八年级第二学期第一次月考数学试卷含答案
北师大版八年级数学下册第一次月考试卷(含答案)
八年级数学下册第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.如图,在△ABC中,AB=AC,D是BC的中点,下列结论中不正确的是()A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD. AB=2BD2.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A. ∠A=40°,∠B=50°B. ∠A=40°,∠B=60°C. ∠A=40°,∠B=80°D. ∠A=20°,∠B=80°3.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A. a−c>b−cB. a+c<b+cC. ac>bcD. ab <cb4.若a>b,则()A. a−1≥bB. b+1≥aC. a+1>b−1D. a−1>b+15.不等式组{x−1<−3,2x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−36.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折B. 7折C. 8折D. 9折7.如图,在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A. 5B. 6C. 7D. 88.如图,AB⊥AC于点A,BD⊥CD于点D.若AC=DB,则下列结论中不正确的是()A. ∠A=∠DB. ∠ABC=∠DCBC. OB=ODD. OA=OD9.如图,点A,B,C在一条直线上,△ABD和△BCE是等边三角形,连接AE,交BD于点P,连接CD,分别交BE,AE于点Q,M,连接BM,PQ,则∠AMD的度数为()A. 45°B. 60°C. 75°D. 90°10.若3a−22和2a−3是实数m的平方根,且t=√m,则不等式2x−t3−3x−t2≥512的解集为()A. x≥910B. x≤910或x≤6.5C. x≥811D. x≤811二、填空题(本大题共5小题,共20.0分)11.如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,BD平分∠ABC,DE⊥BC于点E,AB=7,DE=4,则△ABD的面积为.13.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为______元/千克.14.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为______.15.若关于x的不等式组{3x+5<5x+1 x>a−1 解集为x>2,则a的取值范围是______.三、解答题(本大题共10小题,共100.0分)16.(8分)解不等式组:{3(x+1)>x−1 x+92>2x17.(10分)已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长18.(10分)解不等式组{4(x+1)≤7x+13,①x−4<x−83,②并求它的所有整数解的和.19.(10分)某工厂计划生产甲、乙两种机器共10台,其生产成本和利润如下表所示:(1)某工厂计划投入成本26万元,这些成本刚好生产出整数台机器.问:甲、乙两种机器各应安排生间多少台?(2)若工厂计划生产甲机器的数量不少于4台,并共能获利不少于16万元,问:工厂有哪几种生产方案?并说明哪种方案获利最大?最大利润是多少?20.(10分)如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A′,连接A′B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数表达式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(10分)如图,在四边形ABCD中,E是边BC的中点,F是边CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)若∠BCD=114°,求∠BAD的度数.23.(10分)用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.(1)求(−2)※√3;(2)若3※m≥−6,求m的取值范围,并在所给的数轴上表示出解集.24.(12分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm),y2(cm),y1,y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发___________s,乙提速前的速度是___________cm/s,m=___________,n=___________;(2)当x为何值时,乙追上了甲?(3)何时乙在甲的前面?25.(12分)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6√3,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案1.D2.D3.B4.C5.C6.C7.A8.C9.B10.B11.4012.1413.1014.x>315.a≤316.解:{3(x+1)>x−1①x+92>2x②解不等式①得x>−2,解不等式②得x<3,∴不等式组的解集为−2<x<3.17.解:(1)∵∠C=90°,AB=10,AC=8,∴BC=√102−82=6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,{BD=BDCD=DE,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB−BE=10−6=4;(3)设CD=DE=x,则AD=8−x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8−x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD=√62+32=3√5.18.解:−3≤x<2.所有整数解的和为−5.19.解:(1)设甲、乙两种机器各应安排生间x台,(10−x)台,2x+5(10−x)=26,解得,x=8,则10−x=2,答:甲、乙两种机器各应安排生间8台、2台;(2)设生产甲种机器的数量为a台,{a+3(10−a)≥16a≥4,解得,4≤a≤7,∵a是整数,∴a=4,5,6,7,即工厂有四种进货方案,方案一:生产甲种机器4台,乙种机器6台;方案二:生产甲种机器5台,乙种机器5台;方案三:生产甲种机器6台,乙种机器4台;方案四:生产甲种机器7台,乙种机器3台;设利润为w元,w=a+3(10−a)=−2a+30,∴当a=4时,w取得最大值,此时w=22,即方案一获利最大,最大利润是22万元.20.解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B=√CD2+(AC+BD)2=√41,∵6<√41,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4=√52−12=2√6(或√24)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,DQ=√52−42=3,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4−x)2+128x=1∴x=1,8;即:DQ=18故当DQ=3或1时,△ABQ为等腰三角形.821.解:(1)大货车、小货车各有12辆、8辆.(2)设到A地的大货车有x辆,则到A地的小货车有(10−x)辆,到B地的大货车有(12−x)辆,到B地的小货车有(x−2)辆,∴y=900x+500(10−x)+1000(12−x)+700(x−2)=100x+15600(2≤x≤10,且x为整数).(3)根据题意,得15x+10(10−x)≥140.解得x≥8.∴8≤x≤10.∴当x=8时,y取最小值,y最小=100×8+15600=16400.22.解:(1)连接AC,∵点E 是边BC 的中点,AE ⊥BC ,∴AB =AC(三线合一)同理AD =AC ,∴AB =AD ;(2)∵AB =AC ,AD =AC ,∴∠B =∠1,∠D =∠2,∴∠B +∠D =∠1+∠2,即∠B +∠D =∠BCD ,∵∠BAD +(∠B +∠D)+∠BCD =(4−2)⋅180°=360°,∠BCD =114°, ∴∠BAD =360°−114°−114°=132°.23.(1)3√3.(2)m ≥−2.解集在数轴上表示图略.24.解:(1)15 15 31 45(2)设y 1=k 1x.∵点A(31,310)在OA 上,∴31k 1=310.解得k 1=10.∴y 1=10x .设BC 段对应的函数关系式为y 2=k 2x +b ,∵点B(17,30),C(31,450)在BC 上,∴{17k 2+b =30,31k 2+b =450,解得{k 2=30,b =−480.∴y 2=30x −480(17≤x ≤31).当y 1=y 2时,则10x =30x −480,解得x =24.∴当x =24时,乙追上了甲.(3)由图象可知,当x >24且x ≤45时,乙在甲的前面.25.解:(1)如图①中,作点A 关于直线l 的对称点A′,连接A′B 交直线l 于P ,连接PA.则点P 即为所求的点.(2)如图②中,作DM//AC ,使得DM =EF =2,连接BM 交AC 于F ,∵DM=EF,DM//EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=3√3,在Rt△ADO中,OD=√AD2−OA2=3,∴BD=6,∵DM//AC,∴∠MDB=∠BOC=90°,∴BM=√BD2+DM2=√62+22=2√10.∴DE+BF的最小值为2√10.(3)如图③中,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC,∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,易知AC的最大值=4√3,∴四边形ABCD的周长最大值为12+4√3.。
八年级下册 第一次月考(1-2章)数学试卷(含答案解析) (17)
八年级(下)第一次月考数学试卷(1-2章)一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9.如图所示的不等式的解集是.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.11.当代数式﹣3x的值大于10时,x的取值范围是.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是.三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?八年级(下)第一次月考数学试卷(1-2章)参考答案与试题解析一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°【考点】等腰三角形的性质.【分析】由已知顶角为70°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【解答】解:∵等腰三角形的顶角为70°,∴它的一个底角为÷2=55°.故选:B.2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、两边都减5,不等号的方向不变,故A符合题意;B、两边都除以5,不等号的方向不变,故B不符合题意;C、两边加不同的数,故C不符合题意;D、两边都乘以负数,不等号的方向改变,故D不符合题意;故选:A3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解【考点】不等式的解集.【分析】正确解出不等式的解集,就可以进行判断.【解答】解:A、正确;B、不等式x>﹣5的负整数解集有﹣4,﹣3,﹣2,﹣1.C、不等式﹣2x<8的解集是x>﹣4D、不等式2x<﹣8的解集是x<﹣4包括﹣40,故正确;故选C.4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得ax>﹣b,系数化成1得x<﹣.故选B.5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得到ED=EC,计算即可.【解答】解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE+DE=AE+EC=AC=3cm,故选B.6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1【考点】一次函数的性质.【分析】直接利用函数图象结合一次函数增减性得出答案.【解答】解:如图所示:当y=﹣2时,x=﹣1,则当y<﹣2时,x的取值范围是:x<﹣1.故选:C.二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是等边三角形.【考点】等边三角形的判定.【分析】根据等边三角形的判定定理(有一内角为60°的等腰三角形为等边三角形)进行答题.【解答】解:∵AB=AD,∴△ABD是等腰三角形;又∵∠BAC=∠CAD=30°,∴∠BAD=60°,∴△ABD是等边三角形;故答案是:等边三角形.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【考点】角平分线的性质.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.9.如图所示的不等式的解集是x≤2.【考点】在数轴上表示不等式的解集.【分析】该不等式的解集是指2及其左边的数,即小于等于2的数.【解答】解:由图示可看出,从2出发向左画出的线,且2处是实心圆,表示x≤2.所以这个不等式的解集为x≤2.故答案为:x≤2.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20.【考点】等腰三角形的性质.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.11.当代数式﹣3x的值大于10时,x的取值范围是x<﹣4.【考点】解一元一次不等式.【分析】根据题意列出不等式,再依据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:根据题意得:﹣3x>10,合并同类项,得:﹣x>10,系数化为1,得:x<﹣4,故答案为:x<﹣4.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】连接AP,由MP为线段AB的垂直平分线,根据垂直平分线的性质可得AP=BP,同理可得AP=CP,等量代换可得AP=BP=CP,然后根据等边对等角可得∠ABP=∠BAP,∠PAC=∠ACP及∠PBC=∠PCB,由已知的∠BAC的度数求出∠BAP+∠CAP的度数,等量代换可得∠ABP+∠ACP的度数,同时根据三角形的内角和定理可得∠ABP+∠PBC+∠PCB+∠ACP,进而得到∠PBC+∠PCB的度数,再根据两角相等,即可求出所求角的度数.【解答】解:连接AP,如图所示:∵MP为线段AB的垂直平分线,∴AP=BP,∴∠ABP=∠BAP,又PN为线段AC的垂直平分线,∴AP=CP,∴∠PAC=∠ACP,∴BP=CP,∴∠PBC=∠PCB,又∠BAC=∠BAP+∠CAP=70°,∴∠ABP+∠ACP=70°,且∠ABP+∠PBC+∠PCB+∠ACP=110°,∴∠PBC+∠PCB=40°,则∠PBC=∠PCB=20°.故答案为:20°三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣9x+4x<10﹣15,合并同类项,得:﹣5x<﹣5,系数化为1,得:x>1,这个不等式的解集在数轴上表示如下:.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【分析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.【解答】证明:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【考点】一元一次不等式的整数解.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?【考点】一次函数与一元一次不等式.【分析】先根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:y1=2x+4,y2=5x+10,当y1<y2时,2x+4<5x+10,解得x>﹣2,当x>﹣2时,y1<y2.17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.【考点】等腰三角形的性质;三角形三边关系.【分析】如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,根据题意列方程即可得到结论.【解答】解:如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则+x=15,y=12,解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时,则+x=12, +y=15,解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?【考点】一元一次不等式的应用.【分析】设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.【解答】解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?【考点】等腰三角形的判定与性质;平行线的性质.【分析】由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【解答】解:EF=EB+FC.理由:∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠EBO=∠OBC,∠FCO=∠OCB.又∵EF∥BC,∴∠OBC=∠BOE,∠OCB=∠COF,∴∠BOE=∠EBO,∠COF=∠FCO,即EB=EO,FC=FO,∴EF=EO+FO=EB+FC.20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.【考点】等腰三角形的性质.【分析】根据三角形的内角和得到∠A=30°.根据等腰三角形的性质得到∠ACD=∠ADC==75°.推出△BCE是等边三角形,于是得到结论.【解答】解:∵∠ACB=90°,∠B=60°,∴∠A=30°.∵AD=AC,∴∠ACD=∠ADC==75°.∵BC=BE,∠B=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠DCE=∠ACD+∠BCE﹣∠ACB=75°+60°﹣90°=45°.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.【考点】全等三角形的判定与性质.【分析】由已知可得∠ACE=∠DCB,然后根据SAS即可证明△ACE≌△DCB【解答】证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS).五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.【考点】线段垂直平分线的性质.【分析】连接BD,延长BF交DE于点G,根据线段的垂直平分线的性质得到AD=BD,求出∠CBD=45°,证明△ECD≌△FCB,根据全等三角形的性质解答即可.【解答】解:DE=BF,DE⊥BF.理由如下:连接BD,延长BF交DE于点G.∵点D在线段AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A=22.5°.在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,∴∠ABC=67.5°,∴∠CBD=∠ABC﹣∠ABD=45°,∴△BCD为等腰直角三角形,∴BC=DC.在△ECD和△FCB中,,∴Rt△ECD≌Rt△FCB(SAS),∴DE=BF,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°,∴∠EGB=90°,即DE⊥BF.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?【考点】一次函数的应用;一元一次方程的应用.【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意,得25x+45=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由题意,得y=(30﹣25)a+(60﹣45),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.。
八年级数学(下册)第一次月考数学试卷(含答案解析) (4)
八年级(下)第一次月考数学试卷一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠25.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°二、填空题题(3分×10=30分)9.我国国旗上的五角星有条对称轴.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=°.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为厘米.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有对全等三角形.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=°.16.如图:作∠AOB的角平分线OP的依据是.(填全等三角形的一种判定方法)17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.2016-2017学年江苏省淮安市盱眙县八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【考点】全等三角形的应用.【分析】根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠2【考点】全等三角形的判定.【分析】根据全等三角形的判定可以添加条件∠1=∠2.【解答】解:条件是∠1=∠2,∴∠ABE=∠DBC,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),故选D5.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A图有两边相等,而夹角不一定相等,二者不一定全等;B图与三角形ABC有两边及其夹边相等,二者全等;C图有两边相等,而夹角不一定相等,二者不一定全等;D图与三角形ABC有两角相等,二者不一定全等;故选B6.根据下列条件,能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长【考点】全等三角形的判定.【分析】根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.【解答】解:A、满足SSA,不能判定全等;B、不是一组对应边相等,不能判定全等;C、满足AAA,不能判定全等;D、符合SSS,能判定全等.故选D.7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC ∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°【考点】全等三角形的性质.【分析】先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB即可得出∠BAD的度数.【解答】解:∵△ABC≌△ADE,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°﹣28°﹣95°=57°,∴∠BAD=∠DAE+∠EAB=77°.故选D.二、填空题题(3分×10=30分)9.我国国旗上的五角星有5条对称轴.【考点】轴对称的性质.【分析】根据轴对称图形的定义,可直接求得结果.【解答】解:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有5条对称轴.故答案为:5.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=25°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D和∠F,再根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∠A=80°,∠C=75°,∴∠D=∠A=80°,∠F=∠C=75°,∴∠E=180°﹣∠D﹣∠F=25°.故答案为:25.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11.【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:AB=DC.【考点】全等三角形的判定.【分析】条件是AB=DC,根据SAS推出即可.【解答】解:添加的条件是:AB=DC,理由是:∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故答案为:AB=DC.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为5厘米.【考点】全等三角形的应用.【分析】首先利用SAS定理判定△AOB≌△A′OB′,然后再根据全等三角形对应边相等可得A′B′=AB=5cm.【解答】解:连接AB,∵把两根钢条A′B、AB′的中点连在一起,∴AO=A′O,BO=B′O,在△ABO和△A′B′O中,∴△AOB≌△A′OB′(SAS),∴A′B′=AB=5cm,故答案为:5.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有3对全等三角形.【考点】全等三角形的判定.【分析】由已知易得△ABD≌△ACD,从而运用全等三角形性质及判定方法证明△BDE≌△CDE,△ABE≌△ACE.【解答】解:图中的全等三角形共有3对.∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD,∠BAD=∠CAD,在△BDE与△CDE中,,∴△BDE≌△CDE(SAS),∴BE=CE,在△ABE与△ACE中,,∴△ABE≌△ACE(SSS).故答案为:3.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=10°.【考点】全等三角形的判定与性质.【分析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=40°,求出∠EAC的度数,然后即可求出∠AEC的度数.【解答】解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,在Rt△CAE与△RtDAE中,,∴Rt△CAE≌Rt△DAE(HL),∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=40°,∴∠CAB=90°﹣40°=50°,∴∠EAC=10°.故答案为:10.16.如图:作∠AOB的角平分线OP的依据是SSS.(填全等三角形的一种判定方法)【考点】作图—基本作图;全等三角形的判定.【分析】根据作法可知OC=OD,PC=PD,OP=OP,故可得出△OPC≌△OPD,进而可得出结论.【解答】解:在△OPC与△OPD中,∵,∴△OPC≌△OPD(SSS),∴OP是∠AOB的平分线.故答案为:SSS.17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出4个.【考点】作图—复杂作图.【分析】能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个【解答】解:如图,可以作出这样的三角形4个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2(2)S四边形A1B1C1D1=12﹣1﹣1﹣﹣2=.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.【考点】作图—应用与设计作图;全等图形.【分析】观察图形发现:这个正方形网格的总面积为16,因此只要将面积分为8,即占8个方格,并且图形要保证为相同即可.【解答】解:如下图所示:21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.【考点】全等三角形的性质.【分析】根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.【解答】解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠D=∠A,全等三角形对应边相等可得DO=AO,再根据三角形的内角和定理列式计算即可求出∠DCO,BD=BO+DO计算即可得解.【解答】解:∵△AOB≌△DOC,∴∠D=∠A=80°,DO=AO=18,在△COD中,∠DCO=180°﹣∠D﹣∠DOC=180°﹣80°﹣30°=70°,BD=BO+DO=23+18=41.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.【考点】全等三角形的判定与性质.【分析】由已知两对边相等,加上公共边AB=AB,利用SSS得到三角形ABC与三角形ABD全等,利用全等三角形对应角相等得到∠CAB=∠DAB,即可得证.【解答】证明:在△ABC与△ABD中,,∴△ABC≌△ABD(SSS),∴∠CAB=∠DAB,∴AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.【考点】全等三角形的判定与性质.【分析】欲证明AD=BC,只要证明△ACB≌△CAD即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ACD,在△ACB和△CAD中,,∴△ACB≌△CAD(SAS),∴AD=BC(全等三角形的对应边相等).25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【分析】欲证明AB∥DE,只需证得∠B=∠FED.由Rt△ABC≌Rt△DEF,根据全等三角形的性质推知该结论即可.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据两个等腰直角三角形的性质得:AB=AC,AD=AE,∠BAC=∠EAD=90°,由等式性质得:∠BAE=∠CAD,根据SAS证明两三角形全等;(2)由等腰直角三角形得两锐角为45°,再由全等三角形的性质得:∠ACD=∠B=45°,所以∠BCD=90°,则CD⊥BE.【解答】证明:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS);(2)CD⊥BE,理由是:∵△ABC是等腰直角三角形,∴∠ABC=∠ACB=45°,∵△ABE≌△ACD,∴∠ACD=∠ABC=45°,∴∠BCD=∠ACB+∠ACD=45°+45°=90°,∴CD⊥BE.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定与性质.【分析】直接利用全等三角形的判定与性质分别得出△MOE≌△NOD(SAS),△MDC≌△NEC(AAS),△DOC≌△EOC(SSS),进而得出答案.【解答】解:他的做法正确;理由:在△MOE和△NOD中∵,∴△MOE≌△NOD(SAS),∴∠OME=∠DNO,∵OM=ON,OD=OE,∴DM=EN,∴在△MDC和△NEC中,∴△MDC≌△NEC(AAS),∴DC=EC,在△DOC和△EOC中,∴△DOC≌△EOC(SSS),∴∠DOC=∠EOC,∴OC就是∠AOB的平分线.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是矩形;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.【考点】四边形综合题;全等三角形的判定与性质;平行四边形的判定;矩形的判定;旋转的性质.【分析】思考与实践:(1)根据矩形的定义:有一个角是直角的平行四边形是矩形进行判断即可;(2)取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,根据旋转后三角形的一条边与四边形的一边在同一条直线上,构成平行四边形.发现与运用:=S□ABGH即可;(1)过点E作AB的平行线,交BC于点G,交AD的延长线于点H,得出S梯形ABCD(2)分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH一起拼接到△FBH位置即可.【解答】解:(Ⅰ)(1)如图2所示,△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,∴EF∥AB,又∵在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,∴∠FDP+∠ADP=180°,∴AD和DF在同一条直线上,那么构成的新图形是一个四边形,又∵AD∥BC,∴四边形ABEF是一个平行四边形,∵∠A=90°,∴拼成的新图形是矩形.故答案为:矩形;(2)如图所示,取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,△PEA绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,所以EF∥BC,由于图中AB∥CD所以图中四边形BCFE是平行四边形.(Ⅱ)(1)如下图所示,过点E作AB的平行线,交BC于点G,交AD的延长线于点H,∵AH∥CG,∴∠H=∠CGE,∵E是CD的中点,∴DE=CE,又∵∠DEH=∠CEG,∴△DEH≌△CEG(AAS),∴S△DEH =S△CEG,∵AH∥BC,AB∥HC,∴四边形ABGH是平行四边形,∵EF⊥AB于点F,AB=5,EF=4,∴平行四边形ABGH的面积=AB×EF=5×4=20,∴梯形ABCD的面积=五边形ABGEDD的面积+△CEG的面积=五边形ABGEDD的面积+△DEH的面积=平行四边形ABGH的面积=20;(2)能.如图5,分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH 一起拼接到△FBH位置即可.。
2020-2021学年度八年级下学期数学第一次月考试卷(含答案)
八年级下学期数学第一次月考试卷满分:150分考试用时:120分钟范围:第十六章《二次根式》~第十七章《勾股定理》班级姓名得分一、选择题(本大题共12小题,每小题4分,共48.0分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目答案标号涂黑、涂满)1.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A. 0.7米B. 1.5米C. 2.2米D. 2.4米2.实数a,b在数轴上对应点的位置如图所示,且|a|>|b|,则化简√a2+|a+b|的结果为()A. 2a+bB. −2a−bC. bD. 2a−b3.若式子√x−1在实数范围内有意义,则x的取值范围是()x−2A. x≥1且x≠2B. x≤1C. x>1且x≠2D. x<14.关于√8的叙述正确的是()A. 在数轴上不存在表示√8的点B. √8=√2+√6C. √8=±2√2D. 与√8最接近的整数是35.已知△ABC中,∠C=90°,若a+b=14cm,c=10cm,则△ABC的面积是().A. 24cm2B. 36cm2C. 48cm2D. 60cm26.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好能与点C重合.若BC=5,AC=6,则BD的长为()A. 1B. 2C. 3D. 47.若a=√7+√6,b=√7−√6,则a2021⋅b2022的值等于()A. √7−√6B. √6−√7C. 1D. −18.若√45n是整数,则正整数n的最小值是().A. 4B. 5C. 6D. 79.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)()A. 12mB. 13mC. 16mD. 17m10.如图,字母B所代表的正方形的面积是()A. 12cm2B. 15cm2C. 144cm2D. 306cm211.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三、股四、则弦五”的记载。
2022-2023学年湖南省长沙市长沙县泉塘中学八年级(下)第一次月考数学试卷+答案解析(附后)
2022-2023学年湖南省长沙市长沙县泉塘中学八年级(下)第一次月考数学试卷1. 式子在实数范围内有意义,则x的取值范围是( )A. B. C. D.2. 下列根式是最简二次根式的是( )A. B. C. D.3. 下列计算正确的是( )A. B.C. D.4. 在下列长度的四组线段中,不能组成直角三角形的是( )A. ,,B. ,C. a:b::2:D. ,,5. 直角三角形两边长分别是3、4,第三边是( )A. 5B.C. 5或D. 无法确定6. 下面四个命题:①对顶角相等;②同旁内角互补,两直线平行;③全等三角形的对应角相等;④如果两个实数的平方相等,那么这两个实数相等,其中逆命题是真命题的个数是( )A. 1B. 2C. 3D. 47. 古希腊几何学家海伦和我国南宋数学家秦九韶曾提出利用三角形的三边求面积的公式,称为海伦-秦九韶公式:如果一个三角形的三边长分别是a,b,c,记,那么三角形的面积为如图,在中,,,所对的边分别为a,b,c,若,,,则的面积为( )A. B. C. D.8. 如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )A. 8米B. 10米C. 12米D. 14米9. 如图,以的三边为直径分别向外作半圆,若斜边,则图中阴影部分的面积为( )A.B.C.D.10. 已知,中,,,,的平分线交BC于点D,则BD的长度为( )A.B. 2cmC.D. 3cm11. 比较大小:______12. 如果是一个整数,那么最小的正整数n是______.13. 化简:______.14. 在中,,,则______ .15. 一株美丽的勾股树如图所示,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为2,5,1,2,则最大的正方形E的面积是______.16. 如图,有一圆柱形油罐,底面周长为24m,高为从A处环绕油罐建梯子,梯子的顶端点B正好在点A的正上方,梯子最短需要______17. 计算题:;18. 已知,,则:______ ;______ ;______ .计算式子的值.19. 如图,已知在中,于D,,,求DC的长.求AB的长.20. 如图所示,四边形ABCD是矩形,把沿AC折叠到,与BC交于点E,若,,求BE的长.21. 如图1,荡秋千是中国古代北方少数民族创造的一种运动.有一天,小明在公园里游玩,如图2,他发现秋千静止时,踏板离地的垂直高度,将它往前推送水平距离时,秋千的踏板离地的垂直高度,秋千的绳索始终拉得很直,求绳索AD的长度?22. 如图,在四边形ABCD中,,,,求AC的长.判断的形状,并说明理由.求的度数.23. 如图,直角三角形ACB,直角顶点C在直线l上,分别过点A、B作直线l的垂线,垂足分别为点D和点求证:;如果①求证:;②若设的三边分别为a、b、c,试用此图证明勾股定理.24. 阅读与思考.两点之间的距离公式:如果数轴上的点,分别表示实数,,两点,间的距离记作,那么对于平面上的两点,间的距离是否有类似的结论呢?运用勾股定理,就可以推出平面上两点之间的距离公式.如图1,已知平面上两点,,求A,B两点之间的距离;如图2,已知平面上两点,,求这两点之间的距离;一般地,设平面上任意两点和,如图3,如何计算A,B两点之间的距离?对于问题3,作轴,轴,垂足分别为点,;作轴,垂足为点;作,垂足为点C,且延长BC与y轴交于点,则四边形,是长方形.因为______,______,所以______.所以这就是平面直角坐标系中两点之间的距离公式.请你根据上面的公式求出下列两点之间的距离:,25. 【阅读材料】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如善于思考的小明进行了以下探索:若设其中a、b、m、n均为整数,则有,这样小明就找到了一种把类似的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:【问题解决】若,当a、b、m、n均为整数时,则______,______均用含m、n的式子表示若,且x、m、n均为正整数,分别求出x、m、n的值.【拓展延伸】化简______.答案和解析1.【答案】A【解析】解:根据题意得:,即时,二次根式有意义.故选:根据二次根式的性质,被开方数大于等于0,解不等式即可.主要考查了二次根式的意义和性质.概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.【答案】A【解析】解:A选项:,是最简二次根式,故该选项符合题意;B选项:,不是最简二次根式,故该选项不符合题意;C选项:,不是最简二次根式,故该选项不符合题意;D选项:,不是最简二次根式,故该选项不符合题意;故选:当二次根式满足:①被开方数不含开的尽方的数或式;②根号内面没有分母.即为最简二次根式,由此即可求解.本题考查了最简二次根式,掌握最简二次根式的性质是关键.3.【答案】D【解析】解:A、无法计算,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,故此选项正确.故选:直接利用二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确掌握相关运算法则是解题关键.4.【答案】A【解析】解:,,,即,以a,b,c为边能组成直角三角形,故本选项不符合题意;B.,,,即,以a,b,c为边能组成直角三角形,故本选项不符合题意;C.设,,,,,,即,以a,b,c为边能组成直角三角形,故本选项不符合题意;D.,,,即,以a,b,c为边不能组成直角三角形,故本选项符合题意;故选:先分别求出两小边的平方和和最长边的平方,再看看是否相等即可.本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理是解此题的关键,注意:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.5.【答案】C【解析】解:当第三边是斜边时,则第三边;当第三边是直角边时,则第三边故选:此题要考虑两种情况:当第三边是斜边时;当第三边是直角边时.熟练运用勾股定理,注意此题的两种情况.6.【答案】B【解析】解:①对顶角相等的逆命题为相等的角为对顶角,错误,为假命题,不符合题意;②同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,正确,为真命题;③全等三角形的对应角相等的逆命题为对应角相等的三角形全等,错误,为假命题,符合题意;④如果两个实数的平方相等,那么这两个实数相等的逆命题为如果两个实数相等,那么这两个实数的平方也相等,正确,为真命题,真命题有2个,故选:利用平行线的判定、全等三角形的性质、实数的性质分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解平行线的判定、全等三角形的性质、实数的性质,属于基础知识,比较简单.7.【答案】B【解析】解:,,,故选:根据海伦-秦九韶公式即可解决此题.本题主要考查二次根式的应用,熟练掌握二次根式的化简以及运算是解决本题的关键.8.【答案】B【解析】解:如图,设大树高为,小树高为,过C点作于E,则EBDC是矩形,连接AC,,,,在中,,故选:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.9.【答案】C【解析】解:根据题意知:图中阴影部分的面积故选:利用勾股定理和圆的面积公式解答.本题主要是考查勾股定理的应用,比较简单,解题的关键是将图中阴影部分的面积转化为的形式.10.【答案】C【解析】解:过点D作于E,在中,由勾股定理得:,是角平分线,,,,则,即,解得,,,故选:作于E,根据勾股定理求出AB,根据角平分线的性质得到,根据三角形的面积公式计算求出CD,即可得到答案.本题考查的是勾股定理、角平分线的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么11.【答案】<【解析】解:,,故答案为:先变形,,再比较即可.本题考查了二次根式的性质和实数的大小比较的应用,主要考查学生的变形能力.12.【答案】5【解析】解:是一个整数,是一个整数,最小正整数n的值是:5,故答案为:直接利用二次根式的性质化简,再利用二次根式乘法运算法则求出答案.此题主要考查了二次根式的性质,正确化简二次根式是解题关键.13.【答案】【解析】解:因为,所以故答案为:根据二次根式的性质,算术平方根的值必须是正数,所以开方所得结果是,然后再去绝对值.本题主要考查二次根式的化简,其中必须符合二次根式的性质.14.【答案】2【解析】解:,,,则故答案是:已知,,根据勾股定理可得,可求得,然后可求出的值.本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.15.【答案】10【解析】【分析】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.根据正方形的面积公式,结合勾股定理,能够得出正方形A,B,C,D的面积和即为最大正方形的面积.【解答】解:如图,根据勾股定理的几何意义,可得正方形A、正方形B的面积和为,正方形C、正方形D的面积和为,,即所以最大正方形E的面积为10,故答案是16.【答案】26【解析】【分析】本题考查了平面展开-最短路径问题,化“曲”为“平”,在平面内,利用两点之间线段最短和勾股定理是常用求解方法.化“曲”为“平”,画出圆柱的展开图,在平面内,得到两点的位置,再根据两点之间线段最短和勾股定理求解即可.【解答】解:将圆柱体的侧面展开,如图所示:则底面周长,,在中,,故答案为:17.【答案】解:原式;原式【解析】先化简各项二次根式,再合并同类项即可得出结论.先化简各项二次根式,再按照二次根式乘法计算得出结论.本题考查了二次根式的混合运算,掌握二次根式混合运算的顺序和运算法则是解题关键.18.【答案】 1【解析】解:,,,,,故答案为:,根据二次根式的加减,二次根式的乘法运算进行计算即可求解.根据的结论,结合完全平方公式进行计算即可求解.本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.19.【答案】解:于D,且,,在中,,;在中,,【解析】由题意可知三角形CDB是直角三角形,利用已知数据和勾股定理直接可求出DC的长;有的数据和勾股定理求出AD的长,进而求出AB的长.本题考查了勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么20.【答案】解:四边形ABCD为矩形,,,,,沿AC折叠到,与BC交于点E,,,,,,设,则,,在中,,,解得即BE的长为【解析】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.根据矩形性质得,,,,再根据折叠性质得,而,则,所以,设,则,,然后在中利用勾股定理可计算出21.【答案】解:由题意得:,在中,由勾股定理得:,设绳索AD的长度为x m,则,,解得:,答:绳索AD的长度是【解析】设绳索AD的长度为x m,则,在中,由勾股定理得出方程,解方程即可.本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.22.【答案】解:,在中,由勾股定理,得;是等腰直角三角形,理由:,,,,又,是等腰直角三角形;是等腰直角三角形;,,【解析】在中,利用勾股定理即可求得答案;根据勾股定理的逆定理证明为直角三角形,,由,得到,进一步即可得到答案.由知,是等腰直角三角形,进而推出,于是求出的度数.本题考查勾股定理及其逆定理,等腰直角三角形,熟练掌握勾股定理及其逆定理是解题的关键.23.【答案】证明:,于点D,,,;①于点D,于点E,,由知:,在和中,,≌,;②由图可知:,,化简,得:【解析】根据直角三角形的定义和垂直的定义,可以证明结论成立;①根据AAS可以证明结论成立;②根据,代入字母计算即可证明结论成立.本题考查勾股定理的证明,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】解:因为,,所以,,由勾股定理得;因为,,所以,,由同理得;;;;由两点之间的距离公式得:【解析】【分析】首先求得,,再利用勾股定理计算即可;首先求得,,再利用勾股定理计算即可;利用坐标与图形的性质可得,,再利用勾股定理可得答案;直接利用公式代入计算即可.【解答】解:见答案;见答案;因为,,所以,所以故答案为:;;;由两点之间的距离公式得:【点评】本题是阅读理解题,主要考查了坐标与图形的性质,勾股定理,两点间距离公式的推导等知识,熟练掌握勾股定理是解题的关键.25.【答案】【解析】解:,,且a、b、m、n均为整数,,,故答案为:,2mn;,,,又、m、n均为正整数,或,即,,或,,;原式,故答案为:根据完全平方公式将等式右边展开,然后分析求解;根据完全平方公式将等式右边展开,然后列方程求解;根据完全平方公式和二次根式的性质进行变形化简.本题考查完全平方公式,二次根式的性质与化简,理解二次根式的性质,掌握完全平方公式的结构是解题关键.。
人教版八年级下学期第一次月考数学试卷含答案解析
八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>32.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣24.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是35.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.37.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,408.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题(每空3分,共24分)11.当x时,式子有意义;当x时,式子有意义.12.已知:,则x2﹣xy=.13.当x时,.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.已知,则=.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=.化简计算:(+++…+).-湖北省黄石市慧德学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>3【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3﹣m≥0,解得m≤3.故选A.【点评】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个【考点】二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知(2)(6)中的被开方数都不会恒大于等于0,故不是二次根式;(4)中的根指数是3,故不是二次根式;故二次根式是(1)(3)(5)(7),共4个.故选C.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣2【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题主要考查代数式中字母的取值范围,代数式中主要有二次根式和分式两部分.【解答】解:根据二次根式的意义,被开方数a﹣2≥0,解得a≥2;根据分式有意义的条件,a﹣2≠0,解得a≠2.∴a>2.故选B.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是3【考点】最简二次根式.【分析】根据二次根式的性质,被开方数大于等于0,根据非负数的性质,逐一判断.【解答】解:∵x2+9总是正数,∴当x=0时,二次根式==3,是个有理数,∴B错.故选B.【点评】本题考查了两个非负数的性质:≥0(a≥0),a2≥0.5.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m【考点】勾股定理的应用.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长5m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】解:如图:∵AC=5m,BC=12m,∠C=90°∴AB==13m故选B.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用.6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【分析】由AB垂直于BC,得到三角形ABC为直角三角形,进而由AB及BC的长,利用勾股定理求出AC的长,由AC垂直于CD,得到三角形ACD为直角三角形,由AC及CD 的长,利用勾股定理求出AD的长,由DE垂直于AD,得到三角形ADE为直角三角形,由AD及DE的长,利用勾股定理即可求出AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴由勾股定理得:AC==;AD==;AE==2.故选B.【点评】此题考查了勾股定理的运用,熟练掌握勾股定理是解本题的关键.7.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半得出AC的长即可.【解答】解:∵正方形ABCD的面积为,AC=BD,∴AC×BD=,则AC2=,故AC=,故选:A.【点评】此题主要考查了正方形的性质,利用正方形的面积等于对角线乘积的一半得出是解题关键.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【考点】翻折变换(折叠问题).【分析】首先根据翻折的性质得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE 的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.【点评】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.二、填空题(每空3分,共24分)11.当x≥﹣1时,式子有意义;当x>2时,式子有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件可得x+1≥0,再解即可;根据二次根式有意义的条件和分式有意义的条件可得,再解不等式组即可.【解答】解:由题意得:x+1≥0,解得:x≥﹣1;由题意得:,解得:x>2,故答案为:≥﹣1;>2.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.12.已知:,则x2﹣xy=8.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质列出方程求出x、y的值,然后代入所求代数式计算即可.【解答】解:∵,∴,解得,∴x2﹣xy=4+4=8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.当x≤时,.【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=|2x﹣1|,结合二次根式以及绝对值的性质求解.【解答】解:∵=1﹣2x根据算术平方根的结果为非负数,可知1﹣2x≥0,解得x≤,故当x≤时,=1﹣2x.【点评】根据算术平方根的结果为非负数,列不等式是解题的关键.故答案为:“两直线平行,同位角相等”.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为6和4.【考点】勾股定理.【分析】设全等的直角三角形的两直角边长分别为a,b(a>b),则根据已知条件和勾股定理得到a2+b2=52,(a﹣b)2=4,根据这两个等式可以求出a,b的长.【解答】解:设全等的直角三角形的两直角边长分别为a,b(a>b>0),∵图中大小正方形的面积分别为52和4,∴a2+b2=52,(a﹣b)2=4,∴a﹣b=2,∴a=b+2,代入a2+b2=52中得:(b+2)2+b2=52,整理得(x﹣4)(x+6)=0∴b1=4,b2=﹣6(不合题意舍去),∴a=4+2=6,∴直角三角形的两条直角边的长分别为4,6,故答案为:6和4.【点评】此题主要考查了勾股定理和三角形,正方形的面积公式,解题关键在于找出各边关系列出方程.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【专题】应用题.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故答案为:10.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.18.已知,则=.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,求出满足两个被开方数条件的x的值.【解答】解:依题意有x﹣2≥0且2﹣x≥0,解得x=2,此时y=,则=.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式,此时≥0;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据二次根式的乘法法则运算;(2)利用平方差公式计算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(4)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=﹣=﹣=﹣46=﹣24;(2)原式=16﹣5=11;(3)原式=(6﹣+4)÷2=÷2=;(4)原式=++=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)把式子写成(x﹣y)2﹣xy的形式,然后代入求值即可;(2)把式子写成(x+y)(x﹣y)的形式,然后代入求解即可.【解答】解:(1)原式=(x﹣y)2+xy=22+(+1)(﹣1)=4+2=6;(2)原式=(x+y)(x﹣y)=2×2=4.【点评】本题考查了求代数式的值,正确对代数式进行变形可以简化运算过程.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.【考点】二次根式的应用.【分析】(1)利用二次根式的乘法运算公式直接求出即可;(2)利用勾股定理和完全平方公式求出AB即可.【解答】解:(1)Rt△ABC的面积=AC×BC=×(+)(﹣)=;(2)斜边AB的长==.答:斜边AB的长为.【点评】此题主要考查了二次根式的应用,正确利用乘法公式进行计算求出是解题关键.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.【考点】勾股定理;勾股定理的逆定理.【专题】计算题.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=ABBC+ACCD=×3×4+×5×12=36.四边形ABCD【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键,难度适中.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.【考点】矩形的性质;翻折变换(折叠问题).【专题】应用题.【分析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,第一问可求解;(2)由于EF=DE,可设EF的长为x,进而在Rt△EFC中,利用勾股定理求解直角三角形即可.【解答】解:(1)由题意可得,AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)由题意可得EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得.【点评】本题主要考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=﹣.化简计算:(+++…+).【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,发现:连续两个正整数的算术平方根的和乘以这两个算术平方根的差积是1,根据二次根式的乘法,可得答案;(2)根据上述规律,可得答案.【解答】解:(1)请用字母表示你所发现的律:即=﹣(n为正整数),故答案为:﹣;(2)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=2﹣1.【点评】本题考查了分母有理化,认真观察等式,发现规律是解题关键.。
华师大版八年级下册第一次月考数学试卷(含答案及解析)
八年级数学试卷一、选择题(每小题4分,共40分)1.下列各式﹣3x ,,,﹣,,,中,分式的个数为()A.4B.3C.2D.12.下列函数关系式:①y=﹣2x,②,③y=﹣2x2,④y=2,⑤y=2x﹣1.其中是一次函数的是()A.①⑤B.①④⑤C.②⑤D.②④⑤3.分式无意义,则x的值()A.1B.﹣1 C.0D.±14.分式的最简公分母是()A.24a2b2c2B.24a6b4c3C.24a3b2c3D.24a2b3c35.如果把分式的x和y都扩大k倍,那么分式的值应()A.扩大k倍B.不变C.扩大k2倍D.缩小k倍6.方程=﹣的解是()A.1B.﹣1 C.2D.无解7.若分式方程=2+有增根,则a的值为()A.4B.2C.1D.08.(2011•曲靖)点P(m﹣1,2m+1)在第二象限,则m的取值范围是()A.B.C.m<1 D.9.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.10.(2004•万州区)如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.二、填空题(每小题4分,共24分)11.(2006•永州)当x=_________时,分式的值为0.12.不改变分式的值,把分式的分子、分母的系数都化为整数的结果是_________.13.科学记数法得N=﹣3.25×10﹣5,则原数N=_________.14.若点P(2x﹣2,﹣x+4)到两坐标轴的距离相等,则点P的坐标为_________.15.若函数y﹦(m﹣1)x+m2﹣1是正比例函数,则m的值为_________.16.(2009•鸡西)若关于x的分式方程无解,则a=_________.三、解答题(17题每小题4分,18,19,每小题6分,)17.(16分)计算(1)(﹣)0﹣(﹣)2÷2﹣2﹣(﹣1)3 (2)+﹣(3)+÷(4)(2mn2)﹣2(m﹣2n﹣1)﹣3(结果化为只含有正指数幂的形式)18.先化简,再求值:(1),其中:x=﹣2.(2)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.(3)先化简,再求值:,其中a=.19.(6分)暑假期间,明明进行爬山锻炼,某时,从山脚出发,1小时后回到了山脚,他离开山脚的距离s(米)与爬山时间t(分)的关系可用下图的曲线表示,根据这个图象回答:(1)明明离开山脚多长时间爬得最高?爬了多少米?(2)爬山多长时间进行休息?休息了几分钟?(3)爬山第30分钟到第40分钟,爬了多少米?(4)下山时,平均速度是多少?(6分)直线y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简求值:四、解答题(20,21,22,每小题8分,23题10分,24题12分)20.(8分)要使关于x的方程﹣=的解是正数,求a的取值范围.21.(8分)某校组织学生到距离6km的少年科技馆参观,学生小李因有事没有赶上学校的包车,于是准备在学校门口改坐出租车去少年科技馆,出租车的收费标准如下:里程收费(元)3km以下(含3km)8.003km以上,每增加1km 1.80(1)写出坐出租车的里程数为xkm(x>3)时,所付车费的代数式.(2)小李同学身上只有14元钱,坐出租车到少年科技馆的车费够不够?请说明理由.22.(8分)已知函数y=﹣2x+3,(1)画出这个函数的图象;(2)写出函数与x轴的交点坐标,与y轴的交点坐标;(3)求此函数的图象与坐标轴围成的三角形的面积.23.(10分)甲、乙两地相距828千米,一列普通列车与一列直快列车都由甲地开往乙地,直快列车的平均速度是普通列车的平均速度的1.5倍,直快列车比普通列车晚出发2小时,比普通列车早到4小时,求两列火车的平均速度.24.(12分)(2012•岳阳二模)我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:①设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;②如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;③若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.湘莲品种 A B C每辆汽车运载量(吨)12 10 8每吨湘莲获利(万元) 3 4 2八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列各式﹣3x,,,﹣,,,中,分式的个数为()A.4B.3C.2D.1考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:下列各式﹣3x,,,﹣,,,中,分式有:,,,,∴分式的个数为4个.故选A.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.下列函数关系式:①y=﹣2x,②,③y=﹣2x2,④y=2,⑤y=2x﹣1.其中是一次函数的是()A.①⑤B.①④⑤C.②⑤D.②④⑤考点:一次函数的定义.分析:根据一次函数的定义条件进行逐一分析即可.解答:解:①y=﹣2x是一次函数;②自变量次数不为1,故不是一次函数;③y=﹣2x2自变量次数不为1,故不是一次函数;④y=2是常数;⑤y=2x﹣1是一次函数.所以一次函数是①⑤.故选A.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.3.分式无意义,则x的值()A.1B.﹣1 C.0D.±1考点:分式有意义的条件.分析:分母为零,分式无意义;分母不为零,分式有意义,即|x|﹣1=0,解得x的取值.解答:解:当分母|x|﹣1=0,即x=±1时,分式无意义.故选D.点评:从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.分式的最简公分母是()A.24a2b2c2B.24a6b4c3C.24a3b2c3D.24a2b3c3考点:最简公分母.分析:解答本题关键是要求出三个分式的分母的最小公倍数,即是分式的最简公分母.解答:解:3,2,8的最小公倍数为24,a2b,ab2,a3bc3的最小公倍数为a3b2c3,∴分式的最简公分母为24a3b2c3,故选C.点评:本题考查最简公分母的知识,比较简单,同学们要熟练掌握.5.如果把分式的x和y都扩大k倍,那么分式的值应()A.扩大k倍B.不变C.扩大k2倍D.缩小k倍考点:分式的基本性质.分析:依题意分别用kx和ky去代换原分式中的x和y,利用分式的基本性质化简即可.解答:解:分别用kx和ky去代换原分式中的x和y,得===,可见新分式是原分式的k倍.故选A.点评:解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.方程=﹣的解是()A.1B.﹣1 C.2D.无解考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2=x+1﹣3(x﹣1),去括号得:2=x+1﹣3x+3,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.若分式方程=2+有增根,则a的值为()A.4B.2C.1D.0考点:分式方程的增根.专题:计算题.分析:已知方程两边都乘以x﹣4去分母后,求出x的值,由方程有增根,得到x=4,即可求出a的值.解答:解:已知方程去分母得:x=2(x﹣4)+a,解得:x=8﹣a,由分式方程有增根,得到x=4,即8﹣a=4,则a=4.故选A点评:此题考查了分式方程的增根,分式方程的增根即为最简公分母为0时x的值.8.(2011•曲靖)点P(m﹣1,2m+1)在第二象限,则m的取值范围是()A.B.C.m<1 D.考点:点的坐标;解一元一次不等式组.专题:证明题.分析:让点P的横坐标小于0,纵坐标大于0列不等式求值即可.解答:解:∵点P(m﹣1,2m+1)在第二象限,∴m﹣1<0,2m+1>0,解得:﹣<m<1.故选:B.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.考点:由实际问题抽象出分式方程.专题:应用题.分析:本题的等量关系为:顺流时间+逆流时间=9小时.解答:解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选A.点评:未知量是速度,有速度,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.10.(2004•万州区)如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.解答:解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选C.点评:考查根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.二、填空题(每小题4分,共24分)11.(2006•永州)当x=﹣2时,分式的值为0.考点:分式的值为零的条件.专题:计算题.分析:要使分式的值为0,必须分式分子的值为0,并且分母的值不为0.解答:解:由分子x+2=0,解得x=﹣2,而x=﹣2时,分母x﹣2=﹣2﹣2=﹣4≠0.所以x=﹣2.点评:要注意分母的值一定不能为0,分母的值是0时分式没有意义.12.不改变分式的值,把分式的分子、分母的系数都化为整数的结果是.考点:分式的基本性质.分析:不改变分式的值就是依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.解答:解:分子分母上同时乘以100得到,故分式的分子、分母的系数都化为整数的结果是.点评:本题主要考查分式的基本性质的应用,是一个基础题.13.科学记数法得N=﹣3.25×10﹣5,则原数N=﹣0.0000325.考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“﹣3.25×10﹣5中﹣3.25的小数点向左移动5位就可以得到.解答:解:﹣3.25×10﹣5=﹣0.0000325,故答案为:﹣0.0000325.点评:本题主要考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.14.若点P(2x﹣2,﹣x+4)到两坐标轴的距离相等,则点P的坐标为(2,2)或(﹣6,6).考点:点的坐标.分析:由点P到两坐标轴的距离相等得到(2x﹣2)=±(﹣x+4),解得x的值,从而得到点P的坐标.解答:解:∵点P到两轴的距离相等,∴2x﹣2=﹣x+4或2x﹣2=﹣(﹣x+4),即x=2或x=﹣2,代入点P坐标(2,2)或(﹣6,6).故答案为:(2,2)或(﹣6,6).点评:本题考查的是点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.15.若函数y﹦(m﹣1)x+m2﹣1是正比例函数,则m的值为﹣1.考点:正比例函数的定义.分析:根据正比例函数的定义列式计算即可得解.解答:解:根据题意得,m2﹣1=0且m﹣1≠0,解得m=±1且m≠1,所以m=﹣1.故答案为:﹣1.点评:本题考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.16.(2009•鸡西)若关于x的分式方程无解,则a=1或﹣2.考点:分式方程的解.专题:计算题;压轴题.分析:分式方程无解,即化成整式方程时无解,或者求得的x能令最简公分母为0,据此进行解答.解答:解:方程两边都乘x(x﹣1)得,x(x﹣a)﹣3(x﹣1)=x(x﹣1),整理得,(a+2)x=3,当整式方程无解时,a+2=0即a=﹣2,当分式方程无解时:①x=0时,a无解,②x=1时,a=1,所以a=1或﹣2时,原方程无解.点评:分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.三、解答题(17题每小题16分,18,19,20题每小题16分,)17.(16分)计算(1)(﹣)0﹣(﹣)2÷2﹣2﹣(﹣1)3(2)+﹣(3)+÷(4)(2mn2)﹣2(m﹣2n﹣1)﹣3(结果化为只含有正指数幂的形式)解答:解:(1)原式=1﹣÷﹣(﹣1)=1﹣1+1=1;(2)原式==﹣=﹣1;(3)原式=+•=﹣=;(4)原式=m﹣2n﹣4•m6n3=m4n﹣1=.18.(6分)先化简,再求值:,其中:x=﹣2.考点:分析:解解:,答:=,=,=x+1,当x=﹣2时,原式=﹣2+1,=﹣1.(2)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a 的值代入求值.(3)先化简,再求值:,其中a=.:解答:解:=×=﹣==,由于a≠±1,所以当a=时,原式==.解答:解:原式=+•=+=,当a=1+时,原式===.19.(6分)暑假期间,明明进行爬山锻炼,某时,从山脚出发,1小时后回到了山脚,他离开山脚的距离s(米)与爬山时间t(分)的关系可用下图的曲线表示,根据这个图象回答:(1)明明离开山脚多长时间爬得最高?爬了多少米?(2)爬山多长时间进行休息?休息了几分钟?(3)爬山第30分钟到第40分钟,爬了多少米?(4)下山时,平均速度是多少?解答:解;(1)根据图象得出:明明离开山脚时间为40分钟爬得最高,爬了600米;(2)爬山8分钟和30分钟时进行休息,分别休息了(10﹣8)=2(分钟)和35﹣30=5(分钟);(3)爬山第30分钟到第40分钟,爬了600﹣400=200(米);(4)下山时,平均速度是:=30米/秒.(6分)直线y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简求值:根据图象可知直线y=(3﹣a)x+b﹣2经过第二、三、四象限,所以3﹣a<0,b﹣2<0,所以a>3,b<2,所以b﹣a<0,a﹣3>0,2﹣b>0,所以=a﹣b﹣|a﹣3|﹣(2﹣b)=a﹣b﹣a+3﹣2+b=1.四、解答题(21,22,23每小题8分,24题10分,25题12分)20.(8分)要使关于x的方程﹣=的解是正数,求a的取值范围.解答:解:去分母,得(x+1)(x﹣1)﹣x(x+2)=a,解得x=﹣因为这个解是正数,所以﹣>0,即a<﹣1.又因为分式方程的分母不能为零,即﹣≠1且﹣≠﹣2,所以a≠±3.所以a的取值范围是a<﹣1且a≠﹣3.21.(8分)某校组织学生到距离6km的少年科技馆参观,学生小李因有事没有赶上学校的包车,于是准备在学校门口改坐出租车去少年科技馆,出租车的收费标准如下:里程收费(元)3km以下(含3km)8.003km以上,每增加1km 1.80(1)写出坐出租车的里程数为xkm(x>3)时,所付车费的代数式.(2)小李同学身上只有14元钱,坐出租车到少年科技馆的车费够不够?请说明理由.解答:解:(1)根据题意得:8+1.8(x﹣3)=1.8x+2.6;(2)1.8x+2.6=14,x=6.∴坐出租车到少年科技馆距离大于6公里,车费够.22.(8分)已知函数y=﹣2x+3,(1)画出这个函数的图象;(2)写出函数与x轴的交点坐标,与y轴的交点坐标;(3)求此函数的图象与坐标轴围成的三角形的面积.考点:一次函数的图象;一次函数图象上点的坐标特征.专题:计算题.分析:(1)利用描点法画函数图象;(2)根据图象写出直线与坐标轴的交点坐标;(3)根据三角形面积根式计算.解答:解:(1)当x=0时,y=3;当y=0时,x=,描点如图:(2)函数图象与x轴的交点坐标为(,0),与y轴的交点坐标为(0,3);(3)此函数的图象与坐标轴围成的三角形的面积=×3×=.23.(10分)甲、乙两地相距828千米,一列普通列车与一列直快列车都由甲地开往乙地,直快列车的平均速度是普通列车的平均速度的1.5倍,直快列车比普通列车晚出发2小时,比普通列车早到4小时,求两列火车的平均速度.解答:解:设普通列车的平均速度为x千米∕时,则直快列车的平均速度为1.5x千米∕时,由题意得解得x=46经检验,x=46是原分式方程的解1.5x=1.5×46=69(千米∕时)答:普通列车的平均速度为46千米∕时,直快列车的平均速度为69千米∕时.24.(12分)(2012•岳阳二模)我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:①设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;②如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;③若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.湘莲品种 A B C每辆汽车运载量(吨)12 10 8每吨湘莲获利(万元) 3 4 2解答:解:(1)设装A种为x辆,装B种为y辆,则装C种为10﹣x﹣y辆,由题意得:12x+10y+8(10﹣x﹣y)=100∴y=10﹣2x.(2)10﹣x﹣y=10﹣x﹣(10﹣2x)=x故装C种车也为x 辆.∴解得2≤x≤4.x为整数,∴x=2,3,4故车辆有3种安排方案,方案如下:方案一:装A种2辆车,装B种6辆车,装C种2辆车;方案二:装A种3辆车,装B种4辆车,装C种3辆车;方案三:装A种4辆车,装B种2辆车,装C种4辆车.(3)设销售利润为W(万元),则W=3×12x+4×10×(10﹣2x)+2×8x=﹣28x+400∴W是x的一次函数,且x增大时,W减少,∴x=2时,W max=400﹣28×2=344(万元).参与本试卷答题和审题的老师有:sks;lanchong;星期八;HJJ;zhjh;weibo;gsls;438011;Liuzhx;gbl210;lk;137-hui;孙廷茂;wdxwwzy;马兴田;733599;sd2011;lanyan;csiya;蓝月梦;nhx600;lantin(排名不分先后)菁优网2014年3月17日。
八年级下学期第一次月考数学试卷(含参考答案)
八年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________第I卷(选择题共40分)一.单选题.(共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个最符合题目要求。
1.下列各曲线是根据不同的函数绘制而成的,其中是中心对称图形的是( )2.若a<b<0,则下列条件一定成立的是( )A.ab<0B.a+b>0C.ac<bcD.a+c<b+c3.下列各式由左边到右边的变形中,是因式分解的为( )A.a2-16+3a=(a-4)(a+4)+3aB.10x2-5x=5x(2x-1)C.x2-4x+4=x(x-4)+4D.a(m+n)=am+an4.不等式x>4的解集在数轴上表示正确的是( )A. B. C. D.5.在平面直角坐标系中,已知点A的坐标为(1,4),如果将点A向右平移2个单位长度得到点A’,则点A’的坐标为( )A.(1,2)B.(1,6)C.(-1,4)D.(3,4)6.多项式12a3b-8ab2c的公因式是( )A.4a2B.4abC.2a2D.4abc7.下列多项式能用平方差公式进行因式分解的是( )A.x2-1B.x2+4C.x+9D.x2-6x8.下列多项式能直接用完全平方公式进行因式分解的是( )A.9x2-16y2B.4x2-4x+1C.x2+xy+y2D.9-3x+x29.如图,将△ABC绕点A逆时针旋转角a(0°<a<180°)得到△MDE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25,则旋转角a的度数是( )A.70°B.60°C.50°D.40°(第9题图) (第10题图)10.如图,将点A 1(1,1)向上平移1个单位,再向右平移2个单位,得到点A 2;将点A 2向上平移2个单位,再向右平移4个单位,得到点A 3;将点A 3向上平移4个单位,再向右平移8个单位,得到点A 4……按这个规律平移得到点A n ,则点A 2024的横坐标为( )A.22024B.22004-1C.22023-1D.2203+1第II 卷(非选择题 共110分)二.填空题:(每题4分,共24分)11.用适当的符号表示下列关系:a 是正数 .12.因式分解:a 2+4a= .13.若m>n ,则m -n 0(填">"或"="或"<").14.若一次函数y=kx+b 的图象如图所示,则关于x 的不等式kx+b<0的解集是 .(第14题图) (第15题图) (第16题图)15.如图,将周长为10cm 的△ABC 沿 BC 方向平移得到△DEF ,连接AD ,四边形ABFD 的周长为15cm ,则平移的距离为 cm.16.如图,长方形ABCD 中,AB=5,BC=12,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B’处,当△CEB'为直角三角形时,BE 的长为 .三.解答题(共10小题,86分)17.(4分)解下列不等式,并把不等式的解集在数轴上表示出来:-x -1≤3x -518.(6分)解不等式组{x -3(x -1)>11+3x 2>x -1,并写出它的所有非负整数解.19.(每题3分,共18分)因式分解:(1)8m 2n+2mn (2)-15a ³b 2+9a 2b 2-3ab 3 (3)4a 2-1(4)a 2-4ab+4b 2 (5)3x 3-12x (6)mx 2+2m 2x+m 320.(6分)先分解因式,再求值:2x(a-2)-y(2-a),其中a=2,x=1.5,y=-2.21.(6分)在如图所示的平面直角坐标系中,已知点4(1,2),B(3,1).(1)C点的坐标为.(2)将三角形ABC先向下平移4个单位,在向左平移3个单位,得到三角形A1B1C1,画出三角A1B1C1:(3)三角形A1B1C1的面积为。
山西省大同市煤矿第一中学校2023-2024学年八年级下学期第一次月考数学试卷(含答案)
2023—2024学年第二学期第一次月考八年级数学试题卷(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1. 下列二次根式能与合并的是()A. B. C. D.答案:B2. 下列各组数中,以它们为边长能构成直角三角形的是()A. 2,3,4B. 1,2,C. 2,2,D. ,,答案:C3. 下列二次根式中,不是最简二次根式是()A. B. C. D.答案:D4. 已知,则x的值是()A. B. 2 C. D.答案:C5. 一艘轮船以16海里时速度从港口出发向东北方向航行,另一艘轮船以12海里/时的速度同时从港口出发向东南方向航行,离开港口1.5小时后,两船相距()A. 10海里B. 20海里C. 30海里D. 40海里答案:C6. 已知a=,b=,用含a、b的代数式表示,这个代数式是()A. a+bB. abC. 2aD. 2b答案:B7. 已知a <0,那么可化简为( )A.B. C. D.答案:D8. 如图,长方形中,,,在数轴上,若以点A 为圆心,AC 的长为半径画弧交数轴于点M ,则点M 表示的数为( ).A. B. C. D.答案:D 9. 下列计算中,正确的是( )A. B.C. D. 答案:A10. 下列命题的逆命题是真命题的是( )A. 若,,则B. 全等三角形的对应角相等C. 对顶角相等D. 若,则答案:D11. 估计的值应该在( )A. 6和7之间B. 7和8之间C. 8和9之间D. 9和10之间答案:B12. 如图,在中,平分交于点,则点到的距离是( )A. 3B. 4C. 5D. 6答案:A13. 如图中字母A所代表的正方形的面积为()A. 4B. 8C. 16D. 64答案:D14. 如图,从一个大正方形中裁去面积为27和48的两个小正方形,则剩下阴影部分的面积为()A. 36B.C. 72D.答案:C15. 如图所示,在长方形中,,若将长方形沿折叠,使点C落在边上的点F处,则线段的长为()A. B. C. D. 10答案:C二、填空题(本大题共4小题,每小题2分,共8分)16. 若式子在实数范围内有意义,则的取值范围是________.答案:17. 如图,有一个长方体盒子,其长、宽、高分别是、、,则该长方体盒子内可放入的木棒(木棒的粗细忽略不计)的长度最长是______.答案:18. 如果,其中、为有理数,那么等于___________.答案:319. 如图,在中,,以点A为圆心,长为半径画弧,交于点D,.则________°.答案:90三、解答题(本大题共8小题,共62分)20. 计算:.答案:21. 如图,在中,,垂足为,且.求证:是直角三角形.答案:见解析证明:∵,∴,∵,,.∴,,∴,∵,,∴,∴是直角三角形.22. 先化简,再代入求值:,其中.答案:,.解:原式,,,,,把代入得,原式.23. 小明家装修,电视背景墙长为,宽为,中间要镶一个长为,宽为的大理石图案(图中阴影部分).(1)长方形周长是多少?(结果化为最简二次根式)(2)除去大理石图案部分,其他部分贴壁布,若壁布造价为6元,大理石的造价为200元,则整个电视墙需要花费多少元?(结果化为最简二次根式)答案:(1)(2)元【小问2详解】解:长方形的面积:,大理石的面积:,壁布的面积:,整个电视墙的总费用:(元).24. 如图,在中,,,点为内一点,且,,.(1)求的长;(2)求图中阴影部分的面积.答案:(1)(2)【小问1详解】解:∵,,,,;【小问2详解】解:∵,,,且,即,∴是直角三角形,,25. 求代数式的值.(1),,;(2),,.答案:(1)(2)【小问1详解】解:∵,,,∴;【小问2详解】解:∵,,,∴.26. 如图,在中,的垂直平分线分别交,及的延长线于点D,E,F,且.(1)求证:;(2)若,求的长.答案:(1)证明见解析(2)【小问1详解】证明:如图,连接,∵垂直平分,∴,∵,∴,∴,∴是直角三角形,∴;【小问2详解】解:设,则,在中,由勾股定理得,即,解得,∴的长为.27. 阅读下面的材料,解决问题:;;;……(1)求与的值;(2)已知是正整数,求的值;(3)计算.答案:(1);(2)(3)【小问1详解】解:==,==;【小问2详解】==,【小问3详解】.。
人教版八年级第二学期 第一次月考数学试题含答案
一、选择题1.△ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( ) ①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B -∠C; ④∠A ∶∠B ∶∠C =1∶2∶3 ;⑤111,,345a b c ===;⑥10,a = 24,b = 26c = A .2个 B .3个 C .4个 D .5个 2.△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( )A .42B .32C .42或32D .37或333.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .94.将6个边长是1的正方形无缝隙铺成一个矩形,则这个矩形的对角线长等于( )A .37B .13C .37或者13D .37或者1375.如图,已知AB 是⊙O 的弦,AC 是⊙O 的直径,D 为⊙O 上一点,过D 作⊙O 的切线交BA 的延长线于P,且DP⊥BP 于P.若PD+PA=6,AB=6,则⊙O 的直径AC 的长为( )A .5B .8C .10D .126.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,若CE=1,AB=42,则下列结论一定正确的个数是( )①2CD ;②BD>CE ;③∠CED+∠DFB=2∠EDF ;④△DCE 与△BDF 的周长相等; A .1个B .2个C .3个D .4个7.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2a b +值为( )A .25B .9C .13D .1698.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2()a b 的值为( ).A .49B .25C .13D .1 9.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( ) A .8B .9.6C .10D .1210.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为5和3,则小正方形的面积为( )A .4B .3C .2D .1二、填空题11.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.12.如图,Rt △ABC 中,∠ACB =90o ,AC =12,BC =5,D 是AB 边上的动点,E 是AC 边上的动点,则BE +ED 的最小值为 .13.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.14.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶点A 在ECD 的斜边上.若3AE =,7AD =,则AC 的长为_________15.如图,P 是等边三角形ABC 内的一点,且PA=3,PB=4,PC=5,以BC 为边在△ABC 外作△BQC ≌△BPA ,连接PQ ,则以下结论中正确有_____________ (填序号) ①△BPQ 是等边三角形 ②△PCQ 是直角三角形 ③∠APB=150° ④∠APC=135°16.一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为____m 2. 17.如图,在△ABC 中,AB =AC =10,BC =12,AD 是角平分线,P 、Q 分别是AD 、AB 边上的动点,则BP +PQ 的最小值为_______.18.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________19.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则2________BD =.20.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.三、解答题21.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________? (3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.22.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题? (2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值. ②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.23.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.(1)若∠A =35°,则∠CBD 的度数为________; (2)若AC =8,BC =6,求AD 的长;(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示) 24.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.25.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD . (1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.26.定义:在△ABC中,若BC=a,AC=b,AB=c,若a,b,c满足ac+a2=b2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是命题(填“真”或“假”);(2)如图1,若等腰三角形ABC是“类勾股三角形”,其中AB=BC,AC>AB,请求∠A的度数;(3)如图2,在△ABC中,∠B=2∠A,且∠C>∠A.①当∠A=32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由;②请证明△ABC为“类勾股三角形”.27.如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,0),交y轴于点B(0,n),且m,n满足6m +(n﹣12)2=0.(1)求直线AB的解析式及C点坐标;(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;(3)如图2,点E(0,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.28.已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.29.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB 对称,点D在线段AB上.(1)如图1,若m=8,求AB的长;(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE=2DE;(3)如图3,若m=43,在射线AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.30.如图,在△ABC中,D是边AB的中点,E是边AC上一动点,连结DE,过点D作DF⊥DE交边BC于点F(点F与点B、C不重合),延长FD到点G,使DG=DF,连结EF、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG≌△BDF;(2)请你连结EG,并求证:EF=EG;(3)设AE=x,CF=y,求y关于x的函数关系式,并写出自变量x的取值范围;(4)求线段EF长度的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据勾股定理的逆定理,三角形的内角和定理,分别对每个选项进行判断,即可得到答案. 【详解】解:∵222a c b -=,得222a b c =+,符合勾股定理逆定理,则①正确; ∵2()()0a b a b c -++=,得到222a c b +=,符合勾股定理逆定理,则②正确; ∵∠A =∠B -∠C ,得∠B=∠A+∠C , ∵∠A+∠B+∠C=180°, ∴∠B=90°,故③正确;∵∠A ∶∠B ∶∠C =1∶2∶3,∠A+∠B+∠C=180°, ∴318090123C ∠=︒⨯=︒++,故④正确;∵222111()()()453+≠,则⑤不能构成直角三角形,故⑤错误; ∵222102426+=,则⑥能构成直角三角形,故⑥正确; ∴能构成直角三角形的有5个; 故选择:D. 【点睛】本题考查了勾股定理的逆定理,以及三角形的内角和定理,解题的关键是熟练掌握用勾股定理的逆定理和三角形内角和定理进行判断三角形是直角三角形.2.C解析:C 【分析】存在2种情况,△ABC 是锐角三角形和钝角三角形时,高AD 分别在△ABC 的内部和外部 【详解】情况一:如下图,△ABC 是锐角三角形∵AD 是高,∴AD ⊥BC ∵AB=15,AD=12∴在Rt△ABD 中,BD=9 ∵AC=13,AD=12 ∴在Rt△ACD 中,DC=5∴△ABC 的周长为:15+12+9+5=42 情况二:如下图,△ABC 是钝角三角形在Rt△ADC 中,AD=12,AC=13,∴DC=5 在Rt△ABD 中,AD=12,AB=15,∴DB=9 ∴BC=4∴△ABC 的周长为:15+13+4=32 故选:C 【点睛】本题考查勾股定理,解题关键是多解,注意当几何题型题干未提供图形时,往往存在多解情况.3.D解析:D 【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】 ∵90BAC ︒∠=, ∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠, ∴DE=AD ,∠BED=90BAC ︒∠=, ∴∠BDE=∠BDA , ∴BE=AB=AC , ∵CDE ∆的周长为6, ∴DE+CD+CE=AC+CE=BC=6, ∵,90︒=∠=AB AC BAC ∴22236AB AC BC +==, ∴2236AB =,218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D. 【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论.4.C解析:C 【分析】如图1或图2所示,分类讨论,利用勾股定理可得结论. 【详解】当如图1所示时,AB=2,BC=3,∴AC=2223=13+; 当如图2所示时,AB=1,BC=6,∴221+6=37 故选C . 【点睛】本题主要考查图形的拼接,数形结合,分类讨论是解答此题的关键.5.C解析:C 【解析】分析:通过切线的性质表示出EC 的长度,用相似三角形的性质表示出OE 的长度,由已知条件表示出OC 的长度即可通过勾股定理求出结果. 详解:如图:连接BC ,并连接OD 交BC 于点E :∵DP ⊥BP ,AC 为直径;∴∠DPB=∠PBC=90°.∴PD ∥BC,且PD 为⊙O 的切线.∴∠PDE=90°=∠DEB,∴四边形PDEB 为矩形,∴AB ∥OE ,且O 为AC 中点,AB=6.∴PD=BE=EC.∴OE=12AB=3. 设PA=x ,则OD=DE-OE=6+x-3=3+x=OC ,EC=PD=6-x..在Rt △OEC 中:222OE EC OC +=,即:()()222363x x +-=+,解得x=2.所以AC=2OC=2×(3+x )=10.点睛:本题考查了切线的性质,相似三角形的性质,勾股定理. 6.D解析:D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】解:由2AC=BC=4,则AE=3=DE ,由勾股定理可得2, ①正确; 21>,②正确;由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)= 135°-∠CDF=135°-(∠DFB+45°)= 90°-∠DFB ,故∠CED+∠DFB=90°=2∠EDF ,③正确; △DCE 的周长2,△BDF 的周长2+4-224个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.7.A解析:A【分析】根据勾股定理可以求得22a b +等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值,然后根据()2222a b a ab b +=++即可求解.【详解】根据勾股定理可得2213a b +=, 四个直角三角形的面积是:14131122ab ⨯=-=,即212ab =, 则()2222131225a b a ab b +=++=+=.故选:A .【点睛】本题考查了勾股定理以及完全平方式,正确根据图形的关系求得22a b +和ab 的值是关键.8.A解析:A【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12,据此即可得结果.【详解】根据题意,结合勾股定理a 2+b 2=25,四个三角形的面积=4×12ab=25-1=24, ∴2ab=24,联立解得:(a+b )2=25+24=49.故选A. 9.B解析:B【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥ 11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B.【点睛】 本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.10.A解析:A【分析】根据直角三角形的两直角边长分别为5和3,可计算出正方形的边长,从而得出正方形的面积.【详解】解:3和5为两条直角边长时,小正方形的边长=5-3=2,∴小正方形的面积22=4;综上所述:小正方形的面积为4;故答案选A .【点睛】本题考查了勾股定理及其应用,正确表示出直角三角形的面积是解题的关键. 二、填空题11.5【解析】试题分析:取AB 中点E ,连接OE 、CE ,在直角三角形AOB 中,OE=AB ,利用勾股定理的逆定理可得△ACB 是直角三角形,所以CE=AB ,利用OE+CE≥OC ,所以OC 的最大值为OE+CE ,即OC 的最大值=AB=5.考点:勾股定理的逆定理,12.【解析】 试题分析:作点B 关于AC 的对称点B′,过B′点作B′D ⊥AB 于D ,交AC 于E ,连接AB′、BE ,则BE+ED=B′E+ED=B′D 的值最小.∵点B 关于AC 的对称点是B′,BC=5,∴B′C=5,BB′=10.∵Rt △ABC 中,∠ACB=90°,AC=12,BC=5,∴22AC BC +,∵S △ABB′=12•AB•B′D=12•BB′•AC ,∴B′D=B 10121201313B AC AB '⋅⨯==,∴BE+ED= B′D=12013. 考点:轴对称-最短路线问题.13.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =, ∴22435BC AB ==+=, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.14【分析】由题意可知,AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,求出∠ACE =∠BCD 可证△ACE ≌△BCD ,可得AE =BD ADB =90°,由勾股定理求出AB 即可得到AC 的长.【详解】解:如图所示,连接BD ,∵△ACB 和△ECD 都是等腰直角三角形,∴AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,且∠ACE =∠BCD =90°-∠ACD , 在ACE 和BCD 中,AC=BC ACE=BCD CE=CD ⎧⎪∠∠⎨⎪⎩∴△ACE ≌△BCD (SAS ),∴AE =BD 3E =∠BDC =45°,∴∠ADB =∠ADC+∠BDC =45°+45°=90°,∴AB 22AD +BD =7+3=10, ∵AB=2BC ,∴BC =2AB=525【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及勾股定理等知识,添加恰当的辅助线构造全等三角形是解题的关键.15.①②③【解析】【详解】解:∵△ABC 是等边三角形,60ABC ∴∠=,∵△BQC ≌△BPA ,∴∠BPA =∠BQC ,BP =BQ =4,QC =PA =3,∠ABP =∠QBC ,60PBQ PBC CBQ PBC ABP ABC ∴∠=∠+∠=∠+∠=∠=,∴△BPQ 是等边三角形,①正确.∴PQ =BP =4,2222224325,525PQ QC PC +=+===,222PQ QC PC ∴+=,90PQC ∴∠=,即△PQC 是直角三角形,②正确.∵△BPQ 是等边三角形,60PBQ BQP ∴∠=∠=,∵△BQC ≌△BPA ,∴∠APB =∠B QC ,6090150BPA BQC ∴∠=∠=+=,③正确.36015060150APC QPC QPC ∴∠=---∠=-∠,90PQC PQ QC ∠=≠,,45QPC ∴∠≠,即135APC ∠≠,④错误.故答案为①②③. 16.8或10或12或253【详解】解:①如图1:当BC=CD=3m 时,AB=AD=5m ,AC ⊥BD ,此时等腰三角形绿地的面积:12×6×4=12(m 2); ②如图2:当AC=CD=4m 时,AC ⊥CB ,此时等腰三角形绿地的面积:12×4×4=8(m 2); ③如图3:当AD=BD时,设AD=BD=xm,在Rt△ACD中,CD=(x-3)m,AC=4m,由勾股定理,得AD2=DC2+CA2,即(x-3)2+42=x2,解得x=256,此时等腰三角形绿地的面积:12BD·AC=12×256×4=253(m2);④如图4,延长BC到D,使BD=AB=5m,故CD=2m,此时等腰三角形绿地的面积:12BD·AC=12×5×4=10(m2);综上所述,扩充后等腰三角形绿地的面积为8m2或12m2或10m2或253m2.点睛:此题主要考查了等腰三角形的性质以及勾股定理的应用,解决问题的关键是根据题意正确画出图形.17.6【解析】∵AB=AC,AD是角平分线,∴AD⊥BC,BD=CD,∴B点,C点关于AD对称,如图,过C作CQ⊥AB于Q,交AD于P,则CQ=BP+PQ 的最小值,根据勾股定理得,AD=8,利用等面积法得:AB ⋅CQ=BC ⋅AD ,∴CQ=BC ADAB ⋅=12810⨯=9.6 故答案为:9.6. 点睛:此题是轴对称-最短路径问题,主要考查了角平分线的性质,对称的性质,勾股定理,等面积法,用等面积法求出CQ 是解本题的关键.18.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式.19.41【解析】作AD′⊥AD ,AD′=AD ,连接CD′,DD ′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD ′中,;BA CA BAD CAD AD AD ===⎧⎪∠∠'⎨⎪⎩∴△BAD ≌△CAD′(SAS ), ∴BD=CD′,∠DAD′=90°,由勾股定理得22AD AD +' ,∠D′DA+∠ADC=90°,由勾股定理得CD′=22DC DD +', ∴BD=CD′=41,即BD 2=41.故答案是:41.20.639+或639-【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解.【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== ,AH ∴===. 3DE =,3DH ∴=== ,DH EH ∴=,3AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ ,12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.三、解答题21.(1)12;(2)t=12.5s 时,13 cm ;(3)11s 或12s 或13.2s【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC = PA =t ,则PB =16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ =2t -BC 计算即可;(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ =BC 、CQ =BC 和BQ =CQ 三种情况,分别得到关于t 的方程,可求得t 的值.【详解】(1)在Rt △ABC 中,BC 12===(cm ).故答案为:12;(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t . 在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(, 解得:t =252. ∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6, ∴此时,点Q 在边AC 上,CQ =25212132⨯-=(cm );(3)分三种情况讨论:①当CQ =BQ 时,如图1所示,则∠C =∠CBQ .∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,∴∠A =∠ABQ ,∴BQ =AQ ,∴CQ =AQ =10,∴BC +CQ =22,∴t =22÷2=11(s ).②当CQ =BC 时,如图2所示,则BC +CQ =24,∴t =24÷2=12(s ).③当BC =BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===, ∴CE 2222483612()55BC BE =-=-==7.2.∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.22.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆的面积为3. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=c ∴=根据优三角形的定义,分以下三种情况:当2a b c +=时,6a +=,整理得24360a a -+=,此方程没有实数根当2a c b +=时,12a =,解得92a =当2b c a +=时,62a =,解得86a =>,不符题意,舍去综上,a 的值为92; ②由题意得:,,a b c 均为正数 根据优三角形的定义,分以下三种情况:(c b a ≥≥)当2a b c +=时,则1b k a=≥ 由三角形的三边关系定理得b a c a b -<<+ 则2a b b a a b +-<<+,解得3b a <,即3b k a=< 故此时k 的取值范围为13k ≤< 当2a c b +=时,则1c k a =≥ 由三角形的三边关系定理得c a b a c -<<+ 则2a c c a a c +-<<+,解得3c a <,即3c k a=< 故此时k 的取值范围为13k ≤< 当2b c a +=时,则1c k b =≥ 由三角形的三边关系定理得c b a b c -<<+ 则2b c c b b c +-<<+,解得3c b <,即3c k b=< 故此时k 的取值范围为13k ≤<综上,k 的取值范围为13k ≤<;(3)如图,过点A 作AD BC ⊥,则180********ABC ABD ∠=︒-︒∠-==︒︒ 设BD x =22,AB BD x AD ∴====AC ===11422ABC S BC AD ∆=⋅=⨯= ABC ∆是优三角形,分以下三种情况:当2AC BC AB +=时,即44x =,解得103x =则103ABC S ∆===当2AC AB BC +=时,即28x =,解得65x =则655ABC S ∆===当2BC AB AC +=时,即242424x x x +=++,整理得234120x x ++=,此方程没有实数根综上,ABC ∆的面积为2033或1235.【点睛】本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形的三边关系定理等知识点,理解题中的新定义,正确分多种情况讨论是解题关键.23.(1)∠CBD=20°;(2)AD=164;(3) △BCD 的周长为m+2 【分析】(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;(2)根据折叠可得AD=DB ,设CD=x ,则AD=BD=8-x ,再在Rt △CDB 中利用勾股定理可得x 2+62=(8-x )2,再解方程可得x 的值,进而得到AD 的长;(3)根据三角形ACB 的面积可得112AC CB m =+, 进而得到AC •BC=2m+2,再在Rt △CAB 中,CA 2+CB 2=BA 2,再把左边配成完全平方可得CA+CB 的长,进而得到△BCD 的周长.【详解】(1)∵把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合,∴∠1=∠A=35°,∵∠C=90°,∴∠ABC=180°-90°-35°=55°,∴∠2=55°-35°=20°,即∠CBD=20°;(2)∵把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合,∴AD=DB ,设CD=x ,则AD=BD=8-x ,在Rt △CDB 中,CD 2+CB 2=BD 2,x 2+62=(8-x )2,解得:x=74, AD=8-74=164; (3)∵△ABC 的面积为m+1, ∴12AC •BC=m+1, ∴AC •BC=2m+2, ∵在Rt △CAB 中,CA 2+CB 2=BA 2,∴CA 2+CB 2+2AC •BC=BA 2+2AC •BC ,∴(CA+BC )2=m 2+4m+4=(m+2)2,∴CA+CB=m+2,∵AD=DB ,∴CD+DB+BC=m+2.即△BCD 的周长为m+2.【点睛】此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.24.(1)①详见解析;(2)2CD =+-1n >);(2)AD BD -=,理由详见解析.【分析】(1)①根据勾股定理的逆定理进行判断;②过点C 作CE ⊥CD 交DB 的延长线于点E ,利用同角的余角相等证明∠3=∠4,∠1=∠E ,进而证明△ACD ≌△BCE ,求出DE 的长,再利用勾股定理求解即可.(2)过点C 作CF ⊥CD 交BD 的延长线于点F ,先证∠ACD=∠BCF ,再证△ACD ≌△BCF ,得CD=CF ,AD=BF ,再利用勾股定理求解即可.【详解】(1)①∵()()()22222222212214AD BD n n n n n +=-+=-++()()22222211n n n =++=+ 又∵()2221AB n =+∴222AD BD AB +=∴△ABD 是直角三角形②如图①,过点C 作CE ⊥CD 交DB 的延长线于点E ,∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90°∴∠3=∠4由①知△ABD 是直角三角形∴1290∠+∠=︒又∵290E ∠+∠=︒∴∠1=∠E在ACD ∆和BCE ∆中,A 34E AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE∴CD CE =,AD BE =∴221DE BD BE BD AD n n =+=+=+-又∵CD CE =,90DCE ∠=︒ ∴由勾股定理得222DE CD DE CD =+=∴22CD =222222n n =+-(1n >) (2)AD 、BD 、CD 的数量关系为:2AD BD CD -=,理由如下:如图②,过点C 作CF ⊥CD 交BD 的延长线于点F ,∵∠ACD=90°+∠5,∠BCF=90°+∠5∴∠ACD=∠BCF∵BD ⊥AD∴∠ADB=90°∴∠6+∠7=90°∵∠ACB=90°∴∠9=∠8=90°又∵∠6=∠8∴∠7=∠9ACD ∆和BCF ∆中97AC BCACD BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACD ≌△BCF∴CD=CF ,AD=BF又∵∠DCF=90° ∴由勾股定理得222DFCD CF CD =+=又DF=BF-BD=AD-BD∴2AD BD CD -=【点睛】本题考查的是三角形全等、勾股定理及其逆定理,掌握三角形全等的判定方法及勾股定理及其逆定理是关键.25.(1)见解析;(2)∠ADC=45α︒+;(3)2BD DE =【分析】(1)根据题意画出图形即可;(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可; (3)画出图形,结合(2)的结论证明△BED 为等腰直角三角形,从而得出结论.【详解】解:(1)如图所示;(2)∵点B 与点D 关于直线AP 对称,∠BAP=α,∴∠PAD=α,AB=AD ,∵90BAC ∠=︒,∴902DAC α∠=︒-,又∵AB=AC ,∴AD=AC,∴∠ADC=1[180(902)]2α⨯︒-︒-=45α︒+;(3)如图,连接BE,由(2)知:∠ADC=45α︒+,∵∠ADC=∠AED+∠EAD,且∠EAD=α,∴∠AED=45°,∵点B与点D关于直线AP对称,即AP垂直平分BD,∴∠AED=∠AEB=45°,BE=DE,∴∠BED=90°,∴△BED是等腰直角三角形,∴22222BD BE DE DE=+=,∴2BD DE=.【点睛】本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键.26.(1)假;(2)∠A=45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a2=c2,再由勾股定理得a2+b2=c2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论;(3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a,AD=CD=a,DB=AB-AD=c-a,DG=BG=12(c-a),AG=12(a+c),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt△ABC是类勾股三角形,∴ab+a2=c2,在Rt△ABC中,∠C=90°,根据勾股定理得,a2+b2=c2,∴ab+b2=a2+b2,∴ab=a2,∴a=b,∴△ABC是等腰直角三角形,∴等腰直角三角形是类勾股三角形,即:原命题是假命题,故答案为:假;(2)∵AB=BC,AC>AB,∴a=c,b>c,∵△ABC是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,∵把这个三角形分成两个等腰三角形,∴(Ⅰ)、当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;(Ⅱ)、当∠BCD=∠ABC=64°时,∴∠BDC=52°,∴∠ACD=20°,∠ADC=128°,∴△ACD是等腰三角形,此种情况不成立;(Ⅲ)、当∠BDC=∠ABC=64°时,∴∠BCD=52°,∴∠ACD=∠ACB﹣BCD=32°=∠BAC,∴△ACD是等腰三角形,即:分割线和顶角标注如图2所示,Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;Ⅲ、分∠BAC,同(Ⅱ)的方法,判断此种情况不成立;②如图3,在AB边上取点D,连接CD,使∠ACD=∠A图3作CG⊥AB于G,∴∠CDB=∠ACD+∠A=2∠A,∵∠B=2∠A,∴∠CDB=∠B,∴CD=CB=a,∵∠ACD=∠A,∴AD=CD=a,∴DB=AB﹣AD=c﹣a,∵CG⊥AB,∴DG=BG=12(c﹣a),∴AG=AD+DG=a+12(c﹣a)=12(a+c),在Rt△ACG中,CG2=AC2﹣AG2=b2﹣[12(c+a)]2,在Rt△BCG中,CG2=BC2﹣BG2=a2﹣[12(c﹣a)]2,∴b2﹣[12(a+c)]2=a2﹣[12(c﹣a)]2,∴b2=ac+a2,∴△ABC是“类勾股三角形”.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,新定义“类勾股三角形”,分类讨论的数学思想,解本题的关键是理解新定义.27.(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,0);(3)点P的坐标(143-,643)【分析】(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;(2)画出图象,由CD⊥AB知1AB CDk k=-可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.【详解】解:(1)∵6m-+(n﹣12)2=0,∴m=6,n=12,∴A(6,0),B(0,12),设直线AB解析式为y=kx+b,则有1260bk b=⎧⎨+=⎩,解得212kb=-⎧⎨=⎩,∴直线AB解析式为y=-2x+12,∵直线AB过点C(a,a),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图1所示,设直线CD解析式为y=12x+b′,把点C(4,4)代入得到b′=2,∴直线CD解析式为y=12x+2,∴点D坐标(-4,0).(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,图2∵直线EC解析式为y =32x-2,直线CF解析式为y =-23x+203,∵32×(-23)=-1,∴直线CE⊥CF,∵EC=213,CF=213,∴EC=CF,∴△FCE是等腰直角三角形,∴∠FEC=45°,∵直线FE解析式为y=-5x-2,由21252y xy x=-+⎧⎨=--⎩解得143643xy⎧=-⎪⎪⎨⎪=⎪⎩,∴点P的坐标为(1464,33 -).【点睛】本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足121k k=-,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F(-2,8)是解题的突破口. 28.(1)△AEF是等边三角形,理由见解析;(2)见解析;(3)点F到BC的距离为3﹣.【解析】【分析】(1)连接AC,证明△ABC是等边三角形,得出AC=AB,再证明△BAE≌△DAF,得出AE =AF,即可得出结论;。
江苏省淮安市洪泽实验校2022学年八年级下学期第一次月考数学试题(含答案与解析)
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(每题3分,共24分)
1.下列图形中,中心对称图形是()
A. B. C. D.
2.下列事件中,属于随机事件的是( )
A.8和16B.10和14C.18和10D.10和24
【7题答案】
【答案】D
【解析】
【分析】根据平行四边形的性质知,平行四边形的对角线互相平分,则对角线的一半和已知的边组成三角形,再利用三角形的三边关系可逐个判断.
【详解】解:因为平行四边形的对角线互相平分,一边与两条对角线的一半构成三角形,所以根据三角形的三边关系进行判断:
29.探索新知:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.
(1)一个角的平分线这个角的“巧分线”;(填“是”或“不是”)
(2)如图2,若∠MPN=x,且射线PQ是∠MPN “巧分线”,则∠MPQ=;(用含x的代数式表示出所有可能的结果)
【详解】A.抛掷1个均匀的骰子,出现6点朝上,是随机事件;
B.在一个仅装着白球和黑球的袋中摸出红球,是不可能事件;
C.任意三角形的内角和为180°,是必然事件;
D.13人中至少有2人的生日在同一个月,是必然事件;
故选A.
【点睛】此题考查随机事件,解题关键在于掌握其定义.
3.下列调查中,适宜采用普查的是()
6.下列性质中,平行四边形不一定具备的是( )
A. 对角互补B. 邻角互补C. 对角相等D. 内角和是360°
2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷(含答案)
2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷1、选择题:(本题共10小题,每小题2分,共20分)1.下列二次根式是最简二次根式的是( )A. B. C. D.14128132.下列各式正确的是( )A. B.(−4)×(−9)=−4×−916+94=16×94C.D. 449=4×494×9=4×93.若,则( )y =x−2+4−2x−3x +y =A. B. C. D. 15−5−14.用配方法解一元二次方程时,下列变形结果正确的是 ( )x 2−4x−3=0A. B. C. D. (x−2)2=1(x−2)2=7(x−4)2=1(x−4)2=75.若关于的一元二次方程有两个不相等的实数根,则的取值范围是( )x (k−1)x 2+4x +1=0k A. B. 且 C. 且 D. k <5k <5k ≠1k ≤5k ≠1k >56.如果一组数据2、3、4、5、x 的方差与另一组数据101,102,103,104,105的方差相等,那么x 的值( )A. 6 B. 1C. 6或1D. 无法确定7.若,,则( )x +1x=60<x <1x−1x=A. B. C. D. −2−2±2±28.如图,中,对角线、相交于点,交于点,连接,若的周长▱ABCD AC BD O OE ⊥BD AD E BE ▱ABCD 为,28则的周长为( )△ABE A. B. C. D. 282421149.已知a,b,c 满足( )4a 2+2b−4=0,b 2−4c +1=0,c 2−12a +17=0,则a 2+b 2+c 2的值为A. B. C.14 D.201621429410.新定义:关于的一元二次方程与称为“同族二次方程”如x a 1(x−m )2+k =0a 2(x−m )2+k =0.与是“同族二次方程”现有关于的一元二次方程2021(x−3)2+4=03(x−3)2+4=0.x 与是“同族二次方程”,那么代数式能取2(x−1)2+1=0(a +2)x 2+(b−4)x +8=0ax 2+bx +2024的最小值是( )A. B. C.2018D. 202320242019二、填空题:(本题共10小题,每小题3分,共30分)11.要使根式有意义,则的取值范围是__________.x +4x−2x 12.已知三角形的两边长分别为和,第三边长是方程的根,则这个三角形的周长36x 2−6x +8=0是 .13.计算: .(2−5)2023(2+5)2024=14.一个多边形的内角和比它的外角和的倍少,这个多边形的边数是 .3180∘15.若是完全平方式,则的值为__________.x 2+2(m−1)x +16m 16.已知一组数据,,,,的平均数是,方差是,那么另一组数据,,x 1x 2x 3x 4x 5213x 1−23x 2−2,,的平均数__________, 方差__________.3x 3−23x 4−23x 5−217.设,是方程的两个实数根,则________.a b x 2+x−2024=0a 2+2a +b =18.已知,则的值为 ________(x 2+y 2+2)(x 2+y 2+4)=15x 2+y 219.对于实数、,我们用符号表示,两数中较小的数,如,p q min{p,q}p q min {1,2}=1若,则 .min{(x +1)2,x 2}=4x =20.如图,在▱中,,是的中点,作,垂足在线段上,连接、ABCD AD =2AB F AD CE ⊥AB E AB EF ,CF 则下列结论中,; ;①2∠DCF =∠BCD ②EF =CF; .其中正确的是________.③S △BEC =2S △CEF ④∠DFE =3∠AEF 三、解答题:(本题共7小题,共50分)21.本小题分计算或选用适当的方法解下列方程(10)(1)(2)(2+3)(2−3)(−3)0−27+|1−2|.(3)(2x−1)2=1(4)(x−5)2=3(x−5)22.本小题6分已知的三条边长,,,在下面的方格图内()△ABC AB =2AC =412BC =251254×4画出,使它的顶点都在格点上每个小方格的边长均为.△ABC (1).(1)画出△ABC 求的面积.(2)△ABC 求点到边的距离.(3)A BC 23.本小题8分某校八(1)班甲、乙两名男生在5次引体向上测试中有效次数记录如下:()甲:8,8,7,8,9;乙:5,9,7,10,9.甲、乙两人引体向上的平均数、众数、中位数、方差如下表所示:平均数众数中位数方差甲8b 80.4乙a9C3.2(1)表中a= ,b= ,c=______ (2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是 班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是__________________. (3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数 ,中位数 ,方差 (均填“变大”“变小”或“不变”).24.本小题4分如图,在平行四边形中,对角线,相交于点,过点的直线分别()ABCD AC BD O O 交,于点,AD BC E F.求证:。
湖南省长沙市雨花区燕子岭学校2021-2022学年八年级下学期第一次月考数学测试题(含答案解析)
湖南省长沙市雨花区燕子岭学校2021-2022学年八年级下学期第一次月考数学测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形分别是平行四边形、矩形、菱形、正方形,其中不一定是轴对称图形的是()A.B.C.D.2.以下列长度为边长的三角形是直角三角形的是()A.5,6,7B.7,8,9C.6,8,10D.5,7,9 3.下列计算正确的是()A.a2+a2=a4B.(a2)3=a5C.2a2﹣a2=2D.a5•a2=a74.化简:22x yx y y x+--的结果是()A.x y+B.y x-C.x y-D.x y--5.如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为()A.100°B.105°C.110°D.115°6.下列命题是假命题的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.两组对角分别互补的四边形是平行四边形D.对角线互相平分的四边形是平行四边形7.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=30°,BD=2,则AD的长度是()A.6B.8C.12D.168.如图是一株美丽的“勾股树”,其中所有的四边形都是正方形,所有的三角形都是直、、、的面积分别是9、25、1、9,则最大正方形E的边长是三角形,若正方形A B C D()A.12B.44C.D.无法确定9.如图所示,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C处折断,树尖B恰好碰到地面,经测量树尖B与树桩A相距12米,则大树折断前高为()A.13米B.17米C.18米D.22米10.如图所示,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在外面的长为hcm,则h的取值范围是()A.0<h≤11B.11≤h≤12C.h≥12D.0<h≤12 11.下列命题中的逆命题一定成立的有()①对顶角相等;②同位角相等,两直线平行;③若a b =,则a b =;④若a b >,则22a b >.A .①②③④B .①④C .②④D .②12.如图,在平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E 且AB AE =,延长AB 与DE 的延长线相交于点F ,连接AC 、CF .下列结论:①ABC EAD △≌△;②ABE 是等边三角形;③BF AD =;④BEF ABC S S =△△;⑤CEF ABE S S =△△;其中正确的有()A .2个B .3个C .4个D .5个二、填空题13.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005科学记数法表示为______.14.函数中,自变量x 的取值范围是____.15.如图,以数轴的单位长度线段为边长作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A 和点B ,则点A 表示的数是_____.16.若2,,4m =__________.17.若关于x 的分式方程x 2322m m x x++=--的解为正实数,则实数m 的取值范围是____.18.如图,等边ABC ∆中,10AB =,点E 为AC 中点,D 是线段BE 上的一个动点,则12CD BD +的最小值是__________.三、解答题19.(1)计算:1020222((1)π-+-(2)计算:(3)先化简,再求值:2442()m m m m m +++÷,其中1m =.20.如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9.(1)求DC 的长;(2)求AB 的长.21.如图,在□ABCD 中,点E 、F 分别在边CB 、AD 的延长线上,且BE =DF ,EF 分别与AB 、CD 交于点G 、H ,求证:AG =CH.22.如图,四边形ABCD 为某街心公园的平面图,经测量100AB BC AD ===米,CD =米,且90B Ð=°.(1)求DAB ∠的度数;(2)若BA 为公园的车辆进出口道路(道路的宽度忽略不计),工作人员想要在点D 处安装一个监控装置来监控道路BA 的车辆通行情况,已知摄像头能监控的最大范围为周围的100米(包含100米),求被监控到的道路长度为多少?23.若一条直线把一个平面图形分成面积相等的两部分,那么这条直线叫做该平面图形的“和谐线”,其中“和谐线”被该平面图形截得的线段叫做该平面图形的“和谐线段”.问题探究:(1)如图①,在ABC 中,AB AC =,画出经过点A 的ABC 的“和谐线段”;(2)如图②,在ABC 中,90B Ð=°,8AB =,6BC =,请求出ABC 的两条“和谐线段”的长;问题解决:(3)如图③,四边形ABCD 是某市规划中的商业区示意图,其中90B D ∠=∠=︒,120A ∠=︒,2AB =,10CD =,现计划在商业区内修一条笔直的单行道MN (小道的宽度不计,入口M 在BC 上,出口N 在CD 上,使得MN 为四边形ABCD 的“和谐线段”,在道路一侧MNC 区域规划为公园,为了美观要求MNC 是以CM 为腰的等腰三角形,请通过计算说明设计师的想法能否实现?若可以,请确定点M 的位置(即求CM 的长).24.我们定义:如图1,在ABC 中,把AB 绕点A 顺时针旋转α(0180α︒<<︒)得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180αβ+=︒时,我们称AB C ''△是ABC 的“旋补三角形”,AB C ''△边B C ''上的中线AD 叫做ABC 的“旋补中线”.特例感知:(1)在图2中,AB C ''△是ABC 的“旋补三角形”,AD 是ABC 的“旋补中线”.如图2,当ABC 为等边三角形时,且6BC =时,AD 的长为;猜想论证:(2)在图1中,当ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.(如果你没有找到证明思路,可以考虑倍长AD 或倍长B A ',……)拓展应用:(3)如图3,在四边形ABCD ,150BCD ∠=︒,12AB =,6CD =,以CD 为边在四边形内部作等边PCD ,连接AP ,BP ,若PAD 是PBC 的“旋补三角形”,请直接写出PBC 的“旋补中线”长及四边形ABCD 中AD 边的长.参考答案:1.A【分析】根据轴对称图形的定义进行判断即可.【详解】A.平行四边形不是轴对称图形;B.矩形是轴对称图形,其对称轴为对边中点的连线所在的直线;C.菱形是轴对称图形,其对称轴为对角线所在的直线;D.正方形是轴对称图形,其对称轴为对边中点连线所在的直线,对角线所在的直线故选:A.【点睛】本题考查了特殊四边形的对称性,熟知特殊四边形的对称性是解题的关键.2.C【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A、因为52+62≠72,所以三条线段不能组成直角三角形;B、因为72+82≠92,所以三条线段不能组成直角三角形;C、因为62+82=102,所以三条线段能组成直角三角形;D、因为52+72≠92,所以三条线段不能组成直角三角形;故选C.【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.3.D【分析】根据合并同类项的运算法则,幂的乘方,同底数幂的乘法进行计算,对照选项逐一判断即可.【详解】解:A、结果是2a2,故本选项不符合题意;B、结果是a6,故本选项不符合题意;C、结果是a2,故本选项不符合题意;D、结果是a7,故本选项符合题意;故选:D.【点睛】本题考查了合并同类项的运算法则,幂的乘方,同底数幂的乘法的运算法则,掌握整式加减和乘法的运算法则是解题的关键.4.A【分析】先变形得到22x yx y x y---,再计算得到22x yx y--,根据完全平方公式得到()()x y x yx y-+-,化简即可得到答案.【详解】22x yx y y x+--=22x yx y x y---=22x yx y--=()()x y x yx y-+-=x y+.故选择A.【点睛】本题考查分式的化简,集体的关键是掌握完全平方公式.5.D【分析】根据平行四边形对角相等,邻角互补即可求解.【详解】解:在▱ABCD中,∠A=∠C,∠A+∠D=180°,∵∠A+∠C=130°,∴∠A=∠C=65°,∴∠D=115°,故选D.【点睛】本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键. 6.C【分析】根据平行四边形的判定定理判断即可.【详解】解:两组对边分别平行的四边形是平行四边形,A是真命题;两组对边分别相等的四边形是平行四边形,B是真命题;两组对角分别相等的四边形是平行四边形,C是假命题对角线互相平分的四边形是平行四边形,D是真命题;故选:C【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握平行四边形的判定是解本题的关键7.A【分析】根据同角的余角相等求出∠BCD=∠A=30°,再根据30°角所对的直角边等于斜边的一半求出BC、AB的长,然后根据AD=AB-BD计算即可得解.【详解】解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=30°,∵BD=2,∴BC=2BD=4,AB=2BC=2×4=8,∴AD=AB-BD=8-2=6.故选A.【点睛】本题考查直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题关键.8.C【分析】根据勾股定理分别求出G、H的面积,再由G、H的面积根据勾股定理计算即可得出答案.、、、的面积分别是9、25、1、9,由勾股定理得,【详解】解:∵正方形A B C D正方形H的面积为:9+1=10,正方形G的面积为:9+25=34,则正方形E的面积为:34+10=44,所以正方形E故选:C【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a、b,斜边长为c,那么a2+b2=c2.求出正方形E的面积是解题的关键.9.C【分析】在Rt△ACB中,根据勾股定理可求得BC的长,而树的高度为AC+BC,AC的长已知,由此得解.【详解】解:Rt△ABC中,AC=5米,AB=12米,==米,由勾股定理,得:BC13∴树的高度为:AC+BC=18米,故选:C.【点睛】本题考查了勾股定理的应用,正确运用勾股定理,善于观察题目的信息是解题的关键.10.B【分析】根据题意画出图形,先找出h 的值为最大和最小时筷子的位置,再根据勾股定理解答即可.【详解】解:当筷子与杯底垂直时h 最大,h 最大=24﹣12=12cm .当筷子与杯底及杯高构成直角三角形时h 最小,如图所示:此时,AB 13cm ,∴h =24﹣13=11cm .∴h 的取值范围是11cm ≤h ≤12cm .故选:B .【点睛】本题考查了勾股定理的实际应用问题,解答此题的关键是根据题意画出图形找出何时h 有最大及最小值,同时注意勾股定理的灵活运用,有一定难度.11.D【分析】求出各命题的逆命题,判断真假即可.【详解】①对顶角相等,逆命题为:相等的角为对顶角,不成立;②同位角相等,两直线平行,逆命题为:两直线平行,同位角相等,成立;③若a b =,则a b =,逆命题为:若a b =,则a b =,不成立;④若a b >,则22a b >,逆命题为:若22a b >,则a b >,不成立.命题中的逆命题一定成立的有:②故选D .【点睛】此题考查了命题与定理,熟练掌握逆命题的求法是解本题的关键.12.B【分析】由平行四边形的性质和角平分线的定义得出∠BAE =∠BEA ,得出AB =BE =AE ,得出②正确;由△ABE 是等边三角形得出∠ABE =∠EAD =60°,由SAS 证明△ABC ≌△EAD ,得出①正确;由S △AEC =S △DEC ,S △ABE =S △CEF 得出⑤正确;③和④不正确.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴∠EAD =∠AEB ,又∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠BAE =∠BEA ,∴AB =BE ,∵AB =AE ,∴△ABE 是等边三角形;②正确;∴∠ABE =∠EAD =60°,在△ABC 和△EAD 中,AB AE ABE EAD BC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EAD (SAS );①正确;∵△FCD 与△ABC 等底(AB =CD )等高(AB 与CD 间的距离相等),∴S △FCD =S △ABC ,又∵△AEC 与△DEC 同底等高,∴S △AEC =S △DEC ,∴S △ABE =S △CEF ;⑤正确.若AD 与BF 相等,则BF =BC ,题中未限定这一条件,∴③不一定正确;若S △BEF =S △ACD ;则S △BEF =S △ABC ,则AB =BF ,∴BF =BE ,题中未限定这一条件,∴④不一定正确;正确的有①②⑤.故选:B .【点睛】此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质、三角形的面积关系;此题比较复杂,注意将每个问题仔细分析.13.7510-⨯【分析】根据科学记数法直接得出结果【详解】根据科学记数法0.0000005=7510-⨯【点睛】熟练掌握科学记数法的基础知识是解决本题的关键,难度较小14.x >2【详解】解:根据题意得,x ﹣2≥0且x ﹣2≠0,解得x >2.故答案为x >2.【点睛】本题考查函数自变量的取值范围.15.22【分析】如图,先求出正方形对角线的长度,得出CD CA =,从而求出OA 的长,即可求得A 表示的数.【详解】解:如图:由题意可知:CD CA ==,设点A 表示的数为x ,则:2x -=2x =-,即:点A 表示的数为2故答案为:2【点睛】本题考查数轴上的点、勾股定理、正方形和圆的性质,解题的关键是熟练掌握数轴上点的特征.16.4【分析】根据三角形三边的关系得到2<m <6,再根据二次根式的性质得原式=|m-2|+|m-6|,然后根据m 的取值范围去绝对值后合并即可.【详解】解:∵2,m ,4为三角形三边,∴2<m<6,∴原式=|m-2|+|m-6|,=m-2-(m-6),=m-2-m+6,=4.故答案为4.||a=.也考查了三角形三边的关系.17.m<6且m≠2.【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】x2322m mx x++=--,方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6-2m,由题意得,6-2m>0,解得,m<6,∵6-2m≠2,∴m≠2,∴m<6且m≠2.【点睛】要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.18.【分析】过D点作DF⊥BC,垂足为F点,利用等边三角形的三线合一,得到DF=12 BD,进而得到当A、D、F在同一条直线上时,12CD BD+的值最小.【详解】解:连接AD,过D点作DF⊥BC,垂足为F点,在等边ABC ∆中,∵点E 为AC 中点,∴BE ⊥AC ,∠CBE=30︒,∴DF=12BD ,点C 、A 关于直线BE 对称,∴AD=CD ,∴当A 、D 、F 在同一条直线上时,即CD+DF=12CD BD BE +=cos30AB 102=︒=⨯=故答案为:.【点睛】此题主要考查等边三角形的三线合一及线段和最小问题,关键是利用等边三角形的三线合一得出DF=12BD .19.(1)12-(2)(3)(2)m m +,3【分析】对于(1),根据1122-=,0(1π==2022(1)1-=,再计算即可;对于(2),先化简,再计算同类二次根式;对于(3),先根据分式的加减法法则计算括号内的,再根据分式的乘除法法则计算,然后代入求值即可.【详解】(1)原式1112=+--12=-(2)原式=+-=;(3)原式22442m m m m m ++=⋅+22(2)2m m m m +=⋅+(+2)m m =,当1m =时,原式1(12)3=⨯+=.【点睛】本题主要考查了实数的计算,分式的化简求值,掌握计算法则是解题的关键.20.(1)DC=12;(2)AB=25【分析】(1)直接利用勾股定理可求得DC 的长;(2)先利用勾股定理求得AD 的长,再利用线段的和即可求出AB 的长.【详解】(1)∵CD ⊥AB ,∴∠CDB =∠CDA=90°,在Rt △BDC 中,222DC BD BC +=222915DC +=,解得DC =12;(2)在Rt △ADC 中,222AD CD AC +=,2221220AD +=,解得AD =16,∴AB=AD+BD=16+9=25.【点睛】本题考查勾股定理,本题主要考查在直角三角形中已知两边利用勾股定理求第三边.需要强调的是勾股定理成立的条件是直角三角形,(2算AB .21.证明见解析.【详解】【分析】根据平行四边形的性质得AD ∥BC ,AD=BC ,∠A=∠C ,根据平行线的性质得∠E=∠F ,再结合已知条件可得AF=CE ,根据ASA 得△CEH ≌△AFG ,根据全等三角形对应边相等得证.【详解】∵在四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∠A=∠C ,∴∠E=∠F ,又∵BE =DF ,∴AD+DF=CB+BE ,即AF=CE ,在△CEH 和△AFG 中,E F EC FA C A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CEH ≌△AFG ,∴CH=AG.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质等,熟练掌握相关知识是解题的关键.22.(1)135°;(2)被监控到的道路长度为.【分析】(1)易得∠CAB=45°,由勾股定理求出AC 的长度,然后由勾股定理的逆定理,得到△ACD 是直角三角形,则∠CAD=90°,即可得到答案;(2)过点D 作DE ⊥AB ,然后作点A 关于DE 的对称点F ,连接DF ,由轴对称的性质,得到DF=DA=100,则只要求出AF 的长度,即可得到答案.【详解】解:(1)∵100AB BC AD ===,90B Ð=°,∴△ABC 是等腰直角三角形,∴AC ==,∠CAB=45°,∵CD =在△ACD中,有222222100AD AC CD +=+==,∴△ACD 是直角三角形,∴∠CAD=90°,∴9045135DAB ∠=︒+︒=︒;(2)过点D 作DE ⊥AB ,然后作点A 关于DE 的对称点F ,连接DF,如图:由轴对称的性质,得DF=DA=100,AE=EF ,由(1)知,∠BAD=135°,∴∠DAE=45°,∴△ADE 是等腰直角三角形,即AE=DE ,在Rt △ADE 中,有222100AE DE +=,解得:AE =∴AF =;∴被监控到的道路长度为米.【点睛】本题考查了轴对称的性质,等腰直角三角形的判定和性质,勾股定理,以及勾股定理的逆定理,解题的关键是熟练掌握所学的知识,正确利用轴对称的性质和勾股定理求出所需边的长度,从而进行计算.23.(1)答案见解析;(2)(3)CM =【分析】(1)作ABC 底边BC 上的中线AD ,则线段AD 即为经过点A 的ABC 的“和谐线段”.(2)分别作ABC 边AB 和边BC 上的中线CE 、AF .则线段CE 和AF 都为ABC 的“和谐线段”.再利用勾股定理求出线段CE 和AF 的长即可.(3)作DE ⊥BC 于E ,AF ⊥DE 于F ,根据题意易求出ABCD S 四边形,又可知MNC 为等边三角形.作NH CM ⊥于H ,设CM=x ,则NH x =,根据“和谐线段”定义即可列出关于x 的一元二次方程,解出x ,最后判断x 是否符合题意即可.【详解】(1)如图,取BC 的中点D ,连接AD ,则线段AD 即为经过点A 的ABC 的“和谐线段”.(2)分别取AB 和BC 中点E 、F ,连接CE 、AF ,则线段CE 和AF 都为ABC 的“和谐线段”.∵E 、F 分别为AB 和BC 中点,∴118422BE AB ==⨯=,116322BF BC ==⨯=,∵90ABC ∠=︒,∴CE ===AF =故ABC 的两条“和谐线段”CE 和AF 的长分别为(3)如图,作DE ⊥BC 于E ,AF ⊥DE 于F .∵90B D ∠=∠=︒,120A ∠=︒,∴60C ∠=︒∵在Rt CDE △中,CD =10,∴CE =5,DE =∵四边形ABEF 是矩形,∴AB =EF =2,∴2DF DE EF =-=-,∵∠DAB =120°,∠BAF =90°,∴∠DAF =30°,∴2)152AF BE ====-∴15520BC BE CE =+=-=-∴1111==()(25(1525482222CDE ABCD ABED S S S AB DE BE DE CE +++=+-⨯= 四边形梯形∵60C ∠=︒∴MNC 为等边三角形.如图,作NH CM ⊥于H ,设CM=x ,则NH x =,根据题意可知2MCN ABCD S S = 四边形,即122x =⨯⨯,解得12x x ==-.∴CM CN MN ===∴BC CM >,CD CN >,∴存在M 点,此时CM =【点睛】此题考查四边形综合题,三角形中线的性质,勾股定理,等腰三角形的性质,等边三角形的判定和性质.综合性较强,较难.解题的关键是理解“和谐线段”的含义.24.(1)3(2)12AD BC =,理由见解析【分析】(1)利用旋补三角形的定义可知AB C ''△是等腰三角形,利用等腰三角形的性质以及120B AC ''∠=︒即可求出AD .(2)倍长AD ,易证四边形AC MB ''是平行四边形,利用平行四边形的性质即可证明AB M ABC ' ≌,即可得到12AD BC =.(3)由等边三角形和旋补三角形的性质结合含30︒的直角三角形的三边关系先求出PB 的长,再利用=150BCD ∠︒求出=90PCB ∠︒,利用勾股定理求出BC ,利用旋补中线的性质求出旋补中线长,再利用PBC 也是PAD 的“旋补三角形”,通过求出PBC 的中线反求AD .【详解】(1)∵ABC 是等边三角形,∴AB BC AC AB AC ''====,∵DB DC ''=,∴AD B C ''⊥,∵60180BAC BAC B AC ︒''∠=︒∠+∠=,,∴120B AC ''∠=︒,∴30B C ''∠=∠=︒,∴11322AD AB BC '===.故答案为:3;(2)结论:12AD BC =.理由:如图1中,延长AD 到M ,使得AD DM =,连接B M C M '',,∵B D DC AD DM ''==,,∴四边形AC MB ''是平行四边形,∴AC B M AC ''==,∵180180BAC B AC B AC AB M ︒'''''∠+∠=∠+∠︒=,,∴BAC MB A '=∠∠,∵AB AB '=,∴(SAS)BAC AB M ' ≌,∴BC AM =,∴12AD BC =.(3)如图,过点P 作PH AB ⊥于H ,取BC 的中点J ,连接PJ .答案第15页,共15页∵PCD 是等边三角形,∴660PC CD PD PCD CPD ===∠=∠=︒,,∵150BCD ∠=︒,∴90PCB ∠=︒,∵PAD 是PBC 的“旋补三角形”,∴18060120APB PA PB ∠=︒-︒=︒=,,∵PH AB ⊥,∴660AH HB APH BPH ==∠=∠=︒,,6PB∴PB =∴BC ==,∴PBC 的“旋补中线”长:12BC =,∵BJ CJ ==∴PJ ==,∵PBC 也是PAD 的“旋补三角形”,∴2AD PJ ==.【点睛】本题主要考查对新定义的概念的理解和应用,等边三角形和等腰三角形的性质和勾股定理,熟练掌握等腰及等边三角形的性质和勾股定理是解决本题的关键.。
2023-2024学年上海市闵行区八年级下学期月考数学试卷含详解
2023学年第二学期第一次阶段练习八年级数学学科时长:90分钟总分:100分一、选择题:(本大题共6题,每题3分,满分18分)1.下列函数中,y 值随x 的增大而减小的函数()A .3y x =-+; B.12y x =; C.31y x =+; D.11y x =+.2.下图中表示函数x y a a =-和a y x =在同一平面直角坐标系中的图像是()A.B.C.D.3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的()A.B.C.D.4.下列方程中,有实数根的方程是()A.40=;B.2350x x ++=;C.111x x x =--;D.380x +=.5.已知各组x y 、的值①1,2;x y =-⎧⎨=⎩②20x y =-⎧⎨=⎩,;③34x y =-⎧⎨=⎩,;④41x y =-⎧⎨=⎩,;其中,是二元二次方程2244260x xy y x y ++---=的解的个数为()A.1B.2C.3D.46.已知关于x3m x ++=有一个实数根是1x =,那么m 的值为()A.2B.3C.2或3D.一切实数.二、填空题:(本大题共12题,每题2分,满分24分)7.当m _______时,函数7y mx =+是一次函数.8.直线25y x =-的截距是_______.9.已知一次函数()112f x x =-,那么()2f =_______.10.如果点()1,A a -、点()1,B b 在直线1y x =-+上,那么a _______b (填“>”、“<”).11.若一次函数2y x m =+的图象不经过第四象限,那么m 的取值范围是_____.12.一次函数()0y kx b k =+≠的图像如图所示,当0y >时,x 的取值范围是_______.13.换元法解方程()2231512x x x x -+=-时,如果设21x y x =-,那么得到关于y 的整式方程是_______.14.方程(x 0-=的解是_____________________15.某校举行篮球单循环赛,即两队之间互相比赛,共进行了m 场比赛.设有x 个队参加这个比赛,那么可以列出方程为_______.16.已知一个多边形的每个内角都是o160,则这个多边形的边数是_______.17.已知(6,2),B(3,4)A ---,点P 在y 轴上且PA PB +最短,则点P 的坐标为_______________18.如果关于x 的方程2202(2)x x x a x x x x -+++=--只有一个实数根,则实数a 的值为________________.三、简答题:(本大题共4题,每题6分,满分24分)19.解关于x 的方程:()13x x -=.20.解方程:2631x 1x 1-=--21.1=22.解方程组:222910x xy y x y ⎧-+=⎨+-=⎩四、解答题:(本大题共3题,每题8分,满分24分)23.已知一次函数图象经过点()1,7A 、点()1,5B -.(1)求这个一次函数的解析式;(2)求这个一次函数图象、直线y x =-与x 轴围成的三角形面积.24.某校组织甲、乙两班学生参加“美化校园”的义务劳动.如果甲班做2小时,乙班做3小时,那么可完成全部工作的一半;如果甲班先做2小时后另有任务,剩下工作由乙班单独完成,那么乙班所用的时间恰好比甲班单独完成全部工作的时间多1小时.问:甲乙两班单独完成这项工作各需多少时间?25.A 、B 两城间的公路长为m 千米,甲、乙两车同时从A 城出发沿这一公路驶向B 城,甲车到达B 城1小时后沿原路用每小时90千米的速度返回.如图是它们离A 城的路程y (千米)与行驶时间x (小时)之间的函数图像.(1)由题设可以得出m 的值为_______;(2)甲车从A 城出发时的速度为_______千米/小时;(3)甲车返回过程中y 与x 之间的函数解析式是_______;(4)如果乙车的行驶速度为60千米/小时,那么甲从B 城开始返回,经过几个小时与途中的乙车相遇.五、综合题:(本题满分10分,第(1)(3)小题各4分,第(2)小题2分)26.如图,直线1:l y x m =-+与y 轴交于点A ,直线2:2l y x n =+与y 轴交于点C ,与x 轴交于点D ,且它们都经过点()2,2B .(1)求点A 、点D 坐标;(2)过点A 作BC 的平行线交x 轴于点E ,求点E 的坐标;(3)在(2)的条件下,直线2l 上是否存在一动点P ,使EDP △是等腰三角形?若存在,请直线写出P 点坐标;若不存在,请说明理由.2023学年第二学期第一次阶段练习八年级数学学科时长:90分钟总分:100分一、选择题:(本大题共6题,每题3分,满分18分)1.下列函数中,y 值随x 的增大而减小的函数()A.3y x =-+; B.12y x =; C.31y x =+; D.11y x =+.【答案】A【分析】此题考查函数的性质,熟知一次函数的性质及反比例函数的性质是解题的关键,根据函数性质依次判断即可.【详解】A.是一次函数,0k <,y 值随x 的增大而减小,故符合题意;B.是正比例函数,0k >,y 值随x 的增大而增大,故不符合题意;C.是一次函数,0k >,y 值随x 的增大而增大,故不符合题意;D.由0x ≠得函数图象是两个分支,在每个象限内,y 值随x 的增大而减小,故不符合题意;故选:A .2.下图中表示函数x y a a =-和a y x =在同一平面直角坐标系中的图像是()A. B. C. D.【答案】B【分析】此题考查了一次函数图像及反比例函数图像,根据a 的取值分别确定一次函数及反比例函数图像所在的象限,即可得到答案【详解】当0a >时,x y a a=-的图像过第一,三,四象限;a y x =的图像在第一,三象限;故C 错误,D 错误;当a<0时,x y a a =-的图像过第一,二,四象限;a y x =的图像在第二,四象限;故A 错误,B 正确;故选:B3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的()A.B.C.D.【答案】B【分析】根据题意,列出函数关系式,即可求解.【详解】解∶根据题意得∶()54008y t t=-+≤≤,∴该图象为一次函数图象的一部分.故选:B【点睛】本题主要考查了一函数的图象,根据题意,列出函数关系式是解题的关键.4.下列方程中,有实数根的方程是()A.40=;B.2350x x++=; C.111xx x=--; D.380x+=.【答案】D【分析】此题考查了二次根式的性质,一元二次方程根的判别式,解分式方程,立方根的概念,据此依次判断即可.【详解】解:A、40+=4=-,无意义,故无实数根,不符合题意;B、2345110∆=-⨯=-<,无实数根,故不符合题意;C、去分母,得1x=,此时10x-=,无实数根,故不符合题意;D、380x+=,得2x=-,有实数根,故符合题意;故选:D.5.已知各组x y、的值①1,2;xy=-⎧⎨=⎩②2xy=-⎧⎨=⎩,;③34xy=-⎧⎨=⎩,;④41xy=-⎧⎨=⎩,;其中,是二元二次方程2244260x xy y x y++---=的解的个数为()A.1B.2C.3D.4【答案】C【分析】本题考查二元二次方程的解,将题目中的各组解分别代入224426x xy y x y ++---中,看哪一组解使得2244260x xy y x y ++---=,则哪一组解就是方程的解,本题得以解决【详解】解:2244260x xy y x y ++---=即()()2216x y x y ++-=①当12x y =-⎧⎨=⎩时,()()2216x y x y ++-=,故该选项符合题意;②.当20x y =-⎧⎨=⎩,()()2216x y x y ++-=,故该选项符合题意;③.34x y =-⎧⎨=⎩,()()2216x y x y ++-≠故该选项不符合题意;④.41x y =-⎧⎨=⎩,()()2216x y x y ++-=故该选项符合题意;则符合题意得有3个.故选:C .6.已知关于x 3m x ++=有一个实数根是1x =,那么m 的值为()A.2B.3C.2或3D.一切实数.【答案】A【分析】本题主要考查的是无理方程,先把方程的根代入方程,可以求出m 的值,然后根据无理方程中二次根式的双重非负性列出不等式,得2m =.【详解】解:把1x =代入方程有:13m ++=,2m =-,两边同时平方得:2244m m m -=-+,即2560m m -+=,即()()230m m --=,∴12m =,23m =,由题意得:2020m x m -≥⎧⎨-≥⎩,∴2020m m -≥⎧⎨-≥⎩,经检验2m =13m ++=的解,3m =不符合题意,要舍去.故选:A .二、填空题:(本大题共12题,每题2分,满分24分)7.当m _______时,函数7y mx =+是一次函数.【答案】0≠##不等于0【分析】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.根据一次函数的定义即可求解.【详解】 函数7y mx =+是一次函数,∴0m ≠故答案为:0≠.8.直线25y x =-的截距是_______.【答案】5-【分析】此题考查了一次函数截距的定义,截距即为图象与y 轴交点的纵坐标,据此解答即可.【详解】当0x =时,25y x =-中5y =-,故答案为5-.9.已知一次函数()112f x x =-,那么()2f =_______.【答案】0【分析】此题考查求一次函数值,根据公式代入计算即可.【详解】∵()112f x x =-,∴()122102f =⨯-=,故答案为:0.10.如果点()1,A a -、点()1,B b 在直线1y x =-+上,那么a _______b (填“>”、“<”).【答案】>【分析】此题考查比较一次函数值的大小,将点()1,A a -、点()1,B b 代入1y x =-+,分别求出a ,b ,比较即可.【详解】将点()1,A a -、点()1,B b 代入1y x =-+,得112,110a b =+==-+=,∴a b >,故答案为:>.11.若一次函数2y x m =+的图象不经过第四象限,那么m 的取值范围是_____.【分析】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系,先判断出一次函数图象经过第一、二、三象限或一、三象限,即可确定m 的取值范围,解题的关键是熟练掌握一次函数的图象及性质.【详解】解:∵一次函数2y x m =+的图象不经过第四象限,∴一次函数2y x m =+图象经过第一、二、三象限或一、三象限,∴0m ≥,故答案为:0m ≥.12.一次函数()0y kx b k =+≠的图像如图所示,当0y >时,x 的取值范围是_______.【答案】3x <【分析】本题主要考查一次函数图像和一元一次不等式的解集,根据图像直接解答即可.【详解】解:根据函数图像可知:当3x <时,0y >,故答案为:3x <.13.换元法解方程()2231512x x x x -+=-时,如果设21x y x =-,那么得到关于y 的整式方程是_______.【答案】25302y y -+=【分析】由21x y x =-,则211x x y -=,将方程()2231512x x x x -+=-变形得25302y y -+=.【详解】解:设21x y x =-,则211x x y-=,则方程()2231512x x x x -+=-为352y y +=整理得25302y y -+=,故答案为25302y y -+=.14.方程(x 0-=的解是_____________________【答案】4x =【详解】解:(x 0-=Q 20x ∴-=或40x -=,解得:2x =或4x =,40x -≥∴4x ≥4x ∴=故答案为:4x =【点睛】此题考查解无理方程,注意被开方数必须大于或等于0,求此类方程的解必须满足这一条件.15.某校举行篮球单循环赛,即两队之间互相比赛,共进行了m 场比赛.设有x 个队参加这个比赛,那么可以列出方程为_______.【答案】()112x x m -=【分析】本题主要考查了一元二次方的应用,解决本题的关键是读懂题意,得到总场数的等量关系.根据“比赛场数()12x x -=”,即可求解.【详解】解:根据题意得:()112x x m -=,故答案为:()112x x m -=.16.已知一个多边形的每个内角都是o160,则这个多边形的边数是_______.【答案】18【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解: 多边形每一个内角都等于o 160∴多边形每一个外角都等于o o o180-160=20∴边数o o 3602018n =÷=故答案为:18【点睛】此题主要考查了多边形的外角与内角,解题的关键是掌握多边形的外角与它相邻的内角互补,外角和为360°.17.已知(6,2),B(3,4)A ---,点P 在y 轴上且PA PB +最短,则点P 的坐标为_______________【答案】(0,2)-【分析】要使点P 在y 轴上且PA PB +最短,作A 点关于y 轴对称点A’,连接A’B 交y 轴于点P ,P 即为所求.【详解】解:作A 点关于y 轴对称点A’,连接A’B 交y 轴于点P ,则此时使PA +PB 最小,∵A (-6,2),∴A’坐标为(6,2),设直线A’B 的解析式为y =kx +b ,将A’(6,2),B (-3,−4)代入y =kx +b 得:2643k b k b =+⎧⎨-=-+⎩,解得:232k b ⎧=⎪⎨⎪=-⎩,∴直线A’B 的解析式为y =223x -,当x=0时,y=-2,∴点P 的坐标为(0,2)-,故答案为(0,2)-.【点睛】此题主要考查了最短路径求法以及待定系数法求一次函数解析式等知识,求得直线A’B 的解析式是解题关键.18.如果关于x 的方程2202(2)x x x a x x x x -+++=--只有一个实数根,则实数a 的值为________________.【答案】7,4,82---【分析】先将分式方程化为整式方程,此整式方程为一元二次方程,根据判别式等于0求得a 的值,再分为两种情况,当△=0和△>0,再分别求出即可.【详解】解:去分母得整式方程为:2224=0x x a -++,∵方程只有一个实数根,当△=0时,(-2)2-4×2×(a+4)=0,解得:a=72-,此时方程的解为:x=72-,满足条件;当△>0时,a <72-,此时方程2224=0x x a -++有两个不相等的实数根,则当x=0时,代入方程得:a=-4<72-,即a=-4时,x=0是方程2202(2)x x x a x x x x -+++=--的增根,当x=2时,代入方程得:a=-8<72-,即a=-8时,x=2是方程2202(2)x x x a x x x x -+++=--的增根,综上:a 的值为72-或-4或-8.【点睛】本题考查了分式方程的解和分式有意义的条件,以及一元二次方程根的判别式,能求出符合的所有情况是解此题的关键.三、简答题:(本大题共4题,每题6分,满分24分)19.解关于x 的方程:()13x x -=.【答案】1122x =+,2122x =-【分析】本题主要考查了用公式法解一元二次方程,先把方程变形得到230x x --=,再按公式法解方程即可.【详解】解:方程()13x x -=可化为:230x x --=,1a =,1b =-,3c =-,()()2241413130b ac ∆=-=--⨯⨯-=>,∴方程有两个不相等的实数根.411322b x a -±==,∴1122x =+,2122x =-.20.解方程:2631x 1x 1-=--【答案】x=-4【分析】本题考查解分式方程的能力.因为x 2-1=(x+1)(x-1),所以可得方程最简公分母为(x+1)(x-1).再去分母整理为整式方程即可求解.结果需检验.【详解】方程两边同乘(x+1)(x-1),得6-3(x+1)=x 2-1,整理得x 2+3x-4=0,即(x+4)(x-1)=0,解得x 1=-4,x 2=1.经检验x=1是增根,应舍去,∴原方程的解为x=-4.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.1=【答案】1x 0=【分析】根据解无理方程的一般步骤求解即可.=2x 11+=+x =2x -4x 0=解得1x 0=,2x 4=经检验2x 4=是原方程的增根,所以原方程的解为1x 0=【点睛】本题主要考查解无理方程,去掉根号把无理方程化成有理方程是解题的关键,注意无理方程需验根.需要同学们仔细掌握.22.解方程组:222910x xy y x y ⎧-+=⎨+-=⎩【答案】21x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩【分析】本题考查了解二元一次方程组,先变形(1)得出3x y -=,3x y -=-,作出两个方程组,求出方程组的解即可.【详解】解:22291102x xy y x y ⎧-+=⎨+-=⎩()(),由(1)得出3x y -=,3x y -=-,故有31x y x y -=⎧⎨+=⎩或31x y x y -=-⎧⎨+=⎩解得:21x y =⎧⎨=-⎩或12x x =-⎧⎨=⎩原方程组的解是21x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩.四、解答题:(本大题共3题,每题8分,满分24分)23.已知一次函数图象经过点()1,7A 、点()1,5B -.(1)求这个一次函数的解析式;(2)求这个一次函数图象、直线y x =-与x 轴围成的三角形面积.【答案】(1)6y x =+(2)9【分析】本题主要考查了求一次函数的解析式,一次函数与x 轴的交点,两直线的交点以及一次函数的几何应用.(1)用待定系数法求一次函数解析式即可.(2)根据题意作出图象,分解求出点A ,B ,O 的坐标,然后计算ABO S 即可.【小问1详解】解:设一次函数的解析式为y kx b =+,∵一次函数图象经过点()1,7A ,点()1,5B -,∴75k b k b +=⎧⎨-+=⎩,解得:16k b =⎧⎨=⎩,∴一次函数的解析式为6y x =+.【小问2详解】根据题意作图如下:令60y x =+=,解得:6x =-,∴一次函数6y x =+与x 轴的交点坐标为:()6,0B -令0y x =-=,解得:0x =,∴直线y x =-与x 轴为()0,0O ,∴6OB =,联立两直线:6y x y x =+⎧⎨=-⎩,解得:33x y =-⎧⎨=⎩,∴()3,3A -.∴点A 到x 轴的距离为3.∴13692ABO S =⨯⨯=.24.某校组织甲、乙两班学生参加“美化校园”的义务劳动.如果甲班做2小时,乙班做3小时,那么可完成全部工作的一半;如果甲班先做2小时后另有任务,剩下工作由乙班单独完成,那么乙班所用的时间恰好比甲班单独完成全部工作的时间多1小时.问:甲乙两班单独完成这项工作各需多少时间?【答案】甲、乙两班单独完成这项工作各需8小时、12小时.【分析】单独完成这项工作甲需要x 小时,乙需要y 小时,则甲每小时完成全部工作的1x ,乙每小时完成全部工作的1y ,再根据题意列方程组即可求解.,【详解】解:设甲、乙两班单独完成这项工作各需x 小时、y 小时.由题意得2312211x y x xy ⎧+=⎪⎪⎨+⎪+=⎪⎩①②①-②得:212x y -=得:24y x =-③将③代①得:231242x x +=-解得:8x =所以12y =经检验:812.x y =⎧⎨=⎩是原方程的解且符合题意.答:甲、乙两班单独完成这项工作各需8小时、12小时.【点睛】本题考查了分式方程组的应用,根据方程组的特点化二元分式方程为一元分式方程进一步转化为整式方程求解是关键。
八年级数学下册第一次月考试卷(附答案)
八年级数学下册第一次月考试卷(附答案)一.单选题。
(共40分)1.若m>n,下列结论错误的是()A.m+2>n+2B.m-2>n-2C.2m>2nD.﹣2m>﹣2n2.x的3倍与5的差不大于4,用不等式表示为()A.3x+5≤4B.3x+5<4C.3x-5<4D.3x-5≤43.函数y=kx+b的图象如图所示,关于x的不等式kx+b>0的解集为()A.x>0B.x<0C.x<2D.x>2(第3题图)(第4题图)(第8题图)4.一次函数y=kx+b的图像如图所示,当y<2时,x的取值范围是()A.x<1B.x>1C.x<3D.x>35.﹣3x≤9的解集在数轴上可表示为()A. B. C. D.6.已知点P(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.7.关于x的不等式x+a2≥2x-13的解集为x≤﹣1,则a的值是()A.0B.1C.﹣1D.﹣138.一次函数y=3x+b和y=ax-3的图象如图所示,交点P(﹣2,﹣5),则不等式3x+b>ax-3的解集在数轴上表示正确的是()A. B.C. D.9.某种商品的进件为80元,出售时标价120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至少打几折,如果该商品打x 折销售,则不等式中正确表示该商品的促销方式的是( )A.120x ≥80×5%B.120x -80≥80×5%C.120×x10≥80×5% D.120×x10-80≥80×5% 10.关于x 的不等式组{x -m <07-2x ≤1的整数解共有4个,则m 的取值范围是( )A.6<m <7B.6≤m <7C.6≤m ≤7D.6<m ≤7 二.填空题。
(共24分)11.若a <b ,则1-3a 1-3b (填>、<或=) 12.若关于x 的不等式组{x >2x >m的解集是x >2,则m 的取值范围是 .13.已知关于x 的不等式(1-a )x >3的解集为x <31-a,则a 的取值范围是 .14.关于x 的方程2x+4=m -x 的解为负数,则m 的取值范围是 . 15.已知关于x 、y 的二元一次方程组{2x +3y =5ax +4y =2a +3满足x -y >0,则a 的取值范围是 .16.对于任意实数a 、b 定义一种运算:a ★b=ab -a+b -2,例如2★5=2×5-2+5-2=11,请根据上述定义解决问题,若不等式3★x <2,则不等式的正整数解是 . 三.解答题。
八年级下册第1次月考试题--数学(含答案) (18)
八年级数学(下册)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或173.下列能判定△ABC为等腰三角形的是()A.∠A=40°、∠B=50°B.∠A=40°、∠B=70°C.AB=AC=3,BC=6 D.AB=3、BC=8,周长为164.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF5.到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC 的长为()A.7cm B.10cm C.12cm D.22cm7.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.138.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC 为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个9.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形10.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.如果等腰三角形的一个角等于80°,则它的顶角等于度.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为cm.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=度.16.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积cm2.17.如图,∠AOB是一角度为15°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为.18.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.三、解答题(共9大题,满分74分)19.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为.21.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).22.如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.(1)选择的条件是(填序号);(2)证明:23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是;(2)若∠BAC=128°,则∠DAE的度数是.25.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?26.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.27.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,在某一时刻也能够使△BPD 与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?八年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.3.下列能判定△ABC为等腰三角形的是()A.∠A=40°、∠B=50°B.∠A=40°、∠B=70°C.AB=AC=3,BC=6 D.AB=3、BC=8,周长为16【考点】等腰三角形的判定.【分析】根据等腰三角形判定,利用三角形内角定理对4个选项逐一进行分析即可得到答案.【解答】解:解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=70°时,∠A=∠C=40°,当顶角为∠A=40°时,∠B=∠C=70°,所以B选项正确.当AB=AC=3,BC=63+3=6,不能构成三角形,所以C选项错误.当AB=3、BC=8,周长为16,AC=5,所以D选项错误.故选B.4.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.5.到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点【考点】角平分线的性质.【分析】根据角的平分线上的点到角的两边的距离相等解答即可.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形三条边的距离相等的点是三角形三条角平分线的交点,故选:A.6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC 的长为()A.7cm B.10cm C.12cm D.22cm【考点】翻折变换(折叠问题).【分析】首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC 的长.【解答】解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.7.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选:C.8.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC 为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个【考点】等腰三角形的判定.【分析】根据AB的长度确定C点的不同位置,由已知条件,利用勾股定理可知AB=,然后即可确定C点的位置.【解答】解:如图,AB==,∴当△ABC为等腰三角形,则点C的个数有8个,故选C.9.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形【考点】全等三角形的判定与性质;等边三角形的性质.【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.10.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个和菱形位置基本一致的正方形,得到结论.故选A.二、填空题(共8小题,每小题3分,满分24分)11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是10:51.【考点】镜面对称.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际时间.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是10:51.故答案为:10:51.12.如果等腰三角形的一个角等于80°,则它的顶角等于80或20.度.【考点】等腰三角形的性质;三角形内角和定理.【分析】当等腰三角形的一个角等于80°时,分2种情况;①当等腰三角形的一个角等于80°时,等腰三角形的顶角与其相等,②当等腰三角形的顶角等于80°,时,利用三角形内角和定理即可求出答案.【解答】解;当等腰三角形的一个角等于80°时,则有2种情况;①当等腰三角形的一个角等于80°时,等腰三角形的顶角等于80°时,②当等腰三角形的顶角等于80°时则它的底角为:=20°故答案为:80或20.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为105°.【考点】轴对称的性质.【分析】根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=40°,∴∠B=180°﹣∠A﹣∠C=180°﹣40°﹣35°=105°.故答案为:105°14.如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为3cm.【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE=CD,从而得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,BD平分∠ABC,∴DE=CD,∵CD=3cm,∴DE=3cm,即点D到AB的距离为3cm.故答案为:3.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=30度.【考点】线段垂直平分线的性质.【分析】由AB=AC,∠A=40°,即可推出∠C=∠ABC=70°,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40°,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40°,∴∠C=∠ABC=70°,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=30°.故答案为30°.16.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积18cm2.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线定义和平行线性质求出∠EOB=∠EBO,∠FCO=∠FOC,根据等腰三角形的判定得出OE=BE,OF=FC,求出BC长,根据三角形的面积公式求出即可.【解答】解:∵∠B与∠C的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FCO=∠FOC,∴OE=BE,OF=FC,∴EF=BE+CF,∴AE+EF+AF=AB+AC,∵△ABC的周长比△AEF的周长大12cm,∴(AC+BC+AC)﹣(AE+EF+AF)=12,∴BC=12cm,∵O到AB的距离为3cm,∴△OBC的面积是cm×3cm=18cm2.,故答案为:18.17.如图,∠AOB是一角度为15°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为5.【考点】等腰三角形的性质.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=15°,∴∠GEF=∠FGE=30°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是15°,第二个是30°,第三个是45°,四个是60°,五个是75°,六个是90°就不存在了.所以一共有5个.故答案为518.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.【考点】轴对称-最短路线问题;等腰三角形的性质.【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF≥,即可得出答案.【解答】解:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理得:AD==12,=×BC×AD=×AB×CN,∴S△ABC∴CN===,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥,即CF+EF的最小值是,故答案为:.三、解答题(共9大题,满分74分)19.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.【考点】利用轴对称设计图案.【分析】直接利用轴对称图形的性质结合网格得出符合题意的图形即可.【解答】解:如图所示:.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为14.【考点】作图-轴对称变换.【分析】(1)先作出各点关于直线MN的对称点,再顺次连接即可;(2)利用矩形的面积减去三角形的面积即可.【解答】解:(1)如图所示;(2)S六边形AA′B′C′CB=3×6﹣×2×1﹣×2×1﹣×2×1﹣×2×1=18﹣1﹣1﹣1﹣1=14.故答案为:14.21.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).【考点】作图—应用与设计作图.【分析】到AB、BC距离相等的点在∠ABC的平分线上,到点A、D的距离相等的点在线段AD的垂直平分线上,AD的中垂线与∠B的平分线的交点即为点P的位置.【解答】解:如图所示:点P即为所求.22.如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.(1)选择的条件是①(填序号);(2)证明:【考点】全等三角形的判定与性质.【分析】(1)利用全等三角形的判定定理选出合适的条件即可;(2)利用SSS进而判断出全等三角形,得出AB∥ED即可.【解答】解:(1)选择①AB=ED或③∠ACB=∠DFE即可.故答案为:①(答案不唯一);(2)证明:∵FB=CE,∴BC=EF,在△ABC和△EFD中,∴△ABC≌△EFD(SSS),∴∠B=∠E,∴AB∥ED.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是10;(2)若∠BAC=128°,则∠DAE的度数是76°.【考点】线段垂直平分线的性质.【分析】(1)由在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,易得AE=BE,AF=CF,即可得BC=△AEF周长;(2)由∠BAC=128°,可求得∠B+∠C的值,即可得∠BAE+∠CAF的值,继而求得答案.【解答】解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,∴AE=BE,AF=CF,∵△ADE周长是10,∴BC=BE+EF+CF=AE+EF+AF=10;故答案为:10;(2)∵AE=BE,AF=CF,∴∠B=∠BAE,∠C=∠CAF,∵∠BAC=128°,∴∠B+∠C=180°﹣∠BAC=52°,∴∠BAE+∠CAF=∠B+∠C=52°,∴∠FAE=∠BAC﹣(∠BAE+∠CAF)=76°,故答案为:76°.25.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?【考点】等边三角形的性质;全等三角形的性质;等腰三角形的判定.【分析】(1)根据全等三角形的性质得到CO=CD,∠BCO=∠ACD,由等边三角形的性质得到∠ACB=60°,求得∠OCD=∠ACB=60°;即可得到结论;(2)根据等边三角形的性质和周角的定义解答即可;(3)分三种情况::①要使AO=AD,需∠AOD=∠ADO,根据周角的定义得到∠ADO=α﹣60°,得到方程190°﹣α=α﹣60°求得α=125°;②要使OA=OD,需∠OAD=∠ADO.由于∠AOD=190°﹣α,∠ADO=α﹣60°,于是得到α﹣60°=50°求得α=110°;③要使OD=AD,需∠OAD=∠AOD.由于190°﹣α=50°于是得到α=140°.【解答】解:(1)△COD是等边三角形,理由如下:∵△BOC≌△ADC,∴CO=CD,∠BCO=∠ACD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠OCD=∠ACB=60°;∴△COD是等边三角形;(2)∵△COD是等边三角形,∴∠COD=60°,∵△AOD是直角三角形,∴∠AOD=90°,∴∠α=360°﹣110°﹣90°﹣60°=100°;(3)①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°﹣∠AOB﹣∠COD﹣α=360°﹣100°﹣60°﹣α=200°﹣α,∠ADO=α﹣60°,∴200°﹣α=α﹣60°∴α=130°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=200°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(∠AOD+∠ADO)=40°,∴α﹣60°=40°∴α=100°;③要使OD=AD,需∠OAD=∠AOD.∵200°﹣α=40°∴α=160°,当α=150°时,△AOD也是直角三角形.综上所述:当α的度数为130°,或100°,150°或160°时,△AOD是等腰三角形26.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=15cm.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA= 3:1.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.【考点】含30度角的直角三角形;等腰三角形的性质;等边三角形的性质.【分析】(1)根据三角形内角和定理推知∠A=30,∠C=90°.(2)根据线段垂直平分线的性质知CD=BD,则△ACD的周长等于AC+AB;(3)如图3,连接AD.利用等腰三角形的性质、垂直的定义推知∠B=∠ADE=30°,然后由”30度角所对的直角边是斜边的一半“分别求得BE、AE的值;(4)如图4,根据全等三角形的判定定理SAS可判断两个三角形全等;根据全等三角形的对应角相等,以及三角形外角的性质,可以得到∠PBQ=30°,根据直角三角形的性质即可得到.【解答】解:(1)∵∠A:∠B:∠C=1:2:3,且∠A+∠B+∠C=180°,∴∠A=30,∠C=90°,∴BC=AB=.故填:;(2)如图2,∵DE是线段BC的垂直平分线,∠ACB=90°,∴CD=BD,AD=BD.又∵在△ABC中,∠ACB=90°,∠B=30°,∴AC=AB,∴△ACD的周长=AC+AB=3BD=15cm.故填:15cm;(3)如图3,连接AD.∵在△ABC中,AB=AC,∠A=120°,D是BC的中点,∴∠BAD=60°.又∵DE⊥AB,∴∠B=∠ADE=30°,∴BE=BD,AE=AD,∴BE:EA=BD:AD,又∵BD=AD,∴BE:AE=3:1.故填:3:1.(4)BP=2PQ.理由如下:∵△ABC为等边三角形.∴AB=AC,∠BAC=∠ACB=60°,在△BAE和△ACD中,,∴△BAE≌△ACD(SAS),∴∠ABE=∠CAD.∵∠BPQ为△ABP外角,∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ.27.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 1.5cm/s时,在某一时刻也能够使△BPD与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?【考点】全等三角形的判定;等腰三角形的性质.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个边长.【解答】解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CPQ;②假设△BPD≌△CPQ,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t==2秒,∴vQ===1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得1.5x=x+2×6,解得x=24,∴点P共运动了24×1cm/s=24cm.∵24=16+4+4,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【点
解析:
【解析】
【分析】
根据完全平方公式以及整体的思想即可求出答案.
【详解】
∵ = , =
∴x+y= ,xy= ,
(1)
=(x+y)2-3xy,
=
= ;
(2) = .
【点睛】
本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.
27.计算:
(1) ;
18.若 ,则二次根式 化简的结果为________.
19.函数y= 中,自变量x的取值范围是____________.
20.代数式 有意义,则x的取值范围是_____.
三、解答题
21.阅读下面问题:
阅读理解:
﹣1;
;
.
应用计算:(1) 的值;
(2) (n为正整数)的值.
归纳拓展:(3) 的值.
【答案】应用计算:(1) ;(2) ;归纳拓展:(3)9.
28.先阅读下面的解题过程,然后再解答.形如 的化简,我们只要找到两个数a,b,使 , ,即 , ,那么便有: .
例如化简: .
解:首先把 化为 ,
这里 , ,
由于 , ,
所以 ,
所以 .
根据上述方法化简: .
【答案】见解析
【分析】
应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.
【详解】
6.下列运算正确的是( )
A. =﹣6B. C. =±2D.2 ×3 =5
7.当 时, 的值为()
A.1B. C.2D.3
8.若a= ,b=2+ ,则 的值为( )
A. B. C. D.
9.下列计算正确的是()
A. B.
C. D.
10.下列运算一定正确的是
A. B. C. D.
二、填空题
11.比较实数的大小:(1) ______ ;(2) _______
二、填空题
11.【分析】
(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.
【详解】
(1)
(2)
∵
∴
∴
故答案为: ,.
解析:
【分析】
(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.
【详解】
(1)
(2)
【分析】
先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.
【详解】
解:由数轴可知:b>0,a﹣b<0,a+b<0,
∴原式=|b|+|a﹣b|﹣|a+b|
=b﹣(a﹣b)+(a+b)
=b﹣a+b+a+b
=3b,
故答案为:3b
【点睛】
本题考查了二次根式的性质,绝对值的性质,熟知 和绝对值的性质是解题的关键.
【详解】
A. ,故此选项错误;
B. ,正确;
C. ,无法计算,故此选项错误;
D. ,故此考查了二次根式的加减,正确掌握二次根式的性质是解题关键.
5.C
解析:C
【分析】
根据二次根式的性质:被开方数大于或等于0,列不等式求解.
【详解】
解:依题意有
当 时,原二次根式有意义;
解得: ;
故选:C.
【点睛】
本题考查了二次根式的基本性质(被开方数大于或等于0);解一元一次不等式,在解一元一次不等式的过程中要用到不等式的基本性质(1.不等式两边同时加上或同时减去一个数,不等号的方向不变;2.不等式两边同时乘以或同时除以一个正数,不等号的方向不变;3.不等式两边同时乘以或同时除以一个负数,不等号的方向改变.)熟记并灵活运用不等式的基本性质是解本题的关键.
【详解】
解:(1)由例子可得,
④为: = = ,⑤ = ,
(2)如果n为正整数,用含n的式子表示这个运算规律: = ,
(3)证明:∵n是正整数,
∴ = = .
即 = .
故答案为(1) = = , = ;(2) = ;(3)证明见解析.
【点睛】
本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.
∵
∴
∴
故答案为: , .
【点睛】
本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键.
12.3b
【分析】
先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.
【详解】
解:由数轴可知:b>0,a﹣b<0,a+b<0,
∴原式=|
解析:3b
=
=
= .
【点睛】
此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.
26.已知 求下列各式的值:
(1)
(2)
【答案】(1) ;(2)8.
【分析】
计算出x+y= ,xy= ,
(1)把x2-xy+y2变形为(x+y)2-3xy,然后利用整体代入的方法计算;
(2)把原式变形为 ,然后利用整体代入的方法计算.
23.(1)发现.① ;② ;③ ;……写出④;⑤;
(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;
(3)证明这个猜想.
【答案】(1) , ;(2) ;(3)证明见解析.
【解析】
【分析】
(1)根据题目中的例子直接写出结果;
(2)根据(1)中的特例,可以写出相应的猜想;
(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题.
12.实数a,b在数轴上的位置如图所示,则化简 ﹣|a+b|的结果是_____.
13.已知 ,a是x的整数部分,b是x的小数部分,则a-b=_______
14.若 ,则 ______.
15.若2x﹣1= ,则x2﹣x=_____.
16.计算: =_____________.
17.对于任意实数a,b,定义一种运算“◇”如下:a◇b=a(a-b)+b(a+b),如:3◇2=3×(3-2)+2×(3+2)=13,那么 ◇ =_____.
24.先将 化简,然后选一个你喜欢的x的值,代入后,求式子的值.
【答案】答案见解析.
【解析】
试题分析:
先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x的值需要使原式有意义.
试题解析:
原式
要使原式有意义,则x>2.
所以本题答案不唯一,如取x=4.则原式=2
25.计算
(1) ;(2) ;
(3) ;(4) .
6.B
解析:B
【分析】
分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.
【详解】
A、 ,此选项计算错误;
B、 ,此选项计算正确;
C、 ,此选项计算错误;
D、2 ×3 =6 ,此选项计算错误;
故选:B.
【点睛】
本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.
故选B.
2.D
解析:D
【分析】
根据二次根式的意义先化简各项,再进行分式的加减运算可得出解.
【详解】
解:∵0<x<1,
∴0<x<1< ,
∴ , .
原式=
=
=
=2x.
故选D.
点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.
3.C
解析:C
【分析】
根据二次根式的性质对A进行判断;根据二次根式的加减法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.
【详解】
a= • = .
∴ .
故选:B.
【点睛】
本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b的形式.
9.A
解析:A
【分析】
A中,首先将 进行化简为 ,然后进一步计算便可判断其正误;
B中,被开方数不同的两个二次根式之和不等于和的二次根式,据此可对B进行判断;
C中,合并同类二次根式后即可作出判断;
D中,无法进行合并运算,据此可对D进行判断.
【详解】
解:A. ,正确,故选项A符合题意;
B. 与 不是同类二次根式,不能合并,故选项B不符合题意;
C. ,故选项C不符合题意;
D.3与2 不能合并,故选项D不符合题意.
故选:A.
【点睛】
此题主要考查了二次根式的加减运算,能够判断出二次根式是同类二次根式是解答此题的关键.
7.A
解析:A
【分析】
根据分式的运算法则以及二次根式的性质即可求出答案.
【详解】
解:原式=
将 代入得,
原式
.
故选:A.
【点睛】
本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.
8.B
解析:B
【解析】
【分析】
将a乘以 可化简为关于b的式子,从而得到a和b的关系,继而能得出 的值.
(2)( +2)2+( +2)×( ﹣2).
【答案】(1) ;(2)6+4
【分析】
(1)直接化简二次根式进而合并得出答案;
(2)直接利用乘法公式计算得出答案.
【详解】
解:(1)原式= = ;