在ΔABC 中,AC BC ⊥,CE AB ⊥,AF平分CAB ∠,过F作FD∥BC ,交AB于D.求 证:AC=AD.ACBEFDAC BEFDG分析:延长DF交AC于G.∵FD∥BC,BC⊥AC,∴FG⊥AC. 易证ΔAGF ≌ΔAEF .∴EF=FG.则易证ΔGFC ≌ΔEFD .∴GC=ED. ∴AC=AD.5.如图(1)所示,BD和CE分别是ABC 的外角平分线,过点A作AF⊥BD于F,AG⊥CE于G,延长AF及AG与BC相交,连接FG.(1)求证:1()2FG AB BC CA =++(2)若(a)BD与CE分别是ABC 的内角平分线(如图(2));(b)BD是ΔABC 的内角平分线,CE是ΔABC 的外角平分线(如图(3)).则在图(2)与图(3)两种情况下,线段FG与ΔABC 的三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.GFABCE D HI FGA BCD E IHGFABCDE I H图(1) 图(2) 图(3)分析:图(1)中易证ΔABF ≌ΔIBF 及ΔACG ≌ΔHCG .∴有AB=BI,AC=CH及AD=ID,AG=GH.∴GF为ΔAIH 的中位线.∴1()2FG AB BC CA =++.同理可得图(2)中1()2FG AB CA BC =+-;图(3)中1()2FG BC CA AB =+-6.如图,ΔABC 中,E是BC边上的中点,DE⊥BC于E,交BAC ∠的平分线AD于D,过D作DM⊥AB于M,作DN⊥AC于N.求证:BM=CN.ABCEDNMC BAEDNM分析:连接DB与DC.∵DE垂直平分BC,∴DB=DC.易证ΔAMD ≌ΔAND . ∴有DM=DN.∴ΔBMD ≌ΔCND (HL).∴BM=CN.7.如图,在ΔABC 中,2B C ∠=∠,AD平分BAC ∠.求证:AC=AB+BD.ABCDABCDE分析:在AC上截取AE=AB,连接DE.则有ΔABD ≌ΔAED .∴BD=DE. ∴B AED C EDC ∠=∠=∠+∠.又∵2B C ∠=∠,∴C EDC ∠=∠. ∴DE=CE.∴AC=AB+BD.8.在四边形ABCD中,AC平分BAD ∠,过C作CE⊥AB于E,且1()2AE AB AD =+.求ABC ADC ∠+∠的度数.CAE BDCAE B DF分析:延长AB到F,使得BF=AD.则有CE垂直平分AF,∴AC=FC. ∴F CAE DAC ∠=∠=∠.∴有ΔCBF ≌ΔCDA (SAS).∴CBF D ∠=∠. ∴180ABC ADC ∠+∠=.二.旋转1.如图,已知在正方形ABCD中,E在BC上,F在DC上,BE+DF=EF. 求证:45EAF ∠=.BD A C FEBD A CGFE分析:将ΔADF 绕A顺时针旋转90得ABG .∴GAB FAD ∠=∠.易证ΔAGE ≌ΔAFE .∴ 1452FAE GAE FAG ∠=∠=∠=2如图,在ABC 中,90ACB ∠=,AB=BC,D为AC中点.AB的延长线上任意一点E.FD⊥ED交BC延长线于F.求证:DE=DF.AB CFEDABCFED分析:连接BD.则BDE 可视为CDF 绕D顺时针旋转90所得.易证BD⊥DC与BD=CD.则BDE CDF ∠=∠.又易证135DBE DCF ∠=∠=.∴ΔBDE ≌ΔCDF .∴DE=DF.3.如图,点E在ΔABC 外部,D在边BC上,DE交AC于F.若123∠=∠=∠, AC=AE.求证:ΔABC ≌ΔADE .213EDCB A分析:若ΔABC ≌ΔADE ,则ΔADE 可视为ΔABC 绕A逆时针旋转1∠所得.则有B ADE ∠=∠. ∵12B ADE ∠+∠=∠+∠,且12∠=∠.∴B ADE ∠=∠.又∵13∠=∠. ∴BAC DAE ∠=∠.再∵AC=AE.∴ΔABC ≌ΔADE .4.如图,ΔABC 与ΔEDC 均为等腰直角三角形,且C在AD上.AE的延长线交BD于F.请你在图中找出一对全等三角形,并写出证明过程.AE C BDF分析:将Rt ΔBCD 视为Rt ΔACE 绕C顺时针旋转90即可.5.如图,点E为正方形ABCD的边CD上一点,点F为CB的延长线上的一点,且EA⊥AF.求证:DE=BF.BD ACFE分析:将ΔABF 视为ΔADE 绕A顺时针旋转90即可.∵90FAB BAE EAD BAE ∠+∠=∠+∠=.∴FBA EDA ∠=∠.又∵90FBA EDA ∠=∠=,AB=AD.∴ΔABF ≌ΔADE .(ASA)∴DE=DF.三.平移1.如图,在梯形ABCD中,BD⊥AC,AC=8,BD=15.求梯形ABCD的中位线长.ACBDACBDE分析:延长DC到E使得CE=AB.连接BE.可得ACEB .可视为将AC平移到BE.AB平移到CE.由勾股定理可得DE=17.∴梯形ABCD中位线长为8.5.2.已知在ΔABC 中,AB=AC,D为AB上一点,E为AC延长线一点,且BD=CE.求证:DM=EM.MABC ED M ABC EDF分析:作DF∥AC交BC于F.易证DF=BD=CE.则DF可视为CE平移所得. ∴四边形DCEF为DCEF .∴DM=EM.四.中点的联想 (一)倍长1.已知,AD为ABC 的中线.求证:AB+AC>2AD.DBCADEBCA分析:延长AD到E使得AE=2AD.连接BE易证ΔBDE ≌ΔCDA . ∴BE=AC.∴AB+AC>2AD.2.如图,AD为ΔABC 的角平分线且BD=CD.求证:AB=AC.DBACDBACE分析:延长AD到E使得AD=ED.易证ΔABD ≌ΔECD .∴EC=AB. ∵BAD CAD ∠=∠.∴E CAD ∠=∠.∴AC=EC=AB.3.已知在等边三角形ABC中,D和E分别为BC与AC上的点,且AE=CD.连接AD与BE交于点P,作BQ⊥AD于Q.求证:BP=2PQ.D P CBAEQD P CBAFEQ分析:延长PD到F使得FQ=PQ.在等边三角形ABC中AB=BC=AC,60ABD C ∠=∠=.又∵AE=CD,∴BD=CE.∴ΔABD ≌ΔBCE .∴CBE BAD ∠=∠.∴60BPQ PBA PAB PBA DBP ∠=∠+∠=∠+∠=. 易证ΔBPQ ≌ΔBFQ .得BP=BF,又60BPD ∠=.∴ΔBPF 为等边三角形. ∴BP=2PQ.(二)中位线1.已知在梯形ABCD中,AD∥BC,E和F分别为BD与AC的中点.求证:1()2EF BC AD =-.CA D BEFCA DBEFG分析:取DC中点G,连接EG与FG.则EG为ΔBCD 中位线,FG为ΔACD 的中位线.∴EG∥=12BC ,FG∥=12AD .∵AD∥BC.∴过一点G有且只有一条直线平行于已知直线BC,即E、F、G共线.∴1()2EF BC AD =-.(三)直角三角形斜边上的中线等于斜边的一半1.已知,在ABCD 中12AB BD =.E为OA的中点,F为OD中点,G为BC中点.求证:EF=EG.O C DBAEFGO CDBAEFG分析:连接BE .∵12AB BD =,AE=OE.∴BE⊥CE,∵BG=CG.∴12EG BC =.又EF为ΔAOD 的中位线.∴12EF AD =.∴EF=EG.2.在ΔABC 中,AD是高,CE是中线,DC=BE,DG⊥CE于G. 求证:(1)CG=EG.(2)2B BCE ∠=∠.ECDGABECDGAB分析:(1)连接DE.则有DE=BE=DC.∴Rt ΔCDG ≌Rt ΔEDG (HL). ∴EG=CG.(2)∵DE=BE.∴B BDE DEC BCE ∠=∠=∠+∠. ∵DE=CD.∴DEC BCE ∠=∠.∴2B BCE ∠=∠.3.已知:在等腰梯形ABCD中,AD∥BC,60BOC ∠=.E、F、G分别是OA、OB、CD的中点.求证:ΔEFG 是等边三角形.CO BDA E F GCOBDA E FG分析:连接ED、FC.易证ΔAOD 与ΔBOC 均为正三角形.由已知可得12EF AB =.在Rt ΔCDE 与Rt ΔCDF 中,有12FG EG DC ==.∴EF=EG=FG.即EFG 是等边三角形.六.等面积法1.已知在ΔABC 中,90BAC ∠=,AD⊥BC于D.AB=8,AC=15. 求AD的长.AB CD分析:1122ABC S AB AC BC AD == .2.已知P为矩形ABCD中AD上的动点(P不与A或D重合).PE⊥AC于E,PF⊥BD于F.AB a =,BC b =.问:PE+PF的值是否为一定值?若是,求出此值并证明;若不是,说明理由.OABCDPEFOABCDPEF分析:连接PB、PC.易得APC APB S S = .∴12APC APB ABD S S S ab +==.又2212APC S PE a b =+ ,2212DPB S PF a b =+ .∴22ab PE PF a b +=+.3.已知在矩形ABCD中,DE=FG,GP⊥DE于P,DQ⊥FG于Q. 求证:T在DOG ∠的平分线上.DTOA BCE F P QDTOA B CEF P Q分析:连接EG、FD及OT.∵1122DGE S DG BC DE PG == 及1122DGF S DG BC GF QD == .又∵DE=FG,∴PG=QD.易证RT ΔPGD ≌Rt ΔQDG (HL).∴QDG PGD ∠=∠,PD=QG,PDG QGD ∠=∠. ∴Rt ΔPDT ≌Rt ΔQGT (ASA).∴PT=QT. 即T在DOG ∠的平分线上.。

初中数学几何图形证明十大解法盘点,祝你圆梦中考!

初中数学几何图形证明十大解法盘点,祝你圆梦中考!

初中数学几何图形证明十大解法盘点,祝你圆梦中考!
数学几何一直是数学考试中的重点和难点,所占分值比较大。

同学们早这方面失分也比较多。

我记得以前我上几何课的时候老是不知道从何下手,看到几何图形就头疼!一上课就睡觉.
原因是对数学没有兴趣,但后来在数学老师的耐心讲解下,自己也尝试着去做,结果还做对了,从此就对数学越来越感兴趣,每次遇到数学几何题都用老师讲解的方法去做。

然后数学成绩才得以提升!
前几天微信上的家长对我说,家里小孩数学成绩特别不好,特别是几何题,总是不会用公式,也不知道该从何下手,一遇到几何题就不做了。

家长也不知道该怎么办。

对于这种情况,我特意总结了初中几何图形的几大解法,家长可以帮孩子存着,拿去教孩子做几何题!
一、分割法
二、添加辅助线法
三、倍比法
四、割补平移法
五、等量代换法
六、等腰直角三角形法
七、扩倍/缩倍法
八、代数法
九、外高法
十、概念法
学习是一个不断积累的过程,我一直坚信,没有学不会的孩子,只有不会学的孩子,家长应该在孩子还小记忆力强的时候多培养孩子对数学的兴趣,把数学成绩抓起来!
作为一名老师,真正重要的不是教给学生多少知识,而是教给学生好的学习方法。

几何证明题解题技巧总结

几何证明题解题技巧总结

几何证明题解题技巧总结在学习几何学的过程中,我们经常会遇到一些证明题,这些题目要求我们根据已知条件给出严谨的证明过程,以达到解题的目的。

因为几何证明题是一种特殊的数学题型,所以我们需要掌握一定的解题技巧。

本文将为大家总结几何证明题解题技巧,帮助大家更好地应对这类题目。

1. 画好图形在解几何证明题之前,首先要画好所给图形。

一个清晰的图形能够让我们更好地理解问题,并且能够帮助我们找到一些有用的线段、角度或者形状关系。

因此,我们需要使用规范的画图工具,如尺子和圆规,画出图形的各个元素,确保图形的形状和比例正确。

2. 利用已知条件在解题过程中,我们需要充分利用已知条件。

已知条件提供了问题的一些限制和前提,通过分析已知条件,我们可以找到一些可能解题的线索。

在应用已知条件时,可以使用等式、比例关系、相似三角形等数学工具进行推理,从而运用数学知识解决问题。

3. 推理演绎几何证明题的解题过程需要运用推理演绎,即从已知条件中推导出结论。

在推理的过程中,我们可以使用数学定理、性质和公式,以及已有的几何知识。

通过逻辑推理,我们可以逐步得出结论,最终完成证明过程。

4. 注意特殊情况在解几何证明题时,我们要特别注意问题中可能存在的特殊情况。

有时,针对特殊情况的分析和推理能够为我们提供更直接的证明思路。

因此,在解题过程中,我们需要根据问题的具体条件,考虑特殊情况,并给出相应的证明过程。

5. 使用反证法反证法是一种重要的解题方法,特别适用于几何证明题。

当用其他方法无法得出结论时,我们可以尝试使用反证法。

反证法的基本思路是,假设所要证明的结论不成立,然后通过推理推导出与已知条件矛盾的结论,从而证明原命题的正确性。

6. 多做几何证明题对于几何证明题来说,熟能生巧。

通过多做一些几何证明题,我们可以积累经验,熟悉各种解题思路和技巧。

同时,多做题目还能够帮助我们提高证明的逻辑性和严谨性,为解决更复杂的几何问题打下坚实的基础。

综上所述,几何证明题解题技巧的掌握是解决这类题目的关键。

几何证明的几种特殊方法

几何证明的几种特殊方法

几何证明的几种特殊方法1.直接证明法:直接证明法是最常见的几何证明方法之一、它通过根据已知条件和几何原理,步骤清晰地一步步推导出所要证明的结论。

这种方法直截了当,严谨可靠,适用于大部分几何问题的证明。

2.反证法:反证法是一种常见且常用的证明方法,尤其适用于证明一些不等式相关的几何问题。

反证法的核心思想是假设所要证明的结论不成立,然后根据这个假设推导出一种矛盾,从而得出结论成立的结论。

3.数学归纳法:数学归纳法通常用于证明一类问题的结论。

在几何证明中,数学归纳法可以用于证明一些有特殊结构的图形或形式相似的问题。

它的核心思想是通过证明基本情况成立,再假设对于一些特定的情况成立,推导出对于下一个情况也成立,从而证明结论对于所有情况成立。

4.分类讨论法:当待证明的问题存在多种可能情况时,分类讨论法可用于分别证明每种情况下的结论。

这种方法适用于证明复杂的几何问题,通过对每一种情况逐个进行证明,最终得到整体的结论。

5.全等三角形法:全等三角形法适用于证明两个多边形或三角形全等的问题。

根据几何学中全等三角形的性质,通过找到两个多边形或三角形之间的对应关系,证明它们的对应边相等,对应角相等,从而得出结论。

6.恒等变形法:恒等变形法是通过对待证明的几何图形进行形状、角度、边长等变形,以求证明问题。

这种方法在证明一些图形的性质时非常常用,通过合理的变形使得待证明的结论可以直接看出。

7.构造法:构造法是通过构造一些辅助线、辅助图形等来简化原问题或揭示问题的本质。

构造法常用于解决角平分线、中位线等问题,通过合理的构造使得问题的解决更加清晰明了。

总结起来,几何证明的特殊方法包括直接证明法、反证法、数学归纳法、分类讨论法、全等三角形法、恒等变形法和构造法等。

针对不同的几何问题,可以灵活运用这些方法来推导证明结论。

几何证明的几种方法

几何证明的几种方法

⼏何证明的⼏种⽅法平⾯⼏何难学,是很多初中⽣在学习中的共识,这⾥⾯包含了很多主观和客观因素,⽽学习不得法,没有适当的解题思路则是其中的⼀个重要原因。

波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的⽅向去攻击堡垒。

为了辨别哪⼀条思路正确,哪⼀个⽅⼀、直接式思路证题时,⾸先应仔细审查题意,细⼼观察题⽬,分清条件和结论,并尽量挖掘题⽬中隐含的⼀些解题信息,以在缜密审题的基础上,根据定义、公式、定理进⾏⼀系列正⾯的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。

由于思维⽅式的逆顺,在证题时 1.分析法。

分析法是从命题的结论⼊⼿,先承认它是正确的,执果索因,寻求结论正确的条件,这样⼀步⼀步逆⽽推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。

在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含(1)选择型分析法。

选择型分析法解题,⾸先要从题⽬要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。

假设有条件B,就有结论A,那么B就成为选择找到的使A成⽴的充分条件,然后再分析在什么条件下能选择得到B……最终追溯到命题中的某(2)可逆型分析法。

如果再从结论向已知条件追溯的过程中,每⼀步都是推求的充分必要条件,那么这种分析法⼜叫可逆型分析法,因⽽,可逆型分析法是选择型分析法的特殊情形。

⽤可逆型分析法证明的命题⽤选择型分析法⼀定能证明,反之⽤选择型分析法证明的命题,(3)构造型分析法。

如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔⼝”处,需采取相应的构造型措施:如构造⼀些条件,作某些辅助图等,进⾏探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。

(4)设想型分析法。

在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“⾔之成理”的新构思,再进⾏“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。

初中几何证明题常用的分析方法

初中几何证明题常用的分析方法

初中几何证明题常用的分析方法几何证明题是初中数学中的重要内容之一,它要求学生通过逻辑推理和几何知识的运用,证明给定的几何命题。

在几何证明题中,常常会用到一些分析方法帮助我们更好地理解和解决问题。

以下将介绍常用的几何证明题分析方法。

1. 直接证明法:直接证明法是最常见和基础的证明方法,也是其他证明方法的基础。

它要求我们根据已知条件和几何基本定理,通过逻辑推理直接得出所要证明的结论。

直接证明法通常适用于证明结论较为简单明了,推理过程较为直接的几何问题。

在进行直接证明时,我们可以灵活运用几何基本定理、定义和已知条件来推导和证明结论。

这种方法简单直接,易于理解和掌握,是初学几何证明的良好入门方法。

2. 反证法:反证法是一种常见的几何证明方法,它通过否定所要证明的结论,假设其反命题成立,然后通过推理和逻辑演绎推出矛盾的结果,从而证明原命题的正确性。

反证法常用于证明一些矛盾和矛盾结论,或者难以直接证明的几何问题。

在进行反证时,我们要灵活运用反证法的逻辑思维,以及几何基本定理和定义,合理地假设反命题成立,并从中推导出矛盾的结果,从而证明原命题。

3. 构造法:构造法是一种通过主动构造图形或者添加一些辅助线段、点等辅助构造来推导证明结论的方法。

通过构造合理的图形,使得给定条件和已知条件更好地利用起来,从而得出所要证明的结论。

构造法常用于证明一些等式、比例关系、垂直、平行等关系问题。

在进行构造过程中,我们需要根据给定条件和已知条件,设计合适的构造方法,合理运用几何基本原理和性质,通过推理和论证得出结论。

4. 分类讨论法:分类讨论法是一种将问题按照不同情况和条件进行分类、讨论的证明方法。

通过对问题的不同情况进行分析和比较,找出不同情况下的规律,从而得出结论。

分类讨论法常用于解决一些具有多个条件和情况的几何问题。

在进行分类讨论时,我们需要将问题分为几个互斥的情况,对每种情况分别讨论,找出规律和结论,最终得出全部结论。

5. 可逆推理法:可逆推理法是一种通过逆向推理的方法来证明结论的正确性。

几何证明方法

几何证明方法

几何证明方法几何证明方法是指通过几何学的基本原理和定理,以及逻辑推理的方法,来证明几何问题的正确性。

在数学研究和解决各类几何问题时,几何证明方法起到了重要的作用。

本文将介绍几个常用的几何证明方法,分别是反证法、直接证明法和数学归纳法。

1. 反证法反证法是一种常用的证明方法,它基于对否定结论的假设,通过推理到矛盾的结论来证明原结论的正确性。

在几何证明中,反证法常常用于证明两个图形不相等或者两个点之间的距离不相等等问题。

下面以证明“三角形ABC中,如果∠ABC=∠ACB,则AB=AC”为例,使用反证法进行证明。

首先,假设∠ABC=∠ACB,但是AB≠AC。

根据几何学的基本原理,我们可以得知,如果两个角相等,则两个角的对边也必须相等。

根据这一原理,如果∠ABC=∠ACB,则AB=BC。

但是,根据我们的假设,AB≠AC,与∠ABC=∠ACB相矛盾。

因此,假设不成立。

所以,可以得出结论:在三角形ABC中,如果∠ABC=∠ACB,则AB=AC。

2. 直接证明法直接证明法是指通过基本的几何原理和定理,以及推理步骤的链式关系,一步步地推导出结论的证明方法。

它是一种直观而简洁的方法,在几何证明中应用广泛。

以证明“三角形的外角等于其所对的内角之和”为例,使用直接证明法进行证明。

假设三角形ABC的内角分别为∠A、∠B和∠C。

而三角形ABC的外角分别为∠D、∠E和∠F。

根据几何学的基本原理,我们知道,任意一点的外角等于其相邻内角之和。

即∠D=∠A+∠B, ∠E=∠B+∠C, ∠F=∠A+∠C。

将上述等式相加可得:∠D+∠E+∠F=(∠A+∠B)+(∠B+∠C)+(∠A+∠C)=∠A+∠B+∠C。

再根据三角形内角和为180°的性质可知:∠A+∠B+∠C=180°。

因此,∠D+∠E+∠F=180°,即三角形的外角等于其所对的内角之和。

3. 数学归纳法数学归纳法是一种证明方法,常用于证明某一命题在整数集合上的通用性。

几何证明的几种方法

几何证明的几种方法

几何证明的几种方法几何证明是数学中常用的一种推理方法,通过一系列的逻辑推理和基于已知事实的推导,来证明几何定理或性质。

下面介绍几种常用的几何证明方法。

一、直接证明法直接证明法是最常见的证明方法,也是最直观的一种方法。

这种方法从已知条件出发,通过一系列的推理步骤,直接得出结论。

该方法的主要步骤包括:列出已知条件、假设结论成立、使用定义和已知条件进行推理、得出结论。

例如,要证明两个三角形相似,可以通过观察两个三角形的对应角度是否相等,以及对应边长之间是否具有其中一种比例关系来进行直接证明。

二、间接证明法间接证明法也称为反证法,它采用了与直接证明相反的思路。

这种方法对于一些特殊性质的证明非常有用,尤其是那些难以直接证明的性质。

间接证明法的基本思想是先假设所要证明的结论不成立,然后通过推理推导出一个推理矛盾的结论,从而证明原先的假设是错误的。

例如,要证明一个三角形是等腰三角形,可以假设不是等腰三角形,然后通过推理得到一个不成立的结论,从而证明原先的假设错误。

三、反证法反证法与间接证明法类似,不同之处在于它的推理过程更为简单直接。

反证法的思路是假设要证明的结论不成立,然后通过逻辑推理和已知条件得出一个明显矛盾的结论,从而推翻了原先的假设。

反证法常用于证明一些必然性质,例如“两条异面直线必相交”。

四、数学归纳法数学归纳法是一种用于证明一般性命题的方法。

它的基本思想是:先证明命题在一些特定情况下成立,然后证明假设命题在一些情况下成立的话,命题在下一个情况下也成立。

这种方法适用于那些具有相同结构并具有递推关系的问题,例如计算数列、算术和几何问题。

数学归纳法通过将证明问题分解为多个小问题,逐步论证每个小问题的正确性,从而达到证明整个命题的目的。

五、构造法构造法是通过具体构造一个满足条件的对象,从而证明一些结论。

这种方法常用于一些几何问题,通过构造一条特殊的线段、角度、多边形等来满足要证明的条件。

构造法通常需要发现问题本质的关键特点,并通过巧妙的构造来证明所需的结论。

初中数学几何大题的证明思路

初中数学几何大题的证明思路

初中数学几何大题的证明思路对于证明题,有三种思考方式:1.正向思维。

对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

2.逆向思维。

顾名思义,就是从相反的方向思考问题。

在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。

同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。

例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去…这样我们就找到了解题的思路,然后把过程正着写出来就可以了。

3.正逆结合。

对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。

初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。

给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。

正逆结合,战无不胜。

证明题要用到哪些原理?要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。

下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。

一、证明两线段相等:1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

【初中数学】几何大题证明思路及常用原理汇总!

【初中数学】几何大题证明思路及常用原理汇总!

【初中数学】几何大题证明思路及常用原理汇总!几何证明题入门难,证明题难做,已经成为许多同学的共识…今天分享的是一位数学老教师总结的几何证明题思路及常用的原理,一定要好好看并且收藏起来!很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。

对于证明题,有三种思考方式1.正向思维。

对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

2.逆向思维。

顾名思义,就是从相反的方向思考问题。

在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。

同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。

例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去…这样我们就找到了解题的思路,然后把过程正着写出来就可以了。

3.正逆结合。

对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。

初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。

给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。

正逆结合,战无不胜。

证明题要用到哪些原理要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键...下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题 (1)证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

几何证明的常见方法与技巧

几何证明的常见方法与技巧

几何证明的常见方法与技巧几何证明是数学中的一个重要分支,它涉及到形状、大小和位置等几何属性的证明。

在几何证明中,我们可以运用多种方法和技巧来推导出结论。

本文将介绍几何证明中的常见方法与技巧,帮助读者更好地理解和应用几何学。

一、使用画图法画图法是几何证明中最常用的方法之一。

通过绘制图形,我们可以更清晰地理解问题,并且可以通过观察图形的特点来推导结论。

在使用画图法时,需要注意以下几点:1. 绘制准确的图形:绘制准确的图形是成功进行几何证明的基础。

要注意使用准确的尺寸和比例,确保图形与实际情况一致。

2. 标记重点信息:在绘制图形时,需要标记出问题中给出的已知条件和要证明的结论,以便更清楚地分析问题。

3. 利用图形特点:观察图形的各个部分,发现其中的特点和规律,进而推导出结论。

可以利用图形的对称性、平行线、垂直线等特点进行分析。

二、使用等式和不等式在几何证明中,等式和不等式是常见的推导工具。

通过构建等式和不等式,我们可以推导出结论,证明问题的正确性。

1. 利用等式:可以使用一些基本的几何等式,如三角形内角和等于180度,正方形对角线相等等,来推导结论。

此外,还可以通过构建等式来将一个几何问题转化为另一个等价的问题,从而简化证明过程。

2. 利用不等式:使用不等式可以推导出大小关系,例如通过三角不等式可以证明两边之和大于第三边。

在使用不等式时,需要根据问题的具体情况选择适当的不等式来推导结论。

三、使用逻辑推理逻辑推理在几何证明中也是常用的方法之一。

通过运用逻辑思维,将已知条件与结论联系起来,从而推导出中间的过程和结论。

1. 使用直接证明法:直接证明法是一种常见的逻辑推理方法,它通过一系列合理的推导步骤,从已知条件直接推导出要证明的结论。

在使用直接证明法时,需要清晰地列出逻辑推理的每一步骤,并且确保每一步都是合理的。

2. 使用反证法:反证法是另一种常用的逻辑推理方法,它通过假设要证明的结论不成立,然后推导出与已知条件矛盾的结论,从而得出结论成立的结论。

几何60种解题技巧

几何60种解题技巧

几何60种解题技巧一、三角形相关1. 找全等三角形- 看边边边(SSS):如果三个边都对应相等,那就直接喊“全等啦”,就像三条腿一样长的凳子肯定是一样的嘛。

- 边角边(SAS):两边和它们的夹角相等,这就好比两个人胳膊一样长,夹着的角度也一样,那他们的姿势就一样,三角形也就全等啦。

- 角边角(ASA)和角角边(AAS):有两个角相等,再加上一条边,这就像两个人长得有点像(角相等),再有个部位一样(边相等),那就是全等的。

2. 三角形内角和- 三角形内角和是180度这个得牢记。

如果给了两个角,求第三个角,直接用180度减去那两个角就行,就像从一个大蛋糕(180度)里切走两块(已知的两个角),剩下的就是第三个角啦。

3. 等腰三角形- 等腰三角形两腰相等,底角也相等。

如果知道是等腰三角形,又给了一个角,要分清楚这个角是顶角还是底角哦。

如果是底角,那另一个底角也一样;如果是顶角,就用180度减去顶角再除以2就得到底角啦,就像平分两个一样的东西。

4. 等边三角形- 等边三角形三边相等,三个角都是60度。

看到等边三角形就像看到三个一模一样的小士兵,啥都一样。

二、四边形相关1. 平行四边形- 平行四边形对边平行且相等。

如果要证明是平行四边形,可以找对边平行或者对边相等。

就像两列火车轨道,平行而且长度一样。

- 平行四边形对角线互相平分。

如果给了平行四边形的对角线相关的条件,就可以利用这个性质,就像把一个平行四边形从中间切开,两边分得的线段是一样长的。

2. 矩形- 矩形是特殊的平行四边形,四个角都是直角。

如果知道是矩形,就可以用直角这个性质,比如在计算边长或者角度关系的时候。

3. 菱形- 菱形的四条边相等,对角线互相垂直平分。

看到菱形就想到四条边像四个等长的小棍,对角线像交叉的十字剑,还互相垂直平分呢。

4. 正方形- 正方形是最特殊的四边形,既是矩形又是菱形,四条边相等,四个角都是直角,对角线互相垂直平分且相等。

图解几何证明方法

图解几何证明方法

图解几何证明方法几何证明是数学中的重要部分,它通过逻辑推理和图示展示,用于解答几何问题并证明几何定理。

本文将介绍几种常见的图解几何证明方法,帮助读者更好地理解几何证明的过程。

一、推论法推论法是几何证明中常用的一种方法,它通过观察和得出结论的方式进行证明。

在证明中,我们可以根据先前的已知条件和推理来得出新的结论,并最终推导出需要证明的结论。

例如,在证明两条线段相等时,我们可以利用等腰三角形的性质来进行推论。

通过观察到等腰三角形中两边相等的特点,我们可以得出两条线段相等的结论。

二、反证法反证法是一种常用的证明方法,它通过假设所要证明的结论不成立,然后通过逻辑推理和图解进行推翻,从而得出所要证明的结论成立的结论。

举个例子,当我们需要证明一个角是直角时,我们可以假设该角不是直角,即假设该角是锐角或钝角。

通过构造对应的图形和运用几何定理,我们可以推导出与已知事实矛盾的结论,从而推翻最初的假设,得到所要证明的角是直角的结论。

三、割裂法割裂法是几何证明中常用的一种方法,它通过将几何图形中的一部分或几个部分割裂出来研究和证明。

这种方法常用于证明几何图形的性质或者几何问题的解法。

举个例子,当我们需要证明两个三角形全等时,我们可以通过将两个三角形割裂出来,逐一研究它们的边长、角度等特点,然后逐步推导证明两个三角形的对应边长和角度相等,从而得出两个三角形全等的结论。

四、平移法平移法是几何证明中常用的一种方法,它通过平移图形的位置,来观察和研究图形的性质和关系,从而进行证明。

举个例子,当我们需要证明两个线段平等时,我们可以通过将其中一个线段平移,使其与另一个线段重合,然后观察两者的关系,可以发现它们是一致的,从而得出两个线段平等的结论。

五、相似法相似法是几何证明中常用的一种方法,它通过观察并分析几何图形的相似性,来推导证明几何问题。

比如,当我们需要证明两个三角形相似时,我们可以通过观察两个三角形的边长比例、角度比例等特点,利用相似三角形的性质,推导出两个三角形相似的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学霸数学 6种方法解决一道超经典几何证明題
知识改变命运,思维决定高度
学霸数学
学霸数学 6种方法解决一道超经典几何证明題
如图,在ABC中,ABC=600,ACB=400,点P为ABC与
ACB的平分线的交点.求证:AB=PC
点评:要证明线段等量关系,第一
A
想到全等三角形,但题目中并没有全等
的三角形,辅助线是少不了的。
DAC=BAC-BAD=200 =PCA
P
PAC=ACD,AC=AC故ACD CAP
PC=AD故AB=PC
B
C
D
学霸数学 6种方法解决一道超经典几何证明題
如图,在ABC中,ABC=600,ACB=400,点P为ABC与
ACB的平分线的交点.求证:AB=PC
A
方法二:内心性质,构造等边三角形
P
B
E
ACB的平分线的交点.求证:AB=PC
A
方法四:构造等腰三角形
解:连接AP并延长至F,使BCF=200
易得AE=EC=CF,CPF=ABE,
P
PCF=BAE=400,
ABE CPF,故AB=PC
B
E
C
F
学霸数学 6种方法解决一道超经典几何证明題
如图,与
ACB的平分线的交点.求证:AB=PC
方法五:构造直角三角形2
A
过点A作BC的垂线,连接AP并延长,过点C作AE的垂线
先证ADE CFE,再证ADB CFP
P
B
E
C
D
F
学霸数学 6种方法解决一道超经典几何证明題
如图,在ABC中,ABC=600,ACB=400,点P为ABC与
ACB的平分线的交点.求证:AB=PC
方法六:直接构全等
A
过A作BAD=200,连接AP并延长
可证ABD CPE
P
B
DE
C
解:连接AP并延长至F,使PF=PC 由内心的性质可知APC=1200,故CPF=600 易知PCF为等边三角形PC=CF ACB=EAC=400,故EA=EC
C BAE=ECF,ABE=EFC
ECF EAB,CF=AB,故AB=PC
F
学霸数学 6种方法解决一道超经典几何证明題
如图,在ABC中,ABC=600,ACB=400,点P为ABC与
ACB的平分线的交点.求证:AB=PC
A P
方法三:构造等腰三角形
解:连接AP,作等腰AGC,使AG=AC G=400,PAC=400; GAB=ACP=200,故GAB ACP AB=PC
GB
C
学霸数学 6种方法解决一道超经典几何证明題
如图,在ABC中,ABC=600,ACB=400,点P为ABC与
P B
如何作辅助线是题目的关键,同学 们可以结合已知条件中,特殊的角进行 联想。
C
学霸数学 6种方法解决一道超经典几何证明題
如图,在ABC中,ABC=600,ACB=400,点P为ABC与
ACB的平分线的交点.求证:AB=PC
方法一:构造等边三角形
A 解:连接PA,在BC截取BD=BA,连接AD
由ABC=600易知ABD为等边三角形
相关文档
最新文档