青岛版八年级数学下册期末试卷
青岛版八年级下册数学期末测试卷【及含答案】
青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、不等式组的解集在数轴上表示为()A. B. C. D.2、如图,在平面直角坐标系xOy中,平行四边形OABC的顶点O(0,0),B (3,2),点A在x轴的正半轴上.按以下步骤作图:①以点O为圆心,适当长度为半径作弧分别交边OA、OC于点M、N;②分别以点M、N为圆心,大于MN的长为半径作弧,两弧在∠AOC内交于点P;③作射线OP,恰好过点B,则点A的坐标为()A.(,0)B.(,0)C.(,0)D.(2,0)3、不等式组的解集在数轴上表示正确的是()A. B. C. D.4、如图,已知△ABC中,AB=6,AC=8,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()A.28B.36C.45D.525、如图所示,中,,将绕点A按顺时针方向旋转50°,得到,则的度数是()A.13°B.17°C.23°D.33°6、如图,为半径,点为中点,为上一点,且,若,则的长为()A. B. C. D.7、下列各式中正确的是()A. =±2B. =-3C. =2D. =38、若式子有意义,则x的取值范围是()A. x≤2B. x≥1C. x≥2D.1≤ x≤29、若a、b为实数,且-b=5,则直线y=ax-b不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10、在中,,两直角边,,在三角形内有一点到各边的距离相等,则这个距离是()A.1B.2C.3D.411、在下列实数,π﹣3.14,3.14,,0.2 ,中无理数有()A.1个B.2个C.3个D.4个12、如图1,在矩形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则下列说法不正确的是()A.当x=2时,y=5B.矩形MNPQ的面积是20C.当x=6时,y=10 D.当y= 时,x=1013、在同一坐标系中,函数y= 和y=kx+1的图象大致是()A. B. C. D.14、如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是()A.①和②B.②和③C.①和③D.①和④15、下列计算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,四边形AOBC和四边形CDEF都是正方形,边OA在x轴上,边OB在y轴上,点D在边CB上,反比例函数(k>0)在第一象限的图象经过点E,若正方形AOBC和正方形CDEF的面积之差为6,则k=________.17、正方形ABCD的边长为1,如果将线段BD绕着点B旋转后,点D落在BC延长线上的点D1处,那么tan∠BAD1=________18、若关于x的方程=3的解为非负数,则m的取值范围是________.19、若实数a、b满足,则=________.20、如图,在中,,,点D在边上,,将沿直线翻折,使点C落在边上的点E处,若点P 是直线上的动点,则的周长的最小值是________.21、一直角三角形斜边上的中线等于5,一直角边长是6,则另一直角边长是________.22、计算:(-1)2019-(-2)0=________.23、如图,正方形ABCD的边长为10,点A的坐标为(-8,0),点B在y轴上,若反比例函数的图象过点C,则反比例函数的解析式为________ .24、已知实数x在数轴上表示为如图所示,化简=________.25、如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A⇒B⇒C所走的路程为________m.三、解答题(共5题,共计25分)26、计算:27、如图,在△ABC中,AD是BC边的中线,E是AD的中点,过A点作AF∥BC交BE的延长线于点F,连结CF.试说明:四边形ADCF是平行四边形.28、如图,,,,,是直线上一动点,请你探索:当点离点多远时,是一个以为斜边的直角三角形?29、如图,在平面直角坐标系中,每个小正方形的边长为1cm,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣1,2)、(0,-1),结合所给的平面直角坐标系解答下列问题:(1)AC的长等于多少?的坐(2)画出△ABC向右平移2个单位得到的△,求A点的对应点A1标。
青岛版八年级下册数学期末测试卷及含答案(有一套)
青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知a=.b=的关系是()A.a>bB.a<bC.a=bD.无法确定2、若二次根式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x≤33、下列运算正确的是()A. B. C. D.4、已知一次函数的图象与轴交于点A,将直线= -1绕点A逆时针旋转90°后的直线表达式为( )A. B. C. D.5、汽车是人们出行的一种重要的交通工具。
下列汽车标志中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.6、如果不等式组的解集是x<2,那么m的取值范围是()A.m=2B.m>2C.m<2D.m≥27、已知实数a,b,c所对应的点在数轴上的位置如图所示.求=()A.aB.-aC.a+bD.b-a+c8、下列各式中,正确的是()A. =﹣3B.(﹣)2=9C.±=±3D. =﹣29、若有意义,则x的取值范围是()A.x>B.x≥C.x>D.x≥10、如图,是的中线,四边形是平行四边形,增加下列条件,能判断是菱形的是( )A. B. C. D.11、在数学拓展课《折叠矩形纸片》上,小林折叠矩形纸片ABCD进行如下操作:①把△ABF翻折,点B落在CD边上的点E处,折痕AF交BC下边于点F;②把△ADH翻折,点D落在AE边上的点G处,折痕AH交CD边于点H.若AD=6,AB=10,则的值是( )A. B. C. D.12、矩形ABCD的周长为56,对角线AC,BD交于点O,△ABO与△BCO的周长差为4,则AB的长是()A.12B.22C.16D.2613、下列函数中,一定是一次函数的是A. B. C. D.14、已知a>b,则下列不等式成立的是()A. a-c >b-cB.a+c <b+cC.ac >bcD. >15、如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE,设AC =12,BD=16,则OE的长为()A.8B.9C.10D.12二、填空题(共10题,共计30分)16、计算的结果是________.17、如图,正方形ABCD的边长为5,连接BD,在线段CD上取一点E,在线段BD上取点F,使得∠BEC=∠DEF,当S△DEF = S△EFB时,在线段BC上有一点G,使FG+EG最短,则CG=________.18、不等式组的解集是________ ;这个不等式组的整数解是________.19、如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,则AB=________.20、计算×结果是________21、如图,x轴、y轴上分别有两点、,以点A为圆心,为半径的弧交x轴负半轴于点C,则点C的坐标为________.22、如图,O为矩形ABCD的对角线交点,DF平分∠ADC交AC于点E,交BC于点F,∠BDF=15°,则∠COF=________°.23、若x,y为实数,且满足|x﹣3|+=0,则()2012的值是________24、x的与12的差不小于6,用不等式表示为________.25、如图,在矩形ABCD中,BC=4,CD=3,将△ABE沿BE折叠,使点A恰好落在对角线BD上的点F处,则DE的长是________.三、解答题(共5题,共计25分)26、计算27、如图,在正方形ABCD中,E为DC边上的点,连接BE,将绕点C 顺时针方向旋转得到,连结EF,若,求的度数.28、一个直角三角形的两条直角边的长分别为cm与cm,求这个直角三角形的面积和周长.29、直线y=kx﹣3经过点A(﹣1,﹣1),求关于x的不等式kx﹣3≥0的解集.30、为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型挖掘机100 60乙型挖掘机120 80(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、C5、C6、D7、B8、C9、D10、A11、D12、C13、A14、A15、C二、填空题(共10题,共计30分)16、18、19、20、21、23、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
青岛版八年级下册数学期末测试卷【通用】
青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、若平行四边形的一边长为2,面积为,则此边上的高介于( )A.3与4之间B.4与5之间C.5与6之间D.6与7之间2、小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家妈妈8:30从家出发,乘车沿相同路线去姥姥家在同一直角坐标系中,小亮和妈妈的行进路程与北京时间的函数图象如图所示,根据图象得到如下结论,其中错误的是()A.9:00妈妈追上小亮B.妈妈比小亮提前到达姥姥家C.小亮骑自行车的平均速度是D.妈妈在距家13km处追上小亮3、下列说法中正确的是()A.平移和旋转都不改变图形的形状和大小B.任意多边形都可以进行镶嵌C.有两个角相等的四边形是平行四边形D.对角线互相垂直的四边形是菱形4、如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为()A.50B.50C.50 -50D.50 +505、如图,将绕点逆时针旋转得到点的对应点分别为则的长为()A. B. C. D.6、下列命题中:真命题的个数是()①两条对角线互相平分且相等的四边形是正方形;②菱形的一条对角线平分一组对角;③顺次连结四边形各边中点所得的四边形是平行四边形;④两条对角线互相平分的四边形是矩形;⑤平行四边形对角线相等.A.1B.2C.3D.47、对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与两坐标轴围成的三角形面积为18.C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,﹣6)8、关于的不等式只有2个正整数解,则的取值范围为A. B. C. D.9、的立方根是()A.8B.2C.4D.±410、如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O 逆时针旋转90°至OA′,则点A′的坐标是().A.(-4,3)B.(-3,4)C.(3,-4)D.(4,-3)11、下列选项中,对任意实数a都有意义的二次根式是()A. B. C. D.12、下列运算错误的是()A. B. C. D.13、在实数,,,中,最大的数是()A. B. C. D.14、甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A.甲的速度是4km/hB.乙的速度是10km/hC.乙比甲晚出发1h D. 甲比乙晚到B地3h15、一次函数y=-3x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、如图,三角形DEF是三角形ABC沿射线BC平移的得到的,BE=2,DE与AC 交于点G,且满足DG=2GE.若三角形CEG的面积为1,CE=1,则点G到AD的距离为________.17、不等式组的解集为________.18、的平方根是________,已知一个数的平方是,则这个数的立方是________.19、如图,在平面直角坐标系中,▱ABCD的顶点B位于y轴的正半轴上,顶点C,D位于x轴的负半轴上,双曲线y=(k<0,x<0)与▱ABCD的边AB,AD交于点E、F,点A的纵坐标为10,F(﹣12,5),把△BOC沿着BC所在直线翻折,使原点O落在点G处,连接EG,若EG∥y轴,则△BOC的面积是________.20、等腰三角形底边长10cm,周长为36cm,则一底角的正切值为________21、如图,Rt△ABC≌Rt△DCB,两斜边交于点O,如果AC=3,那么OD的长为________.22、在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的面积为________.23、如图,在Rt△ABC中,∠ACB = 90°,,点D、E分别在边AB上,且AD = 2,∠DCE = 45°,那么DE =________.24、如图,折叠直角三角形纸片的直角,使点C落在斜边AB上的点E处,已知CD=1,∠B=30°,则AC的长是________.25、如图,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,则△AB′C的面积为________三、解答题(共5题,共计25分)26、解不等式组:.27、如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.28、解不等式组,并把它的解集在数轴上表示出来.29、如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,且DE∥AC,AE∥BD.求OE的长.30、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.若AB=6,AD=12,BE=8,求:DF的长,以及四边形DCEF的面积。
青岛版八年级数学下学期期末考试试题+青岛版
八年级数学下学期期末考试试题注意事项:1.本试卷共7页,满分100分,考试时间120分钟。
2.答题前,请考生仔细阅读答题纸上的注意事项,并务必按照相关要求作答。
3.考试结束后,监考人员只收回答题纸。
一、选择题: 在下列各小题中,均给出四个答案,其中有且只有一个正确答案.1结果是A .4B .4-C .4±D .2± 2.下列二次根式中,最简二次根式是 A .31B .3.0C .3a 2+D .2ab3.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是A .AB CD = B .AD BC = C .AB BC =D .AC BD = 4.下列各式中,计算不正确的是 A .5353⨯=⨯B .20812=+C .1065322=⨯D .255105=5.不等式组⎩⎨⎧->-≥-71212x x 的解集在数轴上表示正确的是6.如图,在平面直角坐标系中,将△ABC 绕点定P 旋转180º,得到△A 1B 1C 1,则A 1,B 1,C 1的坐标分别为A. A 1(-4,-6),B 1(-3,-3),C 1(-5,-1)B. A 1(-6,-4),B 1(-3,-3),C 1(-5,-1)C. A 1(-4,-6),B 1(-3,-3),C 1(-1,-5)D. A 1(-6,-4),B 1(-3,-3),C 1(-1,-5) 7=成立的条件是 A .x ≥0 B .-3<x ≤0 C .x >3 D .x >3或x <0 8.将一次函数12y x =的图像向上平移2个单位,平移后,若y >0,则x 的取值范围是 A. x >4 B. x >-4 C. x >2 D. x >-29.如图,过A 点的一次函数图象与正比例函数2y x =的图象相交于点B ,则这个一次函数的解析式是A .23y x =+B .3y x =-C .23y x =-D .3y x =-+ 10.如图,在平行四边形ABCD 中,AB =4,∠BAD =平分线与BC 的延长线相交于点E ,与DC交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG =1,则AE 的长为 A .23 B .43 C .4D .811.直线1y x =+与2y x a =-+的交点在第一象限,则a 的取值可以是 A .-1B .0C . 1D .212.如图,函数2y x =和4y ax =+的图象相交于点A (m ,3),则不等式2x ≥4ax + 的解集为 A .x ≥32 B .x ≤3 C .x ≤32D .x ≥313.如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F ,若AB =6,BC =,则FD 的长为 A .2B .4C D .14.实数a 在数轴上的位置如图所示,则化简结果为A .7B .-7C .2a -15D .无法确定15.如图,正方形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF .下列结论: ①点G 是BC 的中点;②FG =FC ;③S △FGC =910.其中正确的是 A .①② B .①③ C .②③ D .①②③二、填空题(本大题共5小题,只要求填写最后结果) 16.÷⨯的结果为_________.17.如果P (-2,a )是正比例函数y=-2x 图象上的一点,那么P 点关于y 轴对称点的坐标为_________.18.如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E 、F 分别是线段BM 、CM 的中点.若AB =8,AD =12,则四边形ENFM 的周长为_________.19.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y (米)与时间t (秒)之间的函数关系如图,则这次越野跑的全程为_________米.20.若不等式组0,122x a x x +≥⎧⎨->-⎩有解,则a 的取值范围是_________.三、解答题(本大题共7小题,解答应写出必要的文字说明、证明过程或推演步骤)21.解不等式组12432362273(1)x x x x x ---⎧-≥⎪⎨⎪-≤-⎩,并把它的解集在数轴上表示出来.22. 已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水第13题图 第15题图银柱的长度.42.0(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.23. 如图,四边形ABCD 的对角线AC 、BD 交于点O ,若O 是AC 的中点,AE=CF , DF ∥BE .(1)求证:△BOE ≌△DOF ; (2)若OD =12AC ,则四边形ABCD 是什么特殊四边形?请证明你的结论.24. 如图所示,x 轴所在直线是一条东西走向的河,A (-2,3)、B (4,5)两个村庄位于河的北岸,现准备在河上修建一净水站P ,并利用管道为两个村庄供水(单位:千米). (1)欲使所修管道最短,应该把净水站P 修在什么位置,作出正确图形(用尺规作图),求出P 点坐标并及PB 所在直线解析式;(2)若管道每米费用需要200元,求修管道的最低费用.25. 如图,点E 、F 分别在正方形ABCD 的边CD 与BC 上,45EAF ∠=.(1)求证:EF =DE +BF ;(2)作AP ⊥EF 于点P ,若AD =10,求AP 的长.26. 甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90℅收费:在乙商场累计购物超过50元后,超出50元的部分按95℅收费.设小红在同一商场累计购物x 元,其中x >100. (1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?27. 如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC 的中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.八年级数学试题参考答案一、选择题: 每小题3分,满分45分二、填空题:每小题3分,满分15分 1617.(2,4) 18.20 19.2200 20.a >-1 三、解答题:本大题满分60分 21.(本题满分5分)原式可化为2(12)(43)3(2)4---≥-⎧⎨≥-⎩x x x x ………………………………2分解得:﹣4≤x≤1.………………………………………………………………3分数轴略……………………………………………………………………………5分 22.(本题满分8分)解:(1)设一次函数解析式为:y=kx+b ,由题意得:⎩⎨⎧+=+=b k bk 2.80.402.40.35,…………………………………………………3分解得:⎩⎨⎧==75.2925.1b k∴一次函数的解析式是:y=1.25x+29.75;………………………………………5分 (2)当x=6.2时,y=1.25×6.2+29.75=37.5.答:此时体温计的读数是37.5℃. ………………………………………………8分 23.(本题满分9分) (1)证明:∵DF ∥BE ,∴∠FDO=∠EBO ,∠DFO=∠BEO , ∵O 为AC 的中点,即OA=OC ,AE=CF ,………………………………………………………………2分∴OA ﹣AE=OC ﹣CF ,即OE=OF , 在△BOE 和△DOF 中,FDO=EBO DFO=BEO OE=OF ⎧⎪⎨⎪⎩∠∠∠∠, ∴△BOE≌△DOF……………………………………………………………………………………………………5分 (2)若OD=12AC ,则四边形ABCD 是矩A形,……………………………………………………………7分 理由为:证明:∵△BOE ≌△DOF , ∴OB=OD ,∴OA =OB=OC=OD ,即BD=AC ,∴四边形ABCD 为矩形.……………………………………………………………9分 24.(本题满分9分)解:(1)作点A 关于x 轴的对称A ’,连接A ’B 交x 轴于点P ,则点P 就是所求…3分 设PB 所在直线解析式为=+y kx b , 因为PB 过点A ’(-2,-3),B(4,5),所以可得2345-+=-⎧⎨+=⎩k b k b ,解得4313⎧=⎪⎪⎨⎪=-⎪⎩k b所以PB 所在直线解析式为4133=-y x ……………………………………6分 (2)根据题意,A ’B 即为所修管道长,分别过A ’和B 作平行于x 轴和y 轴的直线交于点B ’,在直角三角形A ’B ’B 中,A ’B ’=6,B ’B=8,所以A ’B=10,所以最少费用为200×10×1000=2000000元…………………………………9分 25.(本题满分9分)(1)证明:将△ABC 绕以点A 为旋转中心顺时针旋转90,此时点D 位于CB 的延长线上D ’处………………………………………1分根据旋转的性质,DE=BD ’,∠=∠'B DAE D A 又因为45EAF ∠=,90DAE BAC EAF ∠+∠+∠=所以45DAE BAF ∠+∠=……………………………………………………………………………2分所以∠+∠=’45oD AB BAF …………………………………………………………3分即∠=o ’45D AF所以’45D AF EAF ∠=∠=在△EAF 与△D ’AF 中,另有AF=AF ,AE=AD ’所以△EAF ≌△D ’AF ………………………………………………………………5分 所以EF=D ’F=B D ’ +BF=DE+BF ……………………………………………………6分(2)因为AP⊥EF,由(1)知,AP与AB同为全等三角形对应边上的高,所以AP=AB=10…………………………………………………………………9分26.(本题满分10分)解:(1)在甲商场:271,0.9x+10: ……………………………………………2分在乙商场:278,0.95x+2.5. ……………………………………………4分(2)根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同;…………………7分(3)由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150.∴当小红累计购物超过150元时,在甲商场的实际花费少.当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.…10分27.(本题满分10分)证明:(1)延长DE交AB于点G,连接AD.∵ED∥BC,E是AC中点,∠ABC=90°∴AG=BG,DG⊥AB∴AD=BD………………………………………………………………………2分∵BD平分∠ABC∴∠ABC=45°,∠BAD=45°,∠BDG=∠ADG=45°…………………4分∵四边形BCDE是平行四边形.∴ED=BC,又∵BF=BC,∴BF=DE. ……………………………………………………………6分∴△AED≌△DFB∴AE=BE……………………………………………………………7分(2)∵△AED≌△DFB∴∠AED=∠DFB,∴∠DFG=∠DEC,∵∠DFG与∠FDG互余,…………………………………………………9分∴∠DEC与∠FDG互余,∴DF⊥AC. ………………………………………………………………10分。
青岛版八年级下册数学期末测试卷【及含答案】
青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如果a为任意实数,下列各式中一定有意义的是()A. B. C. D.2、如果=2a-1,那么()A.a<B.a≤C.a>D.a≥3、下列二次根式中,是同类二次根式的组数是()① 与;② 与;③ 与;④ 与.A.1组B.2组C.3组D.4组4、如图所示,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.1个B.2个C.3个D.4个5、当k>0,b<0时,一次函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6、在实数0,﹣π,﹣4,中,最小的数是()A.0B.﹣πC.﹣4D.7、如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是( )A.2 015B.3 019.5C.3 018D.3 0248、下列根式是最简二次根式的是()A. aB.C.D.9、下列结论正确的是()A.64的立方根是±4B.﹣没有立方根C.立方根等于本身的数是0 D. =﹣10、如图图案中既是轴对称图形又是中心对称图形的是()A. B. C. D.11、在平面直角坐标系中,一次函数y=-3x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限12、Rt△ABC两直角边的长分别为6cm和8cm,则连接这两条直角边中点的线段长为( )A.10cmB.3cmC.4cmD.5cm13、如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论的个数有()个A.5B.4C.3D.214、如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是()30 2 sin60°22﹣3 ﹣2 ﹣sin45°0|﹣5| 6 23()﹣14()﹣1A.5B.6C.7D.815、函数y= 与y=mx﹣m(m≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.二、填空题(共10题,共计30分)16、某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=12m,半径OA=10m,则中间柱CD的高度为________m.17、试写出两个无理数 ________ 和 ________ ,使它们的和为-6.18、,,0.232332333,,中无理数有________.19、已知a2﹣12a+36与|b﹣8|互为相反数,以a、b长为直角边作直角三角形,则斜边长为________.20、比较大小:2 ________3 ,________21、我国古代数学家赵爽利用弦图证明了勾股定理,这是著名的赵爽弦图(如图1).它是由四个全等的直角三角形拼成了内、外都是正方形的美丽图案.在弦图中(如图2),已知点O为正方形ABCD的对角线BD的中点,对角线BD分别交AH,CF于点P、Q.在正方形EFGH的EH、FG两边上分别取点M,N,且MN 经过点O,若MH=3ME,BD=2MN=4 .则△APD的面积为________.22、如图,已知在△ 中,AB=4,AC=3,,将这个三角形绕点B 旋转,使点落在射线AC上的点处,点落在点处,那么________23、比较大小:5________ (填“>”、“<”或“=”)24、若x2=16,则x=________;若x3=﹣8,则x=________;的平方根是________.25、矩形的长是宽的2倍,对角线的长是5cm,则这个矩形的长是________cm.三、解答题(共5题,共计25分)26、计算:4sin60°﹣| ﹣1|+()﹣1﹣(2019﹣)0.27、解不等式组并写出该不等式组的所有非负整数解.28、在△ABC中,AD是BC边上的中线,延长AD到点E,使DE=AD,连结BE和CE,根据对角线互相平分的四边形是平行四边形,易得四边形ABEC是平行四边形.这种方法是数学证明常用的一种添辅助线的方法,叫做“加倍中线法”,请用这种方法解决下列问题:如图,在△ABC中,AB=AC,延长AB到点D,使DB=AB,E是AB的中点.求证:CD=2CE.29、某校九年级举行数学竞赛,学校准备购买甲、乙、丙三种笔记本奖励给获奖学生,已知甲种笔记本单价比乙种笔记本单价高10元,丙种笔记本单价是甲种笔记本单价的一半,单价和为80元.(1)甲、乙、丙三种笔记本的单价分别是多少元?(2)学校计划拿出不超过950元的资金购买三种笔记本40本,要求购买丙种笔记本20本,甲种笔记本超过5本,有哪几种购买方案?30、某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需要购买行李票.已知行李费y(元)是行李质量x(kg)之间的函数表达式为y=kx+b.这个函数的图象如图所示:(1)求k和b的值;(2)求旅客最多可免费携带行李的质量;(3)求行李费为4~15元时,旅客携带行李的质量为多少?参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、B5、B6、C7、D8、B9、D10、D11、C12、D13、B14、C15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。
青岛版八年级下册数学期末测试卷及含答案(全优)
青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、关于x的一元一次不等式+2≤的解为()A.x≤B.x≥C.x≤D.x≥2、下列计算正确的是()A. B. C. D.3、下列y关于x的函数中,是正比例函数的为()A.y=x 2B.y=C.y=D.y=4、一次函数y=kx+b的图象经过(m,1)、(-1,m),其中m>1,则k、b ( )A.k>0且b<0B.k>0且b>0C.k<0且b<0D.k<0且b>05、下列二次根式中能与合并的二次根式的是()A. B. C. D.6、在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是( )A. B. C. D.7、下列各组数据中能作为直角三角形的三边长的是()A.1,1,B.6,8,11C.3,4,5D.1,3,8、下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.9、下列图案中是中心对称图形但不是轴对称图形的是()A. B. C.D.10、不等式组的解集在数轴上表示正确的是()A. B. C. D.11、如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PMN的面积;③△PAB的周长;④∠APB的大小;⑤直线MN,AB之间的距离.其中会随点P的移动而不改变的是()A.①②③B.①②⑤C.②③④D.②④⑤12、如图,点、、、、都在方格子的格点上,若是由绕点按顺时针方向旋转得到的,则旋转的角度为( )A.60°B.135°C.45°D.90°13、如图,在正方形ABCD纸片上有一点P,PA=1,PD=2,PC=3,现将△PCD 剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合),则∠APD的度数为()A.150°B.135°C.120°D.108°14、不等式组的解集是()A. x>4B.﹣2<x<0C.﹣2<x<4D.无解15、若二次根式有意义,则X的取值范围为()A.x≠1B.x≥1C.x<lD.全体实数二、填空题(共10题,共计30分)16、一个三角形的三边分别是、1、,这个三角形的面积是________.17、如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP 绕点A顺时针旋转后与△ACP1重合,如果AP=5,那么线段PP1的长等于________.18、已知:如图,四边形ABCD中,AB=BC=1,CD= ,AD=1,且∠B=90°.则四边形ABCD的面积为________.(结果保留根号)19、一次函数的图象不经过第________象限.20、如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒,连接DE,当△BDE是直角三角形时,t的值________.21、如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为________.22、点M是直线y=2x+3上的动点,过点M作MN⊥x轴于点N,当点M位于第二象限时,在y轴上有一点P,使△MNP为等腰直角三角形,则点P的坐标为________ .23、如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是________.24、如图,在直角坐标系中,的圆心A的坐标为,半径为1,点P 为直线上的动点,过点P作的切线,切点为Q,则切线长PQ 的最小值是________.25、如图,正方形ABCD的面积为2 cm2,对角线交于点O1,以AB、AO1为邻边做平行四边形AO1C1B,对角线交于点O2,以AB、AO2为邻边做平行四边形AO2C2B,…,以此类推,则平行四边形AO6C6B的面积为________cm2.三、解答题(共5题,共计25分)26、计算①3 ﹣| |②.27、商店以7元/件的进价购入某种文具1 000件,按10元/件的售价销售了500件.现对剩下的这种文具降价销售,如果要保证总利润不低于2 000元,那么剩下的文具最低定价是多少元?28、嘉嘉参加机器人设计活动,需操控机器人在5×5的方格棋盘上从A点行走至B点,且每个小方格皆为正方形,主办单位规定了三条行走路径R1, R2,R3,其行经位置如图与表所示:路径编号图例行径位置第一条路径R1A→C→D→B第二条路径R2A→E→D→F→B第三条路径R3A→G→B已知A、B、C、D、E、F、G七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断R1、R2、R3这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.29、在△ABC中,若AC=15,BC=13,AB边上的高CD=12,求△ABC的周长.30、解不等式组,并将它的解集表示在如图所示的数轴上.参考答案一、单选题(共15题,共计45分)1、D2、D3、C4、D5、C7、C8、B9、C10、A11、B12、D13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
(配有卷)青岛版八年级下册数学期末测试卷及含答案(综合卷)
青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )A.AD=BCB.CD=BFC.∠A=∠CD.∠F=∠CDE2、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图像可能是( )A. B. C. D.3、一次函数y=kx+b的图象(如图),当x<0时,y的取值范围是()A.y>0B.y<0C.y< 2D. 2<y<04、如图,己知在矩形ABCD中,AB=2,BC=6,点E从点D出发,沿DA方向以每秒1个单位的速度向点A运动,点F从点B出发,沿射线AB以每秒3个单位的速度运动,当点E运动到点A时,E、F两点停止运动.连接BD,过点E作EH ⊥BD,垂足为H,连接口,交BD于点G,交BC于点旭连接CF.给出下列结论:①△CDE∽△CBF;②∠DBC=∠EFC;③=;④GH的值为定值;上述结论中正确的个数为()A.1B.2C.3D.45、抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象可能是()A. B. C. D.6、如图,菱形的对角线交于点,,,将沿点到点的方向平移,得到,当点与点重合时,点与点之间的距离为()A.3B.4C.5D.67、在下列图形中,哪组图形中的右图是由左图平移得到的()A. B. C. D.8、如图,在中,,将绕点按逆时针方向旋转得到,此时点恰好在边上,则点与点之间的距离为()A. B. C. D.9、下列说法正确的是()A.有两个角为直角的四边形是矩形B.矩形的对角线互相垂直C.等腰梯形的对角线相等D.对角线互相垂直的四边形是菱形10、观察下列图形,其中既是轴对称又是中心对称图形的是 )A. B. C. D.11、如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为()A.(1,1)B.(, 1)C.(1,)D.(, 2)12、下列现象中属于数学中的平移的是()A.树叶从树上飘落B.垂直箱式电梯升降C.冷水加热过程中气泡的上升D.碟片在光驱中运行13、如图是一个旋转对称图形,以O为旋转中心,以下列哪一个角为旋转角旋转,能使旋转后的图形与原图形重合()A.60°B.150°C.180°D.240°14、以下各组数为三角形的三条边长,其中能作成直角三角形的是()A.2,3,4B.4,5,6C.1,,D.2,,415、如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△= .其中正确结论的个数AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC是()A.2个B.3个C.4个D.5个二、填空题(共10题,共计30分)16、如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为________.17、有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为________.18、若规定[a]表示不超过a的最大整数,例如[4.3]=4,若m=-[π+1],n=[-2.1],则m 与n 的大小关系为________19、写出一个比大且比小的整数________.20、若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是________(写出一个即可).21、如图,在平行四边形中,,,是锐角,于点E,F是的中点,连结.若,则的长为________.22、在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA 上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠的依据是________.23、如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE= AB,CF= CB,AG= AD.已知△EFG的面积等于6,则菱形ABCD的面积等于________.24、A、B两地之间有一修理厂C,一日小海和王陆分别从A、B两地同时出发相向而行,王陆开车,小海骑摩托.二人相遇时小海的摩托车突然出故障无法前行,王陆决定将小海和摩托车一起送回到修理厂C后再继续按原路前行,王陆到达A地后立即返回B地,到B地后不再继续前行,等待小海前来(装载摩托车时间和掉头时间忽略不计),整个行驶过程中王陆速度不变,而小海在修理厂花了十分钟修好摩托车,为了赶时间,提速前往目的地B,小海到达B地后也结束行程,若图象表示的是小海与王陆二人到修理厂C的距离和y(km)与小海出行时间之间x(h)的关系,则当王陆第二次与小海在行驶中相遇时,小海离目的地B还有________km.25、如图,点分别是的中点,下列结论:①;②当,平分;③当时,四边形是矩形;其中正确的结论序号是________.三、解答题(共5题,共计25分)26、计算:.27、解不等式组,并写出它的所有整数解.28、如图所示,在四边形中,,,,的长分别为2,2,,2,且,求的度数.29、计算:(1)|﹣4|﹣20150+()﹣1﹣()2(2)(1+)÷.30、在由6个大小相同的小正方形组成的方格中;如图,A、B、C是三个格点(即小正方形的顶点).判断AB与BC的关系,并说明理由.参考答案一、单选题(共15题,共计45分)1、D2、C3、C4、C5、A6、C7、C8、D9、C10、D11、B12、B13、D14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
青岛版八年级下册数学期末测试卷及含答案(完整版)
青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知两直线l1:y=x和l2:y=kx﹣5相交于点A(m,3),则不等式x≥kx﹣5的解集为()A.x≥6B.x≤6C.x≥3D.x≤32、如图,菱形ABCD的面积为96,正方形AECF的面积为72,则菱形的边长为()A.10B.12C.8D.163、64的立方根是()A.±8B.±4C.8D.44、实数,在数轴上的位置如图所示,则下列结论正确的是()A. B. C. D.5、如图,在菱形ABCD中,E,F分别是AB,AC的中点,如果EF=2,那么菱形ABCD周长是( )A.4B.8C.12D.166、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节型货厢,甲种货物25吨和乙种货物35吨可装满一节型货厢,按此要求安排两种货厢的节数,有几种运输方案()A.1种B.2种C.3种D.4种7、如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于()A.12﹣6B.14﹣6C.18﹣6D.18+68、下列说法中,错误的是()A.有一条对角线平分一个内角的平行四边形是菱形B.对角线互相垂直且平分的四边形是菱形C.一条对角线平分另一条对角线的四边形是平行四边形D.三角形的一条中位线与第三边上的中线互相平分9、若a>b,则不等式的解集为()A.x≤bB.x<aC.b≤x<aD.无解10、如图,在矩形ABCD中,F是BC中点,E是AD上一点,且∠ECD=30º,∠BEC=90º,EF=4cm,则矩形的面积为( )cm2.A.16B.C.D.3211、如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A. B.2 C.2 D.12、不等式组的解集在数轴上表示正确的是A. B.C.D.13、已知四边形ABCD是平行四边形,若要使它成为正方形,则应增加的条件是()A.AC⊥BDB.AC=BDC.AC=BD且AC⊥BDD.AC平分∠BAD14、如图所示,平移后得到,已知,,则()A. B. C. D.15、8的立方根是()A. 4B.2C.±2D.-2二、填空题(共10题,共计30分)16、若实数a、b满足,则=________.17、如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的点F处,已知AD=10,AB=6,则FC的长是________.18、将函数y=x2﹣x﹣2的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的图形是函数y=|x2﹣x﹣2|的图象,已知过点D(0,4)的直线y=kx+4恰好与y=|x2﹣x﹣2|的图象只有三个交点,则k的值为________.19、对于实数a,b,我们定义符号max{a,b},其意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若y关于x的函数关系式为:y=max{x+3,﹣x+1},则该函数y的最小值是________.20、如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米(精确到0.1 ).21、如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y 轴的正半轴上,点B的坐标为(5,6),双曲线y=(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为________.22、如图,是一块钜形的场地,长=101米,宽=52米,从A、B两处入口的中路宽都为1米,两小路汇合处路口宽为2米,其余部分种植草坪面积为________米223、如图,在边长为8的菱形ABCD中,∠BAD=45°,BE⊥AD于点E,以B为圆心,BE为半径画弧,分别交AB、CB于点F、G,则图中阴影部分的面积为________(结果保留π)24、丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对________题.25、如图,∠A=15°,∠C=90°,DE垂直平分AB交AC于E,若BC=4cm,则AC=________cm.三、解答题(共5题,共计25分)26、计算:+ ﹣+3 ×.27、(1)计算:;(2)已知x=+1,y=﹣1,求代数式x2﹣y2的值.28、物理学中的自由落体公式:S= gt2, g是重力加速度,它的值约为10米/秒2,若物体降落的高度S=125米,那么降落的时间是多少秒?29、如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)30、如图,在△ABC中AC=BC,D,E,F分别是AB,AC,BC的中点,连接DE,DF.求证:四边形DFCE是菱形.参考答案一、单选题(共15题,共计45分)1、B2、A3、D4、D5、D6、C7、C8、C9、A10、C11、B12、A13、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
(易考题)青岛版八年级下册数学期末测试卷及含答案(审定版)
青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若3m﹣5x3+m>4是关于x的一元一次不等式,则该不等式的解集是()A.x<-B.x>-C.x<﹣2D.x>﹣22、如图,⊙O的半径为1,正方形ABCD的对角线长为6,OA=4.若将⊙O绕点A按顺时针方向旋转360°,在旋转过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次3、如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为A. B. C. D.4、下列图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5、小明到离家900米的春晖超市卖水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A. B. C. D.6、一次函数y=ax﹣a(a≠0)的大致图象是()A. B. C. D.7、不能判定四边形为平行四边形的条件是()A. B. C.D.8、已知整数k使得关于x、y的二元一次方程组的解为正整数,且关于x的不等式组有且仅有四个整数解,则所有满足条件的k的和为()A.4B.9C.10D.129、如图,在矩形ABCD中,AB=6,BC=8,若将矩形折叠,使B点与D点重合,则折痕EF的长为( )A. B. C.5 D.610、对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角 C.函数图象不经过第四象限 D.函数图象与x轴交点坐标是(0,6)11、在同一平面直角坐标系中,函数与(k为常数,且k≠0)的图象大致是()A. B. C.D.12、如图,四边形ABCD中,AB=CD,对角线AC,BD交于点O,下列条件中,不能说明四边形ABCD是平行四边形的是()A.AD=BCB.AC=BDC.AB∥CDD.∠BAC=∠DCA13、下列叙述中,不正确的是( )A.绝对值最小的实数是零B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零14、下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.15、要使代数式有意义,的取值范围是()A. B. C. D.二、填空题(共10题,共计30分)16、已知直角三角形的两边长为3、5,则另一边长是________.17、的倒数________.18、已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b的值等于________.19、在平面直角坐标系中,函数y= kx+b的图象如图所示,则________ 0 ( 填“>”、“=”或“<” ) .20、在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF 与DC交于点F,若AB=9,DF=2FC,则BC=________.(结果保留根号)21、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是________.22、要使代数式有意义,则的取值范围为________.23、如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.24、已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第________ 象限.25、下列个数:,,其中无理数有________个.三、解答题(共5题,共计25分)26、解不等式组:.27、解不等式组,并写出不等式的正整数解.28、已知x=, y=,且19x2+123xy+19y2=1985.试求正整数n.29、一块试验田的形状如图,已知:∠ABC=90°,AB=4m,BC=3m,AD=12m,CD=13m.求这块试验田的面积.30、如图,在▱ABCD中, BE、DF分别是∠ABC和∠CDA的平分线.求证:四边形BEDF是平行四边形.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、C5、D6、A8、C9、A10、D11、C12、B13、D14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
青岛版八年级下册数学期末试卷(含答案)
青岛版八年级下册数学期末试卷(含答案)一、选择题(每小题3分,共36分)1、若的平方根为()A、16B、16C、2D、22、一直角三角形的斜边长比一直角边长大1,另一直角边长为4,则斜边长为().4.8.10.123、下列命题正确的是()A.矩形不是平行四边形;B.相似三角形不一定是全等三角形C.等腰梯形的对角线未必相等D.两直线平行,同位角不一定相等4、如图3,在菱形ABCD中,∠ADC=120°,则oD:OC等于().(A):2(B):3(C)1:2(D):15、的估算结果应在()之间。
A、9到10B、10到11C、11到12D、12到136、如图中字母M所代表的正方形的面积为()A.4B.8C.16D.647、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.2环,方差分别为,,,,则成绩最稳定的是()A、甲B、乙C、丙D、丁8、如图,点O王明家的位置,他家门前有一条东西走向的公路,水塔A位于他家北偏东600的300米处,那么水塔所在的位置到公路的距离是()A.150米B、150C、100D、1509、如图△ABC中,AD垂直BC于点D,BE垂直AC于点E,AD与BE相交于点F,若BF=AC,那么∠ABC的大小是()A、400B、450C、500D、60010、如图所示,在□ABCD中,E为AD中点,已知△DEF的面积为S,则△ABE的面积为()A、SB、2SC、3SD、4S11、一组数据的方差为S2,将这组数据的每个数据都加上2,所得到的一组新数据的方差为()A、S2B、2+S2C、2S2D、4S212、在Rt△ABC中,各边长度都扩大10倍,则锐角B的正弦值()A、扩大4倍B、扩大2倍C、不变D、缩小2倍二、填空题(每小题3分,共21分)13、已知最简二次根式与是同类二次根式,则a=____________.14、如图,已知AB=BE,BC=BD,∠1=∠2,那么图中≌,AC=,∠ABC=.15、命题“如果一个数能被10整除,那么这个数也一定能被5整除”的逆命题是____________________________________________________________,这个逆命题为________命题(填“真”或“假”)16、如图:防洪大堤的横截面是梯形,坝高AC=6米,背水坡AB的坡度为1:2,则AB=_______.17、如图E、F、G、H分别是矩形ABCD四边上的点,EF垂直于GH,若AB=2,BC=3,则EF:GH=____.18、已知正方形的面积为3,点E为DC边上一点,DE=1,将线段AE 绕点A旋转,使点E落在直线BC上,落点记为F,则FC的长为___________.19、如图:直角三角形纸片ABC中,∠ABC=90o,AC=8,BC=6,折叠该纸片使点B与点C重合,折痕与AB、BC的交点分别为D、E,(1)DE 的长为_________;(2)将折叠后的图形沿直线AE剪开,原纸片被剪成3快,其中最小一块的面积为________________.三、解答题(共43分)20、(4分)计算:21、(5分)如图所示,已知点A、E、F、D在同一条直线上,AE=DF,BF⊥AD,CE⊥AD,垂足分别为F、E,BF=CE,求证:AB∥CD.22、(6分)在△ABC中,∠C=90o,∠CAB=60o,AD是∠BAC的平分线,已知AB=2。
青岛版八年级下册数学期末测试卷及含答案(名师推荐)(黄金题型)
青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知,下列不等式中,变形正确的是().A. B. C. D.2、的平方根是()A.4B.±4C.±2D.23、如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A 点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()A.1种B.2种C.3种D.4种4、老王以每kg0.8元的价格从批发市场购进若干kg西瓜到市场销售,在销售了部分西瓜后,余下的每kg降价0.2元,全部售完,销售金额与卖瓜的kg数之间的关系如图所示,那么老王赚了()A.32元B.36元C.38元D.44元5、下面各组数是三角形三边长,其中为直角三角形的是()A.8,12,15B.5,6,8C.8,15,17D.10,15,206、如图,在中,直径,于点,点M为线段上一个动点,连接CM、DM,并延长DM与弦交于点,设线段的长为,的面积为,则下列图象中,能表示与的函数关系的图象大致是()A. B. C.D.7、下列矩形都是由大小不等的正方形按照一定规律组成,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…则第⑥个矩形的周长为()①②③④A.42B.46C.68D.728、下列各式中正确的是()A. =﹣5B.﹣=﹣3C.(﹣)2=4D. ﹣=39、下列说法正确的是()A.﹣4是﹣16的平方根B.4是(﹣4)2的平方根C.(﹣6)2的平方根是﹣6D. 的平方根是±410、在⊙O中,弦AB的长为8,圆心O到AB的距离为3,若OP=4,则点P与⊙O的位置关系是()A.P在⊙O内B.P在⊙O上C.P在⊙O外D.P与A或B重合11、如图,将一块长方形纸片ABCD沿BD翻折后,点C与E重合,若∠ADE = 30°,EH = 2,则BC的长度为()A.8B.7C.6.5D.612、在△ABC中,BC=5,AC=4,AB=3,则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A+∠B=90°13、在实数,0,,,,3.121121112…(每两个2之间依次多一个1)中无理数的个数有( ).A.5个B.4个C.3个D.2个14、若代数式有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x 0D.x≥0且x≠115、如图,在平行四边形ABCD中,∠C=120°,AD=2AB=4,点H、G分别是边CD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF,则EF的最大值与最小值的差为()A.1B. ﹣1C.D.2﹣二、填空题(共10题,共计30分)16、把下列各数填在相应的表示集合的大括号内:,﹣0. ,﹣(﹣2),﹣,1.732,,0,,1.1010010001…(每两个1之间依次多一个0)整数{________…}正分数{________…}无理数{________…}实数 {________…}.17、已知正三角形的边心距为,那么它的边长为________.18、在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为________.19、如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E是CD的中点,则△ODE与△AOB的面积比为________.20、如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=________,对角线AC的长为________.21、若式子在实数范围内有意义,则a的取值范围是________.22、已知2a-1的平方根是±3,3a+b-1的立方根是4,则a+2b=________.23、在Rt△ABC中,∠C=90°,cosB=0.6,把这个直角三角形绕顶点C旋转后得到Rt△A'B'C,其中点B'正好落在AB上,A'B'与AC相交于点D,那么B′D:CD=________.24、已知菱形ABCD的边长为5cm,对角线BD的长为6cm,菱形的面积为________ cm²25、知,,则的值为________.三、解答题(共5题,共计25分)26、已知:2m+2的平方根是±4;3m+n的立方根是-1,求:2m-n的算术平方根.27、如图,字母b的取值如图所示,化简|b-2|+.28、已知3既是(x-1)的算术平方根,又是(x-2y+1)的立方根,求x2-y2的平方根.29、解不等式组并在数轴上表示出它的解集.30、已知如图,四边形ABCD中,,,,,.求这个四边形的面积.参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、C5、C6、A7、C8、B9、B10、A11、D12、A13、C14、B15、C二、填空题(共10题,共计30分)17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
【新】青岛版八年级下册数学期末测试卷及含答案
青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在□ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为( )A.4cmB.5cmC.6cmD.8cm2、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3、若无解,则a的取值范围是:()A.a<-2B.a≤-2C.a>-2D.a≥-24、下列算式正确的是()A. B. C. =3 D.5、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.6、如图,以为斜边的和位于直线的同侧,连接.若,则的长为()A.3B.4C.D.7、化简为()A. -B. +C.D.8、若一次函数y=kx+b的图象交y轴于正半轴,且y的值随x值的增大而减小,则()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<09、已知且-1<x-y<0,则k的取值范围是( )A.-1<k<-B.0<k<C.0<k<1D. <k<110、如图,菱形中,对角线,相交于点,点是中点,且,则的面积为()A. B. C. D.211、如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.C.D.212、如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.6 米B.6米C.3 米D.3米13、在平面直角坐标系中,▱ABCD的顶点A(0,0),B(5,0),D(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)14、下列运算正确的是()A. ﹣=B. =2C. ﹣=D.=2﹣15、如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF :S△ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:2二、填空题(共10题,共计30分)16、计算的结果是________.17、已知一个数的平方根是3a+1和a+11,求这个数的立方根________。
【最新】青岛版八年级下册数学期末测试卷及含答案
青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形2、计算的结果为()A. B. C. D.3、下列命题中,是真命题的是()A.四条边相等的四边形是矩形B.对角线互相平分的四边形是矩形C.四个角相等的四边形是矩形D.对角线相等的四边形是矩形4、如果a>b,c<0,那么下列不等式成立的是()A.a+c>bB.a+c>b-cC.ac-1>bc-1D.a(c-1)<b(c-1)5、下列等式正确的是()A. =±7B. =﹣7C. =﹣3D.()2=6、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7、如图,AB是半圆O的直径,点D在半圆O上,AB= ,AD=10,C是弧BD 上的一个动点,连接AC,过D点作DH⊥AC于H,连接BH,在点C移动的过程中,BH的最小值是()A.5B.6C.7D.88、如图,五角星的五个顶点等分圆周,把这个图形顺时针旋转,一定的角度后能与自身重合,那么这个角度至少是()A.60°B.72°C.75°D.90°9、下列图形中是中心对称图形的有()个.A.1B.2C.3D.410、若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2B.﹣2C.1D.﹣111、如图所示,为等腰直角三角形,,正方形DEFG边长也为2,且AC与DE在同一直线上,从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为与正方形DEFG重合部分图中阴影部分的面积为y,则y与x之间的函数关系的图象大致是()A. B. C. D.12、不等式组的解集是()A.x<﹣1B.x<3C.x>3D.﹣1<x<313、如图,在由边长为1的小正方形组成的网格中,点A,B,C都在小正方形的顶点上.则的值为()A. B. C. D.14、如图,在矩形OABC中,0A=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是( )A.(4,8)B.(5,8)C.( ,)D.( ,)15、在数轴上表示不等式x-1<0的解集,正确的是( )A. B. C.D.二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=2,AC= ,∠BAC=105°,△ABD、△ACE、△BCF 都是等边三角形,则四边形AEFD的面积为________.17、如图,在平行四边形ABCD中,对角线AC,BD相交于点O,,点E,F分别是OA,OD的中点,连接EF,于点M,EM交BD于点N,若,,则线段BC的长为________.18、我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,正方形ADOF的面积为4, CF=6,则BD的长是________.19、如图,已知四边形ABCD内接于⊙O,直径AC=6,对角线AC、BD交于E 点,且AB=BD,EC=1,则AD的长是________.20、如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.21、如图,平行四边形ABCD的对角线与交于点,,,,则的长为________.22、如图,已知△ABC中,∠BAC=90°,AB=AC=6.D为BC边一点,且BD∶DC=1∶2,以D为一个顶点作正方形DEFG,且DE=BC,连接AE,将正方形DEFG绕点D旋转一周,在整个旋转过程中,当AE取得最大值时AG的长为________23、如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是________.24、在这五个实数中,无理数是________.25、菱形的两条对角线分别为6cm,8cm,则它的面积是________ cm2.三、解答题(共5题,共计25分)26、计算: - +|1- .27、已知3既是(x-1)的算术平方根,又是(x-2y+1)的立方根,求x2-y2的平方根.28、如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.29、如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF.30、在△ABC中,∠C=90°,AC=4,BC=2,求∠B的余弦值.参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、D5、D6、B7、D8、B9、B10、D11、A12、A14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末数学试卷一、选择题1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形3.实数(相邻两个1之间依次多一个0),其中无理数有()A.1个B.2个C.3个D.4个4.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF5.若一个直角三角形的两边长分别为3和4,则它的第三边长为()A.5B.C.5或4D.5或6.函数y=﹣4x﹣3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限7.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF 8.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.8B.6C.4D.39.下列图形中,绕某个点旋转180°能与自身重合的图形有()(1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆.A.2个B.3个C.4个D.5个10.化简:a的结果是()A.B.C.﹣D.﹣11.已知关于x的不等式组的整数解共有4个,则a的最小值为()A.2B.2.1C.3D.112.已知(﹣5,y1),(﹣3,y2)是一次函数y=x+2图象上的两点,则y1与y2的关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较二、填空题13.若最简二次根式与是同类二次根式,则a=.14.一次函数y=﹣x﹣3与x轴交点的坐标是.15.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm 的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.16.请你写出一个图象过点(1,2),且y随x的增大而减小的一次函数解析式.17.如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任意作一条直线分别交AD、BC于E、F,则阴影部分的面积是.18.观察图象,可以得出不等式组的解集是.三、解答题19.计算.20.计算:(﹣3)0﹣+|1﹣|+.21.已知x=+2,求x2﹣4x+6的值.22.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合.如果AP=3,那么线段P P′的长是多少?23.已知,在平面直角坐标系中,直线y=2x+3与直线y=﹣2x﹣1交于点C.(1)求两直线与y轴交点A,B的坐标;(2)求点C的坐标;(3)求△ABC的面积.24.如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.25.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区18001600B地区16001200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.26.如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(a,0)、(0,b),且(a﹣3)2+=0.(1)求出点A、B、C的坐标;(2)若过点C的直线CD交矩形OABC的边于点D,且把矩形OABC的面积分为1:4两部分,求直线CD的解析式.参考答案一、选择题1.【解答】解:A、被开方数含分母,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数不含分母且被开方数不含能开得尽方的因数或因式,故D正确;故选:D.2.【解答】解:A、有两组对边平行的四边形是平行四边形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、有一组邻边相等的平行四边形是菱形,所以D选项正确.故选:D.3.【解答】解:无理数有﹣π,0.1010010001…,共2个,故选:B.4.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.5.【解答】解:分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是=;②3和4都是直角边,由勾股定理得:第三边长是=5;即第三边长是5或,故选:D.6.【解答】解:∵k=﹣4<0,∴函数y=﹣4x﹣3的图象经过第二、四象限,∵b=﹣3<0,∴函数y=﹣4x﹣3的图象与y轴的交点在x轴下方,∴函数y=﹣4x﹣3的图象经过第二、三、四象限.故选:C.7.【解答】解:∵RRt△ABC沿直角边BC所在直线向右平移到Rt△DEF∴Rt△ABC≌Rt△DEF∴BC=EF,AC=DF所以只有选项A是错误的,故选A.8.【解答】解:连接AC,BD,FH,EG,∵E,F,G,H分别为边AB,BC,CD,DA的中点,∴AH=AD,BF=BC,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴AH=BF,AH∥BF,∴四边形AHFB是平行四边形,∴FH=AB=2,同理EG=AD=4,∵四边形ABCD是矩形,∴AC=BD,∵E,F,G,H分别为边AB,BC,CD,DA的中点,∴HG∥AC,HG=AC,EF∥AC,EF=AC,EH=BD,∴EH=HG,GH=EF,GH∥EF,∴四边形EFGH是平行四边形,∴平行四边形EFGH是菱形,∴FH⊥EG,∴阴影部分EFGH的面积是×HF×EG=×2×4=4,故选:C.9.【解答】解:(1)正方形是中心对称图形;(2)等边三角形不是中心对称图形;(3)长方形是中心对称图形;(4)角不是中心对称图形;(5)平行四边形是中心对称图形;(6)圆是中心对称图形.所以一共有4个图形是中心对称图形.故选:C.10.【解答】解:由题意可得:a<0,则a=﹣=﹣.故选:C.11.【解答】解:解不等式组得﹣2<x≤a,因为不等式有整数解共有4个,则这四个值是﹣1,0,1,2,所以2≤a<3,则a的最小值是2.故选:A.12.【解答】解:∵﹣5<﹣3,∴y1>y2.故选:C.二、填空题13.【解答】解:∵最简二次根式与是同类二次根式,∴4a2+1=6a2﹣1,∴a2=1,解得a=±1.故答案为:±1.14.【解答】解:在y=﹣x﹣3中,令y=0可得﹣x﹣3=0,解得x=﹣3,∴一次函数y=﹣x﹣3与x轴交点的坐标是(﹣3,0),故答案为:(﹣3,0).15.【解答】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25﹣20=5cm.故答案为:5.16.【解答】解:设一次函数的解析式为y=kx+b,将x=1,y=2代入得:k+b=2,又此一次函数y随x的增大而减小,∴k<0,若k=﹣1,可得出b=3,则一次函数为y=﹣x+3.故答案为:y=﹣x+317.【解答】解:依据已知和正方形的性质及全等三角形的判定可知△AOE≌△COF,则得图中阴影部分的面积为正方形面积的,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为.故答案为18.【解答】解:由图象知,函数y=3x+1与x轴交于点(,0),即当x>﹣时,函数值y的范围是y>0;因而当y>0时,x的取值范围是x>﹣;函数y=3x+1与x轴交于点(2,0),即当x<2时,函数值y的范围是y>0;因而当y>0时,x的取值范围是x<2;所以,原不等式组的解集是﹣<x<2.故答案是:﹣<x<2.三、解答题19.【解答】解:原式=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.20.【解答】解:原式=1﹣3+﹣1+﹣=﹣2.21.【解答】解:原式=(x2﹣4x+4)+2=(x﹣2)2+2=(+2﹣2)2+2=2+2=4.22.【解答】解:根据旋转的性质可知将△ABP绕点A逆时针旋转后与△ACP′重合,则△ABP≌△ACP′,所以AP=AP′,∠BAC=∠PAP′=90°,所以在Rt△APP′中,PP′=.23.【解答】解:(1)把x=0,代入y=2x+3,得y=3∴A(0,3)把x=0代入y=﹣2x﹣1,得y=﹣1∴B(0,﹣1)(2)由题意得方程组,解之得,∴C(﹣1,1)(3)由题意得AB=4,点C到AB边的高为1,=×4×1=2.∴S△ABC24.【解答】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD、BC的中点,∴AM=AD,CN=BC,∴AM=CN,在△MAB和△NDC中,∵,∴△MBA≌△NDC(SAS);(2)四边形MPNQ是菱形.理由如下:连接AP,MN,则四边形ABNM是矩形,∵AN和BM互相平分,则A,P,N在同一条直线上,易证:△ABN≌△BAM,∴AN=BM,∵△MAB≌△NDC,∴BM=DN,∵P、Q分别是BM、DN的中点,∴PM=NQ,∵,∴△MQD≌△NPB(SAS).∴四边形MPNQ是平行四边形,∵M是AD中点,Q是DN中点,∴MQ=AN,∴MQ=BM,∵MP=BM,∴MP=MQ,∴平行四边形MQNP是菱形.25.【解答】解:(1)若派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30﹣x)台,派往B地区的乙型收割机为(30﹣x)台,派往B地区的甲型收割机为20﹣(30﹣x)=(x﹣10)台.∴y=1600x+1800(30﹣x)+1200(30﹣x)+1600(x﹣10)=200x+74 000,x的取值范围是:10≤x≤30,(x是正整数);(2)由题意得200x+74 000≥79 600,解不等式得x≥28,由于10≤x≤30,x是正整数,∴x取28,29,30这三个值,∴有3种不同的分配方案.①当x=28时,即派往A地区的甲型收割机为2台,乙型收割机为28台;派往B地区的甲型收割机为18台,乙型收割机为2台;②当x=29时,即派往A地区的甲型收割机为1台,乙型收割机为29台;派往B地区的甲型收割机为19台,乙型收割机为1台;③当x=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区;(3)由于一次函数y=200x+74 000的值y是随着x的增大而增大的,所以当x=30时,y取得最大值,如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x=30,此时y=6000+74 000=80 000.建议农机租赁公司将30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区,可使公司获得的租金最高.26.【解答】解:(1)由(a﹣3)2+=0.可知(a﹣3)2+|b﹣5|=0,∴a=3 b=5,∵矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(a,0)、(0,b),∴A(3,0)B(3,5)C(0,5);=OA•OC=3×5=15(2)S矩形OABC由题意知CD分矩形OABC的两部分面积为3和12①CD与OA交于点DS△ODC=3 即•OD•OC=3 OD=,即D(,0)C(0,5)y=﹣x+5②CD与AB交于点DS△CBD=3×3×BD=3BD=2即D(3,3)y=﹣x+5.。