力学答案第七章
材料力学第七章课后题答案 弯曲变形
(a) (b)
7
该梁的位移边界条件为:
在x 0处, w0 dw 在x 0处, 0 dx 将条件(c)与(d)分别代入式(b)和(a),得 D 0,C 0 4.建立挠曲轴方程 将所得 C 与 D 值代入式(b),得挠曲轴的通用方程为
1 Fa 2 F 3 3Fa [ x x xa EI 4 6 4 由此得 AC 段、 CD 段和 DB 段的挠曲轴方程依次为 w
5.计算 wC 和 θ B 将 x a 代入上述 w1或w2 的表达式中,得截面 C 的挠度为
41qa 4 ( ) 240EI 将以上所得 C 值和 x 2a 代入式(a),得截面 B 的转角为 wC θB qa 3 7 4 16 1 187 203qa 3 [ ] EI 24 24 24 720 720 EI ()
(4)
D1 0 , C1
由条件(4) 、式(a)与(c) ,得
qa 3 12 EI
C2
由条件(3) 、式(b)与(d) ,得
qa 3 3EI
D2
7qa 4 24 EI
3. 计算截面 C 的挠度与转角 将所得积分常数值代入式(c)与(d) ,得 CB 段的转角与挠度方程分别为
q 3 qa 3 x2 6 EI 3EI 3 q qa 7 qa 4 4 w2 x2 x2 24 EI 3EI 24 EI 将 x2=0 代入上述二式,即得截面 C 的转角与挠度分别为
5.计算 wC 和 θ B 将 x a 代入上述 w1 或 w2 的表达式中,得截面 C 的挠度为
Fa 3 ( ) 12 EI 将以上所得 C 值和 x 3a 代入式(a),得截面 B 的转角为 wC
(带答案)初中物理第七章力学知识点梳理
(带答案)初中物理第七章力学知识点梳理单选题1、小明在期末复习时,自主进行了知识梳理,他的部分笔记如下:①只要脚对球施加的力大小相同,其作用效果一定相同②力是物体对物体的作用,离开物体力就不存在③只要物体在振动,我们就能听到声音④1千克的铁比1千克的木头重⑤建筑工人砌墙时,利用重锤线可以把墙砌直,因为重力的力向总是垂直向下的⑥密度是物质的一种特性,它的大小与物质的质量和体积大小无关请你来帮他检查一下,以上归纳中属于错误知识的有()A.①③④⑤B.②③④⑤C.②③⑤⑥D.①③⑤⑥2、如图所示的图象中,能表示物体所受重力与质量的关系的是()A.B.C.D.3、如图所示,下列说法正确的是()A.运动员用脚踢足球时,脚并没有感觉疼痛,说明球没有给脚力的作用B.运动员用头顶球时,头感觉很痛,说明球给头的力比头给球的力大C.运动员用力踢球和头顶球,使球的运动状态发生了改变D.运动员用力踢球和头顶球,仅仅使球的运动方向发生了改变,而球的速度大小不变4、关于重力和重心的叙述,下列说法中正确的是()A.物体的重力是由于地球对它的吸引而产生的B.物体的重心是重力的作用点,重心一定在物体上C.放在支撑面上的物体受到的重力的方向总是垂直支撑面向下D.物体的质量越大,受到的重力也越大,而且物体的质量跟重力成正比5、如图,玩具“不倒翁”被扳倒后会自动立起来,“不倒翁”在摆动过程中所受重力()A.大小不变,方向改变B.大小不变,方向不变C.大小改变,方向改变D.大小改变,方向不变6、关于力的概念,以下说法正确的是()A.两个物体只要相互接触,就一定有力的作用B.力不能脱离物体而独立存在C.有力的作用就一定有施力物体,但可以没有受力物体D.两个相互不接触的物体之间,一定没有力的作用7、图是运动员跳水的情景,下列关于运动员对跳板的压力的说法正确的是()A.可以使跳板发生形变B.其施力物体是地球C.一定等于运动员的重力D.可以改变运动员的运动状态8、2022年冬奥会将在北京举行,跳跃式滑雪运动员也在积极备赛训练,下图正确表示滑雪运动员在空中时滑翔时所受重力示意图的是()A.B.C.D.9、如图所示,如图所示,甲、乙两种拧紧螺母的方式,主要体现力的作用效果与下列什么因素有关()A.力的方向B.力的大小C.力的作用点D.力的大小、方向、作用点都有关10、下列关于力的说法中正确的是()A.一个物体有时也可以产生力的作用B.两个物体只要相互接触就可以产生力的作用C.自然界中有些力可以脱离物体而产生D.用力拉弹簧使弹簧伸长,这说明力可以改变物体的形状11、如图所示,把两个质量均为50g的钩码挂在弹簧测力计的挂钩上。
土力学习题集答案_第七章
第7章土的抗剪强度强度指标实质上是抗剪强度参数,也就是土的强度指标,为什么?所测定的抗剪强度指标是有变化的,为什么?极限平衡条件?粘性土和粉土与无粘性土的表达式有何不同?中某点剪应力最大的平面不是剪切破坏面?如何确定剪切破坏面与小主应力作用方向夹角?剪试验和三轴压缩试验的土样的应力状态有什么不同?并指出直剪试验土样的大主应力方向。
的抗剪强度可表达为,称为抗剪强度指标,抗剪强度指标实质上就是抗剪强度参数。
于同一种土,抗剪强度指标与试验方法以及实验条件都有关系,不同的试验方法以及实验条件所测得的抗剪强度指标是不同。
)土的极限平衡条件:即或衡状态时破坏面与大主应力作用面间的夹角为,且粘性土()时,或为在剪应力最大的平面上,虽然剪应力最大,但是它小于该面上的抗剪强度,所以该面上不会发生剪切破坏。
剪切破坏面与小剪试验土样的应力状态:;三轴试验土样的应力状态:。
直剪试验土样的大主应力作用方向与水平面夹剪试验三种方法和三轴压缩试验三种方法的异同点和适用性。
直剪试验三轴压缩试验试验方法试验过程成果表达试验方法试验过程成果表达快剪(Q-test, quick sheartest)试样施加竖向压力后,立即快速(0.02mm/min)施加水平剪应力使试样剪切,不固结不排水三轴试验,简称不排水试验(UU-test,unsolidation试样在施加围压和随后施加竖向压力直至剪切破坏的整个过程中都不允许排水,,undrained test)试验自始至终关闭排水阀门 固结快剪(consolidated quick shear test)允许试样在竖向压力下排水,待固结稳定后,再快速施加水平剪应力使试样剪切破坏,固结不排水三轴试验,简称固结不排水试验(CU-test,consolidation undrainedtest)试样在施加围压时打开排水阀门,允许排水固结,待固结稳定后关闭排水阀门,再施加竖向压力,使试样在不排水的条件下剪切破坏 ,慢剪(S-test, slowshear test)允许试样在竖向压力下排水,待固结稳定后,则以缓慢的速率施加水平剪应力使试样剪切,固结排水三轴试验,简称排水试验(CD-test,consolidationdrained test)试样在施加围压时允许排水固结,待固结稳定后,再在排水条件下施加竖向压力至试件剪切破坏,室内测定土的抗剪强度指标的常用手段一般是三轴压缩试验与直接剪切试验,在试验方法上按照排水条件又各自分为不固结不排水剪结排水剪与快剪、固结快剪、慢剪三种方法。
哈尔滨工业大学 第七版 理论力学 第7章 课后习题答案
ω 2 d = ω1r
ω2 =
=
(2)轮 B 作定轴转动,当 d = r 时轮缘上 1 点的加速度可如下求得:
5 000π rad/s 2 2 d
图 7-6
r ω1 = ω 1 = 20π rad/s d 5 × 10 3π 5 × 10 3π α2 = = = 2π rad/s 2 2 2 d r
7-12 图 7-11a 所示 1 飞轮绕固定轴 O 转动,其轮缘上任 1 点的全加速度在某段运动过程中与轮 半径的交角恒为 60°,当运动开始时,其转角 ϕ 0 等于零,角速度为 ω 0 。求飞轮的转动方程以及角 速度与转角的关系。
M
at
θ
an
(a) 图 7-11 (b)
a
83
理论力学(第七版)课后题答案 哈工大.高等教育出版社
v A = vB & v B = v A = lϕ
dϕ = 0.05 dt 1 1 图 7-2 dϕ = dt , ϕ = t + c 30 30 1 t = 0 时, ϕ = 0 , c = 0 , ϕ = t 30 ⎧ x B = l cos ϕ (单位:m) ⎨ ⎩ x A = l sin ϕ − 0.8 点 B 轨迹方程为 l = 1.5 m 2 xB + ( y B + 0.8) 2 = 1.5 2 (单位:m) 7-3 已知搅拌机的主动齿轮 O1 以 n = 950 r/min 的转速转动。 搅杆 ABC 用销钉 A、 B 与齿轮 O2 、 O3 相连, 如图 7-3 所示。 且 AB = O2 O3 ,O3 A = O2 B = 0.25 m , 各齿轮齿数为 z1 = 20 ,z 2 = 50 , 1.5
纸盘的角速度
− 2π dr a
工程力学第7章答案
⼯程⼒学第7章答案第7章简单的弹性静⼒学问题7-1 有⼀横截⾯⾯积为A 的圆截⾯杆件受轴向拉⼒作⽤,若将其改为截⾯积仍为A 的空⼼圆截⾯杆件,其他条件不变,试判断以下结论的正确性:(A )轴⼒增⼤,正应⼒增⼤,轴向变形增⼤;(B )轴⼒减⼩,正应⼒减⼩,轴向变形减⼩;(C )轴⼒增⼤,正应⼒增⼤,轴向变形减⼩;(D )轴⼒、正应⼒、轴向变形均不发⽣变化。
正确答案是 D 。
7-2 韧性材料应变硬化之后,材料的⼒学性能发⽣下列变化:(A )屈服应⼒提⾼,弹性模量降低;(B )屈服应⼒提⾼,韧性降低;(C )屈服应⼒不变,弹性模量不变;(D )屈服应⼒不变,韧性不变。
正确答案是 B 。
7-3 关于材料的⼒学⼀般性能,有如下结论,试判断哪⼀个是正确的:(A )脆性材料的抗拉能⼒低于其抗压能⼒;(B )脆性材料的抗拉能⼒⾼于其抗压能⼒;(C )韧性材料的抗拉能⼒⾼于其抗压能⼒;(D )脆性材料的抗拉能⼒等于其抗压能⼒。
正确答案是 A 。
7-4 低碳钢材料在拉伸实验过程中,不发⽣明显的塑性变形时,承受的最⼤应⼒应当⼩于的数值,有以下四种答案,试判断哪⼀个是正确的:(A )⽐例极限;(B )屈服强度;(C )强度极限;(D )许⽤应⼒。
正确答案是 B 。
7-5 根据图⽰三种材料拉伸时的应⼒—应变曲线,得出的如下四种结论,试判断哪⼀种是正确的:(A )强度极限)3()2()1(b b b σσσ>=,弹性模量E(1)>E(2)>E(3),延伸率δ(1)>δ(2)>δ(3)⽐例极限;(B )强度极限)2()1()3(b b b σσσ<<,弹性模量E(2)>E(1)>E(3),延伸率δ(1)>δ(2)>δ(3)⽐例极限;(C )强度极限)3()1()2(b b b σσσ>>,弹性模量E(3)>E(1)>E(2),延伸率δ(3)>δ(2)>δ(1)⽐例极限;(D )强度极限)3()2()1(b b b σσσ>>,弹性模量E(2)>E(1)>E(3),延伸率δ(2)>δ(1)>δ(3)⽐例极限;正确答案是 B 。
工程力学第7章 弯曲强度答案
43第 7 章 弯曲强度7-1 直径为 d 的圆截面梁,两端在对称面内承受力偶矩为 M 的力偶作用,如图所示。
若已知变形后中性层的曲率半径为 ρ ;材料的弹性模量为 E 。
根据 d 、 ρ 、E 可以求得梁所承受 的力偶矩 M 。
现在有 4 种答案,请判断哪一种是正确的。
(A)M =E π d 习题 7-1 图(B) 64ρ M =64 ρ(C) E π d 4 M =E π d(D)32 ρ M = 32ρ E π d 3正确答案是 A 。
7-2关于平面弯曲正应力公式的应用条件,有以下 4 种答案,请判断哪一种是正确的。
(A) 细长梁、弹性范围内加载; (B) 弹性范围内加载、载荷加在对称面或主轴平面内; (C) 细长梁、弹性范围内加载、载荷加在对称面或主轴平面内; (D) 细长梁、载荷加在对称面或主轴平面内。
正确答案是 C _。
7-3 长度相同、承受同样的均布载荷 q 作用的梁,有图中所示的 4 种支承方式,如果从 梁的强度考虑,请判断哪一种支承方式最合理。
l 5习题 7-3 图正确答案是 d 。
7-4 悬臂梁受力及截面尺寸如图所示。
图中的尺寸单位为 mm 。
求:梁的 1-1 截面上 A 、−⎜ ⎟ A I zB 两点的正应力。
习题 7-4 图解:1. 计算梁的 1-1 截面上的弯矩:M = ⎛1×103N ×1m+600N/m ×1m ×1m ⎞ =−1300 N ⋅ m ⎝2 ⎠ 2. 确定梁的 1-1 截面上 A 、B 两点的正应力:A 点:⎛150 ×10−3 m ⎞ 1300 N ⋅ m ×⎜− 20 ×10−3m ⎟ σ = M z y = ⎝ 2 ⎠=2.54×106 Pa = 2.54 MPa (拉应力) I zB 点:100 ×10-3m ×(150 ×10-3m )3121300N ⋅ m ×⎜ 0.150m − 0.04m ⎟⎛ ⎞ σ = M z y ⎝ 2 ⎠ =1.62 ×106 Pa =1.62MPa(压应力) B ()127-5 简支梁如图所示。
土力学习题及答案-第七章
第7章土的抗剪强度指标实质上是抗剪强度参数,也就是土的强度指标,为什么?定的抗剪强度指标是有变化的,为什么?平衡条件?粘性土和粉土与无粘性土的表达式有何不同?某点剪应力最大的平面不是剪切破坏面?如何确定剪切破坏面与小主应力作用方向夹角?验和三轴压缩试验的土样的应力状态有什么不同?并指出直剪试验土样的大主应力方向。
验三种方法和三轴压缩试验三种方法的异同点和适用性。
系数A、B的物理意义,说明三轴UU和CU试验中求A、B两系数的区别。
凝土等建筑材料相比,土的抗剪强度有何特点?同一种土其强度值是否为一个定值?为什么?强度的因素有哪些?剪应力面是否就是剪切破裂面?二者何时一致?同的试验方法会有不同的土的强度,工程上如何选用?土的抗剪强度表达式有何不同?同一土样的抗剪强度是不是一个定值?为什么?度指标是什么?通常通过哪些室内试验、原位测试测定?验按排水条件的不同,可分为哪几种试验方法?工程应用时,如何根据地基土排水条件的不同,选择土的抗剪强度指标?的优缺点。
【三峡大学2006年研究生入学考试试题】坏的极限能力称为土的___ _ ____。
剪强度来源于____ _______。
力极限平衡状态时,剪裂面与最大主应力作用面的夹角为.抗剪强度库仑定律的总应力的表达式,有效。
度指标包括、。
量越大,其内摩擦角越。
,,该点最大剪应力值为,与主应力的夹角为。
性土,若其无侧限抗压强度为,则土的不固结不排水抗剪强度指标。
,,该点最大剪应力作用面上的法向应力为,剪应力为某点应力状态的莫尔应力圆处于该土的抗剪强度线下方,则该点处于____________状态。
2005年招收硕士学位研究生试题】排水条件可分为、、三种。
截面与大主应力作用面的夹角为。
摩尔应力圆与抗剪强度包线相切,表示它处于状态。
力 (大于、小于、等于)零。
点应力状态的莫尔应力圆与抗剪强度包线相切,则表明土中该点()。
平面上的剪应力都小于土的抗剪强度平面上的剪应力超过了土的抗剪强度切点所代表的平面上,剪应力正好等于抗剪强度剪应力作用面上,剪应力正好等于抗剪强度剪切破坏时,破裂面与小主应力作用面的夹角为( ).(B)(C)(D)剪切破坏时,破裂面与大主应力作用面的夹角为().(B)(C)(D)特征之一是()。
《力学》漆安慎答案07章
力学(第二版)漆安慎习题解答第七章刚体力学第七章刚体力学一、基本知识小结1.刚体的质心定义:r c m i r i/ m r c rdm/ dm求质心方法:对称分析法,分割法,积分法。
2.刚体对轴的转动惯量定义:I m i r i2I r2dm平行轴定理I o = l c+md2正交轴定理I z = X+I y.常见刚体的转动惯量:(略)3.刚体的动量和质心运动定理p mv c F ma c4.刚体对轴的角动量和转动定理L I I5.刚体的转动动能和重力势能E k ?I 2E p mgy c6•刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动动力学方程: F ma c c I c c(不必考虑惯性力矩)动能:E k 2mv;今I c c27.刚体的平衡方程、思考题解答火车在拐弯时所作的运动是不是平动答:刚体作平动时固联其上的任一一条直线,在各时刻的位置(方位)始终彼此平行。
若将火车的车厢看作一个刚体,当火车作直线运行时,车厢上各部分具有平行运动的轨迹、相同的运动速度和加速度,选取车厢上的任一点都可代替车厢整体的运动,这就是火车的平动。
但当火车拐弯时,车厢上各部分的速度和加速度都不相同,即固联在刚体上任一条直线,在各时刻的位置不能保持彼此平行,所以火车拐弯时的运动不是平动。
对静止的刚体施以外力作用,如果合外力为零,刚体会不会运动r r答:对静止的刚体施以外力作用,当合外力为了零,即Fi ma c 0时,刚体的质心将保持静止,但合外力为零并不表明所有的外力都作用于刚体的同一点。
所以,对某一确定点刚体所受合外力的力矩M Mi r i Fi不一定为零。
由刚体的转动定律M J可知,刚体将发生转动。
比如,置于光滑水平面上的匀质杆,对其两端施以大小相同、方向相反,沿水平面且垂直于杆的两个作用力时,杆所受的外力的合力为零,其质心虽然保持静止,但由于所受合外力矩不为零,将作绕质心轴的转动。
如果刚体转动的角速度很大,那么(1)作用在它上面的力是否一定很大(2)作用在它上面的力矩是否一定很大M r i F sin j J J「答:由刚体的定轴转动定律dt可知,刚体受对轴的合外力矩正比于绕定轴转动角速度的时间变化率。
理论力学(胡运康)第七章作业答案
aτ e
a
n a
aC 方向投影 :
n τ aa cos 60° + aτ sin 60 ° = a a e + aC
2 2 v 600 n aa = a = = 1200mm/s 2 OA 300
aen
α1
2 aτ = α ⋅ AB = 1000 3 mm/s e 1
aC = 2ω 1 vr = 2 × 3 × 300 = 1800mm/s 2
第7章 习题解答
1
7-1求轮边缘处水流对轮的vr
ve vr va
【解】 动点: M,动系: 轮
r r r va = ve + v r
va = 15 m s
nπ ve = R ⋅ = 6.28m s 30
x : va sin60 o = ve + vrx
⇒ v rx = 6.7 m s
y : − va cos60 o = 0 + vry
300
解 动点A,动系:BC
r r r va = ve + vr
ve = ω1 ⋅ AB = 3 OA = 300 3mm/s 3
va = ve / cos 30° = 600mm/s vr = va sin 30° = 300mm/s
12
aτ a ar
300
r n rτ r n r τ r r aa + aa = ae + ae + ar + aC
ω ω1 = ve / O1 D = 2
18
a
n ae
t e
r n r n rτ r r aa = ae + ae + ar + aC
建筑力学 第七章答案
7-3 作图示连续梁的弯矩图及剪力图。
3232(g )32(h )(d)M P 图题7-3图(a)13P 32V 图(f )M 图(e )M 1图(c)(b)解:(1)选择基本结构,如(b )图所示。
(2)画基本结构的荷载弯矩图、虚拟单位弯矩图,如(c )、(d )图示。
列力法方程如下:01111=∆+P x δ(3)求系数和自由项:EIlEI l 32311211=⨯⨯⨯=δ EI Pl l Pl EI P1621421121=⎥⎦⎤⎢⎣⎡⨯⨯⨯=∆ (4)求多余约束力323011111111Plx x PP -=∆-=→=∆+δδ(5)叠加法求最后弯矩值、画最后弯矩图。
如(e )图示。
P M x M M +⋅=11)(323)323(111上拉PlPl M x M M P AB -=-⨯=+⋅= (6)切出AB 、BC 段,将弯矩以远端为中心从受拉边绕向受压边,剪力画成绕杆段的远端顺时针的正方向,内力、外力使各杆段平衡,受力如图(g )、(h )。
以各杆段的平衡求各杆端剪力。
AB 段处于平面任意力系作用,但没有水平荷载,无轴力。
⎪⎪⎩⎪⎪⎨⎧=+=-=--=→⎪⎩⎪⎨⎧=--=⋅--⋅-→==∑∑32133219232300232300P V P V P P P V V P V l P Pl l V Y M BA AB BA BA AB BA ABC 段处于平面力偶系作用而平衡,没有水平荷载,无轴力:32303230PV V l V Pl M CB BC BC ==→=⋅-→=∑。
7-5 作图示刚架的的弯矩图、剪力图、轴力图。
题7-5(a)图Pl 461P 11623211661P BC 11655N (h )19P解:(1)选择基本结例构,如(b )图示。
(2)画基本结构的荷载弯矩图、虚拟单位弯矩图,如(c )、(d )、(e)图示。
列力法方程如下:⎩⎨⎧=∆+⋅+⋅=∆+⋅+⋅022221211212111P P x x x x δδδδ (3)求系数和自由项:232111522222216Pl Pl l Pl Pl l E I EI EI∆=-⨯⨯⨯⨯+⨯⨯=⋅32111211532222332296P l Pl l l Pl Pl l E I EI EI⎛⎫∆=-⨯⨯⨯⨯+⨯-⨯⨯=-⎪⋅⎝⎭32311117326l l l l E I EI EIδ=⨯⨯+⨯=⋅331221113()2224l l l l l E I EI EI δδ==-⨯⨯⨯-⨯=-⋅ 3333223223l l l l E I E I EI EIδ=++=⋅⋅(4)求多余约束力1211227353610()6496116351910()416232P P x x x P P x x x ⎧⎧⋅-⋅-==↑⎪⎪⎪⎪→⎨⎨⎪⎪-⋅+⋅+==→⎪⎪⎩⎩(5)叠加法求最后弯矩值、画最后弯矩图。
理论力学第7章答案
7.1 直杆AB 搁置如图a b 所示试分别以A 端沿水平轴x 向右运动时的速度和加速度表示杆AB 的角速度和角加速度解杆作平面运动由于受两处约束1=f 取θ为广义坐标a 将θ=ctg A h x 对时间求导得θθ−=&&2A csc h x因此有h x /sin 2A θ−=θ&&hh x x /)/2sin (sin 2A A 2θ−θ−=θ&&&&&b 将θ=sin /A r x 对时间求导得θθθ−=2A sin /cos &&r x因此有r x /tg sin A &&θθ−=θr x x x/)sec sin sin tg sin (A 2A A &&&&&&&&θθθ+θθ+θθ−=θr r x x/]/sin )sec 1([tg sin 2A A θθ+−θθ−=&&&7.2 试证明直杆AB 搁置如图a b 所示杆AB 运动时杆上点C 的速度沿杆AB其大小等于θcos A v解基点CA A C v v v +=a x ′0sin sinA CA A x C =θ+θ=−θ=′&&CA xv v v y ′θ=′cos A y C v v 证毕b x ′0sin sinA CA A x C =θ+θ=+θ=′&&CA x v v v y ′θ=′cos A y C v v 证毕7.3 滚压机构的滚子沿水平面作纯滚动如图示曲柄OA 长r 连杆AB 长l 滚子半径为R 若曲柄以匀角速度ω绕固定轴O 转动试求任意时刻θ=∠AOB 连杆AB和滚子的角速度解本机构自由度14233=×−×=f 除θ外取多余坐标ϕ两者间有约束方程ϕ=θsin sin l r 1矢量法基点BA A B v v v +=)(A r v ω=)sin()sin()sin(B 2A 2BA ϕ+θ=ϕ−=θ−ππv v v ϕθ=cos cos A BA v v ϕθω==ωcos cos BA AB l r l vϕϕ+θ=cos )sin(A B v v ϕϕ+θω==ωcos )sin(B B R r R v分析法将式1对时间求导得ϕθω=ϕθθ=ϕcos cos cos cos l r r &&对ϕ+θ=cos cos B l r x 对时间求导得ϕϕ+θω−=ϕϕ−θθ−=)sin(sin sin B r l r x&&&因此ϕϕ+θω=−=ωcos )sin(/B B R r R x&7.4 一放大机构中ABCD 为一平行四边形B 为OC 的中点D 为CE 的中点设图示位置点A 的速度如图示求点E 的速度解平行四边形机构在任意时有BC//ADAB//CD 因此1AD BC ωωω==2CD AB ωωω==A 基点ABB A v v v +=基点ECC E v v v +=Q OB OC 2=BACE 2=∴B11C 22v v =×=×=OB OC ωωAB22EC 22v v =×=×=BA CE ωω可导出AE 2v v =7.5 一自动卸货大卡车的升降机构如图示图中BFBE =l AC =在此瞬时活塞在处于水平的液压缸中的速度为v 求车厢转动的角速度解利用速度投影定理杆vv =o 60cosF vv 2F =v v v 2F E ==杆v v v ==o 60cosE D 因此lv AD v 2D ==ω7.6 画出图示机构中作平面运动的杆件在图示位置的速度瞬心7.7 图示拱桥上受到1F 和2F 两力作用若给出的三拱桥的支座C 若突然坍塌试求此瞬时GBJ 和ICJ 两部分的速度瞬心解GBI 构件瞬心为ICJ 构件瞬心在无穷远7.8 杆AB 可在作定轴转动的套筒O ′内滑动如图示其A 端与曲柄OA 铰接已知r O O OA =′=求杆的动瞬心轨迹和定瞬心轨迹解AB 杆作平面运动杆上与O 相重合之点速度O ′v 沿杆方向A v 垂直于OA 杆因此瞬心为C 不难看出C 点相对AB 杆和定系的位置可分别以),2(ϕr 和)2,(ϕr 表示则动定瞬心迹线分别是半径为r 2和r 的圆7.9 图示反平行四边形机构中a CD AB 2==c BD AC 2==c a >求杆BD的动瞬心轨迹和定瞬心轨迹解BD 杆的瞬心为AB 与CD 的交点P 容易证明三角形APC和DPB 全等因此瞬心P 点相对BD 杆和定系的位置均可用),(ϕρ表示在三角形APC 中有DPAP ==ρ 0sin )2(sin =ψρ−−ϕρa ca 2cos )2(cos =ψρ−+ϕρ上二式中消去ψ得222)2()cos 2()sin (ρ−=ϕρ−+ϕρa c 可导出如下椭圆方程]cos )/(1[]/)[(22ϕ−−=ρa c a c a 因此动定瞬心迹线均为椭圆7.11 三根连杆AB BC 和CD 用铰链相连组成一四连杆机构AD 可视作固定不动的连杆已知a BC AB ==a CD 2=杆AD 以匀角速度ω转动求图示两位置杆CD的角速度和角加速度解a 杆作瞬时平动0BC =ωBC v v =∴2/2/C CD ω==ωa v 基点ττ+=+CBn B n C C a a a a∴0C =τa 0CD =αb 杆速度瞬心在点0=C v ∴ω==ωa v /B BC 0CD =ω基点nCBCB n B C a a a a ++=ττx ′n CBn B c cos a a a −−=θτQ 4/7sin cos =ϕ=θaa 2n B ω=aa 2n CB ω=∴7/82C a a ω−=τ7/742/2C CD ω−==ατa a7.12 平面机构如图示已知CD//EG B 为杆DG 的中点O A B C D E G 均为铰链cm 20==EG CD cm 50=DG cm 40=OA 在图示位置杆CD 铅垂OA//CD cm/s20A =v 水平向左B 的加速度沿水平方向的分量2Bx cm/s10=a3.0tan =θ试用平面运动基点法求此瞬时 1杆CD 和杆OA 的角速度2B 的加速度沿铅垂方向的分量3杆OA 的角加速度解杆做瞬时平动AB =ωBA v v = rad/s 5.0/A OA ==ωOA v22OA nA cm/s10=ω=OA a 某点ττ++=+ABBy Bx A n A a a a a ax ′θ−θ=θ−θτsin cos cos sinBy Bx A nA a a a a 2By n A Bx A cm/s 1tg )(−=θ++−=τa a a a 2A OA rad/s )40/1(/−==ατOA a7.13 滚压机构的滚子沿水平面作纯滚动如图示曲柄OA 长r 连杆AB 长l 滚子半径为R 若曲柄以匀角速度ω绕固定轴O 转动计算连杆AB 和滚子的角加速度解矢量法基点nBABA n A B a a a a ++=τyϕ+ϕ−θ−=τsin cos sin 0n BA BA n A a a aϕω−ϕ=ϕθω−ϕϕ=τtg )(cos /)sin sin (2222BA &&l r l a x ′nBAn A B )cos(cos a a a +ϕ+θ=ϕϕϕ+ϕ+θω=cos /])cos([22B &l r a ∴ϕω−ϕ==ατtg )(/22BA AB &l a ϕϕ+ϕ+θω==αcos /])cos([/22B B R l r R a &分析法ϕω−ϕ=ϕϕθω+ϕθω−=ϕ=αtg )(cos /sin cos cos /sin 2222AB &&&l r l r ϕϕϕϕ+θω+ϕϕ+ωϕ+θω=ω=α2B B cos /sin )sin(cos /))(cos(R r R r &&&ϕϕ+ϕ+θω=cos /])cos([22R l r &7.14 半径为r 的圆盘在水平面上作直线纯滚子如图示其中心O 的速度O v 常量杆AB 长l 其B 端用铰链与圆盘边缘相连接求在水平面上运动的A 端的速度和加速度以转角ϕ表示之解本机构自由度1=f θ和ϕ有约束方程)cos 1(sin ϕ−=θr l )1(矢量法圆盘的瞬心为点杆的瞬心为点因此)2/sin(2)/(O O B ϕ==v BP r v v θϕϕ==ωcos /)2/cos()2/sin(2/O l v CB v B AB θϕ=cos /sin O l v ]2cos /)2/sin()[cos /sin (O ϕϕ+θθϕ=ω=l l v CA v AB A )2/sin()2/sin(2)cos /(O ϕϕ+θθ=v ]cos /)cos(1[O θϕ+θ−=v 基点nBO BO O B a a a a ++=τO =a τBOa基点nAB ABB A a a a a ++=τx ′nABB A )2cos(cos a a a +θ−ϕ−π=θ∴θϕ+θϕ+θ=3222A cos sin cos )sin(l v r v a O O 分析法将式1对时间求导得θϕ=θcos /sin Ol v &因为θ−ϕ−=cos sin O A l r x x 对时间求导得)cos /sin (sin cos O O O A A θϕθ+ϕ−==l v l v v xv &]cos /)cos(1[O θϕ+θ−=v θθθϕ+θ−θϕ+θϕ+θ==2O A A cos /sin )cos(cos /))(sin(&&&&v va θϕ+θϕ+θ=322O 2O cos sin cos )sin(l v r v7.15 半径为10cm 的轮B 由曲柄OA 和连杆AB 带动在半径为40cm 的固定轮上作纯滚动设OA 长10cm AB 长40cm OA 匀角速转动角速度rad/s 10=ω求在图示位置轮B 滚动的角速度和角加速度解矢量法杆作瞬时平动AB =ωω==r v v A Brad/s10/B B =ω==ωr v cmr 10=基点ττ+=+BA n A n B Ba a a ax ′α−=β−βτsin sin cos nA nB B a a a ∴75/154tg )5/(2222B ω−=βω−ω−=τr r r r a 2rad/s 7.2075/154/2B B −=ω−==ατr a 分析法设的坐标分别为A x A y BxB y 此瞬时0A =x r y =A rx 15B =0B =y 则有22A B 2A B )4()()(r y y x x =−+−将上式求导得0))(())((A B A B A B A B =−−+−−y y y y x xx x &&&&0))(()())(()(A B A B 2A B A B A B 2A B =−−+−+−−+−y y y y y y x x x x x x &&&&&&&&&&&&将0B A ==y y&&2A ω−=r y&&r x y 5/2B B &&&−=及0A =x&&等代入上二式得ω−==r x xB A &&75/1542B ω=r x&&因此导出rad/s 10/B B =−=ωr x &2B B rad/s 7.20/−=−=αr x&&7.16 半径为r 的两轮用长l 杆A O 2相连如图示前轮1O 匀速滚动轮心的速度为v求在图示位置后轮2O 滚动的角加速度解矢量法1O 轮纯滚动vv v 221O A ==A O 2杆瞬时平动v v v 2A O 2==0A O 2=ω2O 轮纯滚动rv r v /2/22O O ==ω基点1O n AOAOO A1a a a a ++=τ1O =a 0AO =τa2O 基点n AO A O AO 221a a a a ++=τx ′ϕ−=ϕsin cosA O2a a rv a /tg 2O 2ϕ−=222O O //22r l r v r a −−==α分析法A O 2杆长l ,故22O A 2O A )()(22l y y x x =−+−则有0))(())((2222O A O A O A O A =−−+−−y y y y x xx x &&&&0))(()())(()(222222O A O A 2O A O A O A 2O A =−−+−+−−+−y y y y y y x x x x x x &&&&&&&&&&&&将0B A ==y y&&r v y/2A −=&&02O =y&&0A =x&&代入上二式得v x x2A O2==&&222O /2r l v x−−=&&于是导出r v r x /2/22O O ==ω&222O O //22r l r v r x −−==α&&7.17 圆柱体C 在固定的半圆柱D 上纯滚动一杆AB 一端与圆柱体中心铰接另一端与滑块A 铰接在图示瞬时滑块A 的速度m/s3=v 加速度2m/s2=a 求此瞬时圆柱体C 的角速度和角加速度解B基点ABAA B v v v +=o o o 105sin 15sin 60sin ABA B v v v ==m/s 70.2B =v m/s80.0BA =v∴rad/s8.15.1/B C ==ωvrad/s1.08/BA AB ==ωv nBABA AnBBa a a a a ++=+ττ5.4/2B v 82AB ⋅ωx ′n BA A n B B 30cos 15sin 15cos a a a a +=−τo o o2B m/s 31.2=τa 2B C rad/s 54.15.1/==ατa7.18 一杆AB 一端与小齿轮中心A 铰接另一端与圆盘D 的边缘B 点铰接如图示若圆盘D 以匀角速度ω转动杆AB 长m5.0求此瞬时小齿轮在齿圈上滚动的角速度和角加速度解杆的速度瞬心即齿圈的圆心因此ω=−=ω)3/4()25.3/(B AB vω=ω=)3/16(4B A v ω==ω3.51/A A &v基点nABABnBnA Aa a a a a ++=+ττ4/2A v 22⋅ωABAB ωx ′n AB n B n A A45cos cos sin a a a a +=β+β−τo 在三角形中AB)45sin(5.1sin 445sin β+=β=o o 解得o377.15=β)m 10(92.41−=AB 于是有2A 45.12ω−=τa 2A45.121/ω−==ατa A7.19 直杆CD 在C 点处与齿轮B 铰接在图示瞬时杆CD 的速度为0=v 加速度2mm/s 600=a 求此瞬时齿条A 的加速度解(1)令齿轮轮心O, 以C 为基点有τOC C O a a a += 0Ox =a 0Oy =a 所以0O =a (2)τPOP a a =2CP m/s 8.0==OP OCa a 齿条加速度 )/(8.02P s m a a ==7.20 上题中若速度改为mm/s75=v 加速度不变求齿条A 的加速度解轮心O 为速度瞬心rad/s 1C==OCv ωnOCOC C O a a a a ++=τ2C rad/s 875600/===OC a αnPOPO O P a a a a ++=τ2O τPO Px m/s 725.0075.08.0=−=−=a a a 所以2Px A m/s725.0==a a7.21 图示动齿轮O ′由曲柄O O ′带动在定齿轮O 上滚动已知曲柄的角速度为ω计算齿轮相对曲柄的角速度解方法一ω−=′)(21O r r v ω−==ω′)1/(/212O r r r v a齿轮O ′动系O O ′杆er a ωωω+=ω=ω−−ω=ω)/()(21a r r r 方法二齿轮O ′瞬心位于O ′连线外侧因此因此r ω必与ω=ωe 反向由e r /ωω=′O C CO 得ω=ω)/(21r r r7.22 图示行星齿轮系中轮I 固定轮II 由曲柄AB 带动轮III 又由轮II 带动已知曲柄的角速度为ω角加速度为零求轮III 相对曲柄AB 的角速度和角加速度设轮II 轮III 半径相同解设轮 半径为r 则rAB 2=ω=r v B 2ω==ω2/B 2r vω=ω=r r v 422P ω==ω4/P 3r v轮 动系杆er a ωωω+=∴ω=ω−ω=ω34r 03=ω=ω=α&&r r7.23 图示传速器由以下齿轮组成半径cm 401=r 的定齿轮半径各为cm 202=r 和cm 303=r 的相连的行星齿轮以及半径cm 904=r 的内啮合齿轮主动轴转速min /r 18001=n 带动行星齿轮在定齿轮上滚动并通过内啮合齿轮使从动轴转动试求从动轴每分钟的转速2n 解A 点作圆周运动a21A )(n r r v +=齿轮2在定齿轮1上纯滚动r v A /2=ω齿轮3与齿轮2有相同角速度23ω=ω基点BAA B v v v +=b 4n r 33ωr a232133A B )/1)((n r r r r r v v ++=ω+=∴rpm3000/)/1)((/4a 23214b =++==r n r r r r r v n B rpm 转数分e r杆OA 作顺时针纯滚动圆盘半径为r 3r =OP 求圆盘中心B 的速度解方法一因r ω与e ω反向圆盘的瞬心在连线外侧由e r //ωω=CP CO 可得rCP =圆盘动系杆e r a ω+ω=ωω=ω3a∴ω=ω=r r v 232a B 方法二基点BPP B v v v +=Q ω=ω=r r v 33e P ω=ω=r r v 3a BP∴ω=+=r v v v 23)(2/12BP 2P B 方法三动系杆er a v v v +=Q ω=ω=r r v 4r r ω=ω=r r v 1010e e∴ω=β−+=r v v v v v 23)cos 2(2/1e r 2e 2r ae r杆OA 作顺时针纯滚动圆盘半径为r 3r =OP 试求圆盘与杆OA 的接触点P 的加速度解圆盘上动系杆kr n e e P a a a a a +++=τe r α323e r ω2rr ωQ 0=r v x ′2n e x P 3ω−=−=′r a ay ′222r e y P 13)4(3ω=ω+ω−=+=τ′r r r a a a7.27 图中直杆AB 表示齿条圆轮O 表示齿轮当齿条的一端运动时带动半径为cm 5的齿轮绕轴O 转动今设A 端以cm/s 30的速度向右匀速运动求图示位置齿条AB 及齿轮O 的角速度和角加速度解AB 杆瞬心为点rad/s3/AB ==ωPA v AABC ω=PC vrad/s3/AB C O =ω==ωCO v 矢量法圆盘动系杆ABr O ωωω+=rad/s6r =ωAB r O ααα+=ABO r α+α=α圆盘上动系杆ke r O a a a a ++=杆上O ′基点nOAOA A e a a a a ++=τ由于0O =a 0A =a 由以上二式得k n OA OA r =+++τa a a ar αr AB αOA 2AB ωOA r AB 2v ωrr ω=r v x ′060cos 30cos k n OA OA =−+−τa a a o o 2AB rad/s 39−=αy ′060sin 30sin n OA OA =−−τo o a a a r 2O rad/s 39=α分析法设ϕ为广义坐标)2/(ctg ϕ=r x A 将上式求导得2/)2/(csc 2ϕϕ−=&r v A可导出rad/s 3|/)2/(sin 2602A −=ϕ−=ϕ=ϕo &r v 260A rad/s 39|/sin =ϕϕ−=ϕ=ϕo &&&r v 因为为杆瞬心ϕ==cos /A A C v PA PC v v则有rad/s3|/cos /60A C O =ϕ==ω=ϕo r v r v 260A O rad/s 39|/sin =ϕϕ−=α=ϕo &r v7.28 一机构在图示位置时OB OA ⊥点C 位于AB 的中点已知rOA =r AB 4=求当杆OA 以匀角速度ω转动时杆CD 的速度和加速度解杆瞬时平动A C v v =′0AB =ω基点nBA BA n A B a a a a ++=τ0n BA =ay β+−=τcos 0BA n A a a 15/4/2BA AB ω==ατr a杆上动系杆e r a v v v +=15/CD ωr v = k e r a a a a a ++=0k =a杆上C ′基点nCA CA n A e a a a a ++=τ0n CA =a导出τ++=CAn A r a a a a a x ′τββCAn A a a a −=cos cos CD 15AB /r r r a 22CD 7cos /2ωαεω=−=7.29 套筒C 上装有一销轴可在半径为1m 的圆槽内滑动当滑块A 以匀速m/s 5.0=v 向右上方运动而杆DA 以匀角速度2rad/s =θ&转动时求图示瞬时套筒C 在杆AD 上滑动的速度和加速度图示位置o90=θ解动系杆e r a v v v += 1k e r n a a a a a a a ++=+τ 2杆C ′点基点CA A e v v v += 3nCA CA a e a a a a ++=τ 4由13得CA A r a v v v v ++=θ=&AC CA v m/s 8=a v m/s4r =v由24得kn CA r n a a a a a a a ++=+τ1/2a v 2θAC r2v θ&y oo o 30sin 30cos 30cos k n CA r n a a a a a −−−=−∴m/s6.5330tg 30cos /k n CA n r =−−=o o a a a a a7.30 图示一机构在某瞬时的位置此时ω=ωOA 0OA =αω=l v CD 0CD =a求杆AB 的角速度和角加速度解动系杆e r a v v v += 1k e r a a a a a ++=0a =a 2杆上P 点基点A P A e v v v +=3nPA PA na e a a a a ++=τ4由13得PAe r a v v v v ++=CD v OA ωl AB 2ωl x ′PAA a 45cos 45cos v v v +=−o o ω−=+ω−==ωl v l l v 2/)(2/CD OA PA AB y ′o o 45cos 45cos A r a v v v −=ω=l v 2r由24得0k nPA PA nA r =++++τa a a a a 2OA ωl AB 2αl 2AB 2ωl r AB 2v ω x ′045cosk PA nA =−+τa a a o 222PA AB 5.222/2/ω−=ω−ω−==ατl l l l a7.31 两个半径为cm 20=r 中心距离保持不变的圆盘在地面作纯滚动在其边缘B D 处铰接的连杆BD 上安装一滑块C 杆AC 一端与滑块铰接另一端与一圆盘的中心A 铰接若A 以cm/s 60A =v 匀速水平向左运动求图示位置杆AC 的角速度和滑块C 相对BD 的速度以及杆AC 的角加速度解矢量法圆盘rad/s3/A A ==ωrv 0/A A ==εra基点BAA B v v v +=1n BA BA A B a a a a ++=τ0A =a 0BA =τa2C基点CAA C v v v +=3n CACA A C a a a a ++=τ0A =a4C 动系BD e r C v v v +=B e v v=5e r C a a a +=B e a a=6由135得CA A BA A r v v v v v +=++ yo o 30cos 30sin CA BA v v=rad/s 13/CA AC ==ωr vxo o 30sin 30cos CA BA r v v -v −=cm/s 320r =v 由246得n CA CA n BA r a a a a +=+τy oo o 30sin 30cos 30cos n CA CA BA a a a n −=−τ2CA AC rad/s 3/383/−==ατr a 分析法取θϕ为坐标存在约束方程θ=ϕcos sin 3r r 高丽营对上式连续求导得θθ−=ϕϕ&&sin cos 3θθ−θθ−=ϕϕ−ϕϕ&&&&&&sin cos sin 3cos 322将o 30=ϕ=θrad/s 3/A−=−=θr v &0=θ&&代入得rad/s 1=ϕ&2rad/s 3/38−=ϕ&&令BC =ρ则有θ−ϕ=ρsin cos 3r r 因此cm/s 320|)cos sin 3(30r =θθ+ϕϕ−=ρ==ϕ=θo&&&r v7.32 图示机构中已知杆AB 相对杆OA 的角速度ω=ωr 杆AB 相对杆OA 的角加速度0r =α杆AB 长为l 2l OC =求图示位置杆AB 上点B 的速度和加速度解矢量法杆动系杆OA r AB ω+ω=ωOA r AB ααα+=0r =α动系套筒AB C ω=ωABC αα=e r a v v v +=ea 30cos v v =oω=ω2OA ω=ω=ω3AB Clv v a ω==32/r k n e e r n a a a a a a a a +++=+ττOA 3αl 2OA 3ωl C αl 2C ωl r C 2v ωx ′k e n a a 30sin 30cos a a a a −−=−−ττo o 2OA C 38ω=α=αy ′n e r n a a 30cos 30sin a a a a −−=−τo o 2r 15ω=a动系套筒er a v v v ′+′=′Q r r v v =′e e v v −=′iv l a ω−=′32kn e e r a a a a a a ′+++′=′′τ′其中r r a a =′ττ′−=e e a a n e n e a a −=′kk a a =′xl a a a a a 2e k n e r ax 1530cos )(30sin )(ω−=−′++′−=′τ′′o oy l a a a a a 2e k n e r ay 31130sin )(30cos )(ω−=−′−+′−=′τ′′o o 分析法本题一自由度取θϕ为坐标存在如下约束)sin(sin 3=ϕ+θ−θ对上式连续求导有0))(cos(cos 3=ϕ+θϕ+θ−θθ&&&0))(sin())(cos(cos 3sin ))(cos()sin (cos 322=ϕ+θϕ+θ+ϕ+θϕ+θ−θθ+ϕ+θϕ+θ−θθ−θθ&&&&&&&&&&&&o 30=ϕ=θ时ω=ω=θr &0=α=θr&&代入以上二式得ω=ϕ2&238ω=ϕ&&取为原点点坐标为)cos(2cos 3ϕ+θ+ϕ−=l l x B )sin(2sin 3ϕ+θ+ϕ−=l l y B 对上二式连续求导并代入具体数值解出l l l xB ω−=ϕ+θϕ+θ−ϕϕ=32))(sin(2sin 3&&&&0))(cos(2cos 3=ϕ+θϕ+θ+ϕϕ−=&&&&l l y B )cos (sin 32ϕϕ+ϕϕ=&&&&&l xB l l 2215]))(cos())([sin(2ω−=ϕ+θϕ+θ+ϕ+θϕ+θ−&&&&&&)sin (cos 32ϕϕ−ϕϕ−=&&&&&l y B l l 22311]))(sin())([cos(2ω−=ϕ+θϕ+θ−ϕ+θϕ+θ+&&&&&&。
理论力学答案(第七章后)
第七章 点的合成运动一、是非题7.1.1动点的相对运动为直线运动,牵连运动为直线平动时,动点的绝对运动必为直线运动。
( × )7.1.2无论牵连运动为何种运动,点的速度合成定理r e a v v v +=都成立。
( ∨ )7.1.3某瞬时动点的绝对速度为零,则动点的相对速度和牵连速度也一定为零。
( × )7.1.4当牵连运动为平动时,牵连加速度等于牵连速度关于时间的一阶导数。
( ∨ )7.1.5动坐标系上任一点的速度和加速度就是动点的牵连速度和牵连加速度。
( × )7.1.6不论牵连运动为何种运动,关系式a a +a a r e =都成立。
( × )7.1.7只要动点的相对运动轨迹是曲线,就一定存在相对切向加速度。
( × )7.1.8在点的合成运动中,判断下述说法是否正确:(1)若r v 为常量,则必有r a =0。
( × )(2)若e ω为常量,则必有e a =0. ( × )(3)若e r ωv //则必有0=C a 。
( ∨ )7.1.9在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相7.1.10当牵连运动为定轴转动时一定有科氏加速度。
( × )二、 填空题7.2.1 牵连点是某瞬时 动系上与7.2.2 v e 与v r 共线 情况下,动点绝对速度的大小为r e a v v v +=,在 情况下,动点绝对速度的大小为a v =v e 、v r ,应按___ ____ __ 计算v a三、选择题:7.3.1 动点的牵连速度是指某瞬时牵连点的速度,它相对的坐标系是( A )。
A 、 定参考系B 、 动参考系C 、 任意参考系7.3.2 在图示机构中,已知t b a s ωsin +=, 且t ωϕ=(其中a 、b 、ω均为常数),杆长为L ,若取小球A 为动点,动系固结于物块B ,定系固结于地面,则小球的牵连速度v e 的大小为( B )。
结构力学第7章课后答案(第四版龙驭球)
结构力学第7章课后答案(第四版龙驭球)练习题解答第1题题目:一个细长的圆柱形杆AB,长度为L=2L,直径为L=0.01L。
材料的弹性模量为L=200LLL。
杆的一端A固定,另一端B受集中力L=1000L作用在上面。
计算该杆在受力处的应变和应力。
解答:根据杨氏定律,杆的应力$\\sigma$和应变$\\varepsilon$之间的关系为:$$\\sigma = \\varepsilon \\cdot E$$应力可以通过受力和截面面积计算,公式为:$$\\sigma = \\frac{P}{A}$$应变可以通过杆的伸长量计算,公式为:$$\\varepsilon = \\frac{\\Delta L}{L}$$杆的伸长量$\\Delta L$可以通过杆的应变和长度计算,公式为:$$\\Delta L = \\varepsilon \\cdot L$$因为杆是圆柱形状,所以截面积L和直径L之间的关系为:$$A = \\frac{\\pi \\cdot d^2}{4}$$代入上述公式,可以得到应变和应力的计算公式:$$\\varepsilon = \\frac{\\Delta L}{L} = \\frac{P \\cdot L}{A \\cdot E}$$$$\\sigma = \\varepsilon \\cdot E = \\frac{P \\cdotL}{A}$$带入已知数据进行计算,可得:$$A = \\frac{\\pi \\cdot (0.01)^2}{4} \\approx 7.85\\times 10^{-5}m^2$$$$\\varepsilon = \\frac{1000 \\cdot 2}{7.85 \\times 10^{-5} \\cdot 200 \\times 10^9} \\approx 0.039$$$$\\sigma = \\varepsilon \\cdot E = 0.039 \\cdot 200\\times 10^9 \\approx 7.8 \\times 10^9 Pa$$所以该杆在受力处的应变约为0.039,应力约为7.8GPa。
哈尔滨工业大学 第七版 理论力学 第7章 课后习题答案
解
设轮缘上任 1 点 M 的全加速度为 a,切向加速度 a t = rα ,法向加速度 a n = ω r ,如图
2
7-11b 所示。
tan θ =
把
α=
dω , θ = 60° 代入上式,得 dt
at α = 2 an ω
dω tan 60° = dt2
ω
分离变量后,两边积分:
∫ω
得
ω
0
dω
ω
2
=∫
⎤ ⎡ ⎥ ⎢ sin ω t 0 θ = tan −1 ⎢ ⎥ ⎢ h − cos ω 0 t ⎥ ⎥ ⎢ ⎦ ⎣r
故
50 π ⋅ 600 100π r ω1 = rad/s ⋅ = 100 − 5t 30 10 − 0.5t d dω 5 000 π d ⎛ 1 000π ⎞ α2 = 2 = ⎜ ⎟= dt dt ⎝ 100 − 5t ⎠ (100 − 5π )2
故得
h1 =
h4 = 2 mm 6
图 7-7
7-8 如图 7-8 所示,纸盘由厚度为 a 的纸条卷成,令纸盘的中心不动,而以等速 v 拉纸条。求 纸盘的角加速度(以半径 r 的函数表示) 。 解 纸盘作定轴转动,当纸盘转过 2π rad 时半径减小 a。设纸盘转过 dθ 角时半径增加 dr ,则
dθ =
y
B
t aB
α j
O
vA x
ω
(a) 图 7-12
aC
(b)
i 45° A n
C
t aC
解
由图 7-12b 得出
84
理论力学(第七版)课后题答案 哈工大.高等教育出版社
v A = 0.2 j m/s , v A = ω × Ri , ω × 0.1i = 0.200 j , ω = 2k ,
清华出版社工程力学答案-第7章 圆轴扭转时的强度与刚度计算
7-2 两根长度相等、直径不等的圆轴承受相同的扭矩受扭后,轴表面上母线转过相同 的角度。设直径大的轴和直径小的轴的横截面上的最大剪应力分别为 τ1max 和 τ 2max ,剪切弹 性模量分别为 G1 和 G2。试判断下列结论的正确性。
解: τ 轴max
=
Mx Wp1
= T1 πd 3
≤ 60 ×106
16
T1
≤
60 ×106
× π× 663 16
× 10 −9
=
3387 N·m
τ 套 max
= Mx Wp2
=
T2 πd 3 ⎜⎛1 − ( 68 )4 ⎟⎞
≤ 60 ×106
16 ⎝ 80 ⎠
T2
≤
60 ×106
× π× 803 16
8
7-12 功率为 150kW、转速为 15.4r/s(转/秒)的电机轴如图所示。其中 d1=135mm, d2=75mm,d3=90mm,d4=70mm,d5=65mm。轴外伸端装有胶带轮。试对轴的扭转强度进行 校核。
Me
Me
d5 d2 d1 d3 d4
电机轴
习题 7-12 图
解:1. 求外力偶矩
(A) τ 1max > τ 2 max ; (B) τ 1max < τ 2 max ; (C)若 G1>G2,则有 τ1max > τ 2 max ; (D)若 G1>G2,则有 τ1max < τ 2 max 。
解:因两圆轴等长,轴表面上母线转过相同角度,指切应变相同,即 γ1 = γ 2 = γ 由剪切 胡克定律 τ = Gγ 知 G1 > G2 时, τ1max > τ2 max 。因此,正确答案是 C 。
力学答案——漆安慎,07章
v' = ω r =
vG = v B = ω AB = 10 × 1.5 = 15m / s ,方向指向右下方,与水
平方向成 45º;
2000×2π 60
× 1.5 = 314m / s
⑵桨尖相对地面的速度:v = v '+ v机地 ,飞机相对地面的速度与 螺旋桨相对飞机的速度总是垂直的, v机地 = 所以, v =
∫
dm
3 L3
∫
ρ0
L
L
0
x 3 dx = 3 4 L
证明:⑴取图示坐标,在坐标 x 处取一线元, dm = 对 y 轴的转动惯量为: dI =
m l
m l
dx ,它
x l/2
x 2 dx ,
-l/2
y dx
⑵ρ =
h −x ρ 0 (1 − L ) = ρ 0 (1 − LL )=
x
整个细杆对 y 轴的转动惯量:
n1 =
0.909 v 2πR
=
0.909×166×103 2×3.14×0.26
= 9.24 × 10 4 rev / h = 1.54 × 10 3 rev / min
7.2.2 在下面两种情况下求直圆锥体的总质量和质心位置。 ⑴圆 锥体为匀质;⑵密度为 h 的函数:ρ=ρ0(1-h/L),ρ0 为正常数。 解:建立图示坐标 o-x,据对称性分析, L 质心必在 x 轴上,在 x 坐标处取一厚为 dx o r a x 2 的质元 dm=ρπr dx,∵r/a=x/L,r=ax/L h ∴ dm=ρπa2x2dx/L2 ⑴圆锥体为匀质,即ρ为常数, 总质量: m = dm =
1 且与杆垂直的轴线的转动惯量等于 12 ml ;⑵用积分法证明:质量 2
力学答案第七章
第七章刚体力学习题及解答7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据).解:7.1.2 汽车发动机的转速在12s内由1200rev/min增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?解:( 1)( 2)所以转数 =7.1.3 某发动机飞轮在时间间隔t内的角位移为球 t时刻的角速度和角加速度.解:7.1.4 半径为0.1m的圆盘在铅直平面内转动,在圆盘平面内建立坐标系,原点在轴上.x和y轴沿水平和铅直向上的方向.边缘上一点A当t=0时恰好在x轴上,该点的角坐标满足求(1)t=0时,(2)自t=0开始转时,(3)转过时,A点的速度和加速度在x和y轴上的投影. 解:( 1)( 2)时,由( 3)当时,由7.1.5 钢制炉门由两个各长1.5m的平行臂AB和CD支承,以角速度逆时针转动,求臂与铅直时门中心G的速度和加速度.解:因炉门在铅直面内作平动,门中心 G的速度、加速度与B或D点相同。
所以:7.1.6 收割机拔禾轮上面通常装4到6个压板.拔禾轮一边旋转,一边随收割机前进.压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反.已知收割机前进速率为 1.2m/s,拔禾轮直径1.5m,转速22rev/min,求压板运动到最低点挤压作物的速度.解:取地面为基本参考系,收割机为运动参考系。
取收割机前进的方向为坐标系正方向7.1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm,发动机转速2000rev/min.(1)桨尖相对于飞机的线速率等于多少?(2)若飞机以250km/h的速率飞行,计算桨尖相对于地面速度的大小,并定性说明桨尖的轨迹.解:取地球为基本参考系,飞机为运动参考系。
(带答案)初中物理第七章力学笔记重点大全
(带答案)初中物理第七章力学笔记重点大全单选题1、手握住系有水桶的绳子,从井中往上提水的过程中,手受到竖直向下的拉力,此拉力的施力物体是()A.水桶B.地球C.手D.绳子2、下列现象中发生的是弹性形变的是()A.将一张纸撕成碎片B.撑竿跳运动员将竿压弯C.粉笔掉地上摔断D.橡皮泥上留下指印3、下列物体间的作用力属于弹力的是()①手握瓶子的压力;②绳子对溜溜球的拉力;③磁铁对大头针的吸引力;④压缩的弹簧对手的推力;⑤地面对课桌的支持力。
A.①②③⑤B.①②③④C.①②④⑤D.①②③④⑤4、如图所示的图象中,能表示物体所受重力与质量的关系的是()A.B.C.D.5、一个足球放在一块长木板上,如图所示,木板和足球均发生了弹性形变,关于它们弹力的情况,以下说法错误的是()A.足球受到的支持力是木板产生的弹力B.足球产生的弹力是由于足球的形变造成的C.木板形变是由于木板产生弹力造成的D.足球产生的弹力就是足球对木板的压力6、如图所示,物体A处于静止状态,小车在拉力F作用下向右匀速运动,则物体A对小车的力的示意图正确的是()A.B.C.D.7、下列运动情景中,能明显观察到力使物体发生形变的是()A.足球在空中成弧线落下B.跳水运动员向下压弯跳板C.在地面上的课桌保持静止D.篮球碰到篮板后改变运动方向8、由下列几个实例联想到的物理知识,其中错误的是()A.“孤掌难鸣”表明力是物体对物体的作用B.划船时,使船前进的力的施力物体是船桨C.点心师傅将包子皮捏出漂亮的花边,是力改变了物体的形状D.把鸡蛋往碗沿上一磕,鸡蛋就破了,说明力的作用是相互的9、2022年冬奥会将在北京举行,跳跃式滑雪运动员也在积极备赛训练,下图正确表示滑雪运动员在空中时滑翔时所受重力示意图的是()A.B.C.D.10、如图所示是教材中运动员踢足球的情景插图,下列说法正确的是()A.踢球时,脚会痛是因为力的作用是相互的B.踢球时,脚对球的作用力大于球对脚的作用力C.运动员用头顶足球运动方向的改变,不属于改变物体的运动状态D.守门员抱住飞来的足球,不属于改变物体的运动状态11、如图所示,一个长方体的物块A静止在水平桌面上,物块受到水平桌面的支持力本质上也是弹力,下列关于该支持力的分析正确的是()A.该支持力的作用点在水平桌面上B.支持力是由于水平桌面发生弹性形变产生的C.支持力是由于物块A发生弹性形变产生的D.该支持力的作用效果是使水平桌面发生形变12、如图所示两人各用50N的力沿水平方向对拉同一只测力计两端,测力计的示数是()A.200NB.100NC.50ND.0N13、用绳子系住水桶,手握住绳子从井里提水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解得
7.4.3 一质量为 ,速度为 的子弹沿水平面击中并嵌入一质量为 的棒的端点,速度 与棒垂直,棒原
,长度为
来静止于光滑的水平面上.子弹击中棒后共同运动,求棒和子弹绕垂直于平面的轴的角速度等于多 少?解 :取 与 为物体系。此物体系在水平面内不变外力矩。故角动量守恒,规定逆时针为 转动正方向。设 嵌入后物体系共同质心为 , 到棒右端距离为 ,棒自身质心为 。
于
.解:建立水平方向 o—x 坐标
( 2)用积分法证明:质量为 m、半径为 R 的均质薄圆盘对通过中心且在盘面内的转动轴的转动惯
量为
.解:
令
或
利用公式
7.3.2 图示实验用的摆,
,
,
,
为圆形部分为均质圆盘,长杆部分为均 质细杆.
,近似认
求对过悬点且与摆面垂直的轴线的转动惯量.解: 将摆分为两部分:均匀细杆( ),均匀圆柱( )
由
有物体系对点的角动量守恒可得:
解得 7.4.4 某典型脉冲星,半径为几千米,质量与太阳的质量大致相等,转动角速率很大.试估算周期为 50ms 的脉冲星的转动动能.(自己查找太阳质量的数据)解 : 7.5.1 10m 高的烟囱因底部损坏而倒下来,求其上端到达地面时的线速度.设倒塌时底部未移动.可 近似认为烟囱为细均质杆.解 :
分析受力及坐标如图。 轴垂直纸面向里。列方程: 解得
即
7.4.1 扇形装置如图,可绕光滑的铅直轴线 O 转动,其转动惯量 I 为.装置的一端有槽,槽内有弹 簧,槽的中心轴线与转轴的垂直距离为 r.在槽内装有一小球,质量为 m,开始时用细线固定,只弹 簧处于压缩状态.现用燃火柴烧断细线,小球以速度 弹出.求转动装置的反冲角 速度.在弹射过程中,由小球和转动装置构成的系统动能守恒否?总机械能守恒否?为什么?(弹 簧质量不计)解 : 取小球和转动装置为物体系,建立顺时针为转动正方向。在弹射过程中,物体 系相对于转动轴未受外力矩,故可知物体受对转轴的角动量守恒。
则有
(
)
7.3.5 一转动系统的转动惯量为 力都为 392N,闸瓦与轮缘间的摩擦系数为 要用多少时间?解 :
,转速为 ,轮半径为
,两制动闸瓦对轮的压 ,从开始制动到静止需
7.3.6 均质杆可绕支点 O 转动,当与杆垂直的冲力作用某点 A 时,支点 O 对杆的作用力并不因此冲 力之作用而发生变化,则 A 点称为打击中心.设杆长为 L,求打击中心与支点的距离.解 :
(1)
(2)
(3)
(4)
解得: 7.3.9 利用图中所示装置测一轮盘的转动惯量,悬线和轴的距离为 r.为减小因不计轴承摩擦力矩而 产生的误差,先悬挂质量较小的重物 ,从距地面高度 处由静止开始下落,落地时间为 ,
然后悬挂质量较大的重物 ,同样由高度 下落,所需时间为 ,根据 这些数据确定轮盘的转动惯量.近似认为两种情况下摩擦力矩相同.解 :
: 设所求板对地的加速度为 a,(方向与 相同)。以板为参照系(非惯性系)。取圆柱体为隔离体, 分析受力如图, 轴垂直纸面向里。
依质心运动定律有:
(1)
依据转动定理有: 依据角量与线量关系有:
(2) (3)此外:
(4)
取板为隔离体,受力如图,并建立如图坐标系。列标量方程有:
(7)
(5) (6)
(8)
有
动能不守恒,原因是弹性力对系统作正功,物体系动能增加。总机械能守恒。原因是此过程中无耗 散力做功。应有守恒关系式:
7.4.2 质量为 2.97kg,长为 1.0m 的均质等截面细杆可绕水平光滑的轴线 O 转动,最初杆静止于铅 直方向.一弹片质量为 10kg,以水平速度 200m/s 射出并嵌入杆的下端,和杆一起运动,求杆的最大 摆角 .
则
=
=
(用平行轴定理)
I=0.14+2.51=2.65
7.3.3 在质量为 M 半径为 R 的均质圆盘上挖出半径为 r 的两个圆孔,圆孔中心在半径 R 的中点,求 剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量.
解: 设未挖两个圆孔时大圆盘转动惯量为 I。如图半径为 r 的小圆盘转动惯量为 和 。
(9)
(10)
(11)将上述十一个方程联立求解得:
7.5.7 在水平桌面上放置一质量为 m 的线轴,内径为 b,外径为 R,其绕中心轴转动惯量为
.
线轴与地面间的静摩擦系数为 .线轴受一水平拉力 F,如图所示.
( 1)使线轴在桌面上保持无滑滚动之 F 最大值是多少?
( 2)若 F 与水平方向成 角,试证,
7.1.6 收割机拔禾轮上面通常装 4 到 6 个压板.拔禾轮一边旋转,一边随收割机前进.压板转到下方 才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求 压板运动到下方时相对于作物的速度与收割机前进方向相反.
已知收割机前进速率为 1.2m/s,拔禾轮直径 1.5m,转速 22rev/min,求压板运动到最低点挤压作物 的速度.解:取地面为基本参考系,收割机为运动参考系。
求(1)t=0 时,(2)自 t=0 开始转 时,(3)转过 时,A
点的速度和加速度 在 x 和 y 轴上的投影. 解:
( 1)
( 2)
时,
由
( 3)当
时,由
AB 和 CD 支承,以角速度
7.1.5 钢制炉门由两个各长 1.5m 的平行臂 逆时针转动,求臂与铅直 时门中心 G 的速度和加速
度.解:因炉门在铅直面内作平动,门中心 G 的速度、加速度与 B 或 D 点相同。所以:
建立坐标系,水平方向为 轴,竖直方向为 轴.杆上端坐标为(x,y),杆受重力、地面对杆竖
直向上的支承力,无水平方向力。由
(质心运动定理)
质心在杆的中点,沿水平方向质心加速度为零。开始静止,杆质心无水平方向移动。
由杆在下落每一瞬时的几何关系可得:
即杆上端运动轨迹方程为: • ( 1)用积分法证明:质量为 m 长为 的均质细杆对通过中心且与杆垂直的轴线的转动惯量等
解 : 取子弹和杆为物体系。分两个过程。过程 1:子弹嵌入前一瞬时开始到完全嵌入时为止。此
过程时间极短,可视为在原地完成。此时受力为 ,
为转轴对杆的支承力,对于
轴,外力矩为零。有角动量守恒。规定逆时针为转轴正方向。得:
解得:
过程 2:由过程 1 末为始到物体系摆至最高点为止。此过程中一切耗散力做功为零。故物体系机械 能守恒。取杆的最低点为重力势能零点。
取收割机前进的方向为坐标系正方向
7.1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为 150cm,发动机转速 2000rev/min.(1)桨尖 相对于飞机的线速率等于多少?(2)若飞机以 250km/h 的速率飞行,计算桨尖相对于地面速度的 大小,并定性说明桨尖的轨迹.解:取地球为基本参考系,飞机为运动参考系。
第七章 刚体力学习题及解答 7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少 rad/s?估算地球赤道上一点因地 球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需
数据).解:
7.1.2 汽车发动机的转速在 12s 内由 1200rev/min 增加到 3000rev/min.(1)假设 转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?解:( 1)
( 1)研究桨头相对于运动参考系的运动: ( 2)研究桨头相对于基本参考系的运动:
由于桨头同时参与两个运动:匀速直线运动和匀速圆周运动。故桨头轨迹应是一个圆柱螺旋线。 7.1.8 桑塔纳汽车时速为 166km/h.车轮滚动半径为 0.26m.自发动机至驱动轮的转速比为 0.909.问 发动机转速为每分多少转.解:设发动机转速为 ,驱动轮的转速为 。
(1)依据转动定理:
(2)依据角量与线量关系:
(3)此外,
(4)由
联立上述四个方程求得: 7.5.5 下面是均质圆柱体在水平地面上作无滑滚动的几种情况,求地面对圆柱体的静摩擦力 f. ( 1)沿圆柱体上缘作用以水平拉力 F,柱体作加速滚动. ( 2)水平拉力 F 通过圆柱体中心轴线,柱体作加速滚动. ( 3)不受任何主动力的拉动或推动,柱体作匀速滚动. ( 4)在主动力偶矩 的驱动下作加速滚动.设柱体半径为 R.解 :
由机械能守恒: 先求支点 O 对框架作用力 , 由转动定理
由质心运动定理:
投影得:
解得:
没
设 N 与 方向夹角为 ,则
7.5.4 质量为 m 长为 的均质杆,其 B 端放在桌面上,A 端用手支住,使杆成水平.突然释放 A 端, 在此瞬时,求:
( 1)杆质心的加速度, ( 2)杆 B 端所受的力. 解 : 取杆为隔离体,受力分析及建立坐标如图。规定顺时针为转动正方向。依据质心运动定理有:
时,线轴向前滚动;
时,线
轴线后滚动。解 : 取线轴为隔离体。建立坐标系,水平向右为 正方向, 轴垂直纸面向里。
( 1)依据质心运动定理有:
(1)依据对质心轴的转动定理有:
( 2) 所以 转数 = 7.1.3 某发动机飞轮在时间间隔 t 内的角位移为 球 t 时刻的角速度和角加速度. 解:
7.1.4 半径为 0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立
坐标系,原点在轴上.x 和
y 轴沿水平和铅直向上的方向.边缘上一点 A 当 t=0 时恰好在 x 轴上,该点的角坐标满足
机械能守恒。取过框架中心的水平线为重力势能零点: 有 解得:
框架转到 AB 水平位置时, 故支点 O 对框架的作用力 ,仅有法向分量。
由质心运动定理得: 框架作用支点的力 N 与 是作用力与反作用力。 7.5.3 由长为 ,质量各为 m 的均质细杆制成正方形框架,其中一角连于光滑水平转轴 O,转轴与 框架所在平面垂直.最初,对角线 OP 处于水平,然后从静止开始向下摆动.求对角线 OP 与水平成 时 P 点的速度,并求此时框架对支点的作用力.解 : 框架对 O 点转动惯量