高一数学复合函数例题
高一数学分段函数抽象函数与复合函数试题答案及解析
高一数学分段函数抽象函数与复合函数试题答案及解析1.对于函数的性质,①是以为周期的周期函数②的单调递增区间为,③的值域为④取最小值的的取值集合为其中说法正确的序号有_____________.【答案】①②【解析】画出函数的图像,可知,函数的周期为,单调递减区间为,函数的值域为,函数取最小值的的取值集合为【考点】1.分段函数;2.函数的图像与性质.2.已知函数若,则()A.B.C.或D.1或【答案】C【解析】当时,,可得;当时,,可得.【考点】分段函数,分类讨论的数学思想.3.已知函数,则 .【答案】【解析】因为,所以,又因为,所以.【考点】分段函数.4.已知函数。
若,则的值()A.一定是B.一定是C.是中较大的数D.是中较小的数【答案】C【解析】由题意可知,所以,所以的值是中较大的数,故选C.【考点】分段函数的求值问题.5.已知函数则______.【答案】【解析】由题可得.【考点】分段函数的求值.6.设,则()A.B.0C.D.【答案】C【解析】,故选C【考点】分段函数7.已知函数,则的值是.【答案】【解析】因为,而,所以.【考点】本题考查的知识点是分段函数求函数值的方法,属基础题.8.设,则【答案】【解析】由分段函数有.【考点】分段函数的定义域不同解析式不同.9.在上是减函数,则的取值范围是()A.[B.[ ]C.( D.( ]【答案】A【解析】由于两段函数都是一次的形式,依题意减函数可以得,斜率小于零,即,另外(3-1)x+4在x=1的值不小于-x在x=1的值,即(3-1)+4a≥-,所以,综上.故选A.【考点】 1.分段函数的单调性的问题.2.处理分界点的函数值的大小.10.已知函数则等于()A.B.C.D.【答案】D【解析】分段函数的函数值计算要注意自变量的取值范围,,.【考点】分段函数.11.已知则的值等于().A.-2B.4C.2D.-4【答案】B【解析】本题是分段函数,求值时,要注意考察自变量的范围,,,.【考点】分段函数.12.已知,则f(3)为()A.2B.3C.4D.5【答案】A【解析】因为,,所以,,选A。
人教高中数学必修一复合函数问题练习(含答案)
2[()]()()f f x af x ba axb ba xab b复合函数问题一、复合函数定义:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若AB ,则y 关于x函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二复合函数解析式1、待定系数法:在已知函数解析式的构造时,可用待定系数法.例1设)(x f 是一次函数,且34)]([x x f f ,求)(x f .解:设b axx f )()0(a,则342b aba ,3212ba ba 或 .32)(12)(x x f x x f 或 .2、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域.例2已知221)1(xxx x f )0(x ,求()f x 的解析式.解:2)1()1(2xxxxf ,21xx,2)(2xx f )2(x .3、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.与配凑法一样,要注意所换元的定义域的变化.例3已知x x xf 2)1(,求)1(x f .解:令1x t ,则1t ,2)1(t x.x x x f 2)1(,,1)1(2)1()(22tt t t f 1)(2xx f )1(x,x xx xf 21)1()1(22)0(x .4、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.例4已知:函数)(2x g yx xy 与的图象关于点)3,2(对称,求)(x g 的解析式.解:设),(y x M 为)(x g y 上任一点,且),(y x M 为),(y x M 关于点)3,2(的对称点.则3222y yx x,解得:yyx x 64,点),(y x M 在)(x g y 上,x xy 2.把yyx x 64代入得:)4()4(62xx y.整理得672x xy,67)(2x x x g .5、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式.例5设,)1(2)()(x xf x f x f 满足求)(x f .解xxf x f )1(2)(①显然,0x将x 换成x1,得:xx f x f 1)(2)1(②解①②联立的方程组,得:xx x f 323)(.6、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式.例7已知:1)0(f ,对于任意实数x 、y ,等式)12()()(y x y x f y x f 恒成立,求)(x f .解对于任意实数x 、y ,等式)12()()(y x y x f y xf 恒成立,不妨令0x ,则有1)1(1)1()0()(2y yy y y y f y f .再令x y得函数解析式为:1)(2xxx f .7、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式.例8设)(x f 是定义在N 上的函数,满足1)1(f ,对任意的自然数b a,都有ab b af b f a f )()()(,求)(x f .解N ba ab b a f b f a f ,)()()(,,不妨令1,bx a,得:x x f f x f )1()1()(,又1)()1(,1)1(xx f xf f 故①令①式中的x =1,2,…,n -1得:(2)(1)2(3)(2)3()(1)f f f f f n f n n,,,将上述各式相加得:n f n f 32)1()(,2)1(321)(n n nn f ,N x x xx f ,2121)(2.三复合函数定义域问题(1)、已知的定义域,求的定义域思路:设函数的定义域为D ,即,所以的作用范围为D ,又f 对作用,作用范围不变,所以D x g )(,解得,E 为的定义域。
复合函数练习题附答案
复合函数练习题附答案21、已知函数f的定义域为[0,1],求函数f的定义域。
析:由已知,x?[0,1],故x?[?1,1]。
所以所求定义域为[?1,1]2、已知函数f的定义域为[?3,3],求f的定义域析:由已知x的范围为[?1,1],那么3?2x的范围为[1,5],从而f 的定义域为[1,5]3、已知函数y?f的定义域为,求f的定义域。
由f 的定义域可知f的定义域为,则求f的定义域应满足析:132x?1?,解得x??224、设f?x??lg2?x?x??2?,则ff??的定义域为?x?2??x?A. ??4,00,4?B. ??4,?11,4?C. ??2,?11,2?D. ??4,?22,4??x?0,即?0,得?2?x?2.那么由题意应有2?x析:?-2?x??4?x?4??2,解得?,综上x??,选B?2x??1或x?12??2x?5.函数y=log1的单调递减区间是2A. B.C. D.析:本题考查复合函数的单调性,根据同增异减。
对于对数型复合函数,应先求定义域,即x2?3x?2?0,得定义域为?.由于外函数是以0?1?1为底,故为减函数。
则求y的减区间,只需要求内函数的增23区间。
内函数为t?x2?3x?2,其对称轴为x?,在函数y的定义域内,t在上2为增函数,所以选择B6.找出下列函数的单调区间.y?a?x2?3x?2;解析:此题为指数型复合函数,考查同增异减。
令t??x2?3x?2,则y?at,t??x2?3x?2。
由于a?1,则外函数为增函数,由同增异减可知,t的增区间即为y的增区间。
而内函数t的333,即t在上位增函数,在上位减函数,从而函22233数y的增区间为,减区间为22对称轴为x?y?2x2?2x?3.解:设t??x2?2x?3,则y?2t.因?x2?2x?3?0,得?1?x?3.由?x2?2x?3对称轴为x?1.即内函数t的增区间为[?1,1],减区间为[1,3]。
高一数学分段函数抽象函数与复合函数试题答案及解析
高一数学分段函数抽象函数与复合函数试题答案及解析1.已知函数。
若,则的值()A.一定是B.一定是C.是中较大的数D.是中较小的数【答案】C【解析】由题意可知,所以,所以的值是中较大的数,故选C.【考点】分段函数的求值问题.2.设,则使成立的值为 .【答案】-1或2【解析】当时,成立;当时,成立,所以值为-1或2【考点】分段函数3.已知函数,则( )A.0B.1C.-2D.-1【答案】B【解析】分段函数求函数时,要注意自变量的取值范围.。
【考点】分段函数.4.若函数,则=()A.0B.1C.2D.3【答案】B【解析】复合函数求值由内向外的求解是关键,代入计算时注意不同的自变量对应的表达式,先计算,再计算,最后计算故选B【考点】分段函数的值.5.已知函数,则 .【答案】【解析】,.【考点】本题考查了分段函数中函数值的计算.6.在上是减函数,则的取值范围是()A.[B.[ ]C.( D.( ]【答案】A【解析】由于两段函数都是一次的形式,依题意减函数可以得,斜率小于零,即,另外(3-1)x+4在x=1的值不小于-x在x=1的值,即(3-1)+4a≥-,所以,综上.故选A.【考点】 1.分段函数的单调性的问题.2.处理分界点的函数值的大小.7.已知则f(3)=________.【答案】2.【解析】分段函数的函数值计算,一定要注意自变量的取值到底属于哪一段.根据函数的定义,.【考点】分段函数.8.设函数则实数的取值范围是 .【答案】【解析】当时,得,无解;当时,得,得或(舍去),故实数的取值范围是.【考点】分段函数的最值.9.如果对于函数的定义域内任意一个的值,均有,且,对于下列五个函数:①;②;③;④,其中适合题设条件的函数的序号是.【答案】③【解析】根据题意,由于,且,说明是奇函数和,同时关于对称,那么对于①是偶函数,不成立;对于②;也是偶函数不成立,对于③;满足题意,对于④非奇非偶函数,不成立故选③【考点】抽象函数的性质点评:本题考查新定义,考查三角函数的化简,解题的关键是一一验证,属于中档题10.已知,定义,则=" ________" .【答案】【解析】由函数可得,的周期为6【考点】分段函数求值点评:分段函数求值要根据定义域的范围将自变量x的值带入相应的解析式,求解本题的关键在于找到函数的周期,从而化简11.函数,则 .【答案】3【解析】【考点】本题考查了分段函数的求值点评:弄清函数解析式是解决此类问题的关键,正确计算即可12.已知函数是上的增函数,那么实数的范围()A.B.C.D.【答案】D【解析】本题f(x)为分段函数,分析易得f(x)的两段函数均为增函数,同时在x=1处第一段的函数值大于等于第二段函数的函数值,则可知结论。
高一数学分段函数抽象函数与复合函数试题答案及解析
高一数学分段函数抽象函数与复合函数试题答案及解析1.已知函数,则的值是()A.4B.48C.240D.1440【答案】C【解析】因为,所以,故选C.【考点】分段函数求函数值的问题.2.设函数则的值为A.B.C.D.【答案】D【解析】由已知函数可得,,故D为正确答案.【考点】分段函数求值.3.已知函数则______.【答案】【解析】由题可得.【考点】分段函数的求值.4.设,则()A.B.0C.D.【答案】C【解析】,故选C【考点】分段函数5.已知函数,则的值是.【答案】【解析】因为,而,所以.【考点】本题考查的知识点是分段函数求函数值的方法,属基础题.6.已知函数,则( )A.0B.1C.-2D.-1【答案】B【解析】分段函数求函数时,要注意自变量的取值范围.。
【考点】分段函数.7.若函数,则=()A.0B.1C.2D.3【答案】B【解析】复合函数求值由内向外的求解是关键,代入计算时注意不同的自变量对应的表达式,先计算,再计算,最后计算故选B【考点】分段函数的值.8.设,则【答案】【解析】由分段函数有.【考点】分段函数的定义域不同解析式不同.9.在上是减函数,则的取值范围是()A.[B.[ ]C.( D.( ]【答案】A【解析】由于两段函数都是一次的形式,依题意减函数可以得,斜率小于零,即,另外(3-1)x+4在x=1的值不小于-x在x=1的值,即(3-1)+4a≥-,所以,综上.故选A.【考点】 1.分段函数的单调性的问题.2.处理分界点的函数值的大小.10.如图(1)四边形ABCD为直角梯形,动点P从B点出发,由B→C→D→A沿边运动,设点P运动的路程为x,ΔABP面积为f(x).若函数y=f(x)的图象如图(2),则ΔABC的面积为A.10B.16C.18D.32【答案】B【解析】观察图(2),可知,,,由平面几何的知识易求得,∴,选B.【考点】分段函数.11.已知则的值等于().A.-2B.4C.2D.-4【答案】B【解析】本题是分段函数,求值时,要注意考察自变量的范围,,,.【考点】分段函数.12.函数满足: ,且,则【答案】【解析】本题给出的函数是一个递归式,可以按照原来函数的样子递归到1,再回推出4。
高一数学人教版必修一 第一章 1.2.2 复合函数问题练习(含答案)
2[()]()()f f x af x b a ax b b a x ab b=+=++=++复合函数问题一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二 复合函数解析式1、待定系数法:在已知函数解析式的构造时,可用待定系数法. 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f .解:设b ax x f +=)()0(≠a ,则 ∴⎩⎨⎧=+=342b ab a , ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 . 32)(12)(+-=+=∴x x f x x f 或 .2、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域.例2 已知221)1(x x x x f +=+)0(>x ,求 ()f x 的解析式. 解:2)1()1(2-+=+xx x x f , 21≥+x x , 2)(2-=∴x x f )2(≥x .3、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.与配凑法一样,要注意所换元的定义域的变化. 例3 已知x x x f 2)1(+=+,求)1(+x f . 解:令1+=x t ,则1≥t ,2)1(-=t x .x x x f 2)1(+=+, ∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥x , x x x x f 21)1()1(22+=-+=+∴ )0(≥x .4、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式. 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点.则 ⎪⎩⎪⎨⎧=+'-=+'3222y y xx ,解得:⎩⎨⎧-='--='y y x x 64,点),(y x M '''在)(x g y =上 , x x y '+'='∴2.把⎩⎨⎧-='--='yy x x 64代入得:)4()4(62--+--=-x x y . 整理得672---=x x y , ∴67)(2---=x x x g .5、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式. 例5 设,)1(2)()(x xf x f x f =-满足求)(x f . 解 x xf x f =-)1(2)( ①显然,0≠x 将x 换成x 1,得:xx f x f 1)(2)1(=- ② 解① ②联立的方程组,得:xx x f 323)(--=.6、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式. 例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f . 解对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,不妨令0x =,则有1)1(1)1()0()(2+-=-+=+--=-y y y y y y f y f . 再令 x y =- 得函数解析式为:1)(2++=x x x f .7、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式. 例8 设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f .解 +∈-+=+N b a ab b a f b f a f ,)()()(,,∴不妨令1,==b x a ,得:x x f f x f -+=+)1()1()(,又1)()1(,1)1(+=-+=x x f x f f 故 ①令①式中的x =1,2,…,n -1得:(2)(1)2(3)(2)3()(1)f f f f f n f n n -=-=--=,,,将上述各式相加得:n f n f ++=-32)1()(,2)1(321)(+=+++=∴n n n n f , +∈+=∴N x x x x f ,2121)(2. 三 复合函数定义域问题 (1)、已知的定义域,求的定义域思路:设函数的定义域为D ,即,所以的作用范围为D ,又f 对作用,作用范围不变,所以D x g ∈)(,解得,E 为的定义域。
高一数学-复合函数[原创] 精品
复合函数一、复合函数的定义:设y 是z 的函数y =f (z ),而z 又是x 的函数z =φ(x ),设X 表示φ(x )的定义域或其中的一部分,如果对于在X 上取值时所对应的值,函数y =f (z )均有定义,则y 成为x 的函数,记为y = f [φ(x )]。
这个函数叫做由y = f (z )及z =φ(x )复合而成的复合函数,它的定义域为X ,z 叫做中间变量,f 称为外层函数,φ称为内层函数。
要求掌握把复合函数分解为几个简单函数的方法,例如是由和两个函数复合而成的。
二、复合函数的解析式:例1:已知二次函数()x f 满足()569132+-=+x x x f ,求()x f 。
分析:本题可采用待定系数法求解,但待定系数法不是求模型函数的解析式的唯一定势,解答这类问题要具体情况具体分析。
本题用换元和“凑型”的办法解决。
解法一 设13+=x t ,则31-=t x 。
把13+=x t 、31-=t x 分别代入569)13(2+-=+x x x f 的左边和右边得()53163192+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=t t t f ,即()842+-=t t t f ,∴ ()()R x x x x f ∈+-=842 。
解法二 由已知,569)13(2+-=+x x x f ∴()()()813x 413x 13x f 2++-+=+,把13x +视为一个整体,有()()R x x x x f ∈+-=842.例2 已知()0x x 1x x 1x f 22>+=⎪⎭⎫ ⎝⎛+,求()x f 。
分析 由22x 1x x 1x f +=⎪⎭⎫ ⎝⎛+求()x f 的对应法则,可设t =+x 1x ,则22221t x x =++,即21222-=+t xx ,问题很容易得到解决。
随后的问题是()x f 的定义域是什么?例3、设f(x)满足()3x x 12f x f =⎪⎭⎫⎝⎛+,求f(x)分析:在已知的关系式中含有f(x)和f(x 1),求出f(x),需要消去f(x1),所以需从已知的关系中再产生一个关于f(x)和f(x1)的关系式,然后联立解出f(x),这里只要以x 1代替x ,便可得关于f(x)和f(x 1)的又一等式.三、复合函数的定义域:⒈已知f(x)的定义域,求f[g(x)]的定义域例4、函数f(x)的定义域是[0,2],则函数g(x)=f(x+21)- f(x-21)的定义域是( )(A)[0,2](B)[23,21-](C)[25,21](D)[23,21]例5、已知函数f(x)的定义域是(]0,1,求g(x)=f(x+a)·f(x-a)⎪⎭⎫⎝⎛≤<-0a 21的定义域.⒉已知f[g(x)]的定义域,求f(x)的定义域例6、若函数f(x+1)的定义域为⎪⎭⎫⎝⎛-,221,则f(x 2)的定义域是_____例7、函数f(x+1)的定义域为[-2,3],则y=f(2x-1)的定义域是( )(A)⎥⎦⎤⎢⎣⎡250,(B)[-1,4](C)[-5,5](D)[-3,7]⒊由符合函数的定义域,求字母参数的取值.例8、函数96kx kx y 2+-=的定义域为R ,则k 的取值范围是_____.例9、已知函数()2bx ax x f 2++=的定义域为⎥⎦⎤⎢⎣⎡-31,21,求a+b 的值.四、复合函数的性质与构成它的函数的性质密切相关,其规律可列表如下: ⒈复合函数[])(x g f y =在区间[]b a ,上的单调性:引理1 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数.引理2 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是减函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数.若函数)(x g u =在区间[]b a ,上是单调函数,函数)(u f y =在[])(),(b g a g 或[])(),(a g b g 上也是单调函数,那么复合函数[])(x g f y =在区间[]b a ,上是即)(x g u =,)(u f y =增减性相同时, [])(x g f y =为增函数,)(x g u =,)(u f y =增减性相反时, [])(x g f y =为减函数.例10 求下列函数的单调区间: y=log 4(x 2-4x+3)解:(方法1)设 y=log 4u,u=x 2-4x+3.由u >0, ∵u=x 2-4x+3,∴x 2-4x+3>0 解得原复合函数的定义域为x <1或x >3.当x ∈(-∞,1)时,u=x 2-4x+3为减函数,而y=log 4u 为增函数,所以(-∞,1)是复合函数的单调减区间;当x ∈(3,±∞)时,u=x 2-4x+3为增函数y=log 4u 为增函数,所以,(3,+∞)是复合函数的单调增区间.(方法2)设 y=log 4u,u=x 2-4x+3 u=x 2-4x+3=(x -2)2-1,x >3或x <1,(复合函数定义域) x <2 (u 减)解得x <1.所以x ∈(-∞,1)时,函数u 单调递减.由于y=log 4u 在定义域内是增函数,所以由引理知:u=(x -2)2-1的单调性与复合函数的单调性一致,所以(-∞,1)是复合函数的单调减区间.下面我们求一下复合函数的单调增区间. u=x 2-4x+3=(x -2)2-1,x >3或x <1,(复合函数定义域) x >2 (u 增)解得x >3.所以(3,+∞)是复合函数的单调增区间. 例11 求下列复合函数的单调区间:⎪⎭⎫ ⎝⎛-=2x 2x 31log y 解: 设 u 31logy =,u=2x -x 2.由 u >0u=2x -x2解得原复合函数的定义域为0<x <2. 由于u y 31log=在定义域(0,+∞)内是减函数,所以,原复合函数的单调性与二次函数u=2x -x2的单调性正好相反. 易知u=2x -x 2=-(x -1)2+1在x ≤1时单调增.由 0<x <2 (复合函数定义域) x ≤1,(u 增)解得0<x ≤1,所以(0,1]是原复合函数的单调减区间. 又u=-(x -1)2+1在x ≥1时单调减,由 x <2, (复合函数定义域) x ≥1, (u 减)解得0≤x <2,所以[0,1]是原复合函数的单调增区间. 例12 求y=2x 6x 7--的单调区间.解: 设y=,u=7-6x -x 2,由u ≥0,u=7-6x -x 2解得原复合函数的定义域为-7≤x ≤1.因为y=在定义域[0+∞]内是增函数,所以由引理知,原复合函数的单调性与二次函数u=-x2-6x+7的单调性相同.易知u=-x 2-6x+7=-(x+3)2+16在x ≤-3时单调增加。
高中数学专题练习《简单复合函数的导数》含详细解析
5.2.3简单复合函数的导数基础过关练题组一复合函数的求导法则1.函数y=(2020-8x)3的导数y'=()A.3(2020-8x)2B.-24xC.-24(2020-8x)2D.24(2020-8x)22.若f(x)=e x ln2x,则f'(x)=()A.e x ln2x+e x2x B.e x ln2x-exxC.e x ln2x+exxD.2e x·1x3.已知函数f(x)=ln(ax-1)的导函数是f'(x),且f'(2)=2,则实数a的值为()A.12B.23C.34D.14.若函数f(x)=√4x-3,则f'(x)=.5.函数f(x)=cos2xe x的导函数f'(x)=.6.求下列函数的导数.(1)y=x 2(2x+1)3;(2)y=e-x sin2x;(3)y=ln√2x+1-1;(4)y=cos(-2x)+32x+1.深度解析题组二复合函数求导的综合运用7.曲线f(x)=e4x-x-2在点(0,f(0))处的切线方程是()A.3x+y+1=0B.3x+y-1=0C.3x-y+1=0D.3x-y-1=08.某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可近似地表示为y=f(t)=√10t,则在时刻t=40min的降雨强度为()A.20mm/minB.400mm/minC.12mm/min D.14mm/min9.已知函数f(x)=2ln(3x)+8x,则limΔx→0f(1-2Δx)-f(1)Δx的值为()A.10B.-10C.-20D.2010.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1B.2C.-1D.-211.设函数f(x)在(-∞,+∞)内的导函数为f'(x),若f(ln x)=x+1x,则f(0)f'(0)=()A.2B.-2C.1D.e+112.设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0垂直,则a=.13.已知f(x)为偶函数,当x≤0时,f(x)=e-x-2-x,则曲线y=f(x)在(2,f(2))处的切线方程为.14.设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴交于点(0,6),试确定a的值.能力提升练题组复合函数的导数及其应用1.()已知y=f(x)=ln|x|,则下列各命题中,正确的是()A.x>0时,f'(x)=1x ,x<0时,f'(x)=-1xB.x>0时,f'(x)=1x,x<0时,f'(x)无意义C.x≠0时,都有f'(x)=1xD.因为x=0时f(x)无意义,所以不能对y=ln|x|求导2.()设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为()A.-15B.0C.15D.53.()已知f(x)=1+(1+x)+(1+x)2+(1+x)3+…+(1+x)n,则f'(0)=()A.nB.n-1C.n(n-1)2D.n(n+1)24.(2020河南开封五县高二上期末联考,)设a∈R,函数f(x)=e x+a·e-x 为奇函数,曲线y=f(x)的一条切线的切点的纵坐标是0,则该切线方程为()A.2x-y=0B.2x+y=0C.4x-y=0D.4x+y=05.()定义方程f(x)=f'(x)的实数根x0为函数f(x)的“新驻点”,若函数g(x)=x2+1,h(x)=ln(x+2),φ(x)=cos x(x∈(0,π))的“新驻点”分别为a,b,c,则a,b,c的大小关系为()A.a<b<cB.a<c<bC.b<a<cD.b<c<a6.(多选)()已知函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<π2的图象如图所示,令g(x)=f(x)+f'(x),则下列关于函数g(x)的说法正确的是()A.函数g(x)图象的对称轴方程为x=kπ-π12(k∈Z)B.函数g(x)的最大值为2C.函数g(x)的图象上存在点P,使得在P点处的切线与直线l:y=3x-1平行D.方程g(x)=2的两个不同的解分别为x1,x2,则|x1-x2|的最小值为π27.()已知y=x1−√1−x,则y'=.8.()若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b=.9.()设函数f(x)=ae x ln x+be x-1x.(1)求导函数f'(x);(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2,求a,b的值.), 10.()已知函数f(x)=3x+cos2x+sin2x,f'(x)是f(x)的导函数,且a=f'(π4求过曲线y=x3上一点P(a,b)的切线方程.答案全解全析 基础过关练1.C y'=3(2 020-8x)2×(2 020-8x)'=3×(2 020-8x)2×(-8)=-24(2 020-8x)2.故选C.2.C f'(x)=(e x )'·ln 2x+e x ·(ln 2x)' =e xln 2x+e xx.故选C.3.B 由f(x)=ln(ax-1)可得f'(x)=aax -1,由f'(2)=2,可得a2a -1=2,解得a=23.故选B.4.答案2√4x -34x -3解析 ∵f(x)=√4x -3=(4x-3)12, ∴f'(x)=12(4x-3)-12·(4x-3)'=2√4x -34x -3. 5.答案 -2sin2x+cos2xe x解析 由f(x)=cos2x e x, 得f'(x)=-2sin2x+cos2xe x. 6.解析 (1)∵y=x 2(2x+1)3,∴y'=2x ·(2x+1)3-x 2·3(2x+1)2·2(2x+1)6=2x -2x 2(2x+1)4.(2)y'=-e -x sin 2x+2e -x cos 2x =e -x (2cos 2x-sin 2x).(3)∵y=ln √2x +1-1=12ln(2x+1)-1,∴y'=12×12x+1×(2x+1)'=12x+1.(4)y'=-2sin 2x+(2x+1)'32x+1ln 3 =-2sin 2x+2·32x+1ln 3.易错警示 分析函数的运算结构,以基本初等函数的导数为基础,利用导数的四则运算法则及复合函数的求导法则依次求导即可. 7.D ∵f'(x)=4e 4x -1,∴k=f'(0)=3.又f(0)=-1,∴切线方程为y+1=3x,即3x-y-1=0.故选D. 8.D 由f(t)=√10t , 得f'(t)=2√10t·(10t)'=√102√t, 所以f'(40)=√102√40=14. 9.C ∵f(x)=2ln(3x)+8x,∴f'(x)=2x+8,∴f'(1)=10, ∴limΔx →0f(1-2Δx)-f(1)Δx =-2limΔx →0f(1-2Δx)-f(1)-2Δx=-2f'(1)=-20.故选C. 10.B 设切点为P(x 0,y 0), 则y 0=x 0+1,y 0=ln(x 0+a), ∵y' x=x 0=1x 0+a=1,∴x 0+a=1,∴y 0=ln(x 0+a)=0,∴x 0=y 0-1=-1.∴a=1-x 0=2.故选B. 11.B 令ln x=t,则x=e t,代入f(ln x)=x+1x得y=e t +1e t=1+1et =1+e -t ,∴y'=-1e t ,∴f(0)f'(0)=1+1-1=-2.故选B.12.答案 2解析 令y=f(x),则曲线y=e ax 在点(0,1)处的切线的斜率为f'(0),又切线与直线x+2y+1=0垂直,所以f'(0)=2.因为f(x)=e ax ,所以f'(x)=(e ax )'=(e ax )·(ax)'=ae ax ,所以f'(0)=ae 0=a,故a=2. 13.答案 y=2x-1解析 设x>0,则-x<0,∴f(-x)=e x-2+x,∵f(x)为偶函数,∴f(x)=e x-2+x,则f'(x)=e x-2+1,∴f'(2)=2,又f(2)=3,∴曲线y=f(x)在(2,f(2))处的切线方程为y-3=2(x-2),即y=2x-1. 14.解析 因为f(x)=a(x-5)2+6ln x, 所以f '(x)=2a(x-5)+6x .令x=1,得f(1)=16a,f '(1)=6-8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1).由点(0,6)在切线上,可得6-16a=8a-6, 解得a=12.能力提升练1.C 根据题意得f(x)={lnx(x >0),ln(−x)(x <0).分两种情况讨论:(1)x>0时,f(x)=ln x ⇒f'(x)=(ln x)'=1x ;(2)x<0时,f(x)=ln(-x)⇒f'(x) =[ln(-x)]'=1-x·(-1)=1x.故选C.2.B 由题设可知f(x+5)=f(x), ∴f'(x+5)=f'(x),∴f'(5)=f'(0),又f(-x)=f(x),∴f'(-x)(-1)=f'(x),即f'(-x)=-f'(x),∴f'(0)=0,∴f'(5)=f'(0)=0.故选B.3.D f(x)=1+(1+x)+(1+x)2+(1+x)3+…+(1+x)n,则f'(x)=1+2(1+x)+3(1+x)2+4(1+x)3+…+n(1+x)n-1,.故选D.则f'(0)=1+2+3+4+…+n=n(n+1)24.A因为函数f(x)=e x+a·e-x是奇函数,所以f(-x)=-f(x)对一切x∈R恒成立,所以e-x+a·e x=-e x-a·e-x对一切x∈R恒成立,即(a+1)(e x+e-x)=0对一切x∈R恒成立,所以a+1=0,解得a=-1,因此f(x)=e x-e-x,故f'(x)=e x+e-x.由曲线y=f(x)的一条切线的切点的纵坐标是0,得f(x)=e x-e-x=0,解得x=0.所以曲线y=f(x)的这条切线的切点的坐标为(0,0),切线的斜率为f'(0)=e0+e0=2.故曲线y=f(x)的这条切线方程为y-0=2(x-0),即2x-y=0.故选A.5.C由g(x)=x2+1可得g'(x)=2x,令x2+1=2x,解得x1=x2=1,即a=1.,由h(x)=ln(x+2)可得h'(x)=1x+2,设F(x)=h(x)-h'(x)=ln(x+2)-1x+2当x=-1时,F(-1)=-1<0,当x=0时,F(0)=ln2-1=ln√4-ln√e>0,故-1<b<0.2由φ(x)=cos x(x ∈(0,π))可得φ'(x)=-sin x, 令cos x=-sin x,得sin x+cos x=0, 则√2sin (x +π4)=0,又x ∈(0,π),所以x+π4=π,得x=3π4,即c=3π4.综上可知,b<a<c.故选C.6.AD 根据函数f(x)=Asin(ωx+φ)的图象知A=2,T 4=2π3-π6=π2,∴T=2π,ω=2πT=1.根据五点法画图知,当x=π6时,ωx+φ=π6+φ=π2+2kπ,k ∈Z,∵|φ|<π2,∴φ=π3,∴f(x)=2sin (x +π3),∴f'(x)=2cos (x +π3),∴g(x)=f(x)+f'(x)=2sin (x +π3)+2cos (x +π3)=2√2sin (x +π3+π4) =2√2sin (x +7π12), 令x+7π12=π2+kπ,k ∈Z,解得x=-π12+kπ,k ∈Z,∴函数g(x)图象的对称轴方程为x=-π12+kπ,k ∈Z,A 正确;当x+7π12=π2+2kπ,k ∈Z 时,函数g(x)取得最大值2√2,B 错误;g'(x)=2√2cos (x +7π12),∵g'(x)≤2√2<3,∴不存在点P,使得在P点处的切线与直线l:y=3x-1平行,C错误;方程g(x)=2,即2√2sin(x+7π12)=2,∴sin(x+7π12)=√22,∴x+7π12=π4+2kπ,k∈Z或x+7π12=3π4+2kπ,k∈Z,∴方程的两个不同的解分别为x1,x2时,|x1-x2|的最小值为π2,D正确.故选AD.7.答案-2√1−x解析y=1−√1−x=√1−x)(1-√1−x)·(1+√1−x)=x(1+√1−x)1−(1−x)=1+√1−x.设y=1+√u,u=1-x,则y'x=y'u·u'x=(1+√u)'·(1-x)'=2√u ·(-1)=-2√1−x.8.答案1-ln2解析设f(x)=ln x+2,g(x)=ln(x+1),则f'(x)=1x ,g'(x)=1x+1.设f(x)上的切点为(x1,y1),g(x)上的切点为(x2,y2),则k=1x1=1x2+1,则x2+1=x1.又y1=ln x1+2,y2=ln(x2+1)=ln x1,所以k=y1-y2x1-x2=2,故x1=1k =12,y1=ln12+2=2-ln2.故b=y1-kx1=2-ln2-1=1-ln2.9.解析(1)由f(x)=ae x ln x+be x-1x,得f'(x)=(ae x ln x)'+(be x-1x)'=ae x ln x+ae xx +bex-1x-be x-1x2.(2)由题意得,切点既在曲线y=f(x)上,又在切线y=e(x-1)+2上,将x=1代入切线方程,得y=2,将x=1代入函数y=f(x),得f(1)=b,所以b=2.将x=1代入导函数f'(x)中,得f'(1)=ae=e,所以a=1.10.解析由f(x)=3x+cos2x+sin2x,得f'(x)=3-2sin2x+2cos2x,则a=f'(π4)=3-2sinπ2+2cosπ2=1.由y=x3得y'=3x2.当P点为切点时,切线的斜率k=3a2=3×12=3,又b=a3,∴b=1,∴切点P的坐标为(1,1),∴曲线y=x3上以点P为切点的切线方程为y-1=3(x-1),即3x-y-2=0.当P点不是切点时,设切点坐标为(x0,x03),此时切线的斜率k'=3x02,∴切线方程为y-x03=3x02(x-x0).∵P(a,b)在曲线y=x3上,且a=1,∴b=1,将P(1,1)代入切线方程,得1-x 03=3x 02(1-x 0),∴2x 03-3x 02+1=0,∴2x 03-2x 02-x 02+1=0,∴(x 0-1)2(2x 0+1)=0,解得x 0=-12(x 0=1舍去), ∴切点坐标为(-12,-18), 又切线的斜率为3×(-12)2=34,∴切线方程为y+18=34(x +12), 即3x-4y+1=0.综上,满足题意的切线方程为3x-y-2=0或3x-4y+1=0.。
高一必修一复合函数的单调性
在 ,2上是增函数。
,1上是增函数。 y x 2 4 x 5在5,上是减函数,在
小结
(1)掌握复合函数单调性的判断方法.
函数的单调区间首先要求函数的定义域.
小结
(一)函数单调性解题应用.
1、已知单调性,求参数范围。(有时候需要讨论)
增函数 减函数 减函数 增函数
小结:同增异减。研究函数的单调性,首先考虑函数的定 义域,要注意函数的单调区间是函数定义域的某个区间。
注:
1、复合函数y=f[g(x)]的单调区 间必须是其定义域的子集 2、对于复合函数y=f[g(x)]的单 调性是由函数y=f(u)及u=g(x)的 单调性确定的且规律是“同增, 异减”
例2.求函数y x 4 x 3的单调递减区间 .
2
解: x 4 x 3 0,即x 4 x 3 0, 1,3. 1 x 3,即函数的定义域为
2 2
令u x2 4x 3,故y u,
y u是定义域内是的单调递 增函数 .
复合函数的单调性
思考
例1(1)如果函数f(x)在区间D上是增函数, 函数g(x)在区间D上是增函数。 问:函数F(x)=f(x)+g(x)在D上是否仍为增函数? 是 为什么?
x1 , x2 D, 且x1 x2 f ( x)在区间D上是增函数,g ( x)在区间D上是增函数 f ( x1 ) f ( x2 ), g ( x1 ) g ( x2 ) F ( x1 ) F ( x2 ) [ f ( x1 ) g ( x1 )] [ f ( x2 ) g ( x2 )]
2、利用函数单调性求函数的值域或最值。 3、利用单调性求解不等式。(重在转化问题)
高一数学简单复合函数的求导法则试题
高一数学简单复合函数的求导法则试题1.(2014•榆林模拟)要得到函数的导函数f′(x)的图象,只需将f(x)的图象()A.向右平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B.向左平移个单位,再把各点的纵坐标缩短到原来的2倍(横坐标不变)C.向右平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)D.向左平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)【答案】D【解析】由题意可得f'(x)=2cos(2x+)==2sin[2(x+)+],而由y=sin(2x+)y=2sin[2(x+)+]=f′(x),分析选项可判断解:∵的导函数f'(x)=2cos(2x+)==2sin[2(x+)+]而由y=sin(2x+)y=2sin[2(x+)+]=f′(x)故选D点评:本题主要考查三角函数的平移.复合函数的求导的应用,三角函数的平移原则为左加右减上加下减.2.(2012•桂林模拟)设a∈R,函数f(x)=e x+a•e﹣x的导函数是f′(x),且f′(x)是奇函数.若曲线y=f(x)的一条切线的斜率是,则切点的横坐标为()A.ln2B.﹣ln2C.D.【答案】A【解析】已知切线的斜率,要求切点的横坐标必须先求出切线的方程,我们可从奇函数入手求出切线的方程.解:对f(x)=e x+a•e﹣x求导得f′(x)=e x﹣ae﹣x又f′(x)是奇函数,故f′(0)=1﹣a=0解得a=1,故有f′(x)=e x﹣e﹣x,设切点为(x0,y),则,得或(舍去),得x=ln2.点评:熟悉奇函数的性质是求解此题的关键,奇函数定义域若包含x=0,则一定过原点.3.(2012•德阳三模)已知,将函数的图象按向量平移后,所得图象恰好为函数y=﹣f′(x)(f′(x)为f(x)的导函数)的图象,则c的值可以为()A.B.πC.D.【答案】D【解析】先根据辅助角公式进行化简,f(x)=cos(x+),按向量平移后得到y=cos(x﹣c+)的图象.由题意可得cos(x﹣c+)=sin(x+),从而得到c的值.解:∵f(x)==cosx﹣sinx=cos(x+),把函数的图象按向量平移后,所得图象对应的函数为y=cos(x﹣c+).而﹣f′(x)=sin(x+),平移后,所得图象恰好为函数y=﹣f′(x),故cos(x﹣c+)=sin(x+),故可让c=,故选 D.点评:本题主要考查三角函数按照向量进行平移.其关键是要把向量的平移转化为一般的平移,然后根据三角函数的平移原则为左加右减上加下进行平移.4.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.y=4x B.y=4x﹣8C.y=2x+2D.【答案】A【解析】据曲线在切点处的导数值为曲线切线的斜率,求g′(1)进一步求出f′(1),由点斜式求出切线方程.解:由已知g′(1)=2,而,所以f′(1)=g′(1)+1+1=4,即切线斜率为4,又g(1)=3,故f(1)=g(1)+1+ln1=4,故曲线y=f(x)在点(1,f(1))处的切线方程为y﹣4=4(x﹣1),即y=4x,故选A.点评:本题考查曲线在切点处的导数值为曲线切线的斜率.5.已知y=f(x)=ln|x|,则下列各命题中,正确的命题是()A.x>0时,f′(x)=,x<0时,f′(x)=﹣B.x>0时,f′(x)=,x<0时,f′(x)无意义C.x≠0时,都有f′(x)=D.∵x=0时f(x)无意义,∴对y=ln|x|不能求导【答案】C【解析】利用绝对值的意义将函数中的绝对值去掉转换为分段函数;利用基本的初等函数的导数公式及复合函数的求导法则:外函数的导数与内函数的导数的乘积,分别对两段求导数,两段的导数合起来是f(x)的导数.解:根据题意,f(x)=,分两种情况讨论:(1)x>0时,f(x)=lnx⇒f'(x)=(lnx)'=.(2)x<0时f(x)=ln(﹣x)⇒f'(x)=[ln(﹣x)]'=(这里应用定义求导.)故选C点评:本题考查绝对值的意义、考查分段函数的导数的求法、考查基本初等函数的导数公式及简单的复合函数的求导法则.6.为得到函数y=sin(2x+)的导函数图象,只需把函数y=sin2x的图象上所有点的()A.纵坐标伸长到原来的2倍,横坐标向左平移B.纵坐标缩短到原来的倍,横坐标向左平移C.纵坐标伸长到原来的2倍,横坐标向左平移D.纵坐标缩短到原来的倍,横坐标向左平移【答案】C【解析】求出函数的导数,利用诱导公式化为正弦函数的形式,然后利用函数的平移原则,判断正确选项即可.解:函数y=sin(2x+)的导函数为y=2cos(2x+)=2sin(2x+),所以只需把函数y=sin2x的图象上所有点的纵坐标伸长到原来的2倍,得到y=2sin2x的图象,横坐标向左平移,得到y=2sin2(x+)的图象,即y=2sin(2x+)=2cos(2x+).故选C.点评:本题主要考查复合函数的导数,诱导公式以及三角函数的平移.三角函数的平移原则为左加右减上加下减.7.函数y=sin(2x2+x)导数是()A.y′=cos(2x2+x)B.y′=2xsin(2x2+x)C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x)【答案】C【解析】设H(x)=f(u),u=g(x),则H′(x)=f′(u)g′(x).解:设y=sinu,u=2x2+x,则y′=cosu,u′=4x+1,∴y′=(4x+1)cosu=(4x+1)cos(2x2+x),故选C.点评:牢记复合函数的导数求解方法,在实际学习过程中能够熟练运用.8.函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x【答案】D【解析】将f(x)=sin2x看成外函数和内函数,分别求导即可.解:将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x故选D点评:考查学生对复合函数的认识,要求学生会对简单复合函数求导.9.已知函数f(x﹣1)=2x2﹣x,则f′(x)=()A.4x+3B.4x﹣1C.4x﹣5D.4x﹣3【答案】A【解析】令x﹣1=t求出f(x)的解析式;利用导函数的运算法则求出f′(x).解:令x﹣1=t,则x=t+1所以f(t)=2(t+1)2﹣(t+1)=2t2+3t+1所以f(x)=2x2+3x+1∴f′(x)=4x+3故选A点评:本题考查通过换元法求出函数的解析式、考查导数的四则运算法则.10.若函数f(x)=,则f′(x)是()A.仅有最小值的奇函数B.仅有最大值的偶函数C.既有最大值又有最小值的偶函数D.非奇非偶函数【答案】C【解析】先求导,转化为二次函数型的函数并利用三角函数的单调性求其最值,再利用函数的奇偶性的定义进行判断其奇偶性即可.解:∵函数f(x)=,∴f′(x)=cos2x+cosx=2cos2x+cosx﹣1=,当cosx=时,f′(x)取得最小值;当cosx=1时,f′(x)取得最大值2.且f′(﹣x)=f′(x).即f′(x)是既有最大值,又有最小值的偶函数.故选C.点评:熟练掌握复合函数的导数、二次函数型的函数的最值、三角函数的单调性及函数的奇偶性是解题的关键.。
(完整版)复合函数定义域与值域经典习题及答案
复合函数定义域和值域练习题一、求函数的定义域1、求下列函数的定义域:⑴⑵y =y =⑶01(21)111y x x =+-++-2、设函数的定义域为,则函数的定义域为_ _ _;函数的定义f x ()[]01,f x ()2f x ()-2域为________;3、若函数的定义域为,则函数的定义域是;函数(1)f x +[]-23,(21)f x -的定义域为 。
1(2)f x+4、知函数的定义域为,且函数的定义域存在,求实数f x () [1,1]-()()()F x f x m f x m =+--的取值范围。
m 二、求函数的值域5、求下列函数的值域:⑴⑵223y x x =+-()x R ∈223y x x =+-[1,2]x ∈⑶ ⑷ 311x y x -=+311x y x -=+(5)x ≥⑸⑹y =225941x x y x +=-+⑺⑻31y x x =-++2y x x=-⑼ ⑽y =4y =⑾y x =6、已知函数的值域为[1,3],求的值。
222()1x ax bf x x ++=+,a b 三、求函数的解析式1、已知函数,求函数,的解析式。
2(1)4f x x x -=-()f x (21)f x +2、已知是二次函数,且,求的解析式。
()f x 2(1)(1)24f x f x x x ++-=-()f x 3、已知函数满足,则=。
()f x 2()()34f x f x x +-=+()f x4、设是R 上的奇函数,且当时, ,则当时()f x [0,)x ∈+∞()(1f x x =+(,0)x ∈-∞=____ _()f x在R 上的解析式为()f x 5、设与的定义域是,是偶函数,是奇函数,且()f x ()g x {|,1}x x R x ∈≠±且()f x ()g x ,求与 的解析表达式1()()1f xg x x +=-()f x ()g x 四、求函数的单调区间6、求下列函数的单调区间: ⑴223y x x =++⑵y =⑶261y x x =--7、函数在上是单调递减函数,则的单调递增区间是()f x [0,)+∞2(1)f x -8、函数的递减区间是;函数的递减区间是236xy x -=+y =五、综合题9、判断下列各组中的两个函数是同一函数的为 ( )⑴, ;3)5)(3(1+-+=x x x y 52-=x y ⑵ , ;111-+=x x y )1)(1(2-+=x x y ⑶, ; x x f =)(2)(x x g =⑷, ;x x f =)(()g x =⑸, 。
高一数学分段函数抽象函数与复合函数试题答案及解析
高一数学分段函数抽象函数与复合函数试题答案及解析1.对于函数的性质,①是以为周期的周期函数②的单调递增区间为,③的值域为④取最小值的的取值集合为其中说法正确的序号有_____________.【答案】①②【解析】画出函数的图像,可知,函数的周期为,单调递减区间为,函数的值域为,函数取最小值的的取值集合为【考点】1.分段函数;2.函数的图像与性质.2.已知函数,则的值是()A.4B.48C.240D.1440【答案】C【解析】因为,所以,故选C.【考点】分段函数求函数值的问题.3.已知,若,则的值是A.1或2B.2或-1C.1或-2D.±1或±2【答案】C【解析】由已知得,当时,则,解得,故;当时,则,解得,故.综上得或,所以正确答案为C.【考点】分段函数4.函数,函数,则 .【答案】5【解析】【考点】复合函数求函数值.5.已知函数,则【答案】【解析】假设,则,所以=,即.【考点】本题考查的是复合函数的知识点,本题的解法是常用的思维方式,要切记.6.已知函数在上单调递减,则实数的取值范围是 .【答案】【解析】当时,是单调递减函数,故,解得;当时,是单调递减函数,故;当趋近于1时,,解得;综上所述,实数的取值范围是:.故答案为:【考点】1.分段函数的图像;2.分段函数的单调性.7.函数,则()A.5B.4C.3D.2【答案】D【解析】,所以答案选.【考点】分段函数的求值8.设函数则实数的取值范围是 .【答案】【解析】当时,得,无解;当时,得,得或(舍去),故实数的取值范围是.【考点】分段函数的最值.9.已知函数,若关于的方程有3个不同的实根,则实数的取值范围是_________________.【答案】【解析】画出函数的图象,观察有3个不同交点的情况,即得关于的方程有3个不同的实根时,实数的取值范围是。
【考点】分段函数的概念,幂函数、指数函数的图象,方程的根。
点评:简单题,利用数形结合思想,研究函数的图象交点情况,确定k的范围。
复合函数(习题及答案)
⎩复合函数(习题)1. 若函数 f (x ) = x 2 + 2 , g (x ) = ⎧-x + 2 ,x < 1 ,则函数 g ( f (x ))⎨x , x ≥1 的解析式是 .2. 已知 f (x -1) = x 2 + 4x - 5 ,则 f (x +1) = .3. (1)若函数 f (x + 3) 的定义域为[-5,- 2] ,则F (x ) = f (x +1) + f (x -1) 的定义域为 .x 2 x +1 (2)已知 y = f ( ) 的定义域为[ 2 ,2 2] ,则 y = f ( )4 2的定义域为 .4. (1)函数 f (x ) = 4x - 3 ⋅2x + 3(0 < x ≤1 )的值域是 .(2)函数 f (x ) = 1+ log 3 x 的定义域是(1,9] ,则函数g (x ) = [ f (x )]2 + f (x 2 ) 的值域是 .125. (1)函数 y = (1)- x 2 + 4 x -3 的单调递增区间为 .3(2) 函数 y = log (2x 2 - 3x +1) 的单调递减区间为 .(3) 函数 y = x 4 - 8x 2 - 7 的单调递减区间是 .(4) 函数 y = (log 2 x )2 - 2log 2 x - 3(1 ≤ x ≤ 4 )的单调递增区间是 .(5) 函数 y = -4x + 2x +1 -1 的单调递增区间是.6.(1)函数 f (x ) = 3 - 4x 的单调递增区间是 .2x - 4(2) 函数 f (x )的单调递增区间是 .B . (0,1) D . (0,1) (2,+ ∞) A . (1,2)C . (0,1) (1,2)a a B .[0,+ ∞)D .[0,1) A . (-1,0)C . (-∞,0] B .[6,+ ∞)D . (-∞,6] A . (6,+ ∞)C . (-∞,6)(3) 函数 y =的单调递减区间是.7.函数 y 的单调递减区间是 .8. 已知函数 f (x ) = log 1 (2 - x ) 在其定义域上单调递减,则函数ag (x ) = log (1- x 2 ) 的单调递减区间是() 9. 若函数 f (x ) = 2x2 -2(a -1) x +1 在区间[5,+ ∞) 上是增函数,则实数 a 的取值范围是( )10. 已知函数 f (x ) = log (2 - a x ) 在区间(-∞,1] 上单调递减,则实数 a 的取值范围是()【参考答案】1. g( f (x)) =x 2 + 22. x2+8x+73. (1)[-1,0];(2)[0,3]4. (1)[3,1];(2)(2,7] 45. (1)(2,+∞);(2)(-∞ 1 ) ;,2(3)(0,2),(-∞,-2);(4)(2,4);(5)(-∞,0)6. (1)(-∞,2),(2,+∞);(2)(3,2);(3)(-∞,1) 47. (3,+∞)8. A9. D10.A。
复合函数的单调性例题和知识点总结
复合函数的单调性例题和知识点总结在数学的学习中,函数是一个非常重要的概念,而复合函数的单调性更是函数知识中的重点和难点。
理解并掌握复合函数的单调性,对于解决函数相关的问题有着至关重要的作用。
下面,我们将通过一些例题来深入探讨复合函数的单调性,并对相关知识点进行总结。
首先,我们来明确一下复合函数的概念。
如果函数$y=f(u)$的定义域为$D_1$,函数$u=g(x)$的值域为$D_2$,且$D_2\subseteq D_1$,那么对于定义域内的某个区间上的任意一个$x$,经过中间变量$u$,有唯一确定的$y$值与之对应,则变量$y$是变量$x$的复合函数,记为$y=fg(x)$。
接下来,我们探讨复合函数单调性的判断方法——同增异减。
也就是说,当内层函数与外层函数的单调性相同时,复合函数为增函数;当内层函数与外层函数的单调性不同时,复合函数为减函数。
下面通过几个例题来加深对复合函数单调性的理解。
例题 1:求函数$f(x)=\log_2(x^2 2x + 3)$的单调性。
首先,令$u = x^2 2x + 3$,则$f(u) =\log_2 u$。
对于$u = x^2 2x + 3$,其图象开口向上,对称轴为$x = 1$。
所以$u$在$(\infty, 1)$上单调递减,在$(1, +\infty)$上单调递增。
而$f(u) =\log_2 u$在定义域$(0, +\infty)$上单调递增。
因为内层函数$u$在$(1, +\infty)$上单调递增,外层函数$f(u)$也单调递增,根据同增异减,所以复合函数$f(x)$在$(1, +\infty)$上单调递增。
又因为内层函数$u$在$(\infty, 1)$上单调递减,外层函数$f(u)$单调递增,所以复合函数$f(x)$在$(\infty, 1)$上单调递减。
例题 2:求函数$f(x) = 2^{x^2 + 2x 3}$的单调性。
令$u = x^2 + 2x 3$,则$f(u) = 2^u$。
高一数学复合函数例题
高一数学复合函数例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一篇、复合函数问题一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、复合函数定义域问题: (一)例题剖析:(1)、已知f x ()的定义域,求[]f g x ()的定义域例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。
解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1)又f 对lnx 作用,作用范围不变,所以01<<ln x 解得x e ∈()1,,故函数f x (ln )的定义域为(1,e )例2. 若函数f x x ()=+11,则函数[]f f x ()的定义域为______________。
解析:先求f 的作用范围,由f x x ()=+11,知x ≠-1即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-⎧⎨⎩11()即x x ≠-+≠-⎧⎨⎪⎩⎪1111,解得x x ≠-≠-12且故函数[]f f x ()的定义域为{}x R x x ∈≠-≠-|12且 (2)、已知[]f g x ()的定义域,求f x ()的定义域例3. 已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_________。
解析:f x ()32-的定义域为[]-12,,即[]x ∈-12,,由此得[]3215-∈-x ,所以f 的作用范围为[]-15,,又f 对x 作用,作用范围不变,所以[]x ∈-15,即函数f x ()的定义域为[]-15,例4. 已知f x x x ()lg 22248-=-,则函数f x ()的定义域为______________。
06-专项拓展训练1 与对数函数有关的复合函数问题高中数学必修一北师大版
B. 在区间 1, +∞ 上单调递减
C. 的值域为 lg 3, +∞
D. 的图象关于点 1,3 对称
BC
)
3 > 0,
【解析】 对于A,由ቊ
得 > 1,所以函数 的定义域为
− 1 > 0,
1, +∞ ,所以A错误;对于B, = lg
3
−1
=
3
lg(
−1
+ 3),令 =
法正确的是( AB
)
A.若函数 的定义域为,则实数的取值范围是
1+ 5
, +∞
2
B.若函数 的值域为[−1, +∞),则 = 2
C.若函数 在[2, +∞)上单调递增,则实数的取值范围是 0, +∞
D.若 = 0,则不等式 < 1的解集为
3
−∞,
2
【解析】 因为 的定义域为,所以关于的不等式
函数
4.(多选)[2024广东汕头联考]已知函数 = log 2
则( AB
)
A.函数 的图象与轴有两个交点
B.函数 的最小值为−4
C.函数 的最大值为4
D.函数 的图象关于直线 = 2对称
2
− log 2 2 − 3,
【解析】
令 = 0,即 log2
(2)求不等式 2 − 2 + 3 − 2 < 0的解集.
【解析】 由(1)可知,
=
=
2−
log
+2
4
+2
=
−2−+4
log
+2
高一数学复合函数专题
结论:
1、已知函数f(x)的定义域为[a,b],求其 复合函数f[g(x)]的定义域,应由不 等式a≤g(x)≤b解出x即得. 2、已知复合函数f[g(x)]的定义域为 [a,b],求原函数f(x)的定义域,应
求出g(x)的值域(x∈[a,b]),即得
y=f(x)的定义域.
三、复合函数的值域
例:求下列函数的定义域、值域: ⑴
则y=f[g(x)] 增函数 增函数
规律:
当两个函数的单调性相同时,其复合函数是增函数;
当两个函数的单调性不相同时,其复合函数是减函数
“同增异减”
设 y 3 ,u=x2-2x-1,由u∈R, 得原复合函数的定义域为x∈R. u y 3 因为 在定义域R内为增函数, 所以由二次函数u=x2-2x-1的单调性易知 u=x2-2x-1=(x-1)2-2在x≤1时单调减, 由 x∈R, (复合函数定义域) x≤1, (u减) 解得x≤1.所以(-∞,1]是该复合函数的单 调减区间. 同理[1,+∞)是该复合函数的单调增区间. 解:
三、复合函数的单调性
当两个函数的单调性相同时,其复合函数是增函数; 当两个函数的单调性不相同时,其复合函数是减函数
“同增异减” 四、复合函数的奇偶性 奇+奇=奇 偶+偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇 奇+偶=(不确定)
六、总结
一、求复合函数的定义域
1、已知函数f(x)的定义域为[a,b],求其复合函数f[g(x)]的定 义域,应由不等式a≤g(x)≤b解出x即得. 2、已知复合函数f[g(x)]的定义域为[a,b],求原函数f(x)的定 义域,应求出g(x)的值域(x∈[a,b]),即得f(x)的定义域.
二、求复合函数的值域
结论:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一篇、复合函数问题
一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.
二、复合函数定义域问题:
(一)例题剖析:
(1)、已知f x ()的定义域,求[]f g x ()的定义域
例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。
解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<<ln x
解得x e ∈()1,,故函数f x (ln )的定义域为(1,e )
例2. 若函数f x x ()=
+11
,则函数[]f f x ()的定义域为______________。
解析:先求f 的作用范围,由f x x ()=+11,知x ≠-1 即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用
所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-⎧⎨⎩11
() 即x x ≠-+≠-⎧⎨⎪⎩⎪111
1,解得x x ≠-≠-12且 故函数[]f f x ()的定义域为{}x R x x ∈≠-≠-|12且
(2)、已知[]f g x ()的定义域,求f x ()的定义域
例3. 已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_________。
解析:f x ()32-的定义域为[]-12,,即[]x ∈-12,,由此得[]3215-∈-x , 所以f 的作用范围为[]-15,,又f 对x 作用,作用范围不变,所以[]x ∈-15, 即函数f x ()的定义域为[]
-15, 例4. 已知f x x x ()lg 2
2
248-=-,则函数f x ()的定义域为______________。
解析:先求f 的作用范围,由f x x x ()lg 2
2248-=-,知x x 2
280-> 解得x 244->,f 的作用范围为()4,+∞,又f 对x 作用,作用范围不变,所以x ∈+∞()4,,即f x ()的定义域为()4,+∞
(3)、已知[]f g x ()的定义域,求[]f h x ()的定义域
思路:设[]f g x ()的定义域为D ,即x D ∈,由此得g x E ()∈,f 的作用范围为E ,又f 对h x ()作用,作用范围不变,所以h x E ()∈,解得x F ∈,F 为[]f h x ()的定义域。
例5. 若函数f x ()2的定义域为[]
-11,,则f x (log )2的定义域为____________。
解析:f x ()2的定义域为[]-11,,即[]x ∈-11,,由此得2122x ∈⎡⎣⎢⎤
⎦⎥, f 的作用范围为122,⎡⎣⎢⎤⎦
⎥ 又f 对log 2x 作用,所以log 2122x ∈⎡⎣⎢⎤⎦
⎥,,解得[]x ∈24, 即f x (log )2的定义域为[]
24, 三、复合函数单调性问题
(1)引理证明
已知函数))((x g f y =.若)(x g u =在区间b a ,( )上是减函数,其值域为(c ,d),又函数)(u f y =在区间(c,d)上是减函数,那么,原复合函数))((x g f y =在区间b a ,( )上是增函数.
证明:在区间b a ,()内任取两个数21,x x ,使b x x a <<<21
因为)(x g u =在区间b a ,()上是减函数,所以)()(21x g x g >,记)(11x g u =, )(22x g u =即),(,21,21d c u u u u ∈>且
因为函数)(u f y =在区间(c,d)上是减函数,所以)()(21u f u f <,即
))(())((21x g f x g f <,
故函数))((x g f y =在区间b a ,()上是增函数.
(2).复合函数单调性的判断
复合函数的单调性是由两个函数共同决定。
为了记忆方便,我们把它们总结成一个图表:
以上规律还可总结为:“同向得增,异向得减”或“同增异减”.
(3)、复合函数))((x g f y =的单调性判断步骤:
ⅰ 确定函数的定义域;
ⅱ 将复合函数分解成两个简单函数:)(u f y =与)(x g u =。
ⅲ 分别确定分解成的两个函数的单调性;
ⅳ 若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数))((x g f y =为增函数; 若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数))((x g f y =为减函数。
(4)例题演练
例1、 求函数)32(log 2
2
1--=x x y 的单调区间,并用单调定义给予证明 解:定义域 130322
-<>⇒>--x x x x 或
单调减区间是),3(+∞ 设2121),3(,x x x x <+∞∈且 则 )32(log 121211--=x x y )32(log 222212--=x x y
---)32(121x x )32(222--x x =)2)((1212-+-x x x x
∵312>>x x ∴012>-x x 0212>-+x x
∴)32(121--x x >)32(222--x x 又底数12
10<<
∴012<-y y 即 12y y <
∴y 在),3(+∞上是减函数 同理可证:y 在)1,(--∞上是增函数。