毕业论文---行列式的求法汇总

合集下载

计算行列式常用的7种方法

计算行列式常用的7种方法

行列式的计算方法介绍7种常用方法1 三角化方法:通过行列初等变换将行列式化为三角型行列式.例1 计算n+1阶行列式xa a a a a x a a a a x D nnn32121211=+2 把某一行(列)尽可能化为零 例2 计算:yy x x D -+-+=222222222222222243 递归法(数学归纳法):设法找出D n 和低级行列式间的关系,然后进行递归.例4 证明:βαβαβαβααββααββα--=++++=++1110000010001000n n n D例5 证明范德蒙行列式(n ≥2)∏≤<≤-----==nj i jin nn n n n nn x x x x x x x x x x x x x x V 111312112232221321)(11114 加边法:对行列式D n 添上一适当行和列,构成行列式D n+1,且D n+1=D n 例6 证明:)11(11111111111111111111121321∑=+=++++=ni in nn a a a a a a a a D5 拆分法:将行列式表为行列式的和的方法.即如果行列式的某行(或列)元素均为两项和,则可拆分为两个行列式之和 例7 设abcd=1,求证:011111111111122222222=++++ddd d c c c c b b b ba a a a6 利用行列式的乘积:为求一个行列式D 的值,有时可再乘上一个适当的行列式∆;或把D 拆分为两个行列式的积. 例8(1)1)cos()cos()cos()cos(1)cos()cos()cos()cos(1)cos()cos()cos()cos(1121332312322113121n n n n n n D αααααααααααααααααααααααα------------=(2)设S k =λ1k +λ2k +⋯+λn k (k=1,2…),求证:∏≤<≤-+-+--=nj i j in n nn n nn s s s s s s s s s s s s s s s n 1222111432321121)(λλ7 利用拉普拉斯定理求行列式的值.拉普拉斯定理是行列式按某一行(或列)展开定理的推广.定义(1) 在n 阶行列式D 中,任取k 行k 列 (1≤k ≤n),位于这k 行k 列交叉处的k 2个元素按原来的相对位置组成的k 阶行列式S ,称为D 的一个k 阶子式.如:D=3751485210744621则D 的一个2阶子式为:S=8261 在一个n 阶行列式中,任取k 行,由此产生的k 阶子式有C kn 个.(2) 设S 为D 的一个k 阶子式,划去S 所在的k 行k 列,余下的元素按原来的相对位置组成的n-k 阶行列式M 称为S 的余子式.又设S 的各行位于D 中的第i 1,i 2…i k 行,S 的各列位于D 中的第j 1,j 2…j k 列,称A=(-1)(i1+i2+…+ik)+(j1+j2+…+jk)M.如:3751485210744621则D 的一个2阶子式为:S=8261M=3517为S 的2阶子式 M=(-1)(1+3)+(1+3)3517为S 的代数余子式.拉普拉斯定理:若在行列式D 中任取k 行 (1≤k ≤n-1),则由这k 行所对应的所有k 阶子式与它们的代数余子式的乘积等于D. 例9 计算2112100012100012100012=D 例10 块三角行列式的计算 设:⎪⎪⎭⎫ ⎝⎛=⨯⨯n n m m C B A *0或 ⎪⎪⎭⎫⎝⎛=⨯⨯n n m m C B A 0* 则:detA=(detB)(detC).特别地:若A=diag(A 1,A 2,…,A t ),则DetA=(detA 1)(detA 2)…(detA t ).例11 设分块矩阵⎪⎪⎭⎫⎝⎛=D C B A 0,其中0为零阵,B和D可逆,求A-1.例12 计算nn b b b a a a D 1001000102121 =例13 设:⎪⎪⎭⎫ ⎝⎛=C B A , BC T =0.证明:|AA T |=|BB T ||CC T |.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

行列式的计算方法小论文

行列式的计算方法小论文

行列式的计算方法行列式计算方法总结及简单应用摘要:行列式的计算方法,并举例说明了它们的应用,同时对若干特殊例子进行推广。

并举出了几种常见的行列式应用。

关键词:排列 行列式 行列式计 行列式计算的基本方法:基本的行列式解法包括:性质法、化三角形法、代数余子式法等1、利用行列式的性质计算例1: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称n D 为反对称行列式,证明:奇数阶反对称行列式为零.证:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式n D 可表示为1213112232132331230000n nn n nnna a a a a a D a a a a a a -=-----, 由行列式的性质A A '=,1213112232132331230000n n n n nnna a a a a a D a a a a a a -----=-12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------ =n n D )1(-当n 为奇数时,得n D =n D ,因而得n D = 0.2、 化三角形法此种方法是利用行列式的性质把给定的行列式表为一个非零数与一个三角形行列式之积,所谓三角形行列式是位于对角线一侧的所有元素全部等于零的行列式.三角形行列式的值容易求得,涉及主对角线的三角形行列式等于主对角线上元素之积,涉及次对角线的n 阶三角形行列式等于次对角线上元素之积且带符号例2 计算n 阶行列式n ab b ba b D bb a=解:()[]a b b a bbb n a D n1111-+=()[]ba b a bbb n a ---+=000011()[])1()(1---+=n b a b n a3、代数余子式法在一个n 级行列式D 中,把元素ij a 所在的行与列划去后,剩下的2)1(-n 个元素按照原来的次序组成的一个)1(-n 阶行列式ij M ,称为元ij a 的余子式,ij M 带上符号)()1(j i +-称为的ij a 代数余子式,记作ij j i ij M A )()1(+-=定理1: 行列式等于其第 i 行诸元素与各自代数余子式的乘积之和 , 即ij nj ij nn nn ij ij A a A a A a A a A a A a D ∑==+++++=1131312121111证:先证特殊情况元素11a 位于第一行、第一列,而该行其余元素均为零;1121222120n n n nna a a a D a a a =1212121211()()121211(1)(1)n n n n j j j j j j j j nj j j nj j j a a a a a a ττ=≠=-+-∑∑2223()112()(1)n n n j j j nj j j j a a a τ=-∑1111a M =而11111111(1)A M M +=-=,故1111D a A =;(2)111110j n ij n njnna a a a D a a a = 将D 中第i 行依次与前1i -行对调,调换1i -次后位于第一行; 将D 中第j 列依次与前1j -列对调,调换1j -次后位于第一列; 经(1)(1)2i j i j -+-=+-次对调后,ij a 就位于第一行、第一列,即2(1)(1)i j i j ij ij ij ij ij ij D a M a M a A +-+=-=-=.(3) 一般地111211212000000ni iinn n nna a a D a a a a a a =+++++++++111211112111121121212120000nn n i i in n n nnn n nnn n nna a a a a a a a a a a a a a a a a a a a a =+++ 1122i i i i in in a A a A a A =++同理有:nj nj j j j j A a A a A a D +++= 2211.例3 计算四阶行列式 4000000a ba b a b a b D a b a b a ba b+-+-=-+-+.证: 按第1行展开,有1114400()(1)0()(1)000a b a ba b a bD a b a b a ba b a b a b a ba b +++-+-=+--++---++-, 对等式右端的两个3阶行列式都按第3行展开,得22[()()]a b a b D a b a b a b a b+-=+---+4222a b =.4、范德蒙得行列式法根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去;把所求行列式化成已知的或简单的形式.其中范德蒙行列式就是一种.这种变形法是计算行列式最常用的方法.例1 计算行列式1222211221212121122111111n n nn n n n n n n nx x x D x x x x x x x x x x x x ------+++=++++++解 把第1行的-1倍加到第2行,把新的第2行的-1倍加到第3行,以此类推直到把新的第1-n 行的-1倍加到第n 行,便得范德蒙行列式1222212111112111()n n i j n i j n n n nx x x D x x x x x x x x ≥>≥---==-∏参考文献[1] 蒋省吾. 杨辉三角中的行列式[J],教学通报,1988,5:8-10 [2] 张禾瑞.郝新高等代数[M].北京:人民教育出版社,1996. [3] 王品超.高等代数新方法[M].济南,山东教育出版社,1989.[4] 北京大学数学系几何与代数教研室代数小组. 高等代数(第三版)[M]. 北京: 高等教育出社,2003.[5] 同济大学数学教研室.工程数学线性代数(第三版) [M].北京:高等教育出版社,1999. [6] 王萼芳, 石生明修订. 高等代数(第三版)[M]. 北京: 高等教育出版社, 2003. [7] 李宇寰.组合数学[M].北京:北京师范大学出版社,1988. [8] 杨振声.组合数学及其算法[M].北京:中国科学技术出版社,1997. [9] 陈景润.组合数学简介[M].天津:天津科学技术出版社,1988.。

行列式的计算技巧及其应用毕业论文【范本模板】

行列式的计算技巧及其应用毕业论文【范本模板】

本科生毕业论文(设计)题目: 行列式的计算技巧及应用学生姓名:谢芳学号: 201210010133专业班级:数学与应用数学12101班指导教师:颜亮完成时间: 2016 年 5 月目录摘要.。

.。

....。

.。

....。

.。

.。

.。

.。

.。

.。

.。

...。

..。

....。

.。

.。

..。

.。

.。

1 关键词.。

....。

.。

..。

.。

..。

..。

.。

.。

...。

....。

..。

..。

...。

..。

...。

1 0、前言。

..。

.。

.。

.。

....。

...。

.。

....。

.。

.。

..。

.。

....。

..。

.。

..。

1 1、基础知识及预备引理.。

....。

..。

.。

.。

.....。

....。

..。

..。

.。

.。

.。

.。

.。

2 1.1行列式的由来及定义。

..。

..。

...。

.。

..。

...。

.。

...。

....。

..。

....。

....。

..2 1.2行列式的性质。

.。

..。

.。

...。

..。

..。

...。

..。

.。

.。

....。

.。

.。

...。

.。

.。

.。

3 1。

3拉普拉斯定理及范德蒙德行列式的定义....。

.。

.。

..。

.。

.....。

.。

..。

4 2、行列式的计算方法。

.。

.。

...。

..。

...。

.。

..。

.。

...。

..。

..。

.....。

..。

.。

..。

.4 2。

1定义法。

.。

.。

...。

.。

...。

.。

...。

........。

.。

...。

.。

.。

.。

..。

..。

..4 2.2利用行列式的性质(化三角型)计算.。

.。

..。

..。

.。

.。

.。

.。

.。

..。

..。

..。

5 2.3拆行(列)法...。

..。

.。

..。

..。

.。

....。

.。

.。

...。

..。

.。

.。

..。

6 2。

4加边法(升阶法)。

..。

.。

....。

.。

..。

..。

...。

.。

.。

.。

..。

..。

..。

..。

.6 2。

5范德蒙德行列式的应用。

..。

...。

.。

.。

..。

.。

.。

.。

.。

.。

...。

.。

.。

..。

...。

.。

.7 3、n阶行列式的计算。

如何计算行列式范文

如何计算行列式范文

如何计算行列式范文行列式是一个与矩阵相关的数,它是用于描述线性方程组解的性质的一种数学工具。

计算行列式的方法有多种,包括展开法、按行或按列求和法以及特殊矩阵的性质等。

下面将介绍一些常见的计算行列式的方法。

一、展开法展开法是计算行列式的一种常见方法。

对于一个n阶行列式A,其展开法可以通过以下步骤进行计算。

1.当n=1时,行列式的值即为该元素的值,即A=a。

2.当n>1时,取第一行(或第一列)的元素a11,根据代数余子式的定义,构造n-1阶子行列式A113.根据代数余子式的定义,计算a11与A11的乘积,再乘以(-1)^(1+1)=1,并将其加到行列式的值中,得到一个部分求和结果。

4.重复步骤2和步骤3,依次取第一行(或第一列)的下一个元素,并将其与对应的n-1阶子行列式的乘积加到部分求和结果中。

5.将所有的部分求和结果相加,即为行列式的值。

示例:计算行列式A=,12345781.第一行第一个元素为a11=1,对应的子行列式为A11=,56,其值为52.a11与A11的乘积为1*5=53.第一行第二个元素为a12=2,对应的子行列式为A12=,46,其值为44.a12与A12的乘积为2*4=85.第一行第三个元素为a13=3,对应的子行列式为A13=,45,其值为46.a13与A13的乘积为3*4=127.将步骤4、步骤5和步骤6的结果相加,得到部分求和结果为5+8+12=258.因此,行列式A的值为25二、按行或按列求和法按行或按列求和法是一种计算行列式的简便方法。

对于一个n阶行列式A,其按行或按列求和法可以通过以下步骤进行计算。

1.根据行列式的定义,确定需要按行还是按列求和。

以下以按行求和为例。

2.取第一行的元素a11,并将其与对应的n-1阶子行列式A11的值相乘。

3.将步骤2的结果乘以(-1)^(1+1)=1,得到部分求和结果。

4.重复步骤2和步骤3,依次取第一行的下一个元素,并将其与对应的n-1阶子行列式的乘积加到部分求和结果中。

行列式的计算方法总结

行列式的计算方法总结

行列式的计算方法总结行列式是线性代数中的重要概念,它在矩阵理论、方程组求解、向量空间等许多领域都有广泛的应用。

计算行列式的方法有很多种,下面我们来总结一下常见的计算行列式的方法。

1.代数余子式法:代数余子式法是计算行列式的一种经典方法。

对于n*n阶行列式A,可以按照第一行(或第一列)的元素展开得到n个代数余子式,然后按照代数余子式定义计算行列式。

具体步骤如下:(1)选择行列式A的第一行(或第一列)的所有元素,记作a11,a12,...,a1n。

(2)计算n个代数余子式,第i个代数余子式记作A(i,1)(或A(1,i))。

A(i,1)等于元素a1i所在行与列组成的n-1阶子行列式的行列式值。

(3)用代数余子式计算行列式,行列式的值等于各代数余子式与元素a1i的乘积之和:det(A) = a11*A(1,1) - a12*A(2,1) + a13*A(3,1) - ... + (-1)^(n+1)*a1n*A(n,1)。

2.拉普拉斯展开法:拉普拉斯展开法也是计算行列式的一种常用方法。

具体步骤如下:(1)选择行列式A的其中一行(或其中一列),记作第k行(或第k列)。

(2)计算代数余子式,第i行第j列元素所对应的代数余子式记作A(i,j)(或A(j,i))。

A(i,j)等于元素aij所在行与列组成的n-1阶子行列式的行列式值。

(3)用代数余子式计算行列式,行列式的值等于各代数余子式与元素aij的乘积之和:det(A) = a1k*A(1,k) - a2k*A(2,k) + a3k*A(3,k) - ... + (-1)^(k+1)*ank*A(n,k)。

3.克莱姆法则:克莱姆法则是计算线性方程组的一个重要方法,也可以用来计算行列式。

对于n个未知数的n个线性方程组Ax = b,其中A是一个n*n阶矩阵,x和b都是n维列向量。

如果矩阵A是非奇异的(即行列式det(A)≠0),则可以用克莱姆法则求解方程组。

具体步骤如下:(1)将线性方程组的系数矩阵A按列分成n个子矩阵A1,A2,...,An,其中第i个子矩阵Ai将系数矩阵A的第i列替换为等号右边的向量b。

(完整版)行列式的计算方法总结

(完整版)行列式的计算方法总结

行列式的计算方法总结:1. 利用行列式性质把行列式化为上、下三角形行列式.2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace 定理). 几个特别的行列式:B A BC A BC A ==0021,B A BA D DB Amn )1(0021-==,其中B A ,分别是n m ,阶的方阵. 例子: nn abab ab b a b abaD 22=,利用Laplace 定理,按第1,+n n 行展开,除2级子式ab ba 外其余由第1,+n n 行所得的2级子式均为零. 故222222112)()1(--+++++-=-=n n n n n n n D b a D ab b a D ,此为递推公式,应用可得n n n n b a D b a D b a D )()()(224222222222-==-=-=-- .3. 箭头形行列式或者可以化为箭头形的行列式.例:nn n n n n n a x x a a x x a a x x a a a a x x a a a a x a a a a x a a a a x ------=0001133112211321321321321321 -----(倍加到其余各行第一行的1-) 100101010011)(3332221111-------⋅-=∏=nn n n i i i a x a a x a a x a a x x a x --------(每一列提出相应的公因子i i a x -) 1001000010)(33322221111nn n ni ii i n i i i a x a a x a a x a a x a a x x a x ----+-⋅-=∑∏== --------(将第n ,,3,2 列加到第一列)其它的例子:特点是除了主对角线,其余位置上的元素各行或各列都相同.n x a aa a a x a a a a a x a a a aa x a ++++ 321,nn n n a x a a a a a x a a a a a x a a a a a x ++++ 321321321321. 4. 逐行逐列相减法.行列式特点是每相邻两行(列)之间有许多元素相同.用逐行(列)相减可以化出零. 5. 升阶法(或加边法, 添加一行一列,利于计算,但同时保持行列式不变).例子:nn n n nnn n nn n n nn b a b a b a a b a b a b a a b a b a b a a b b b b a b a b a b a b a b a b a b a b a ++++-++++-++++----=++++++++++++10101010000011112122212212111121212221212111∑∑∑∑∑∑======+--+=---+--+=------=ni in i i i ni in ni i n i i i ni in n b b a na b b b b b a na a a ab b b 1112111121211110100000101111111010100111011101∑∑∑∑∑∑∑=≠======-+++=-++=nj nji i j i j ni i ni i ni i i ni i ni i a a b b a b a n b a 1111111)(1)1)(1(.例子:nnx a aaaa x a a a a a x a a a a a x a a a a a x a aaaa x a a a a a x a aa a a x a ++++=++++0001321321).1(00000000000010100010001000111213211321∑∑==+=+=----=ni in nni inx a x x x x x x x a a a a x a x x x x a a a a6. 利用范德蒙德行列式.计算行列式: n nn n nn nn n n nnx x x x x x x x x x x x x x x x D321223222122322213211111----=解: 令: nnnn nn n nn n n n nn n n ny x x x y x x x y x x x y x x x y x x x D211112112222212222212111111--------=,这是一个1+n 级范德蒙德行列式. 一方面,由范德蒙德行列式得)())(()(2111n ni j j ix y x y x y x xD ---⋅-=∏≤<≤ .可看做是关于y 的一个n 次多项式.另一方面,将1D 按最后一列展开,可得一个关于y 的多项式01111p y p y p y p D n n n n ++++=-- ,其中1-n y 的系数1-n p 与所求行列式D 的关系为1--=n p D .由)())(()(2111n ni j j ix y x y x y x xD ---⋅-=∏≤<≤ 来计算1-n y的系数1-n p 得:∑∏=≤<≤-⋅--=ni i ni j j in x x xp 111)(,故有∑∏=≤<≤-⋅-=-=ni i ni j j in x x xp D 111)(其它的例子:=+-+++-++-++------n n n n n n n n n n n n n n n n n n nn n n nb b a b a b a a b b a b a b a a b b a b a b a a 111121211111212222222122111121211111……每一行提公因子n i a ,nn n n n n n n n n n n n n nn n n a b a b a b a b a ba b a b a b a b a b a ba b a a a )()()()(1)()()()(1)()()()(1111112111122122222221111121111121++-++++++--+=).(1121∏≤<≤+-=n i j j j ii nn n n a b a b a a a7.利用数学归纳法证明行列式.(对行列式的级数归纳)证明当βα≠时,,1000001000100011βαβαβααββαβααββααββα--=+++++=++n n n D证明时,将n D 按第一行(或第一列)展开得21)(---+=n n n D D D αββα,利用归纳假设可得. 8. 利用递推公式.例子: 计算行列式,10000010001000βααββαβααββααββα+++++=n D 解: 按第一行展开得: 21)(---+=n n n D D D αββα,将此式化为:(1) )(211----=-n n n n D D D D αβα或 (2) )(211----=-n n n n D D D D βαβ 利用递推公式(1)得:n n n n n n n n D D D D D D D D βαβαβαβα=-==-=-=-------)()()(122322211 ,即n n n D D βα+=-1. (3)利用递推公式(2)得:n n n n n n n n D D D D D D D D αβαβαβαβ=-==-=-=-------)()()(122322211 ,即n n n D D αβ+=-1. (4)由(3)(4) 解得: ,,)1(,11⎪⎩⎪⎨⎧=+≠--=++βααβαβαβαn n n n n D其它的例子nn acb a ac b a c b a D00000000000=,按第一行展开可得21---=n n n bcD aD D ,此时令,,bc a ==+αββα则21)(---+=n n n D D D αββα,变形为211)(----=-n n n n D D D D αβα,此为递推公式.利用刚才的例子可求得结果. 这里,,bc a ==+αββα即βα,是方程02=+-bc ax x 的两个根.9. 分拆法.将行列式的其中一行或者一列拆成两个数的和,将行列式分解成两个容易求的行列式的和.例子:accccb ac c c bb ac c bbbac b b b b c a c accccb ac c c bb ac c bbbacb b b b a D n-+==210000V V acccb ac c b b a c b b b a b b b b c a accccb ac c c b b a c c b b b a c b b b b c +=-+=1V : 除第一行外,其余各行加上第一行的1-倍,所得行列式按第一列展开,2V 按第一列展开.11)(0000000--=----------=n b a c ba b c b c bc ba b c b c b b b a b c ba b b b b c V12)(--=n D c a V , 故11)()(---+-=n n n D c a b a c D ,由c b ,的对称性质,亦可得11)()(---+-=n n n D b a c a b D ,这两个式子中削去1-n D ,可得结论,bc c a b b a c D nn n ----=)()(.注: (1) 同一个行列式,可有多种计算方法.要利用行列式自身元素的特点,选择合适的计算方法. (2) 以上的各种方法并不是互相独立的,计算一个行列式时,有时需要综合运用以上方法,。

行列式的计算方法 毕业论文 (2)

行列式的计算方法  毕业论文 (2)

行列式的计算方法摘要行列式最早是由解线性方程而引进的,时至今日,行列式已不止如此,在许多方面都有广泛的应用。

本文,我们学习行列式的定义、性质,化为“三角形”行列式,利用行列式的性质,使行列式化简或化为“三角形”行列式计算。

利用拉普拉斯展开定理,按某一行(列)或某几行(列)展开,使行列式降级,利用范德蒙行列式的计算公式,利用递推关系等,在计算行列式中最常用的是利用行列式的性质,和按某行(列)展开行列式,而某些方法是针对于某些特殊类型的行列代而言,对一般的n级行列式的计算,往往要利用行列式的性质和拉普拉斯展开定理,导出一个递推公式,化为2级或3级行列式,以及化为“三角形”行列式来计算。

关键词计算方法线性方程组行列式引言解方程是代数中一个基本问题,特别是在中学代数中,解方程占有重要地位。

因此这个问题是读者所熟悉的。

譬如说,如果我们知道了一段导线的电阴r,它的两端的电位差v,那么通过这段导线的电流强度i,就可以由关系式vir ,求出来。

这就是通常所谓解一元一次方程的问题。

在中学所学代数中,我们解过一元、二元、三元以至四元一次方程组。

而n 元一次方程组,即线性方程组的理论,在数学中是基本的也是重要的内容。

在中学代数课中学过,对于二元线性方程组:⎩⎨⎧=+=+22221211212111b x a x a b x a x a 当二级行列式022211211≠a a a a 时,该方程组有唯一解,即222112112221211a a a a ab a b x =,222112112211112a a a a b a b a x =,对于三元线性方程组有相仿的结论。

为了把此结果推广到n 元线性方程组⎪⎪⎩⎪⎪⎨⎧=++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********的情形。

我们首先要掌握n 级行列式的相关知识。

行列式的计算方法和技巧大总结

行列式的计算方法和技巧大总结

行列式的计算方法和技巧大总结行列式是线性代数中的一个重要概念,用于表示线性方程组的性质和解的情况。

在计算行列式时,有许多方法和技巧可以帮助我们简化计算过程。

以下是行列式计算方法和技巧的大总结。

1. 二阶矩阵行列式:对于一个2x2的矩阵A,行列式的计算方法是ad-bc,其中a、b、c和d分别为矩阵A的元素。

2. 三阶矩阵行列式:对于一个3x3的矩阵A,行列式的计算方法是a(ei-fh) - b(di-fg) + c(dh-eg),其中a、b、c、d、e、f、g和h分别为矩阵A的元素。

3.行变换法:行变换是一种常用的简化计算行列式的方法。

行变换可以通过交换行、倍乘行和行加减法三种操作来实现。

当进行行变换时,行列式的值保持不变。

4.行列式的性质:行列式有以下性质:a)交换行,行列式的值相反;b)两行交换位置,行列式的值相反;c)同行相等,行列式的值为0;d)其中一行乘以一个数k,行列式的值变为原来的k倍;e)两行相加(减),行列式的值保持不变。

5.定义展开法:行列式的定义展开法可以通过选取任意一行或一列对行列式进行展开。

展开定理是一种递归的方法,它将一个复杂的行列式分解成若干个简单的行列式,从而简化计算过程。

6.三角矩阵行列式:对于一个上(下)三角矩阵,它的行列式等于对角线上的元素相乘。

这是因为在上(下)三角矩阵中,除了对角线上的元素外,其他元素都为0,因此它们的乘积为0。

7.克拉默法则:克拉默法则适用于解线性方程组时的行列式计算。

克拉默法则使用行列式来计算方程组的解。

具体来说,对于n个方程n个未知数的线性方程组,如果系数矩阵的行列式不为零,那么该方程组有唯一解,可以通过求解该方程组的克拉默行列式来得到方程组的解。

8.外积法则:在向量代数中,我们可以使用外积法则计算向量的叉乘。

对于两个三维向量a和b,它们的叉乘可以表示为a×b,它的模就是行列式的值。

具体计算方法是:ijka1a2a3b1b2b3其中,i、j和k是单位向量,a1、a2、a3和b1、b2、b3分别为向量a和向量b的坐标。

行列式的计算技巧与方法总结

行列式的计算技巧与方法总结

行列式的计算技巧与方法总结行列式是线性代数中的重要概念,广泛应用于各个领域,如线性方程组的求解、线性变换的判断等。

在实际应用中,计算行列式是一个必不可少的环节。

本文将对行列式的计算技巧和方法进行总结,以便读者能够更加轻松地解决行列式相关问题。

一、行列式的定义行列式是一个数。

行列式的定义通常有多种不同的形式,其中最常见的是按照矩阵的形式定义的。

对于一个n阶方阵A=(a_ij),其行列式记作det(A),可以通过以下方式计算:det(A) = a_11 * C_11 + a_12 * C_12 + ... + (-1)^(n+1) * a_1n * C_1n其中,C_ij是指元素a_ij的代数余子式。

二、行列式的计算方法1.二阶行列式的计算对于2阶方阵A=(a_11,a_12;a_21,a_22),其行列式可以直接通过以下公式计算:det(A) = a_11 * a_22 - a_12 * a_212.三阶行列式的计算对于3阶方阵A=(a_11,a_12,a_13;a_21,a_22,a_23;a_31,a_32,a_33),可以通过Sarrus法则来计算行列式:det(A) = a_11*a_22*a_33 + a_12*a_23*a_31 + a_13*a_21*a_32 -a_13*a_22*a_31 - a_12*a_21*a_33 - a_11*a_23*a_323.高阶行列式的计算对于n(n>3)阶方阵A,一般采用高斯消元法将矩阵转化为上三角矩阵,然后再计算行列式的值。

具体操作如下:a)对第一列进行第二行、第三行、..、第n行的倍加,使得第一列除了第一个元素外的其他元素都为0。

b)接着在第二列中对第三行、第四行、..、第n行的倍加,使得第二列除了第二个元素外的其他元素都为0。

c)重复以上步骤,直到将矩阵转化为上三角矩阵。

d)上三角矩阵的行列式等于主对角线上的元素相乘。

4.行列式的性质行列式具有以下性质,可以在计算中灵活运用:a)行互换或列互换,行列式的值不变,其符号变为相反数。

数学毕业论文《行列式计算的若干种方法及算法实现》

数学毕业论文《行列式计算的若干种方法及算法实现》

山西师范大学本科毕业论文行列式计算的若干种方法及算法实现姓名系别专业班级学号指导教师答辩日期成绩行列式计算的若干种方法及算法实现内容摘要行列式是高等数学中基本而又重要的内容之一,那么认识行列式,并且掌握行列式的性质就显得尤为重要,在此基础上,我们还需要搞清楚行列式的若干种计算方法,这不仅仅是用于高等数学中的计算,行列式也可用于解决许多实际问题。

本文通过行列式的定义,把握行列式的性质,透彻全面的概括了6种行列式的计算方法,包括定义法,化三角法,应用一行(列)展开公式,范德蒙行列式,递推公式法以及加边,本文还提出运用MATLAB来帮助计算行列式,正确的选择计算行列式的方法,使计算更为快捷。

通过这一系列的方法进一步提高我们对行列式的认识,为我们以后的学习带来十分有益的帮助。

【关键词】行列式性质计算方法 MATLABThe determinant of several kinds of calculating method andalgorithmAbstractThe determinant of higher mathematics is the basic and important content of, then know the determinant, and grasps the nature of the determinant is particularly important, based on this, we also need to figure out some kind of calculation method of the determinant, it is not used in the calculation of higher mathematics, the determinant can also be used to solve many problems. In this paper the determinant do understand after, grasp the nature of the determinant, thoroughly comprehensive summary six kinds of determinant calculation method, including definition method, the triangle method, the application of row(column) on a formula, Vander monde determinants, recursive formula method and add edge method. This paper also puts forward to help with MATLAB calculation determinants; the right choice calculation method of the determinant, making the calculation is more quickly. Through this a series of methods to future improve our understanding of the determinant, for the rest of learning brings very useful help.【Keywords】Determinant Properties Calculation method MATLAB目录一、行列式概念的提出 (1)二、行列式的定义 (1)(一)定义1 (2)(二)定义2 (2)(三)定义3 (2)三、行列式的性质 (2)四、行列式的若干种计算方法 (4)(一)定义法 (4)(二)化三角形法 (5)(三)应用一行(列)展开公式 (5)(四)范德蒙行列式 (5)(五)递推公式法 (6)(六)加边法 (7)五、运用MATLAB来解决行列式的问题 (8)六、结束语 (13)参考文献 (13)致谢 (14)行列式计算的若干种方法及算法实现学生姓名: 指导老师: 一、行列式概念的提出我们知道,行列式是高等代数中的一个计算工具,无论是数学中的高深领域,还是现实生活中的实际问题,都或多或少的与行列式有着直接或间接地关系。

行列式解法小结 数学毕业论文

行列式解法小结  数学毕业论文

行列式解法小结数学毕业论文
行列式解法是线性代数中重要的一种方法,可以广泛地应用于各个领域,如物理、工程、经济等。

本文就行列式解法进行了全面的介绍和分析,并探讨了它在实际应用
中的具体作用。

首先,本文阐述了行列式作为一个矩阵的一个属性,描述了它的定义、性质和计算方法。

行列式的定义是通过对一个矩阵中所有可能的排列进行组合,求得的一个标
量值。

它具有很多有用的性质,如行列式关于行和列的互换、行列式的线性性质等。

计算行列式可以使用伴随矩阵或展开式等方法。

其次,本文讨论了行列式作为一个代数工具的应用。

通过分析行列式与线性方程组之间的关系,我们可以发现,行列式可以被用来检测线性方程组解的性质。

如果行
列式的值为零,则该线性方程组无唯一解。

但如果其值不为零,则有唯一解。

此外,本文还阐释了行列式在求解矩阵乘法、求逆矩阵及求解特征值的应用。

通过行列式解法可以很容易地计算出矩阵的乘积、逆矩阵以及特征值等,这对于实际应
用中的矩阵相关问题具有很大的意义。

最后,本文对于行列式的具体应用进行了分析。

在物理领域中,如电学和热学计算问题里,行列式经常出现在方程组的解中。

在机器学习领域,行列式也被广泛地应
用于求解数据的特征值和特征向量。

在工业制造领域中,行列式可以用于计算机器人
的运动,以及控制系统的分析。

综上所述,行列式在数学中具有很重要的地位,并且在各个应用领域都有着非常广泛的应用。

因此,学习和掌握行列式解法对于从事数学及相关领域的人员来说是非
常必要的。

行列式的计算方法和解析论文

行列式的计算方法和解析论文

行列式的计算方法和解析论文行列式是线性代数中重要的概念,其在矩阵理论、向量空间等方面有广泛的应用。

行列式的计算方法包括拉普拉斯展开、按行(列)展开、递推法等。

行列式的计算方法在不同的场景下有不同的适用性,下面将详细介绍行列式的计算方法及其应用,并从一篇经典的解析论文中探讨行列式在数学研究中的作用。

一、行列式的计算方法1.拉普拉斯展开法:拉普拉斯展开法是求行列式的一种常用的计算方法。

假设A是一个n阶方阵,其中元素用a_ij表示,对于任意一个a_ij,可以通过展开该元素所在的行和列的其他元素来计算行列式的值。

拉普拉斯展开法的基本原理是递归地求解子行列式的值,直到得到一个1阶行列式。

例如,对于一个3阶行列式A=,a_11a_12a_13a_21a_22a_2a_31a_32a_3可以通过拉普拉斯展开法按第一行展开来计算行列式的值:A,=a_11*,A_11,-a_12*,A_12,+a_13*,A_1=a_11*(a_22*a_33-a_23*a_32)-a_12*(a_21*a_33-a_23*a_31)+a_13*(a_21*a_32-a_22*a_31)其中,A_11,表示去掉第一行第一列元素的2阶子行列式,以此类推。

2.按行(列)展开法:按行(列)展开法是求行列式的另一种计算方法。

通过选择其中一行(列),将行列式扩展为若干个较小阶的子行列式,最终递归地计算行列式的值。

按行展开和按列展开所得到的计算表达式相同,只是展开的方式不同而已。

例如,对于一个3阶行列式A=,a_11a_12a_13a_21a_22a_2a_31a_32a_3可以通过按第一行展开来计算行列式的值:A,=a_11*,A_11,-a_12*,A_12,+a_13*,A_1=a_11*(-1)^(1+1)*(a_22*a_33-a_23*a_32)-a_12*(-1)^(1+2)*(a_21*a_33-a_23*a_31)+a_13*(-1)^(1+3)*(a_21*a_32-a_22*a_31)其中,(-1)^(i+j)是代数余子式。

行列式计算方法的归纳 毕业论文

行列式计算方法的归纳  毕业论文

行列式计算方法的归纳摘 要 行列式的计算是一个很重要的问题,也是一个复杂的问题,阶数不超过 3的行列式可直接按行列式的定义求值,零元素很多的行列式(三角形行列式) 也可按行列式的定义求值.对于一般n 阶行列式,特别是当n 较大时,直接用定 义计算行列式几乎是不可能的事.因此,研究一般n 阶行列式的计算方法是十分 必要的.由于不存在计算n 阶行列式的一般方法,所以,本文只给出4种特殊的 计算方法给出了行列式的4种计算方法,综合利用所给解法,基本上可解决一般 4阶行列式的计算方法问题.关键词 行列式; 三角形行列式; 递推关系式1 化三角形法此种方法是利用行列式的性质把给定的行列式表为一个非零数与一个三角形行列式之积,所谓三角形行列式是位于对角线一侧的所有元素全部等于零的行列式.三角形行列式的值容易求得,涉及主对角线的三角形行列式等于主对角线上元素之积,涉及次对角线的n 阶三角形行列式等于次对角线上元素之积且带符号例 计算n 阶行列式ab b b a b b b aD n=解 ()[]a bb a bbb n a D n1111-+=()[]ba b a b bb n a ---+=000011()[]()b a n b n a ---+=112 提取公因式法若行列式满足下列条件之一,则可以用此法:(1)有一行(列)元素相同,称为“a a a ,,, 型”;(2)有两行(列)的对应元素之和或差相等,称为“邻和型”;(3)各行(列)元素之和相等,称为“全和型”.满足条件(1)的行列式可直接提取公因式a 变为“1,1,…,1型”,于是应用按行(列)展开定理,使行列式降一阶.满足(2)和(3)的行列式都可以根据行列式的性质变为满足条件(1)的行列式,间接使用提取公因式法.例 计算n 阶行列式a aaa aa a aa D nn n n x x x +++=212121解 该行列式各行元素之和都等于 x+∑=ni i a 1,属于“全和型”,所以a aaaa a a Dnnn ni i nx x x ++⎪⎭⎫ ⎝⎛+=∑=2221111xx x a a a nni i0000121⎪⎭⎫ ⎝⎛+=∑= ⎪⎭⎫ ⎝⎛+=∑=-ni i n a xx 11()b aab b a nn ab b a 221-=*==-3 利用范德蒙德(Vandermonde )行列式法著名的范德蒙行列式,在线性代数中占有重要地位,研究它的应用引起了一些数学家的兴趣,因此在计算行列式时,可直接用其结果.例 计算n 阶行列式()()()()()()()()()112111121111111112111222122211---------=---xx xx x x x x x x x x x x x x x x D nn n n nn n n n n解 将第一行可视为()()()1,,1,12211------x x x x x x nn,再由行列式的性质()()()()()()1121111111112111221121-------------xx xx x x x x x x x x x x x nn n n nnn n把第一个行列式从第一行起依次将i 行加到i+1行;第二个行列式的第i 列提取1-x i (i=1,2,3……n ),得x x x x x x x xx D nnnnn nn212122221=()()()()()()()1121111111111211122111-----------=∏xx x x x x xx x x x x x nn n n nn ni in()()∏∏∏≤≤==-*⎥⎦⎤⎢⎣⎡--=ni j j i ni i n i i x x x x 1111b a D 1111+=4利用递推关系法所谓利用递推关系法,就是先建立同类型n 阶与n-1阶(或更低阶)行列式之间的关系——递推关系式,再利用递推关系求出原行列式的值.例 计算n 阶行列式accb ac b b aD n=,其中0,≠≠bc c b解 将D n 的第一行视为(a-c )+c,0+c,……,0+c,据行列式的性质,得accb ac b b c a cb a b bc a a ccb ac b b cc a D n+-=+++-=000()()b a D D n n n cc a ---+-=∴11(1)于b 与c 的对称性,不难得到()()c a D D n n n bb a ---+-=11 (2)联立(1),(2)解之,得 ()()()⎥⎦⎤⎢⎣⎡-=----b a c a c b D nnnc b 1例 计算n 阶行列式ba ab ba b a abb a ab b a D n +++++=0000010001000解 将D n 按第一行展开,得()ba ab b a b a ab ab b a D D n n +++-+=-100000000011于是得到一个递推关系式()D DD n n nab b a 21---+=,变形得()D D D Dn n n nb a b 111----=- ,易知()()D Da D D aD D n n n n n n b b b 4333221------=-=- ()()()a b a aD D a nn n b a b ab b =⎥⎦⎤⎢⎣⎡+--=-==+--22122所以D a D n nn b 1-+=,据此关系式在递推,有()Dba a D aa D n n n n n nn b b b 22121----++=++=b ba a D bbaa a nn n n n n n na b b ++++=++++==-----1111221如果我们将Dn的第一列元素看作a+b,1+0,……0+0,按第一列坼成两个行列式的和,那么可直接得到递推关系式D a D n nn b 1-+=,同样可D n 的值.综上述,我们介绍了计算行列式的4种方法,还有一些方法和技巧由于篇幅所限不再列举.最后指出:计算一个行列式常常有多种方法,有时计算一个行列式需要几种方法配合使用.对于给定的行列式,究竟选择何种方法为好,好需要在实践中积累经验.参考文献[1] 王品超.高等代数新方法.山东教育出版社,1989.。

行列式的计算毕业论文

行列式的计算毕业论文

渤海大学毕业论文题目:行列式的计算系别:数学系专业:数学与应用数学班级: 03级五班姓名:徐元姣指导教师:李春目录摘要 (2)引言 (3)一、行列式的定义和性质 (3)1、行列式的定义 (3)2、行列式的性质 (5)二、行列式计算的若干方法 (8)1、化三角形法 (8)2、降阶法(按行(列)展开法) (14)3、升阶法(加边法) (18)4、拆分法 (19)5、泰勒公式法 (21)6、利用范德蒙行列式 (23)7、导数法 (24)8、积分求行列式 (25)9、行列式乘积法 (27)10、递推法 (29)11、数学归纳法 (32)12、循环矩阵的行列式的计算方法 (35)13、利用矩阵行列式公式 (39)14、利用方阵特征值与行列式的关系 (40)结束语………………………………………………………………………………………42参考文献……………………………………………………………………………………43行列式的计算摘要:行列式是高等数学的一个基本的概念。

求解行列式是在高等代数的学习中遇到的基本问题,每一种复杂的高阶行列式都有其独特的求解方法。

本文主要介绍了求行列式值的一些常用方法和一些特殊的行列式求值方法。

如:化三角形法、降阶法、升阶法、泰勒公式法、范德蒙行列式等十多种方法。

并对相应例题进行了分析和归纳,总结了与每种方法相适应的行列式的特征。

关键词:行列式,定义,计算方法。

The Calculation of DeterminantXu Yuanjiao(Department of Mathematics BohaiUniversity Liaoning Jinzhou 121000 China)Abstract: The determinant is a basic concept of higher mathematics. The solution of determinant is the basic question, and each kind of complex higher order determinant has its special solution method. This paper mainly introduces the methods for calculation of determinant. For example, the triangle method, rise-lower method, analyzes the law, Taylor formula, Vandermonde determinant, and so on. The paper also analyzes the corresponding examples, and summarizes the characteristic of determinants corresponding to each method.Key words: Determinant, Definition, Calculation.引言行列式是高等代数中的重点部分,讲到行列式,我们通常会联想到用克兰姆法则求解线性方程组.但是行列式的作用不仅仅只用于求解线性方程组.在解析几何中,用行列式方法可以判别三点共线和三向量共面、计算平行六面体的体积等等.它不仅是研究线性方程组基本工具,也是讨论向量矩阵和二次型的重要工具之一。

行列式的解法技巧 毕业论文

行列式的解法技巧  毕业论文

目录摘要 (1)前言 (2)一、行列式的基本理论 (2)(一)行列式定义 (2)(二)行列式的性质 (2)(三)基本理论 (4)(四)几种特殊行列式的结果 (4)二、行列式的计算技巧 (5)(一)定义法 (5)(二)化成三角形行列式法 (5)(三)两条线型行列式的计算 (7)(四)箭型行列式的计算 (8)(五)三对角行列式的计算 (8)(六)利用范德蒙行列式 (10)(七)H ESSENBERG型行列式的计算 (10)(八)降阶法 (11)(九)加边法(升阶法) (12)(十)计算行(列)和相等的行列式 (13)(十一)相邻行(列)元素差1的行列式计算 (14)(十二)线性因子法 (15)(十三)辅助行列式法 (16)(十四)n阶循环行列式算法 (17)(十五)有关矩阵的行列式计算 (18)(十六)用构造法解行列式 (19)(十七)利用拉普拉斯展开 (20)三、用多种方法解题 (21)总结 (25)参考文献: (25)行列式的解法技巧摘要:行列式是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,懂得如何计算行列式显得尤为重要。

本文先阐述行列式的基本理论,然后介绍各种具体的方法,最后由行列式与其它知识的联系介绍其它几种方法。

通过这一系列的方法进一步提高我们对行列式的认识,对我们以后的学习带来十分有益的帮助。

关键词:行列式 , 矩阵, 范德蒙行列式 ,递推法Determinant of the solution techniqueAbstract:Determinant is an basic and important subject in advanced algebra ,it is veryuseful in mathematic. It is very important to know how to calculate determinant. The paperfirst introduced the basic nature of determinant,then introduced some methods, Finally,withthe other determinant of knowledge on the links in several other ways.,through this series ofmethods will futher enhance our understanding of the determinant,on our learning will bringvery useful help.Keywords: Determinant,matrix,Vandermonde Determinant,recurrence method前言行列式在高等代数课程中的重要性以及在考研中的重要地位使我们有必要对行列式进行较深入的认识,本文对行列式的解题技巧进行总结归纳。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 行列式的概念及性质1.1 行列式的概念n 级行列式nnn n n n a a a a a a a a a212222111211等于所有取自不同行不同列的个元素的乘积nnjj j a a a 2121的代数和,这里的n j j j 21是1,2,…,n 的一个排列,每一项都按下列规则带有符号:当n j j j 21是偶排列时,带有正号;当n j j j 21是奇排列时,带有负号。

这一定义可写成,这里∑nj j j 21表示对所有n 级排列的求和。

1.2 行列式的性质[1]性质1 行列互换,行列式值不变,即=nnn n n n a a a a a a a a a212222111211nnnnn n a a a a a a a a a212221212111性质2 行列式中某一行(列)元素有公因子k ,则k 可以提到行列式记号之外,即=nnn n in i i n a a a ka ka ka a a a212111211nnn n in i i n a a a a a a a a a k212111211这就是说,一行的公因子可以提出去,或者说以一数乘以行列式的一行就相当于用这个nn nnj j j j j j r j j j nnn n n n a a a a a a a a a a a a21212121)(212222111211)1(∑-=数乘以此行列式。

事实上,nnn n in i i n a a a ka ka ka a a a212111211=11i i A ka +22i i A ka +in in A ka + =21(i i A a k +22i i A a +)in in A a +nnn n in i i n a a a a a a a a a k212111211= , 令k =0,如果行列式中任一行为零,那么行列式值为零。

性质3 如果行列式中某列(或行)中各元素均为两项之和,即),,2,1(n i c b a ij ij ij =+=,则这个行列式等于另两个行列式之和。

即nnnjn n j n j nnnjn n j n j nnnjnj n n jj n j j a c a a c a a c a a b a a b a a b a a c b a a c b a a c b a12221111112221111112222111111+=+++这就是说,如果某一行是两组数的和,那么这个行列式就等于两个行列式的和,而 这两个行列式除这一行以外全与原来行列式的对应的行一样。

性质4 如果行列式中有两行(列)相同,则行列式等于零。

所谓的两行相同就是 说两行的对应元素都相等。

性质5 如果行列式中两行(列)成比例,则行列式等于零。

性质6 如果行列式中的某一行(列)的各元素同乘数k 后加到另一行(列)的对 应元素上去,则行列式不变。

性质7 对换行列式中两行(列)的位置,行列式反号。

2 行列式的计算方法行列式的计算灵活多变,需要有较强的技巧。

当然,任何一个n 阶行列式都可以由它的定义去计算其值。

但由定义可知,n 阶行列式的展开式有n !项,计算量很大,一般情况下不用此法,但如果行列式中有许多零元素,可考虑此法。

值的注意的是:在应用定义法求非零元素乘积项时,不一定从第1行开始,哪行非零元素最少就从哪行开始。

接下来要介绍计算行列式的两种最基本方法――化三角形法和按行(列)展开法。

2.1 化三角形法[6]化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。

这是计算行列式的基本方法重要方法之一。

因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。

原则上,每个行列式都可利用行列式的性质化为三角形行列式。

但对于阶数高的行列式,在一般情况下,计算往往较繁。

因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。

例1 浙江大学2004年攻读硕士研究生入学考试试题第一大题第2小题(重庆大学2004年攻读硕士研究生入学考试试题第三大题第1小题)的解答中需要计算如下行列式的值, 12312341345121221n n n n D nn n -=--分析:显然若直接化为三角形行列式,计算很繁,所以我们要充分利用行列式的性质。

注意到从第1列开始,每一列与它一列中有n -1个数是差1的,根据行列式的性质,先从第n -1列开始乘以-1加到第n 列,第n -2列乘以-1加到第n -1列,一直到第一列乘以-1加到第2列。

然后把第1行乘以-1加到各行去,再将其化为三角形行列式,计算就简单多了。

解:11(2,,)(2,,)111111111112111110003111120001111100000000010000020011(1)2002000011(1)()2i in n i n r r i n r r n n n D n n nnn n nn n n n n n nn n n nn nn n n n ===+--=-----++----+=⋅-----+=⋅⋅-()(1)(2)12(1)12(1)(1)12n n n n n n n-----⋅-+=⋅⋅- 。

问题推广:例1中,显然是1,2,…,n -1, n 这n 个数在循环,那么如果是12,,10,,--n n a a a a 这n 个无规律的数在循环,行列式该怎么计算呢?我们把这种行列式称为“循环行列式”。

从而推广到一般,求下列行列式121101223411230(,0,1,,1)n n n n i a a a a a a a a D a c i n a a a a a a a a ---⎡⎤⎢⎥⎢⎥⎢⎥=∈=-⎢⎥⎢⎥⎢⎥⎣⎦。

解:令0121101223411230n n n a a a a a a a a A a a a a a a a a ---⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦首先注意,若u 为n 次单位根(即1=n u ),则有1011110212123111120101120112123011101(1,n n n n n n n n n n n n nn n n n n n a a u a uu a a u a u A u u u u a a u a u u a a u a u a a u a u a u a u a u a u a u a u a u -----+-----------⎡⎤+++⎡⎤⎢⎥⎢⎥+++⎢⎥⎢⎥⎢⎥⎢⎥⋅===⎢⎥⎢⎥+++⎢⎥⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦++++++=+++这里因为所以用到等)12011122111()n n n n n n u a a u a u u u a u a u -----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+++⋅⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦211()n u f u u u -⎡⎤⎢⎥⎢⎥⎢⎥=⋅⎢⎥⎢⎥⎢⎥⎣⎦,1011()n n f u a a u a u--=+++ 其中 。

2122cossin1,1(0)1,,,,n kn k k w w w k n nnw w wππ-==≠<< 设 +i 为n 次本原单位根 所以有 。

于是 互异且为单位根 。

记)1,1,0(,1)1(2-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=-n j w w w w n j j j , 方阵),,,(110-=n w w w w ,则由上述知:j i j w w f w A ⋅=⋅)(,故),,,(110-=n Aw Aw Aw Aw ))(,)(,)((11110--⋅⋅⋅=n n w wf w w f w w f00111()(,,,)()n n f w w w w w f w --⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦。

122(1)0111(1)(1)1111(,,,)11n n n n n n w ww w w w w www ------⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦显然 为范德蒙行列式, 0,w ≠所以1A (1)()(),n w w f f w f w A w -=⋅⋅⋅⋅=⋅ 从而有1(1)()()n n A D f f w f w-==⋅⋅⋅ 所以 。

又例1中,循环的方向与该推广在方向上相反,所以例1与11120'12n n n n a a a a a a D a a a ---=相对应,(1)(2)'21n n nn D D --而 (-),即得,)()()1()1(12)2)(1(---⋅⋅⋅⋅-='n n n nwf w f f D 。

从而当01121(,,,)(1,2,,)1,(1)()123,(1)122kn n a a a n u w n n f u u u nuf n --==≠+=++++=+++=时,对单位根总有 ,21()()1()1n f u uf u u u u n n n f u u--=++++-=--=- ,所以 。

1211111()1,11(1)111 nn kn k n kk x x wx x xx x w n --=-=-=-=++++-=-==∏∏ 而又因为 令 ,则有: +++ 。

从而有12)1(1112)1(1212)2)(1(12)2)(1('21)1()1(2)1()1()111111()(2)1()1()()()1()1(---=---------⋅+⋅-=-⋅+⋅-=-⋅⋅-⋅-⋅-⋅+⋅-=⋅⋅⋅⋅-=∏n n n n k kn n n n n n n n n n nnn w nn n www n n n w f w f f D与例1的答案一致。

2.2 按行(列)展开法(降阶法)[3][12]设n ij D a =为n 阶行列式,根据行列式的按行(列)展开定理有()11221,2,,n i i i i in in D a A a A a A i n =+++=或()11221,2,,n j j j j nj nj D a A a A a A j n =+++=其中ij A 为n D 中的元素ij a 的代数余子式按行(列)展开法可以将一个n 阶行列式化为n 个1n -阶行列式计算。

若继续使 用按行(列)展开法,可以将n 阶行列式降阶直至化为许多个2阶行列式计算,这是计算行列式的又一基本方法。

但一般情况下,按行(列)展开并不能减少计算量,仅当行列式中某一行(列)含有较多零元素时,它才能发挥真正的作用。

因此,应用按行(列)展开法时,应利用行列式的性质将某一行(列)化为有较多的零元素,再按该行(列)展开。

例2 计算20阶行列式20123181920212171819321161718201918321D =分析:这个行列式中没有一个零元素,若直接应用按行(列)展开法逐次降阶直至 化许许多多个2阶行列式计算,需进行(20!)⨯20-1次加减法和乘法运算,这是人根本无法完成的,更何况是n 阶。

相关文档
最新文档