单纯形法

合集下载

15单纯形法

15单纯形法
n Z = Z 0 + ∑ λ j X j j = m +1 n X = b ∑+1aij X j (i = 1,2,L , m) i i j =m
17
定理1 对解 全 定理1:对解X(1) ,若检验数λj ( j=m+1,…,n)全 为最优解. 部≤ 0,则X(1)为最优解. 定理2:对X(1),若有某个非基变量 m+k→λm+k>0 若有某个非基变量X 定理2 且相应的P 且相应的 m+k =(a1m+k ,… ,amm+k )T ≤ 0,则原问题 无有限最优解. 无有限最优解.
2
-2 X2
(2),判定解是否最优 , Z=0+40X1+50X2 当X1从0↗或X2从0↗ ↗ ↗ Z从0↗ 从 ↗ ∴ X(1) 不是最优解
3
(3),由一个基可行解→另一个基可行解. ,由一个基可行解→另一个基可行解. ∵ 50> 40 X3 X4 选X2从0↗,X1 =0 ↗ X2 ≤ 30/2 X2 ≤ 60/2 X2 ≤ 24/2
=30-2X2 ≥0 =60-2X2 ≥0
X5 =24-2X2 ≥0
X2=min(30/2 , 60/2 , 24/2 ) =12 X2进基变量, X5出基变量. 进基变量, 出基变量.
4
B2=(P3 P4 P2)
Z=0+40X1+50X2 X3 +2X2 =30-X1 X4+2X2 =60-3X1 2X2=24-X5 ④ ① ② ③
λj>0
(2),决定换出变量: ,决定换出变量: bi -aim+kXm+k ≥0 ( i=1 ,2 ,…, m) Xm+k ≤ bi aim+k (aim+k>0 )

单纯形法

单纯形法

单纯形法simplex method求解线性规划问题的通用方法。

单纯形是美国数学家G.B.丹齐克于1947年首先提出来的。

它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。

顶点所对应的可行解称为基本可行解。

单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。

因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。

如果问题无最优解也可用此法判别。

根据单纯形法的原理,在线性规划问题中,决策变量(控制变量)x1,x2,…x n的值称为一个解,满足所有的约束条件的解称为可行解。

使目标函数达到最大值(或最小值)的可行解称为最优解。

这样,一个最优解能在整个由约束条件所确定的可行区域内使目标函数达到最大值(或最小值)。

求解线性规划问题的目的就是要找出最优解。

最优解可能出现下列情况之一:①存在着一个最优解;②存在着无穷多个最优解;③不存在最优解,这只在两种情况下发生,即没有可行解或各项约束条件不阻止目标函数的值无限增大(或向负的方向无限增大)。

单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。

②若基本可行解不存在,即约束条件有矛盾,则问题无解。

③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。

④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。

⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。

用单纯形法求解线性规划问题所需的迭代次数主要取决于约束条件的个数。

现在一般的线性规划问题都是应用单纯形法标准软件在计算机上求解,对于具有106个决策变量和104个约束条件的线性规划问题已能在计算机上解得。

第三节 单纯形法

第三节 单纯形法

θi 32.5 40 25
5 7. 5
注意:单纯形法中, 注意:单纯形法中, 1.每一步运算只能用矩阵初等行 1.每一步运算只能用矩阵初等行 变换; 变换; 2.表中第3列的数总应保持非负 2.表中第 表中第3 (≥ 0); 3.当所有检验数均非正(≤ 0) 3.当所有检验数均非正 当所有检验数均非正( 得到最优单纯形表。 时,得到最优单纯形表。
8
1.初始单纯形表: 1.初始单纯形表: 初始单纯形表
CB XB b b1 b2 ┇ bm f
m
cn+1 xn+1 cn+2 xn+2 ┇ ┇ cn+m xn+m m -z
c1 x1 a11 a21 ┇ am1 σ1
… … … … ┇ … …
cn xn a1n a2n ┇ amn σn
m
cn+1 xn+1 1 0 ┇ 0 m 0
-z
15
在最优单纯形表中,非基变量的检验数不 在最优单纯形表中, 是正数,于是得到最优解为X 是正数,于是得到最优解为X*=(15,10,0,0,45)T 最优目标值为z =32500。注意到非基变量x 最优目标值为z*=32500。注意到非基变量x4 的检验数是0 如果选x 为进基变量, 的检验数是0,如果选x4为进基变量,迭代 还可以进行下去,但是最优值不会增大, 还可以进行下去,但是最优值不会增大, 而只有最优解改变,这就是多解的情况。 而只有最优解改变,这就是多解的情况。 下面再迭代一步,如表2 所示。 下面再迭代一步,如表2-9所示。
19
解:单纯形法求解过程如下表。 单纯形法求解过程如下表。
CB XB
0 0 0 -z 7 0 0 -z x1 x6 x7 x5 x6 x7

单纯形法

单纯形法

定理2.2 定理
在已知一个基本可行 初始基本可行解)的前提下, 解(初始基本可行解)的前提下, 使用单纯形法求解线性规划时, 使用单纯形法求解线性规划时,若 每次迭代得出的基本可行解的基变 量均大于零(称为非退化), ),则算 量均大于零(称为非退化),则算 法必有限步终止。 法必有限步终止。
P22
min z = 9 10 x1 +27 x3 s.t. x2 = 5 + x1 3x3 x4 = 6 2 x1 + 4 x3 x1 , x2 , x3 , x4 ≥ 0 T 是否为(2.9)的最优解 判断 (0,5,0,6) 是否为(2.9)的最优解
1 0 0 0 1 0
T
(2.9)
-2 1 7
0 0 1 0 -1/5 2/5 3/5 1/5
4 2 5 16 3 4 3 17
从表中知( , , , , ) 从表中知(4,3,3,0,0)T为最优 略去松弛变量, 解,略去松弛变量,得:
x = (4,3)
T
——最优解 最优解Fra bibliotekz = 17
——最优值 最优值
§2.5
大M法 法
引入:问题提出, 引入:问题提出,当初始 基本可行解不知道时, 基本可行解不知道时,如何 求解? 求解? 先利用容许的运算使右列 为非负, 为非负,然后在中心部位人 工地添加一个单位子块。 工地添加一个单位子块。
最优解的读法: 最优解的读法: 单位子块中1所对应的变量取相应右列的值, 单位子块中 所对应的变量取相应右列的值,不在 所对应的变量取相应右列的值 单位子块位置中的变量取值为0。 单位子块位置中的变量取值为 。而右下端元素变号 即为LP的最优值 的最优值。 即为 的最优值。 单纯形法的步骤: 单纯形法的步骤:

第5章-单纯形法

第5章-单纯形法
所有变量的解都是大于等于零,才能断定这个解是基本可行解,这个基是可行
基。那么我们能否在求解之前,就找到一个可行基呢?也就是说我们找到的一个
基能保证在求解之后得到的解一定是基本可行解呢?由于在线性规划的标准型中
要求bj都大于等于零,如果我们能找到一个基是单位矩阵,或者说一个基是由单位 矩阵的各列向量所组成(至于各列向量的前后顺序是无关紧要的事)例如,
xm a x m ,m 1 m 1 a m ,n xn bm ,
x j 0. j 1, 2, , n
以下用 xii1,2, ,m表示基变量,用 x jj m 1 ,m 2 , ,n
表示非基变量。
§2 单纯形法的表格形式
把第i个约束方程移项,就可以用非基变量来表示基变量xi, xi bi ai,m1xm1ai,m2xm2 ai,nxn
i1
a1j
,cma2j
amj
c1,c2, ,cmpj
§2 单纯形法的表格形式
上面假设x1,x2,…xm是基变量,即第i行约束方程的基变量正好是xi,而 经过迭代后,基将发生变化,计算zj的式子也会发生变化。如果迭代后的 第i行约束方程中的基变量为xBi,与xBi相应的目标函数系数为cBi,系数列
三、 基变换 通过检验,我们知道这个初始基本可行解不是最优解。下面介绍如何进
行基变换找到一个新的可行基,具体的做法是从可行基中换一个列向量,得 到一个新的可行基,使得求解得到的新的基本可行解,其目标函数值更优。 为了换基就要确定换入变量与换出变量。 1.
从最优解判别定理知道,当某个σj>0时,非基变量xj变为基变量不取 零值可以使目标函数值增大,故我们要选基检验数大于0的非基变量换到基 变量中去(称之为入基变量)。若有两个以上的σj>0,则为了使目标函数 增加得更大些,一般选其中的σj最大者的非基变量为入基变量,在本例题 中σ2=100是检验数中最大的正数,故选x2为入基变量。

运筹学单纯形法

运筹学单纯形法
总结:①在迭代过程中要保持常数列向量非负,这能确保基 可行解旳非负性。最小比值能做到这一点。 ②主元素不能为0。因为行旳初等变换不能把0变成1。 ③主元素不能为负数。因为用行旳初等变换把负数变成1会 把常数列中相应旳常数变成负数。
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2

§13 单纯形法

§13 单纯形法

单纯形法举例(续)
以上数学描述说明了每生产一件产品Ⅱ,需要 用掉各种资源数为(2,0,4),由这些资源中的薄弱 环节,就确定了产品Ⅱ的产量。
这里就是由原材料B的数量确定了产品Ⅱ的产量 x2=12/4=3件。
14
Operational Research
单纯形法举例(续)
为了求得以x3, x4, x2为基变量的一个基可行解和
x1, x2, …, xm 为松弛变量
28
Operational Research
初始基可行解的确定(续)
于是含有m×m单位矩阵,以B 作为可行基。
1


B P1, P2 ,
Pm



1


1
29
Operational Research
初始基可行解的确定(续)
将(*)式每个等式移项得
单纯形法的表现形式: 代数法 表格法 矩阵法
2
Operational Research
单纯形法的基本原理
一般线性规划问题具有线性方程组的变量数大 于方程个数,这时有不定的解。但可以从线性方程 组中找出一个个的单纯形,每一个单纯形可以求得 一组解,然后再判断该解使目标函数值是增大还是 变小,决定下一步选择的单纯形。这就是迭代,直 到目标函数实现最大值或最小值为止,这样问题就 得到了最优解。
单纯形法举例(续)
将(1-7)式代入目标函数(1-1)式得到
z

9

2x1

3 4
x5
(1 8)
令非基变量x1=x5=0,得到z=9,并得到另一个
基可行解X(1)。
X (1) (0, 3, 2,16, 0)T

线性规划的解法

线性规划的解法

线性规划的解法线性规划是现代数学中的一种重要分支,它是研究如何在一定约束条件下优化某种目标函数的一种数学方法。

在现实生活中,许多问题都可以用线性规划求解。

如在生产中,如何安排产品的产量才能最大化利润;在运输中,如何安排不同的运输方式最大程度降低成本等等。

线性规划的解法有多种,下面我们就来对其进行详细的介绍。

1. 单纯形法单纯形法是线性规划中最重要的求解方法之一,它是由Dantzig于1947年提出的。

单纯形法的基本思路是从某一个初始解出发,通过挑选非基变量,使得目标函数值逐步减少,直到得到一个最优解。

单纯形法的求解过程需要确定初始解和逐步迭代优化的过程,所以其求解复杂度较高,但是在实际中仍有广泛应用。

2. 对偶线性规划法对偶线性规划法是一种将线性规划问题转化为另一个线性规划问题来求解的方法。

这种方法的主要优势是,它可以用于求解某些无法用单纯形法求解的问题,如某些非线性规划问题。

对偶线性规划法的基本思路是将原问题通过拉格朗日对偶性转化为对偶问题,然后求解对偶问题,最终得到原问题的最优解。

3. 内点法内点法是一种由Nesterov和Nemirovsky于1984年提出的方法,它是一种不需要寻找可行起点的高效的线性规划求解方法。

内点法的基本思路是通过不断向可行域的内部靠近的方式来求解线性规划问题。

内点法的求解过程需要实现某些特殊的算法技术,其求解效率高,可以解决一些规模较大、约束条件复杂的线性规划问题。

4. 分枝定界法分枝定界法是一种通过逐步将线性规划问题分解成子问题来求解的方法。

这种方法的基本思路是,在求解一个较大的线性规划问题时,将其分解成若干个较小的子问题,并在每个子问题中求解线性规划问题,在不断逐步求解的过程中不断缩小问题的规模,最终得到问题的最优解。

总之,不同的线性规划解法各有千秋,根据实际问题的需要来选择合适的求解方法是非常重要的。

希望本文能够对您有所帮助。

运筹学02-单纯形法

运筹学02-单纯形法

反之,若经过迭代,不能把人工变量都变
为非基变量,则表明原LP问题无可行解。
19
第2章
单纯形法
2.3 人工变量法
2.3.1 大M法
在原问题的目标函数中添上全部人工变量,并令其系数 都为-M,
而M是一个充分大的正数。即
max z = c1x1 + c2x2 + c3x3 + … + cnxn – M( xn+1 + xn+2 +…+ xn+m )
思路:由一个基本可行解转化为另一个基本可行解。 等价改写为 目标方程 max z max z = 3x1+5x2 z -3x1 -5x2 = 0 z -3x1 -5x2 x1 +x3 x1 +x3 = 8 2x2 +x4 2x2 +x4 = 12 s.t. s.t. 3x1+4x2 +x5 3x1 + 4x2 +x5 = 36 x1 , x2 ,x3,x4,x5 x1 , x2 ,x3,x4,x5 ≥ 0
以主列中正值元素为分母,同行右端常数为分子,求比值;
6
第2章
单纯形法
2.1 单纯形法的基本思想
(Ⅰ)
用换基运算 将X0 转化为 另一个基本 可行解 X1。
z- 3x1 -5x2 = 0 0 换基运算—— x1 +x3 = 8 ① 方程组的初等变换 目的是把主列变为 22x2 +x4 = 12 ② 单位向量:主元变 3x1 + 4x2 +x5 = 36 ③ 为1,其余变为0。 X0 = ( 0, 0, 8, 12, 36 )T z0 = 0
⑴ 当前基:m阶排列阵

单纯形法文档

单纯形法文档

单纯形法1. 什么是单纯形法单纯形法(Simplex Method)是一种数学优化方法,用于在线性规划问题中寻找最优解。

其基本思想是通过不断地在可行解空间中移动,逐步优化目标函数的值,直到找到最优解。

单纯形法是由美国数学家乔治·达内策在20世纪40年代开发的,成为线性规划问题求解的一种经典方法。

2. 单纯形法的基本原理单纯形法的基本原理是通过构造一系列的顶点组合,这些顶点组合构成了可行解空间的一个多面体,称为单纯形。

每次移动都是在单纯形的边界上进行,直到找到最优解。

2.1 线性规划问题的标准形式在使用单纯形法求解线性规划问题之前,首先需要将问题转化为标准形式。

线性规划问题的标准形式包括以下特征:•最大化目标函数或最小化目标函数•约束条件为等式或不等式•决策变量为非负数2.2 单纯形法的步骤单纯形法的求解步骤如下:1.初始化:将线性规划问题转化为标准形式,并找到初始可行解。

2.检验最优性:计算当前基可行解对应的目标函数值,判断是否达到最优解。

3.寻找进入变量:通过计算目标函数的系数与约束条件中的系数之比,找到使目标函数值最大(或最小)增长的变量。

4.寻找离开变量:从进入变量所属列中选择合适的变量离开基,使得新的基可行解依然满足约束条件。

5.更新基:将进入变量换入基,将离开变量换出基,得到新的基可行解。

6.重复步骤 2-5,直到找到最优解或判断无界。

2.3 单纯形表在单纯形法的求解过程中,通过使用单纯形表(Simplex Table)来记录每一步的计算结果和变量的取值。

单纯形表是一个矩阵,包含基变量、非基变量、目标函数系数、约束条件左边的系数等信息,方便进行计算和调整。

3. 单纯形法的优缺点3.1 优点•单纯形法是一种简单直观的求解线性规划问题的方法,容易理解和实现。

•单纯形法对于规模较小的问题,可以得到精确的最优解。

•单纯形法可以处理带有不等式约束的问题,适用范围广。

3.2 缺点•单纯形法在解决大规模问题时,计算复杂度较高,效率较低。

运筹学第2章单纯形法

运筹学第2章单纯形法
==8 ==6
① ② ③
-2X4+X5 =12
得到新的基本可行解 X1 =(0,6,8,0,12)T
(1)、决定进基变量:1=--3, X1进基 (2)、决定离基变量:最小比值规则来确定主 元与离基变量.
则Xl为进基变量。 MIN(8/1,-,12/3)=12/3 此时可以确定X5为离基变量
Z
X(0) =(0, 0, 10, 15 )T
Z0 =0
Z-30X1-20X2 =0 选中X1从0↗,X2 =0 X3=10-(-X1 )0
X4=15-(-3X1 )0 求X1, X1→+ ,Z→+
2.2.3 单纯形法计算之例
2-3 人工变量法 (Artificial Variable)
+1/2X4
+X5 =42 =6
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4
X1 -2/3X4+1/3X5=4 令X4 =X5 =0 X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2,
Z值不 再增大了,X值是最优基本解
5
=1,
* T * 即:X =(4,6) ,Z =42
检验数
当目标方程中基变量系数全为0时,非基 变量的系数可以作为检验当前的基本可 行解是否最优的标志,称之为检验数。
(2)、判定解是否最优 Z-3X1-5X2 =0 当X1从0↗或X2从0↗ Z从0↗ ∴ X0 不是最优解
(3)、由一个基可行解→另一个基可行解。 ∵ -5<-3 选X2从0↗,X1 =0 X3 =8 X4 =12-2X2 0 X2 12/2
N
沿边界找新 的基本可行解
结束

单纯形法

单纯形法

矩阵A表示为: A = ( p1 ,p2 ,…,pn ) , 其中 pj = ( a1j ,a2j ,…,amj )T。若找 到一个可行基,无防设 B = ( p1 ,p2 ,…,pm ) ,则m个基变 量为 x1 , x2 , …, xm,n-m个非基变量 为 xm+1 ,xm+2 ,…,xn 。通过运算, 所有的基变量都可以用非基变量来表 示:
f(x
6 )=3
二、单纯形法的基本思路 要找到线性规划问题的最优解,只要在基本 可行解中寻找就可以了。虽然基本可行解的数 目是有限个(不超过Cnm个),但当m,n较大时, 要用“穷举法”求出所有基本可行解是行不通 的。利用LP问题基本可行解(极点)的方法来 求解较大规模的问题是不可行的。 单纯形法的基本思路是:从线性规划问题的 一个基本可行解开始,沿边界转换到另一个使 目标函数值增大的基本可行解。反复迭代,直 到目标函数值达到最大时,就得到了最优解。



基本解 对于基B,令非基变量为零,求得满足AX=b的解,称 为基B对应的基本解。若得到的基变量的值均非负, 则称为基本可行解,同时称这个基B为可行基。 令非基变量 XN = 0,求得基变量 XB的值称为基本解 即 XB = B1 b XB 是基本解的必要条件为XB 的非零分量个数 m 基本可行解 基本解 XB 的非零分量都 0 时,称为基本可行解, 否则为基本非可行解 基本可行解的非零分量个数 < m 时,称为退化解
2.线性规划的基、基本解与基本可行解
基:设B是A矩阵中的一个非奇异(可逆)的 m×m子矩阵,则称B为线性规划的一个基。 与B中的这些列向量对应的变量称为基变量, m Cm n 个基。 其余变量称为非基变量。最多有
在标准型中,技术系数矩阵有 n×m 列,即 A = ( P1, P2 , … , Pn×m ) A中线性独立的 m 列,构成该标准型的一个基, 即 B = ( P1 , P2 , … , Pm ), | B | 0 P1 , P2 , … , Pm 称为基向量 与基向量对应的变量称为基变量,记为 XB = ( x1 , x2 , … , xm )T,其余的变量称为非基变 量,记为 XN = ( xm+1 , xm+2 , … , xm+n ) T , 故有 X = XB + XN m Cm n 个基 最多有

单纯形法

单纯形法

单纯形法一、单纯形法的原理线性方程组的解:⎩⎨⎧=----=+-+-4322425432154321x x x x x x x x x x (1) 5个未知数,两个方程组。

方程的解多于1个。

两种初等变换:51)方程组的任一方程乘上一个不为零的数。

2)方程组的任一方程两边同乘上一个常数,分别加到另一个方程的两边。

式(1)做变换得到:(①×-1)⎩⎨⎧=-+-=+-+-2322242543254321x x x x x x x x x (2) 式(2)做变换得到:(②×2)⎩⎨⎧=-+-=---232642354325431x x x x x x x x (3)方程组(1)、(2)、(3)同解,可令0543===x x x 。

得到:61=x ,22=x 。

选择3x ,4x ,5x 不同的值,相应地有不同的1x 和2x 的值,因此方程组有多组解。

基本变量:如果变量i x 的系数在某一个方程为1,而在其它所有方程为0,则称i x 为该方程组中的基本变量。

非基本变量:凡不是基本变量的变量都叫做非基本变量。

1x ,2x 为基本变量;3x ,4x ,5x 为非基本变量。

旋转运算:运用初等变换,可使一给定变量化为基本变量,这一运算,成为旋转运算。

基本变量的个数,与方程的个数相同。

基本解:设非基本变量为0,求得相应的基本变量的值,得到一组解,这组解称为基本解。

基本可行解:基变量的值为非负时的基本解称为基本可行解。

单纯形法的思路;1)先不考虑目标函数,从满足约束条件开始,寻求一个初始基本可行解; 2)求具有较佳目标函数值的另一个基本可行解,以改进初始解;3)对目标函数做有限次的改善。

当某一个基本可行解不能再得到改善时,即求得最优解,单纯形法结束。

二、单纯形算法例:54321325max x x x x x Z +-++= 约束条件为:⎪⎩⎪⎨⎧≥≥≥≥≥=+++=+++0,0,0,0,0743********53214321x x x x x x x x x x x x x (5) 以上线性规划问题中,具有: 1)全部变量非负;2)全部约束条件都是等式;5 3)右端常数都是正的。

单纯形法基本原理及实例演示

单纯形法基本原理及实例演示
②找出或构造一个m阶单位矩阵作为初始可行基,建立初始单纯形表。
③计算各非基变量xj的检验数j=Cj-CBPj ′,若所有j≤0,则问题已得
到最优解,停止计算,否则转入下步。
④在大于0的检验数中,若某个k所对应的系数列向量Pk≤0,则此问
题是无界解,停止计算,否则转入下步。
⑤根据max{j|j>0}=k原则,确定xk为换入变量(进基变量),再按 规则计算:=min{bi/aik| aik>0}=bl/ aik 确定xBl为换出变量。建 立新的单纯形表,此时基变量中xk取代了xBl的位置。
⑥以aik为主元素进行迭代,把xk所对应的列向量变为单位列向量,即 aik变为1,同列中其它元素为0,转第③ 步。
线性规划的例子
max z 4x1 3x2 2x1 2x2 1600 5x1 2.5x2 2500 x1 400 x1, x2 0
线性规划--标准化
● 引入变量:s1,s2,s3
检验系数区
Z=CBB-1b
初始单纯形表
迭代 基变 次数 量
CB
x1
x2
s1
s2
s3
50 100 0 0 0
比值
b bi ai 2
1 Zj=CBNj j cj zj
Z=CBB-1b
初始单纯形表

迭代 次数

CB
x1
X2
s1
s2 S3

50 100 0 0 0
比值
b bi ai 2
1 1 1 0 0 300
C向量
max z 50 100 0 0
CB
CN
x1
x2
0•

1 1 1
1 0 0
0 1 0

单纯形法

单纯形法

单纯形法(不可以解空集问题,无初始解)一、单纯形法的基本思想1、顶点的逐步转移即从可行域的一个顶点(基本可行解)开始,转移到另一个顶点(另一个基本可行解)的迭代过程,转移的条件是使目标函数值得到改善(逐步变优),当目标函数达到最优值时,问题也就得到了最优解。

2.需要解决的问题:(1)为了使目标函数逐步变优,怎麽转移?(2)目标函数何时达到最优——判断标准是什么?(3)初始解的寻找二、单纯形法原理(用代数方法求解LP)第一步:引入非负的松弛变量(x3 x4 x5)和剩余变量(算完后剩余的资源)x3,x4,x5, 将该LP化为标准型第二步:寻求初始可行基(单位阵对应的),确定基变量第三步:写出初始基本可行解(很多之中找一个,必令原x为0)和相应的目标函数值两个关键的基本表达式:① 用非基变量表示基变量的表达式② 用非基变量表示目标函数的表达式第四步:分析两个基本表达式,看看目标函数是否可以改善?① 分析用非基变量表示目标函数的表达式非基变量前面的系数均为正数(必为负数才可以),所以任何一个非基变量进基都能使Z值增加通常把非基变量前面的系数叫“检验数”②选哪一个非基变量进基?排在最前面的负检验数对应的非基变量③确定出基变量“最小比值原则”(或θ原则)见本如果x2≤0,会出现什麽问题?最小比值原则会失效!基变换新的基变量——x2, x3,x4;新的非基变量x1, x5;写出用非基变量表示基变量的表达式:可得新的基本可行解X(1)=(0,3,2,16,0)T⑤写出用非基变量表示目标函数的表达式:检验数仍有正的第五步:上述过程何时停止?当用非基变量表示目标函数的表达式中,非基变量的系数(检验数)全部非正(0时表无穷解,负时表唯一解)时,当前的基本可行解就是最优解!为什麽?分析用非基变量表示目标函数的表达式,如果让负检验数所对应的变量进基,目标函数值将下降!(2)表格设计依据:将-Z 看作不参与基变换的基变量,把目标函数表达式改写成方程的形式,和原有的m 个约束方程组成一个具有n+m+1个变量、m+1个方程的方程组:取出系数写成增广矩阵的形式:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+++01100001000010212121222221111211mn n n n m mn m m nnc c c c c c b a a a b a a a b a a a-Z ,X n+1,…,X n+m 所对应的系数列向量构成一个基用矩阵的初等行变换将该基变成单位阵,这时 变成0,相应的增广矩阵变成如下形式:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++-=++++=++++=+++++++++++01122112211222222121111212111m n m n n n n n mm n n mn m m n n n n n n x c x c x c x c x c Z bx x a x a x a b x x a x a x a b x x a x a x a其中, , j=1,2,…,n ;增广矩阵的最后一行就是用非基变量表示目标函数的表达式, (j=1,2,…,n)就是非基变量的检验数。

单纯形法的迭代步骤与解的讨论

单纯形法的迭代步骤与解的讨论
03
计算结果分析
01
最优解解释
通过单纯形法迭代得到的最优解满足所有约束条件,并使目标函数达到
最大值(或最小值)。
02
解的性质讨论
根据问题的不同,最优解可能是唯一的、不唯一的、无界的或不存在的。
对于不同情况,需要具体分析并给出相应的解释和处理方法。
03
敏感性分析
对于某些参数的变化,可以通过敏感性分析来探讨最优解的稳定性和变
单纯形法缺点
对初始解敏感
单纯形法的求解过程依赖于初始解的选择, 不同的初始解可能导致不同的迭代路径和收 敛速度。
可能陷入循环
在某些情况下,单纯形法可能会陷入无限循环,无 法在给定的时间内找到最优解。
对大规模问题求解效率低
对于大规模的线性规划问题,单纯形法的求 解效率可能会显著降低,甚至无法在实际应 用中接受。
改进方向探讨
内点法
内点法是一种不依赖于初始解的求解方法,通过在内部可行域中进行搜索来逼近最优解。内点法具有较快的收敛速度 和较好的数值稳定性,适用于大规模问题。
原始对偶法
原始对偶法将原问题和对偶问题结合起来进行求解,能够充分利用两个问题的信息,提高求解效率。该方法适用于具 有特殊结构的问题,如网络流问题等。
计算过程演示
01 1. 初始化单纯形表
02
构建初始单纯形表,包括目标函数系数、约束条件系
数和右侧常数项。
03
选择一个初始基可行解,通常将所有非基变量设为0

计算过程演示
01
2. 迭代过程
02
检查当前解是否最优。通过比较目标函数值或检验数来判断 。
03
若非最优,则选择一个入基变量。通常选择具有最大正检验 数的非基变量。

§2.2单纯形法

§2.2单纯形法

Maxz 7 x 12 x
1
Maxz 7 x1 12x2 0x3 0x4 0x5
3) 当模型中有某变量 xk 没有非负要求, 称为自由变量, 则可令 x x x ,x ,x 0
/ // / // k k k k k
化为标准型。 4) 若某个bi<0,两边乘(-1) 5) 对负变量 x j 0 ,换元设 xj x j 0
2. 最优性检验
问题:用什么检验? —— 目标。
1 1
X 而目标z CX (C C ) C (B b B N X ) C X X C B b (C C B N ) X

记 C C B N,则当 0 时,当前基可行解为最 优。
1
方法:计算每个变量 x 的检验数 c C B P ,
1
若 0, 则当前解为最优;否则 非最优。
问题:非最优的特征为何?
至少有某个检验数 0。
3. 寻找更好的基可行解(换基迭代) (基变换)
由于基可行解与基对应,即寻找一个新的基可行 解,相当于从上一个基B0变换为下一个新的基B1,因此, 本步骤也称为基变换。 进基
1 1 1 1
360 90 4
[ ] 中表示进基列与出基行的交叉元,下一张表将实行以它为主 元的初等行变换(称高斯消去)。方法是:先将主元消成1,再用此1将 其所在列的其余元消成0。
特点: (1) 目标函数求最大值 (2) 约束条件都为等式方程; (3) 非负约束:决策变量xj为非负; 右端常数项bi非负。
标准型的矩阵表示:
Maxz CX AX b s.t. X 0
其中,A 的秩为m(m n) , b 0。

运筹学单纯形法讲解

运筹学单纯形法讲解

运筹学单纯形法讲解一、单纯形法基本概念在运筹学中,单纯形法是一种在给定点搜索可行解集合的一种技术。

设有m个点x、 y、 z分布在两点P、 Q,它们是相互独立的,这样的点组成了单纯形。

单纯形是可以用于求解最优化问题的一种简单的对象,因而又称为对象或对象群。

由单纯形求出的最优解就叫做单纯形的最优解。

在实际应用中,一般用来求最优解的都是单纯形。

二、单纯形法适用条件和范围在运筹学中,单纯形法常用于求解线性规划、非线性规划和整数规划等,还可以求解网络的流量、质量等。

但当运输问题用单纯形法求解时,解不存在,无最优解,也无单纯形。

非线性规划只能得到对象最优解。

三、单纯形法具体步骤和算法介绍1、明确问题的目标。

2、计算出所有解,按确定的先后顺序排列。

3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。

四、单纯形法的误差和精度1、明确问题的目标。

一般在最优化问题中,用最小值对准目标是最理想的,但是在实际工程应用中,人们往往要求越多越好,甚至有时只要求几个较小的值。

但要注意所得结果的可靠性和正确性,也要尽可能减少计算过程中的误差。

2、计算出所有解,按确定的先后顺序排列。

首先,找出最优解,再在这个最优解附近寻找另外的比最优解更好的最优解,直到所有点都达到满意的精度。

这种方法称为“穷举法”。

穷举法通常用于没有更好的方法时,常用于工程实际中。

3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。

4、单纯形法的误差:由于人们认识上的错误或操作不当造成的,如排除法的计算次数与数据采集次数之比,以及采样值的平均数与真值之比,与取值的个数有关,与取值的精度也有关,必须合理确定取值范围。

5、单纯形法的精度:根据问题的规模,计算数据量和计算次数,反复调整取值点,改进计算方法,从而得到尽可能高的精度。

单纯形法的精度可达0.01或0.05。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、单纯形法的实现——单纯形表
例1:煤电油例 Max Z=7 x1 +12x2 9 x1 +4x2≤360 化为标准型 s.t. 4x1 +5x2 ≤200 3 x1 +10x2 ≤300 x1 , x2≥0 s.t. Max Z=7 x1 +12x2 9 x1 +4x2 +x3 4x1 +5x2 3 x1 +10x2 x1 ,…,x5≥0 +x4 =360 = 200

“≥”型约束,减松弛变量;
练习1.3 请将例1.1的约束化为标准型
Maxz = 7 x1 + 12 x 2 ⎧9 x1 + 4 x 2 ≤ 360 ⎪4 x1 + 5 x 2 ≤ 200 s.t.⎨ 3x1 + 10 x 2 ≤ 300 ⎪x , x ≥ 0 ⎩ 1 2
则约束化为
= 360 ⎧9 x1 + 4 x 2 + x3 ⎪4 x + 5 x 2 + x4 = 200 s.t.⎨ 1 3 x1 + 10 x 2 + x5 = 300 ⎪x , x , x , x , x ≥ 0 ⎩ 1 2 3 4 5
例4 下面为某线性规划的约束
=1 ⎧ x1 + 2 x2 + x3 ⎪ + x4 = 3 ⎨2 x1 − x2 ⎪ x1 , , x4 ≥ 0 ⎩ 请例举出其基矩阵和相应的基向量、基变量。
解:
本例中, A = ⎡1 2 1 0⎤,A中的2阶可逆子阵有 ⎢ 2 − 1 0 1⎥ ⎦ ⎣
问题:本例的A中一共有几个基?—— 6个。
易见,增加的松弛变量的系数恰构成一个单位阵I。
一般地,记松弛变量的向量为 X s,则
s.t.⎧ AX ≤ b ⎨X ≥ 0 ⎩
s.t.⎧ AX ≥ b ⎨X ≥ 0 ⎩
⎧ AX + IX s = b s.t.⎨ ⎩X , X s ≥ 0
⎧ AX − IX s = b s.t.⎨ ⎩X , X s ≥ 0
T
注意:
⎛ B −1b ⎞ 的。 当取X N = 0时,有X B = B −1b, X = ⎜ ⎟. ⎝ 0 ⎠ ⎛ B −1b ⎞为线性规划的一个基本解; 称AX = b的解X = ⎜ 0 ⎟ ⎝ ⎠
基本解仅是资源约束的解,并未要求其非负,因此其未必可行。 基可行解 若基解X≥0,则称为基可行解。
计算检验数均非正,当 前解为最优。
问题:当模型规模较大时,计算量很大。 事实上,单纯形法的实现是在单纯形表上完成的。
练习1.4 对于下ห้องสมุดไป่ตู้的线性规划
min z = − x1 + 2 x2 ⎧ x1 − x2 ≥ −2 ⎪ ⎨ x1 + 2 x2 ≤ 6 ⎪ x1 , x2 ≥ 0 ⎩
(1)用图解法求解; (2)将模型化为标准型; (3)用单纯形法步骤求出其最优解,并指出求解过程中 每一个基可行解相当于可行域的哪一个角点。
问题:用什么检验? 用目标 把目标函数用非基变量表示:
= C B B −1 b + (C N − C B B −1 N ) X N
检验数向量,记为σ。当σ ≤0时,当前解为最优解。
σ j = c j − C B B −1 P j 方法: (1)计算每个xj的检验数
问题:非最优的 特征为何?—— (2)若所有σj ≤0 ,则当前解为最优; 否则,至少有σk >0 ,转3。
x B1 = ⎡1 0⎤,其相应的基向量为P3 , P4 , 基变量为x3 , x4,X B1 = ⎛ 3 ⎞; ⎜x ⎟ ⎢ 0 1⎥ ⎣ ⎦ ⎝ 4⎠ ⎡1 2 ⎤ B2 = ⎢ ⎥ , 其相应的基向量为 P1 , P2 , ⎣ 2 − 1⎦ ⎛ x1 ⎞ 基变量为 x1 , x2 , X B2 = ⎜ ⎟ 。 ⎝ x2 ⎠
, Pn)
进基 − − 保证“改善”− − 令 σ k > 0对应的 Pk 进基;
出基 − −保证“可行” − − 由X B = B −1b − B −1 NX N ≥ 0可决定出基。
换基方法
(1)进基:取 σ k = max{σ j > 0} 对应的Pk进基。
( B −1 b ) i ( B −1 Pk ) i > 0} (2)出基:取 θ l = min{ −1 i ( B Pk ) i
第二个约束减松弛变量 得标准型:
x7 、Min z → Max z ' ( z ' = − z )
Max
z ' = x1 − 2 x 2 + 3 x4 − 3 x5
⎧ x1 + x 2 + x4 − x5 + x6 = 7 ⎪x −x +x −x −x =2 ⎪ 1 2 4 5 7 s .t .⎨ ⎪− 3 x1 + x 2 + 2 x4 − 2 x5 = 5 ⎪ x1 , x 2 , x4 , , x7 ≥ 0 ⎩
基本解与基可行解的关系
可行解
基可行解
基解
结论:LP的基可行解对应于可行域的顶点。
3.基本定理
(1)线性规划的可行域是一个凸多面体。
(2)线性规划的最优解(若存在的话)必能在可行域的角点获得。 (3)线性规划可行域的角点与基本可行解一一对应。
三、单纯形法的基本方法
基本方法: 确定初始基可行解
检验是否最优? N 转到另一更好的 基可行解 方法前提:模型化为标准型
m Cn 个。 一般地,m×n 阶矩阵A中基的个数最多有多少个?——
(3)、基本解与基本可行解 基本解
当A中的基B取定后,不妨设B表示A中的前m列, 则可记A = B N )相应地X = ( X B ( , XN ) ⎛ X B ⎞ 可见:一个 约束中的AX = b可表示为 ( B N ) ⎜ ⎟=b ⎝ X N ⎠ 基本解是由 −1 −1 即X B = B b − B NX N 一个基决定
§2
单纯形法
单纯形法是求解线性规划的主要算法,1947年由美国斯坦 福大学教授丹捷格(G.B. Dantzig)提出。
尽管在其后的几十年中,又有一些算法问世,但单纯形法 以其简单实用的特色始终保持着绝对的“市场”占有率。
§2 单纯形法 一、线性规划的标准型
1、标准形式
Max Z = c1 x1 + c2 x2 + … + cn xn a11 x1 + a12 x2 + … + a1n xn =b1 s.t. …… ……
对应的Pl进基。 得新基,转2。
j
以例1.1为例,用单纯形法求出其最优解, (1)先将模型化为标准型
Maxz = 7 x1 + 12 x 2 = 360 ⎧9 x1 + 4 x 2 + x3 ⎪4 x1 + 5 x 2 + x4 = 200 s.t.⎨ + x5 = 300 3x1 + 10 x 2 ⎪x , x , x , x , x ≥ 0 ⎩ 1 2 3 4 5
Am× n的秩为m m ≤ n) ( b ≥ 0。
2、非标准型 (1)Min Z = CX (2)约束条件
标准型 Max Z' = -CX

“≤”型约束,加松弛变量;
松弛变 量
例如: 9 x1 +4x2≤360 问题:它的实际意义是什么? —— 煤资源的“剩余”。
9 x1 +4x2+ x3=360
令x1=0,得基本解 令x2=0,得基本解 令x3=0,得基本解 令x4=0,得基本解
3 基本解的个数≤ C 4 = 4 。
X1=(0, 3, 2, -1)T, 对应于A点; X2=(3, 0, 1, -8)T, 对应于B点; 基 X3=(2, 1, 0, 5)T, 对应于F点; 可 X4=(1/3, 8/3, 5/3, 0)T, 对应于D点; 行 解
至少有某个检验数σ k > 0。
3. 换基迭代(基变换)
由于基可行解与基对应,即寻找一个新的基可行解, 相当于从上一个基B0变换为下一个新的基B1,因此, 本步骤也称为基变换。
⎧ 改善:z1 > z0 基变换的原则: ⎨ 可行:B1−1b ≥ 0 ⎩
进基
变换的方法:( P1 ,
, Pl ,
出基
, Pk ,
Y

1. 初始可行基B0的确定
若A中含有I:B0=I 若A中不含I:人工变量法
问题:若B0=I,则X0=?——
− ⎛ B0 1b ⎞ ⎛ b ⎞ X0 = ⎜ ⎟ = ⎜ 0 ⎟ ≥ 0, 可行。 ⎝ 0 ⎠ ⎝ ⎠
2. 最优性检验
矩阵 分块
⎛ XB ⎞ X B = B −1b − B −1 NX N ⎟=b ( B , N )⎜ AX = b ⎜X ⎟ ⎝ N⎠ ⎛ XB ⎞ ∴ Z = CX = (C B , C N )⎜ ⎜ X ⎟ = CB X B + CN X N ⎟ ⎝ N⎠ = C B ( B −1b − B −1 NX N ) + C N X N
问题:松弛变量在目标中的系数为何? —— 0。 (3)自由变量xj 进行变量替换: xj= xj ' - xj ' ' ,其中xj ' 、 xj ' ' ≥0
例3、将如下问题化为标准型
Min z = − x1 + 2 x 2 − 3 x 3 ⎧ x1 + x 2 + x 3 ≤ 7 ⎪ x −x +x ≥2 ⎪ 1 2 3 s .t .⎨ ⎪ − 3 x1 + x 2 + 2 x 3 = 5 ⎪ x1 , x 2 ≥ 0, x 3无约束 ⎩ 解:令 x3 = x4 − x5 、第一个约束加松弛变量 x6 、
相关文档
最新文档