虚拟现实技术PPT课件
合集下载
《VR技术简介》课件
历史和文化的虚拟游览:VR技术可以用于历史和文化的虚拟游览,学生和游客可以通过VR设备亲身体验历史事件和文化景观 ,增强对历史和文化的认识和理解。
医疗健康领域
VR技术在医疗健康领域的应用包括手术模拟训练、康复治疗、疼痛管理等方面。通过VR技术,医生 可以更加真实地模拟手术过程,提高手术技能和操作水平。同时,患者也可以通过VR技术进行康复 训练和治疗,提高康复效果和生活质量。
02
VR技术利用计算机图形、仿真、 传感器等技术,生成逼真的三维 场景和物体,使用户感受到身临 其境的体验。
VR技术的发展历程
A
1950年代
VR技术的概念开始出现,科学家们开始探索三 维图像的生成和显示技术。
1980年代
VR技术开始商业化应用,出现了第一代虚 拟现实设备,如头戴式显示器和数据手套 。
交互性
总结词
虚拟现实技术允许用户与虚拟环境进 行互动,增强用户的参与感和体验感 。
详细描述
用户可以在虚拟环境中自由移动、探 索、操作对象,与虚拟环境进行互动 。这种交互性能够使用户更加深入地 参与到虚拟环境中,提高用户的参与 感和体验感。
真实感
总结词
虚拟现实技术能够模拟现实世界中的场 景和物体,为用户提供高度真实的体验 。
VS
建筑设计:VR技术还可以用于建筑 设计领域,设计师可以通过VR技术 更加直观地呈现设计方案,提高设计 质量和沟通效率。
旅游领域
VR技术在旅游领域的应用包括虚拟旅游、 导游辅助等方面。通过VR技术,游客可以 在出发前了解旅游目的地的实际情况和文化 背景,提高旅游体验和满意度。同时,导游 也可以通过VR技术为游客提供更加生动和 有趣的讲解服务。
VS
详细描述
虚拟现实技术通过高精度的3D建模和渲 染技术,能够模拟出逼真的场景和物体, 使用户感觉仿佛置身于现实世界中。这种 高度真实的体验能够为用户带来更加丰富 的视觉享受和感知体验。
医疗健康领域
VR技术在医疗健康领域的应用包括手术模拟训练、康复治疗、疼痛管理等方面。通过VR技术,医生 可以更加真实地模拟手术过程,提高手术技能和操作水平。同时,患者也可以通过VR技术进行康复 训练和治疗,提高康复效果和生活质量。
02
VR技术利用计算机图形、仿真、 传感器等技术,生成逼真的三维 场景和物体,使用户感受到身临 其境的体验。
VR技术的发展历程
A
1950年代
VR技术的概念开始出现,科学家们开始探索三 维图像的生成和显示技术。
1980年代
VR技术开始商业化应用,出现了第一代虚 拟现实设备,如头戴式显示器和数据手套 。
交互性
总结词
虚拟现实技术允许用户与虚拟环境进 行互动,增强用户的参与感和体验感 。
详细描述
用户可以在虚拟环境中自由移动、探 索、操作对象,与虚拟环境进行互动 。这种交互性能够使用户更加深入地 参与到虚拟环境中,提高用户的参与 感和体验感。
真实感
总结词
虚拟现实技术能够模拟现实世界中的场 景和物体,为用户提供高度真实的体验 。
VS
建筑设计:VR技术还可以用于建筑 设计领域,设计师可以通过VR技术 更加直观地呈现设计方案,提高设计 质量和沟通效率。
旅游领域
VR技术在旅游领域的应用包括虚拟旅游、 导游辅助等方面。通过VR技术,游客可以 在出发前了解旅游目的地的实际情况和文化 背景,提高旅游体验和满意度。同时,导游 也可以通过VR技术为游客提供更加生动和 有趣的讲解服务。
VS
详细描述
虚拟现实技术通过高精度的3D建模和渲 染技术,能够模拟出逼真的场景和物体, 使用户感觉仿佛置身于现实世界中。这种 高度真实的体验能够为用户带来更加丰富 的视觉享受和感知体验。
虚拟现实(共52张PPT)(共51张PPT)
第二十二页,共五十一页。
6.2.2 VRML语法(yǔfǎ)基础
1、基本(jīběn)造型 Shape
geometry 几何造型节点Box, Sphere, Cone, Cylinder
appearance 定义颜色和表面纹理等外观属性
Material, Texture, TextureTransform
第二十三页,共五十一页。
表面特性 : (tèxìng) Appearance节点
material域: 值为Material节点(jié diǎn), 可有如下域
diffuseColor, 颜色的反射与入光角度有关 shineness, 光洁度, 取值 0.0 -- 1.0 transparency, 透明度, 取值 0.0 -- 1.0
浏览器的控制比较困难。
Vrml与外界的通信能力比较差
Vrml与用户的交互比较弱
第十六页,共五十一页。
6.2.1 VRML与网络(wǎngluò)教学
3 . VRML在网络教学(jiāo xué)中的应用
能营造更为逼真的环境和场景,人机交互更为自然,更能增强想 象力,增强学生的感官刺激,激发学生兴趣
世界,让用户可以从自己的视点出发,利用自 然的技能和某些设备对这一生成的虚拟世界客
体进行浏览和交互考察。它可使用户获得
与真实世界一样的感觉,可达到代替实际系 统的目的.
第三页,共五十一页。
6.1.1 什么(shén me)是虚拟现实?
专业级虚拟现实系统具有高度的实时性,能同时使用多种输入 输出设备,用户可以(kěyǐ)用人体的自然技能,借助数字头盔、立 体显示技术、数据手套和数据衣服等工具,与虚拟的感觉世界进 行交互作用。
6.2.2 VRML语法(yǔfǎ)基础
虚拟现实技术的发展与创新应用培训ppt
通过虚拟现实技术, 业 以 在产品设计阶段进行模拟和 化,减少生产中的 和 。
虚拟现实技术还 以用于员工 培训,提高员工对设备和工艺 的掌握程度,减少生产事故的 发生。
旅游领域的应用
虚拟现实技术为旅游领域带来了 全新的游览体验,让游客 以在 家中就能游览世界各地的景点。
通过虚拟现实技术,游客 以在 家中就能感受到景点的 和 力,更加深入地了解当地的文化
详细描述
在游戏娱乐领域,虚拟现实技术为玩家提供了沉浸式的 游戏体验,使玩家能够更加深入地参与到游戏中。在教 育领域,虚拟现实技术 以用于模拟实验、历史事件重 现和远程教育等,帮助学生更好地理解和掌握知识。在 医疗领域,虚拟现实技术 以用于手术模拟训练、康复 治疗和疼痛管理等方面。在军事领域,虚拟现实技术 用于模拟战斗场景和训练士兵。在工业设计领域,虚拟 现实技术 以帮助设计师更加直观地展示产品效果和进 行交互设计。
沉浸式体验
随着技术的不断进步,虚拟现实将为用户提供更加沉浸式的体验, 让用户感受到更加真实的环境和交互。
05
虚拟现实技术的实践操作与案例分享
虚拟现实技术的实践操作技巧
01
02
03
设备操作
熟悉虚拟现实设备的操作 ,包括头戴式显示器、控 制器等,确保安全、舒适 地使用。
软 界面
掌握虚拟现实软件界面的 基本操作,如导航、视角 切换、交互等,提高沉浸 感。
感谢观看
云虚拟现实
借助云计算技术的发展,虚拟现实 内容 以在云端进行渲染和存储, 降低用户设备的性能要求,提高虚 拟现实体验的流畅性。
虚拟现实技术面临的挑战
技术瓶颈
目前虚拟现实技术仍存在一些技 术瓶颈,如眩晕感、延迟等,这 些问题需要进一步的技术突破才
《vr虚拟现实》课件
解决方案
通过不断的技术创新和研发,提 高VR设备的硬件性能,优化软件 算法,以解决技术瓶颈问题。
用户体验与设计
用户体验
良好的用户体验是VR技术发展的关 键,包括舒适度、交互自然性、视觉 真实感等方面。
设计原则
遵循人体工学和心理学原理,注重用 户需求和习惯,提高VR产品的易用性 和舒适性。
内容创新与制作
声音设备
耳机
提供立体声音频,增强虚拟世 界的真实感。
麦克风
用于语音交互和语音识别,实 现语音控制和交流。
音效和音质
音效和音质对营造虚拟环境的 氛围和沉浸感至关重要。
舒适度
耳机和麦克风的舒适度也是重 要的考量因素,长时间使用不
易疲劳。
其他设备
数据线和其他连接设备
兼容性和扩展性
为了确保稳定的图像和声音传输,需 要高质量的数据线和连接设备。
02
03
04
控制器
用于用户与虚拟世界进行交互 的设备,如手柄、手套等。
定位器
通过接收器和传感器,精确追 踪用户的动作和位置,实现真
实与虚拟的交互。
精确度和响应速度
控制器和定位器的精确度和响 应速度影响用户体验的真实感
和交互性。
舒适度和易用性
设备舒适度和易用性也是重要 的考量因素,方便用户操作和
携带。
02
它通过模拟人的视觉、听觉、触 觉等感官感受,使用户仿佛身临 其境地置身于一个三维的虚拟环 境中,与虚拟世界进行互动。
VR虚拟现实发展历程
01
02
03
1950年代
科幻小说家首次提出虚拟 现实概念。
1980年代
VR开始进入商业化应用, 推出了一些VR设备和游戏 。
通过不断的技术创新和研发,提 高VR设备的硬件性能,优化软件 算法,以解决技术瓶颈问题。
用户体验与设计
用户体验
良好的用户体验是VR技术发展的关 键,包括舒适度、交互自然性、视觉 真实感等方面。
设计原则
遵循人体工学和心理学原理,注重用 户需求和习惯,提高VR产品的易用性 和舒适性。
内容创新与制作
声音设备
耳机
提供立体声音频,增强虚拟世 界的真实感。
麦克风
用于语音交互和语音识别,实 现语音控制和交流。
音效和音质
音效和音质对营造虚拟环境的 氛围和沉浸感至关重要。
舒适度
耳机和麦克风的舒适度也是重 要的考量因素,长时间使用不
易疲劳。
其他设备
数据线和其他连接设备
兼容性和扩展性
为了确保稳定的图像和声音传输,需 要高质量的数据线和连接设备。
02
03
04
控制器
用于用户与虚拟世界进行交互 的设备,如手柄、手套等。
定位器
通过接收器和传感器,精确追 踪用户的动作和位置,实现真
实与虚拟的交互。
精确度和响应速度
控制器和定位器的精确度和响 应速度影响用户体验的真实感
和交互性。
舒适度和易用性
设备舒适度和易用性也是重要 的考量因素,方便用户操作和
携带。
02
它通过模拟人的视觉、听觉、触 觉等感官感受,使用户仿佛身临 其境地置身于一个三维的虚拟环 境中,与虚拟世界进行互动。
VR虚拟现实发展历程
01
02
03
1950年代
科幻小说家首次提出虚拟 现实概念。
1980年代
VR开始进入商业化应用, 推出了一些VR设备和游戏 。
虚拟现实技术课件第1章
应用软件:虚拟世界中物体的几何模型、物理模型、运 动模型的建立;三维虚拟立体声的生成;模型管理技术 及实时显示技术、虚拟世界数据库的建立与管理等。
数据库:存放整个虚拟世界中所有物体的各方面信息。
1-21
1-22
1-23
1.4 虚拟现实系统的分类
1.4.1 1.4.2 1.4.3 1.4.4
1-8
1.1 虚拟现实技术的发展史
1990年,在美国达拉斯召开的Siggraph会议上,明确提出VR 技术研究的主要内容包括实时三维图形生成技术、多传感器 交互技术和高分辨率显示技术,为VR技术的发展确定了研 究方向。
从20世纪90年代开始,VR技术的研究热潮也开始向民间的高 科技企业转移。著名的VPL公司开发出第一套传感手套命名 为“DataGloves”,第一套HMD命名为“EyePhones”。
思科公司篮球馆
1-37
VR用于教育领域
虚拟的零件安装培训
洞穴式虚拟工程模型漫游
1-38
Hale Waihona Puke 例:VR用于军事训练或演习军事领域研究是推动虚拟现实技术发展的原动力,目前依 然是主要的应用领域。虚拟现实技术主要在军事训练和演习、 武器研究这两个方面广泛应用。
虚拟战场
1-39
虚拟航母
指基于网络构建的虚拟环境, 将位于不同物理位置的多个用 户或多个虚拟环境通过网络相 连接并共享信息,从而使用户 的协同工作达到一个更高的境 界。
主要被应用于远程虚拟会议、 虚拟医学会诊、多人网络游戏、 虚拟战争演习等领域。
1-34
1.5 虚拟现实技术的应用领域
1.5.1 1.5.2 1.5.3 1.5.4 1.5.5
1-19
1.3虚拟现实的特征
数据库:存放整个虚拟世界中所有物体的各方面信息。
1-21
1-22
1-23
1.4 虚拟现实系统的分类
1.4.1 1.4.2 1.4.3 1.4.4
1-8
1.1 虚拟现实技术的发展史
1990年,在美国达拉斯召开的Siggraph会议上,明确提出VR 技术研究的主要内容包括实时三维图形生成技术、多传感器 交互技术和高分辨率显示技术,为VR技术的发展确定了研 究方向。
从20世纪90年代开始,VR技术的研究热潮也开始向民间的高 科技企业转移。著名的VPL公司开发出第一套传感手套命名 为“DataGloves”,第一套HMD命名为“EyePhones”。
思科公司篮球馆
1-37
VR用于教育领域
虚拟的零件安装培训
洞穴式虚拟工程模型漫游
1-38
Hale Waihona Puke 例:VR用于军事训练或演习军事领域研究是推动虚拟现实技术发展的原动力,目前依 然是主要的应用领域。虚拟现实技术主要在军事训练和演习、 武器研究这两个方面广泛应用。
虚拟战场
1-39
虚拟航母
指基于网络构建的虚拟环境, 将位于不同物理位置的多个用 户或多个虚拟环境通过网络相 连接并共享信息,从而使用户 的协同工作达到一个更高的境 界。
主要被应用于远程虚拟会议、 虚拟医学会诊、多人网络游戏、 虚拟战争演习等领域。
1-34
1.5 虚拟现实技术的应用领域
1.5.1 1.5.2 1.5.3 1.5.4 1.5.5
1-19
1.3虚拟现实的特征
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
3
2-4
2.1 跟踪定位设备
2.1.1 电磁波跟踪器 2.1.2 超声波跟踪器 2.1.3 光学跟踪器 2.1.4 其他类型跟踪器 2.1.5 跟踪传感设备的性能比较
a
4
2-5
2.1 跟踪定位设备
2.1.1 电磁波跟踪器
电磁波跟踪器是一种较为常见的空间跟踪 定位器,一般由一个控制部件,几个发射器和 几个接收器组成。
2.2 立体显示设备
2.2.1 固定式立体显示设备
2、投影式VR显示设备
(1)墙式投影显示设备: 可采用平面、柱面、球面的屏幕形式。
a
19
2-20
2.2 立体显示设备
2.2.1 固定式立体显示设备
2、投影式VR显示设备
(2)响应工作台式显示设备 (Responsive Work Bench,RWB):
3种常用跟踪技术的主要性能指标对比
a
14
2-15
2.2 立体显示设备
人眼立体视觉效应的原理 :当人在现实生活 中观察物体时,双眼之间6~7cm的距离(瞳距) 会使左、右眼分别产生一个略有差别的影像(即 双眼视差),而大脑通过分析后会把这两幅影像 融合为一幅画面,并由此获得距离和深度的感觉。
a
15
2-16
一般由投影仪、反射镜和 显示屏(一种特制玻璃) 组成,投影仪将立体图像 投射到反射镜面上,再由 反射镜将图像反射到显示 屏上。
飞行时间(Time Of Flight,TOF)测量法
同时使用多个发射器和接收器,通过测量超声波从 发出到反射回来的飞行时间计算出准确的位置和方向。
相位相干(Phase Coherent,PC)测量法
通过比较基准信号和发射出去后发射回来的信号之间
的相位差来确定距离。
a
8
2-9
2.1 跟踪定位设备
2.1.3 光学跟踪器
光学跟踪器可以使用多种感光设备,从普 通摄像机到光敏二极管都有。光源也是多种多 样的,如自然光、激光或红外线等,但为避免 干扰用户的观察视线,目前多采用红外线方式。
a
9
2-10
2.1 跟踪定位设备
2.1.3 光学跟踪器
光学跟踪器使用的主要三种技术:
标志系统 通常是利用传感器(如照相机或摄像机)监测发射器
2.1 跟踪定位设备
2.1.3 光学跟踪器
光学跟踪器虽然受视线阻挡的限制且工作 范围较小,但其数据处理速度、响应性都非常 好,因而较适用于头部活动范围相当受限而要 求具有较高刷新率和精确率的实时应用。
a
11
2-12
2.1 跟踪定位设备
2.1.4 其他类型跟踪器
1、机械跟踪器
通常把参考点和跟踪对象直接通过连杆装置相连,
清华大学出版社
虚拟现实技术
申蔚 曾文琪
a
1
2-2
第2章 虚拟现实技术概论
2.1 跟踪定位设备 2.2 立体显示设备 2.3 手部数据交互设备 2.4 虚拟声音输出设备 2.5 其他交互设备 2.6 虚拟现实硬件系统的集成
a
2
2-3
2.1 跟踪定位设备
典型的工作方式是:由固定发射器发射出信 号,该信号将被附在用户头部或身上的机动传感 器截获,传感器接收到这些信号后进行解码并送 入计算部件处理,最后确定发射器与接收器之间 的相对位置及方位,数据随后传输到时间运行系 统进而传给三维图形环境处理系统。
a
13
2-14
2.1 跟踪定位设备
2.1.5 跟踪传感设备的性能比较
跟踪器类型
精度
分 辨 率 响应时间
跟踪范围
电磁波
3mm±0.1mm 1mm±0.03mm
50 ms
半径<1.6m的半球形
超 声 波 依空气密度变化 10mm±0.5mm
30 ms
4~5m3
光学
1 mm
2mm±0.02mm < 1 ms 4~8m3(可扩展至14m3)
a
5
2-6
2.1 跟踪定位设备
2.1.1 电磁波跟踪器
优点是其敏感性不依赖于跟踪方位,基本不受 视线阻挡的限制,体积小、价格便宜,因此对 于手部的跟踪大都采用此类跟踪器。
缺点是其延迟较长,跟踪范围小,且容易受环
境中大的金属物体或其他磁场的影响,从而导 致信号发生畸变,跟踪精度降低。
a
6
2-7
(如红外线发光二极管)的位置进行追踪。
模式识别系统 把发光器件按某一阵列排列,并将其固定在被跟踪对
象身上,由摄像机记录运动阵列模式的变化,通过与已 知的样本模式进行比较从而确定物体的位置。
激光测距系统
将激光通过衍射光栅发射到被测对象,然后接收经物
体表面反射的二维衍射图的a 传感器记录。
10
2-11
采用刚体框架,一方面可以支撑观察设备,另一方面可 以测量跟踪对象的位置和方位。
2、惯性跟踪器
惯性跟踪器也是采用机械方法,其原理是利用小型 陀螺仪测量跟踪对象在其倾角、偏角和转角方面的数据。
3、图像提取跟踪器
一般是由一组摄像机拍摄人及其动作,然Байду номын сангаас通过图
像处理技术的运算和分析来确定人的位置及动作。
a
12
2.2 立体显示设备
2.2.1 固定式立体显示设备 2.2.2 头盔显示器 2.2.3 手持式立体显示设备
a
16
2-17
2.2 立体显示设备
2.2.1 固定式立体显示设备
1、台式VR显示设备
一般使用标准计算机监视器,配合双目立体眼镜组成。 根据监视器的数目不同,还可分为单屏式和多屏式两类。
最简单也是最便宜的
2-13
2.1 跟踪定位设备
2.1.5 跟踪传感设备的性能比较
跟踪定位器的性能指标主要包括:
精度:指检测目标位置的正确性,即误差范围。
分辨率:指跟踪定位器所能检测到的最小变化 范围,小于此值将检测不到。
响应时间:包括采样率、数据率、更新率和延 迟时间等4个指标。
抗干扰性:指跟踪定位器在相对恶劣的条件下 避免出错的能力。
VR视觉显示模式, 但缺乏沉浸感。
a
17
2-18
2.2 立体显示设备
2.2.1 固定式立体显示设备
2、投影式VR显示设备
一般可以通过并排放置多个显示器创建大型显示墙,或通 过多台投影仪以背投的形式投影在环幕上,各屏幕同时显 示从某一固定观察点看到的所有视像,由此提供一种全景 式的环境。
a
18
2-19
2.1 跟踪定位设备
2.1.2 超声波跟踪器
超声波跟踪器是声学跟踪技术最常用的一 种,其工作原理是发射器发出高频超声波脉冲 (频率20KHz以上),由接收器计算收到信号 的时间差、相位差或声压差等,即可确定跟踪 对象的距离和方位。
a
7
2-8
2.1 跟踪定位设备
2.1.2 超声波跟踪器
按测量方法的不同,超声波跟踪定位技术可分为: