实变函数第一章答案
实变函数第一章答案
第一章:集合与实数集(8)设是上的实函数,假若存在M>0,使得对于任何有限个两两不等的实数x1,...,x n,⃒⃒⃒n∑︁k=1f(x k)⃒⃒⃒≤M.证明:{x:f(x)=0}是至多可数集。
证明:令A+={x:f(x)>0},A−={x:f(x)<0}.则{x:f(x)=0}=A+∪A−.所以,只要证明A+,A−都是至多可数集。
我们仅考虑A+.注意到A+=∪∞n=1A n,+,其中A n,+={x:|f(x)|>1/n}.这样问题就归结为证明对于任意的n,A n是至多可数集.由假设条件知道:A n是一个有限集合,其中的点的个数不超过[nM]+1个.(9)证明:R上单调函数的间断点是至多可数的.证明:设f是R上的单增函数,我们首先证明:对于任意的x0∈R,lim x→x0−0f(x),limx→x0+0f(x)都是存在有限的.为简单起见,我们仅考虑左极限的存在性.我们只要证明:(a)对于任意的{x n},x n→x0,x n<x0,lim n→∞x n都存在有限(b)对于任意的{x n},x n→x0,x n<x0,{y n},y n→x0,y n<x0,lim n→∞x n=lim n→∞y n.结论(a)是明显的,至于结论(b),我们只要注意到对于任意的n,一定存在N>n使得当m>N时y m>x n,从而f(x m)>f(x n),这依次隐含着lim n→∞f(x n)≤limm→∞f(y m).2同理可证lim n→∞f(x n)≥limm→∞f(y m).现在回到要证明的结论.假如f在x0不连续,则f(x0−0)<f(x0+0),这样我们就得到一个区间(f(x0−),f(x0+)).对于f的任意两个不连续点x1,x2,区间(f(x1−0),f(x1+0))和(f(x2−0),f(x2+0))相互不交(事实上,我们假设x1<x2.注意到f(x1−0)≤f(x1+0)≤f(x2−0)≤f(x2+0),则(f(x1−0),f(x1+0))和(f(x2−0),f(x2+0))相交当然是不可能的),这样我们就知道:从集合{x0:f在x0不连续}到集合{所有开区间但这些开区间两两相互不交}之间存在一一映射.而后者是一个至多可数集,这就证明了我们的结论.(10)设f是[a,b]上的单调增加的函数,并且f([a,b])在[f(a),f(b)]中稠密。
实变函数论与泛函分析课后答案
第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(in f l i m x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
实变函数论新编第一章答案 魏勇
则f ({xni })为(0,1]中的二进制小数,且
11 f : A (0,1],
于是 A (0,1] c.
20.证明A为无限集的充分必要条 件是它可与其 本身的某一真子集对等 .
所以
n N
An (0, ), An ,
n N
n
lim An An (0, ) (0, ).
N 1 n N N 1
n
lim An An .
N 1 n N N 1
n 2m 1 ( 2 ) . lim An ( { 0,y) 0 y } ( { x, 0 ) 0 x }.
1 8.证明:若 A2 m [0,2m] [0, ], 2m 1 1 ) . lim An ( { 0, 0 ) }. A2 m 1 [0, ] [0,2m 1], 则 (
n
证明:( 1 ) n,有( 0, 0 ) An N 1, n N , 有( 0, 0 ) An 即( { 0, 0 ) } lim An . ( 0, 0 ) lim An
9.作(1,1)和(,)的1 1对应,并写出这一对应 的 解析表达式 . 解.令f : (1,1) (,) x f ( x) tan( x) 2 则f是(1,1)到(,)的1 1对应. 11.证明:所有有理系数多 项式组成一可数集 . 证明:对n: An {a0 a1 x a2 x 2 an x n a0,a1, ,an Q}
故B中元素是由互不相交的 开区间构成,由 10题知, B至多可数,从而 A至多可数.
实变函数(程其襄版)第一至四章课后习题答案
若集合A和B满足关系:对任意 ∈A,可以得到x∈B,则成A是B的子集,记为A B或B A,若A B但A并不与B相同,则称A是B的真子集.
例7. 若 在R上定义,且在[a,b]上有上界M,即任意对
∈[a,b]有 M.用集合语言表示为:[a,b] { : M}.
用集合语言描述函数性质,是实变函数中的常用方法,请在看下例.
定理1
(交换律)
证明我们只证明
先设 则有 且有 于是这证来自了在证反过来的包含关系,设 ,则有 ,此即 ,因此 于是 。
综合起来,便是等式成立。
这表面,集合运算的分配律,在无限并的情况下依然成立
3、集合的差集和余集
若A和B是集合,称 为A和B是差集,A\B也可以记为A-B,如图1.3是A-B的示意图:
请读者注意:我们怎样把描述函数列性质的 语言,转换为集合语言。
例12 设 是定义在E上的函数列,若x是使 收敛与0的点,则对任意的 ,存在 ,使得对任意 即
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
例1设 和 是定义在E上的函数,则对任意
例2.
例3若记
例4 若 是一族开区间,而 ,则存在
使得 (有限覆盖定理)
例5若 是定义在E上的函数,则
2、集合的交集
设A,B是任意两个集合,由一切既属于A又属于B的元素组成的集合C称为A和B的交集或积集,简称为交或积,记作 ,它可以表示为
实变函数课后习题答案_北大版_周民强
证: lim En = [a, b]\E.
n→∞ n→∞
n→∞
∀ x ∈ [a, b] \ E, ∵ lim fn (x) = 1, ∴ ∃N, ∀ n ≥ N, fn (x) ≥
n→∞ 1 , i.e. 2 n→∞ n→∞
∞
{x ∈ [0, 1] : |f (x)| >
n=1
1 } n
=
∞
+ − 1 < |f (x1 ) + f (x2 ) + · · · + f (xp )| ≤ M, p < nM , 所以 E1 则 p· n /n 只含有限个数, 同理 E1/n 也只含有限个数, 由此可得 E 可数.
n=1
+ (E1 /n
S (C, r3 )), S (P, r) 表示以 P 为圆心 r 为半径的球面 }, E 可数.
10. 设 E 是平面 R2 中的可数集, 试证明存在互不相交的集合 A 与 B , 使得 E = A ∩ B, 且任一平行于 x 轴的直线交 A 至多是有限个点, 任一平行于 y 轴的直线交 B 至多是有限 个点. 2
证: ∵ E 可数, ∴ E 中点的横坐标, 纵坐标集合也可数, 分别记为 X = {x1 , x2 , · · · , xn , · · · }, Y = {y1 , y2 , · · · , yn , · · · }, 如此就可记 E = {(xi , yj ) ∈ E : i, j ∈ N}, 作从 E 到 N2 的映 射 f : f ((xi , yj )) = (i, j ); 记 A1 = {(i, j ) : i ≤ j }, B1 = {(i, j ) : i > j }, 令 A = f −1 (A1 ), B = f −1 (B1 ) 即可. 11. 设 {fα (x)}α∈I 是定义在 [a, b] 上的实值函数族. 若存在 M > 0, 使得 |fα (x)| ≤ M, x ∈ [a, b], α ∈ I, 试证明对 [a, b] 中任一可数集 E , 总有函数列 {fαn (x)}, 存在极 限 lim {fαn (x)}, x ∈ E.
实变函数论与泛函分析(曹广福)1到5章课后答案
第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inf lim )(inf lim x x n nA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf 0=≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x m n A nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf 0=⇒=⇒∉≥x A x m nk m A nm A k χχ,故0)(inf sup =≥∈x m A nm N b χ ,即)(inf lim x n A nχ=0 ,从而)(inf lim )(inf lim x x n nA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交. (ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|min 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i ni B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥}1)(|{k a x f x E x m n m N n +≤∈≥∈ =}1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈=}1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
《实变函数论与泛函分析(曹广福)》1到5章课后习题答案
第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。
若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。
实变函数第一章答案
习题1、11.证明下列集合等式.(1) ()()()C A B A C B A I I I \\=; (2) ()()()C B C A C B A \\\Y Y =; (3) ()()()C A B A C B A I Y \\\=. 证明 (1) )()C \B (cC B A A I I I =)()( c c C B A A B A I I Y I I = c C A B A )()( I I I =)(\)(C A B A I I = 、(2) cC B A A I Y Y )(C \B)(=)()(c c C B C A I Y I ==)\()\(C A C A Y 、(3) )(\C)\(B \cC B A A I = c c C B A )(I I =)(C B A c Y I = )()(C A B A c I Y I =)()\(C A B A I Y =、2.证明下列命题.(1) ()A B B A =Y \的充分必要条件就是:A B ⊂; (2) ()A B B A =\Y 的充分必要条件就是:=B A I Ø; (3) ()()B B A B B A \\Y Y =的充分必要条件就是:=B Ø.证明 (1) A B A B B B A B B A B B A cc====Y Y I Y Y I Y )()()()\(的充要条 就是:.A B ⊂(2) ccccB A B B B A B B A B B A I I Y I I Y Y ===)()()(\)(必要性、 设A B B A =\)(Y 成立,则A B A c=I , 于就是有cB A ⊂, 可得.∅=B A I反之若,∅≠B A I 取B A x I ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与cB A ⊂矛盾、充分性、 假设∅=B A I 成立, 则cB A ⊂, 于就是有A B A c=I , 即.\)(A B B A =Y(3) 必要性、 假设B B A B B A \)()\(Y Y =, 即.\cC A B A B A I Y == 若,∅≠B 取,B x ∈ 则,cB x ∉ 于就是,cB A x I ∉ 但,B A x Y ∈ 与cC A B A I Y =矛盾、充分性、 假设∅=B 成立, 显然B A B A \=Y 成立, 即B B A B B A \)()\(Y Y =、 3.证明定理1、1、6.定理1、1、6 (1) 如果{}n A 就是渐张集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且Y ∞=∞→=1;lim n n n n A A(2) 如果{}n A 就是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且I ∞=∞→=1.lim n n n n A A证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意Y ∞=∈1,n n A x 存在N 使得,NAx ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂Y 又因为Y ∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A由此可见{}n A 收敛且Y ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于就是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1I∞=∞→⊂n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂I所以可知{}n A 收敛且I ∞=∞→=1.lim n n n n A A4.设f 就是定义于集合E 上的实值函数,c 为任意实数,证明:(1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1Y ;(2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1I ;(3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111I I Y I .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立、 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11Y ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11Y ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E另一方面, 若,11Y ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110Y ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于就是c n c x f >+≥01)(, 故[]c f E x >∈、 则有[].11Y ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于就是I ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11I ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E另一方面, 设I ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[]I∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E 、(3) 设[]c f E x ≥∈, 则c x f ≥)(、 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以I ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x , 故[]I ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ;另一方面, 设I∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k n n k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0、由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有k x f x f n 1|)()(|00<-、 取},m ax {21N N N =,则有kc x f n 1)(0->与k x f x f n 1|)()(|00<-同时成立, 于就是有kc x f k x f n 1)(1)(00->>+, 从而k c x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有[]I ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ;综上所述:[].11lim 111I YI I ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E5.证明集列极限的下列性质.(1) cn n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____;(2) c n ncn n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ;(4) ()n n n n A E A E ∞→∞→=lim \\lim .证明 (1) cn n n nm c m n c n m m c n n m m cn n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____YI Y Y I Y 、(2) c n n n n nm c m c n m m c n n m m cn n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛I I Y I YI 、 (3) ()YI Y I YII I ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm n n m cm cm n nm m n n A E A E A E A Ec n nm mn c nm m n n m cm AE A E A E )())(()(111IY Y Y YI I I I ∞=∞=∞=∞=∞=∞====I Y ∞=∞=∞→==1lim \\n nm n n mA E AE 、(4) ()I Y I Y I Y I I∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n n m cm n nm n nm cm m n n A E A E AE A Ec n nm m n c nm m n n m cmA E A E AE )())(()(111YI I I I Y I I I ∞=∞=∞=∞=∞=∞====YI∞=∞=∞→==1lim \\n nm n n m A E A E 、6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A I Y 都收敛且 (1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim Y Y ; (2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim I I ; (3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim .习题1、21.建立区间)1,0(与]1,0[之间的一一对应. 解 令1111{,,,,}2345E =L , 111{0,1,,,}234F =L ,(0,1)\D E =,则(0,1)E D =U ,[0,1]F D =U 、 定义:(0,1)[0,1]φ→为: ;11();(1,2,)210;2x x Dx x n n n x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩L 则φ为(0,1)[0,1]→之间的一个一一对应、2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 定义: :[,][,]a b c d φ→为:()().([,])d c d c bc adx x a c x x a b b a b a b aφ---=-+=+∀∈--- 可以验证::[,][,]a b c d φ→为一个一一对应、3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 令{,,,}234b a b a b a E a a a ---=+++L ,{,,,,}23d c d c F c d c c --=++L (,)\D a b E =、 定义:(,)[,]a b c d φ→为:;();(1,2.)2;.2d cbc ad x x D b a b a d c b ax c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩L 可以验证: :(,)[,]a b c d φ→为一个一一对应、4.试问:就是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?就是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[Y ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值、也不存在连续函数把区间[0,1]一一映射为[1,2][3,4]U ; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4]U 不能保证介值性定理永远成立、5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R . 证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯、任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y b b b ==L L 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b =L , 则得到单射:f A A A ⨯→、 因此由定理1、2、2知A A A ⨯≤、若令10.5A A =⨯, 则1~A A A A ⊂⨯、 从而由定理1、2、2知: A A A ≤⨯、 最后, 根据Bernstein 定理知: (0,1)~(0,1)(0,1)⨯、对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯、 又因为: (0,1)~R , 则由对等的传递性知: 2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ、6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数. 证明 令221{(,):(1,2,3,)}E x y x y n n =+==L , \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+L 、则,A E D B F D ==U U 、 定义: :A B φ→为:2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩L 可以验证: :A B φ→为一一对应, 即~A B 、 又因为2~(0,1)(0,1)~~B R R ⨯, 所以A B ==ℵ、7.证明:直线上任意两个区间都就是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern 定理知I =ℵ, 同理J =ℵ、 故I J ==ℵ、习题1、31.证明:平面上顶点坐标为有理点的一切三角形之集M 就是可数集.证明 因为有理数集Q 就是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x ΛΛ 所以M 为可数集、2.证明:由平面上某些两两不交的闭圆盘之集M 最多就是可数集.证明 对于任意的M O ∈, 使得Q ∈)(O f 、 因此可得:Q →M f :、 因为1O 与2O 不相交,所以)()(21O f O f ≠、 故f 为单射,从而a M =≤Q 、3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q I )1,0(:→E f 、 因为Y I I ∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q所以Y Y I I ∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q 、其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=-I ΛI 且Q 、 又因为Q Q I I ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q I ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E Y =无限不可数、 如此下去,可得),3,2,1(Λ=n E n 都可数且不相交,从而ΛY Y Y Y Y 1011)()\(E E E E E E i i n i ==∞=∞=、其中)0(≥i E i 无限且不交、4.证明:可数个不交的非空有限集之并就是可数集.5.证明:有限或可数个互不相交的有限集之并最多就是可数集.证明 有限个互不相交的有限集之并就是有限集;而可数个互不相交的有限集之并最多就是可数集、6.证明:单调函数的不连续点之集至多就是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_000>==--+→→+x f x f x f x f x x x x 、于就是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f 、下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-、 事实上,任取一点1x ,使1x x x '''<<,于就是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=,从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多就是可数集,所以可知单调函数的不连续点之集至多就是可数集、7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多就是可数集.证明 定义映射}:)3,{(:E x d x E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘、 显然当y x ≠时,有∅=)3,()3,(dy D d x D I ,即)()(y f x f ≠,于就是f 为双射,由第2题知:a E x dx ≤∈}:)3,{(,故a E ≤、习题1、41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数就是什么?答 直线上一切闭区间之集的基数就是c 、 这就是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R 、区间],[b a 中的全体有理数之集的基数就是c ,这就是因为:a b a a =≤≤Q Q I ],[、 2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明: (1) 设},,,,{],[21ΛΛI n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()(Λ==k r g r f k k ;(2) 公式)),(,),(),(()(21ΛΛn r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[.证明 (1) 必要性、 显然、充分性、 假设),2,1)(()(Λ==k r g r f k k 成立、 因为},,,{\],[321Λr r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得)()lim ()(lim x f x f x f n n n ==∞→∞→及)()lim ()(lim x g x g x g n n n ==∞→∞→、又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =、(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即)),(,),(),(()),(,),(),((2121ΛΛΛΛn n r g r g r g r f r f r f =、由(1)知:g f =、 故π为单射、(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R 、 故c b a C =],[、3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明: (1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数就是c2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈、从而]),[)(()(b a x x g x f ∈∀=,故π为单射、(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射、(3) 由(1)知:c P b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c ≤=,故c b a F 2],[=、4.证明:c n =C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1、、4、5知:c n =C 、 5.证明:若E 为任一平面点集且至少有一内点,则c E =.证明 显然c E =⨯≤R R 、 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =、第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\Y I ==; (2) ()()()G F G E G F E \\\I I =.证明 (1) 因为\()()()()()\c c c c c E E F E E F E E F E E E F E F ====I I I I U I U I ,()\()()()\c c c E F F E F F E F F F E F ===U U I I U I 、所以\\()()\E F E E F E F F ==I U 、(2) 因为()\()()()(\)(\),c c c c E F G E F G E F G E G F G E G F G ====I I I I I I I I I所以()()()G F G E G F E \\\I I =、.2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞==Y Y ;(2) ()B A B A n n n n \\11∞=∞==I I .证明 (1)1111\()()(\)ccnn n n n n n n AB A B A B A B ∞∞∞∞=======I I U U U U 、(2)1111\()()(\)c c n n n n n n n n A B A B A B A B ∞∞∞∞=======I I II I I 、3.证明:22[][][]c c E f g c E f E g +≥⊂≥≥U ,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥U , 则有()2c f x <且()2cg x <, 于就是()()()()f x g x f g x c +=+<,故()x E f g c ∉+≥、 所以()()()22c cE f g c E f E g +≥⊂≥≥U 、4.证明:nR 中的一切有理点之集n Q 与全体自然数之集对等.证明 因为0Q =ℵ,所以0Q Q Q Q n=⨯⨯⨯=ℵL (推论1、3、1)、 又因为0N =ℵ, 所以0Q nN ==ℵ, 故Q ~nN 、5.有理数的一切可能的序列所成之集)(Q S 具有什么基数?6.证明:一切有理系数的多项式之集][x Q 就是可数集. 证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x ΛΛ于就是.][Q ][Q 0Y ∞==n n x x显然,Q ~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1、3、5知:.][Q a x =7.证明:一切实系数的多项式之集][x R 的基数为c .证明 记},R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x ΛΛ于就是.][R ][R 0Y ∞==n n x x显然,R ~][R 1n +x n 所以,R ][R 1n c x n ==+ 因此由定理1、4、3知:.][R c x =8.证明:全体代数数(即可作为有理系数多项式之根的数)之集就是可数集,并由此说明超越数(即不就是代数数的实数)存在,而且全体超越数之集的基数就是c .证明 由于有理系数多项式的全体就是可数集,设其元素为,,,,,,210ΛΛn P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体Y ∞==n nAA 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A Y 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R cB A B ===Y9.证明:A B B A \~\,则B A ~. 证明 因为),()\(),()\(B A A B B B A B A A I Y I Y ==又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A I I I I I I所以由保并性知),()\(~)()\(B A A B B A B A I Y I Y即.~B A10.证明:若,,D B B A <≤则D A <.证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾、 故有D A <、 11.证明:若c B A =Y ,则c A =或c B =.实变函数第一章答案证明 假设,a B A == 则有,a B A =Y 这与c B A =Y 矛盾,故有c A =或c B =、12.证明:若c A k k =+∈Z Y ,则存在+∈Z k 使得c A k =.证明同上、。
胡适耕 实变函数答案 第一章(B)
第一章习题 B36.若A ΔB =A ΔC ,则B =C .证一:(反证)不妨设,∃x 0∈B ,且x 0∉C1) x 0∈A ,则x 0∉A ΔB ,x 0∈A ΔC 这与A ΔB =A ΔC 矛盾 2) x 0∉A ,则x 0∈A ΔB ,x 0∉A ΔC 这与A ΔB =A ΔC 矛盾 所以假设不成立,即B =C .证二:()B A A ∆∆()[]()[]A B A B A A \\∆∆= =()()B A B B A =\ 同理()C C A A =∆∆,现在已知A B A C ∆=∆故上两式左边相等,从而C B =. 37.集列{A n }收敛⇔{A n }的任何子列收敛.证 由习题8集列{}n A 收敛⇔特征函数列{}nAχ收敛,由数分知识得数列{}nA χ收敛⇔{}nA χ的任一子列{}jnA χ均收敛,又由习题8可得{}jn A 收敛.38.设)2,1}(:/{ =∈=n Z m n m A n ,则lim n nA =Z ,lim n nA =Q .证 显然有lim lim n n nnZ A A Q ⊂⊂⊂1) 假设∃x \,Q Z ∈使x ∈lim n nA∴∃N >0,当n>N 时,有n x A ∈,特别地, n x A ∈,1n x A +∈ ∴∃m 1,m 2∈Z ,使x =1m n,x =21m n + ∴1m n=21m n +从而121,m m m n=+这与m 2∈Z 矛盾,所以假设不成立,即:lim n nA =Z .2)∀x ∈Q,则∃m,n ∈Z,使得x =m n∴x=m n=2m n n⋅=…=1kk m n n+⋅=…∴x ∈kn A ,(k =1,2…),从而x ∈lim n n A ∴lim n nA =Q .39.设0<n a <1<n b ,0n a ↓,1n b ↓,则lim[,]n n na b =(0,1].证 (0,1]x ∀∈1) ∵ 0<n a <1<n b ,0n a ↓,1n b ↓ ∴0,N ∃>当n>N 时,有n a <x <n b ∴当n>N 时,x ∈[n a ,n b ] ∴(0,1]⊂lim[,]n n na b .2) 假设∃y >1,使y ∈lim[,]n n na b ,则y 属于集列{[,]n n a b }中的无限多个集合.又因为y >1, 1n b ↓ ,故0,N ∃>当n>N 时,有n b <y ,当n>N 时,y ∉[,]n n a b 从而y 只会属于集列{[,]n n a b }中的有限多个集合. 这与y 会属于集列{[,]n n a b }中的无限多个集合矛盾. 所以假设不成立,即∀y ∈(1,)∞,有y ∉lim[,]n n na b .显然,∀y ∈(0]-∞,有y ∉lim[,]n n na b ,故]1,0(],[lim ⊂n n nb a .综上所述,lim[,]n n na b =(0,1].40.设n f :R X →(n →∞), n f A χ→(n →∞),求lim (1/2)n nX f ≥.解 1)∀0x A ∈,n f A χ→( n →∞),故0()n f x 0()1A x χ→=( n →∞). ∴0,N ∃>当n>N 时,有0()n f x 1/2>.∴当n>N 时,0(1/2)n x X f ∈≥,从而0x ∈lim (1/2)n nX f ≥.2)∀0cx A ∈,n f A χ→( n →∞),故0()n f x 0()0A x χ→=( n →∞).∴0,N ∃>当n>N 时,有0()n f x 3/1>.∴0lim (1/2)n nx X f ∉≥ ∴ lim (1/2)n nX f ≥=A41.设{n A }为升列,A ⊂ n A ,对任何无限集B ⊂A ,存在n 使B n A 为无限集,则A 含于某个n A .证 假设A 不含于任何n A 中,又{n A }为升列,则对1=n ,11\A A x ∈∃,由于n A A ⊂,故N n ∈∃1,使11n A x ∈,即11\1A A x n ∈;对2=n ,22\A A x ∈∃,又n A A ⊂故N n ∈∃2使⊂⊂∈+1222n n A A x .于是可取12n n >使 22\2A A x n ∈.因此对i n =,1->∃i i n n ,i n i A A x i \∈.令B ={x 1, x 2,… x i …},则B ⊂A 且B 为无限集,但∀i ,B A ni ={x 1, x 2,… x i }为有限集,这与已知条件矛盾. ∴假设不成立,即A 含于某个n A 中.42.设f :2x→2x,当A ⊂B ⊂X 时f (A ) ⊂f (B ),则存在A ⊂X 使f (A )=A .证 因为()X X f ⊂,故子集族()(){}B B f B X P X⊂∈=∆:20非空,令()X B A XP B ⊂=∈∆0,下证:1()A A f ⊂,即要证()X P A 0∈.首先由定义B A ⊂对每个()X P B 0∈成立,那么由已知就有()()B f A f ⊂对一切()X P B 0∈成立,从而()()()()XP B XP B A B B f A f 00∈∈=⊂⊂.2再证()A f A ⊂.为此,由A 的定义,只要能证()()X P A A f 00∈=∆就可以了.但从 1已证的()A A f A ⊂=0,又由已知f 的单调性应有()()[]()00A A f A f f A f =⊂=,故确定()X P A 00∈.43.设X 是无限集,f :X →X ,则有X 的非空真子集A ,使f (A )⊂A .证 ∀x 1∈X ,若x 1≠x 2,令x 2=f ( x 1)若x 2≠x 3 ,令3x =f (2x )… 若1n n x x -≠,令1()n n x f x -=…1)若存在1i i x x +=,则令A ={x 1,x 2,…x i },显然f (A )⊂A . 2)若不存在1i i x x +=,则令A ={x 1,x 2,…x i ,…},显然f (A )⊂A .44.设|A |>1,则有双射f :A →A ,使得∀x ∈A : f (x )≠x ;当|A |=偶数或|A |ω≥时可要求f (f (x ))=x (∀x ∈A ).证 (1)|A |=2n +1, n ∈N ,则A ={x 1,x 2,…x 2n+1 },作映射:()111221i i x i n f x x i n +≤≤⎧=⎨=+⎩,显然f (x )是双射,且∀x ∈A ,有f (x )≠x .(2)|A |=2n ,n ∈N , 则A ={x 1,x 2,…x 2n },作映射: ⎩⎨⎧=≤∃-=≤∃=-+mi n m x m i n m x x f i i i 2,12,)(11, 显然()f x 是双射,且∀x ∈A ,有()f x x ≠且()()ff x x =.(3) |A |ω≥由A ×{0,1}~A 知,存在一双射{}:0,1h A A ⨯→ 令{}()01⨯=A h A ,{}()12⨯=A h A又{}0⨯A ~{}1⨯A 及h 为双射,{}(){}()01A A ⨯⨯=∅{}(){}(){}010,1A A A ⨯⨯=⨯ ,知1A ~2A 且∅=21A A ,A A A =21 ,故A 可划分为两个互不相交等势的子集A 1和A 2。
胡适耕-实变函数答案-第一章(B)
第一章习题 B36.若A ΔB =A ΔC ,则B =C .证一:〔反证〕不妨设,∃x 0∈B ,且x 0∉C1) x 0∈A ,则x 0∉A ΔB ,x 0∈A ΔC 这与A ΔB =A ΔC 矛盾 2) x 0∉A ,则x 0∈A ΔB ,x 0∉A ΔC 这与A ΔB =A ΔC 矛盾 所以假设不成立,即B =C .证二:()B A A ∆∆()[]()[]A B A B A A \\∆∆= =()()B A B B A =\ 同理()C C A A =∆∆,现在已知A B A C ∆=∆故上两式左边相等,从而C B =. 37.集列{A n }收敛⇔{A n }的任何子列收敛.证由习题8集列{}n A 收敛⇔特征函数列{}n A χ收敛,由数分知识得数列{}nA χ收敛⇔{}nA χ的任一子列{}jn A χ均收敛,又由习题8可得{}jn A 收敛.38.设)2,1}(:/{ =∈=n Z m n m A n ,则lim n nA =Z ,lim n nA =Q .证显然有lim lim n n nnZ A A Q ⊂⊂⊂1) 假设∃x \,Q Z ∈使x ∈lim n nA∴∃N >0,当n>N 时,有n x A ∈,特别地,n x A ∈,1n x A +∈ ∴∃m 1,m 2∈Z ,使x =1m n ,x =21m n +∴1m n =21mn + 从而121,m m m n=+这与m 2∈Z 矛盾,所以假设不成立,即:lim n n A =Z .2〕∀x ∈Q,则∃m,n ∈Z,使得x =mn∴x=m n =2m nn⋅=…=1k k m n n +⋅=…∴x ∈k n A ,(k =1,2…),从而x ∈lim n nA ∴lim n nA =Q .39.设0<n a <1<n b ,0n a ↓,1n b ↓,则lim[,]n n na b =(0,1].证(0,1]x ∀∈1)∵0<n a <1<n b ,0n a ↓,1n b ↓∴0,N ∃>当n>N 时,有n a <x <n b ∴当n>N 时,x ∈[n a ,n b ]∴(0,1]⊂lim[,]n n na b .2)假设∃y >1,使y ∈lim[,]n n na b ,则y 属于集列{[,]n n a b }中的无限多个集合.又因为y >1,1n b ↓,故0,N ∃>当n>N 时,有n b <y ,当n>N 时,y ∉[,]n n a b 从而y 只会属于集列{[,]n n a b }中的有限多个集合. 这与y 会属于集列{[,]n n a b }中的无限多个集合矛盾. 所以假设不成立,即∀y ∈(1,)∞,有y ∉lim[,]n n na b .显然,∀y ∈(0]-∞,有y ∉lim[,]n n na b ,故]1,0(],[lim ⊂n n nb a .综上所述,lim[,]n n na b =(0,1].40.设n f :R X →〔n →∞〕,n f A χ→(n →∞),求lim (1/2)n nX f ≥.解1〕∀0x A ∈,n f A χ→( n →∞),故0()n f x 0()1A x χ→=( n →∞). ∴0,N ∃>当n>N 时,有0()n f x 1/2>.∴当n>N 时,0(1/2)n x X f ∈≥,从而0x ∈lim (1/2)n nX f ≥.2〕∀0cx A ∈,n f A χ→( n →∞),故0()n f x 0()0A x χ→=( n →∞).∴0,N ∃>当n>N 时,有0()n f x 3/1>. ∴0lim (1/2)n nx X f ∉≥∴lim (1/2)n nX f ≥=A41.设{n A }为升列,A ⊂n A ,对任何无限集B ⊂A ,存在n 使B n A 为无限集,则A 含于某个n A .证假设A 不含于任何n A 中,又{n A }为升列,则对1=n ,11\A A x ∈∃,由于n A A ⊂,故N n ∈∃1,使11n A x ∈,即11\1A A x n ∈;对2=n ,22\A A x ∈∃,又n A A ⊂故N n ∈∃2使⊂⊂∈+1222n n A A x .于是可取12n n >使 22\2A A x n ∈.因此对i n =,1->∃i i n n ,i n i A A x i \∈.令B ={x 1, x 2,…x i …},则B ⊂A 且B 为无限集, 但∀i ,BA ni ={x 1, x 2,…x i }为有限集,这与已知条件矛盾.∴假设不成立,即A 含于某个n A 中.42.设f :2x →2x ,当A ⊂B ⊂X 时f (A )⊂f (B ),则存在A ⊂X 使f (A )=A .证因为()X X f ⊂,故子集族()(){}B B f B X P X⊂∈=∆:20非空,令()X B A XP B ⊂=∈∆0,下证:1()A A f ⊂,即要证()X P A 0∈.首先由定义B A ⊂对每个()X P B 0∈成立,那么由已知就有()()B f A f ⊂对一切()X P B 0∈成立,从而()()()()XP B XP B A B B f A f 00∈∈=⊂⊂.2再证()A f A ⊂.为此,由A 的定义,只要能证()()X P A A f 00∈=∆就可以了.但从1已证的()A A f A ⊂=0,又由已知f 的单调性应有()()[]()00A A f A f f A f =⊂=,故确定()X P A 00∈.43.设X 是无限集,f :X →X ,则有X 的非空真子集A ,使f (A )⊂A .证∀x 1∈X ,若x 1≠x 2,令x 2=f (x 1)若x 2≠x 3 ,令3x =f (2x )… 若1n n x x -≠,令1()n n x f x -=…1〕若存在1i i x x +=,则令A ={x 1,x 2,…x i },显然f (A )⊂A . 2〕若不存在1i i x x +=,则令A ={x 1,x 2,…x i ,…},显然f (A )⊂A .44.设|A |>1,则有双射f :A →A ,使得∀x ∈A :f (x )≠x ;当|A |=偶数或|A |ω≥时可要求f (f (x ))=x (∀x ∈A ).证〔1〕|A |=2n +1,n ∈N ,则A ={x 1,x 2,…x 2n+1 },作映射:()111221i i x i nf x x i n +≤≤⎧=⎨=+⎩,显然f (x )是双射,且∀x ∈A ,有f (x )≠x . 〔2〕|A |=2n ,n ∈N , 则A ={x 1,x 2,…x 2n },作映射: ⎩⎨⎧=≤∃-=≤∃=-+mi n m x m i n m x x f i i i 2,12,)(11,显然()f x 是双射,且∀x ∈A ,有()f x x ≠且()()ff x x =.(3) |A |ω≥由A ×{0,1}~A 知,存在一双射{}:0,1h A A ⨯→令{}()01⨯=A h A ,{}()12⨯=A h A 又{}0⨯A ~{}1⨯A 与h 为双射,{}(){}()01A A ⨯⨯=∅{}(){}(){}010,1A A A ⨯⨯=⨯,知1A ~2A 且∅=21AA ,A A A =21 ,故A 可划分为两个互不相交等势的子集A 1和A 2。
实变函数第一章习题解答(罗绍辉)
3
∞
n =1
Q × Q = xUQ ({x} × Q ) 是可数个有理数集的并,故可数, ∈
又因为 并且 Q × Q × Q = U ({x} × Q × Q ) x∈ ∀x ∈ Q, } × Q × Q ~ Q × QQ,所以 {x}× Q × Q 可数 {x 故 Q × Q × Q 可数. 14.证明:可数集的有限子集的全体仍是可数 证明: 证明: 设 Q 为可数集,不妨记为: Q = {r1 , r2 , r3 , L , rn , L}
A − B ⊂ A − ( B − C ) . 故, ( A − B ) ∪ C ⊂ A − ( B − C ) .
最后证, A − ( B − C ) ⊂ ( A − B) ∪ C 事实上, ∀x ∈ A − ( B − C ) , 则 x ∈ A 且 x ∉ B − C 。若 x ∈ C ,
x ∈ ( A − B) ∪ C ;若 x ∉ C ,则 x ∉ B ,故 x ∈ A − B ⊂ ( A − B) ∪ C 、
第一章习题参考解答
3.等式 ( A − B) ∪ C = A − ( B − C ) 成立的的充要条件是什么? 解:若 ( A − B) ∪ C = A − ( B − C ) 则
C ⊂ ( A − B) ∪ C = A − ( B − C ) ⊂ A .即, C ⊂ A .
卢同善实变函数青岛海洋大学出版社第一章习题答案
第一章习题答案第1-10,17题略. 从11题开始(9,10,11类似)11 []11k k E f a E f a ∞=≤=<+⎡⎤⎣⎦证明:任取左边的元素x ,则a x f ≤)(,当然对任意的k ,有1()k f x a <+,即,1()k x E f a k ∈<+∀⎡⎤⎣⎦. 因此,该x 含于右边. 得到左是右的子集;另一方面,任取右边的元素x ,则1()k x E f a k ∈<+∀⎡⎤⎣⎦,即1()()k f x a k <+∀. 让k →∞,得到()f x a ≤. 因此,该x 含于左边. 得到右是左的子集. 综上,左等于右.12 设实函数列{})(x f n 在E 上定义,又设{})(inf )(1x f x h n n ≥=. 证明对R a ∈∀,成立[] ∞=<=<1][n n a f E a h E . 证明:因))(()(n x f x h n ∀≤,故当()n f x a <时,必有()h x a <,这表明[])]([n a h E a f E n ∀<⊂<,因此[] ∞=<⊃<1][n n a f E a h E . 另一方面,任取][a h E x <∈,由下极限的定义,知存在n ,使a x f n <)((若否,则对任意的n ,有()n f x a ≥,这表明inf{()}()n f x h x a =≥,矛盾). 当然有[] ∞=<∈1n n a f E x ,故[] ∞=<⊂<1][n n a f E a h E . 综上,左等于右.13 实函数列{})(x f n 在E 上收敛到)(x f ,证明对任意的R a ∈∀,成立[] ∞=∞=∞=+<=≤111][k N N n k n a f E a f E . 证明:任取左边的元素x ,则a x f ≤)(. 由于)()(lim x f x f n n =∞→,所以对任意的k ,存在N ,使得当N n ≥时有k x f x f n 1)()(<-,即有ka k x f x f n 11)()(+<+<. 也即,对任意的N n ≥,恒有1n k x E f a ∈<+⎡⎤⎣⎦,所以1n k n N x E f a ∞=∈<+⎡⎤⎣⎦. 这表明x 是右边的元素,所以左是右的子集.另一方面,任取右边的元素x ,则对任意的k ,存在N ,使得当N n ≥时有k a x f n 1)(+<. 让∞→n ,得到)(,1)(lim )(k ka x f x f n n ∀+≤=∞→. 再由k 的任意性,得到a x f ≤)(. 这表明x 是左边的元素,所以右是左的子集. 综上,左右相等.14 若集列{}n A 单减,则 ∞===1lim lim n n n n A A A . 证明:因为{}n A 单减,所以mn m n A A ∞==,1m m m n m A A ∞∞===. 得到 ∞=∞=∞=∞→==11lim n n n n m m n n A A A ,∞=∞=∞=∞=∞=∞=∞→====11111lim n n m m n m m n n m m n n A A A A A .即, ∞===1lim lim n n n n A A A .15 证明)(lim )(lim x x n n A A χχ=证明:若0)(lim =x n A χ,显有)(lim )(lim x x n n A A χχ≤; 若1)(lim =x n A χ,由特征函数的定义知n A x lim ∈. 再由下限集的性质知存在N ,使)(N n A x n >∀∈,从而对N n >∀有1)(=x n A χ,故1)(lim =x n A χ. 此时)(lim )(lim x x n n A A χχ=. 总之,)(lim )(lim x x nn A A χχ≤. 另一方面:若0)(lim =x n A χ,显有)(lim )(lim x x n n A A χχ≥; 若1)(lim =x n A χ,又因为()1()n A x n χ≤∀,故1)(lim =x n A χ. 因此存在N ,使得1)(=x nA χ )(N n >∀. 由特征函数的定义知)(N n A x n >∀∈,再由下限集的性质知n A x lim ∈. 因此,1)(lim =x n A χ,也就得到)(lim )(lim x x n n A A χχ=. 总之)(lim )(lim x x n n A A χχ≥. 综合有)(lim )(lim x x n n A A χχ=. 16 证明定理1.2.4与Bernstein 定理等价.证明:必要性:由假设知存在A 到B B ⊂1上的双射f , B 到A A ⊂1上的双射g . 令2))((A A f g =. 则21)(A B g =,且2A 与A 对等(因为,f g 是单射). 又因为)(,11B g A B B =⊂,因此A A A ⊂⊂12. 由定理1.2.4知A A A ,,12三者对等,又1A 与B 对等,根据对等的传递性,得到A 与B 对等,故Bernstein 定理成立.充分性:设C B A ⊂⊂且C A ~. 一方面C B B ⊂~,另一方面B A C ⊂~,由Bernstein 定理知C B ~. 又C A ~,根据对等的传递性,得到C B A ~~. 即定理1.2.4成立. 18 设A 为无限集,B 为有限集,证明A B A ~\.证明:因为A 为无限集,B 为有限集,所以B A \是无限集. 由B B A ⊂⋂知道B A ⋂是有限集. 而()()B A B A A ⋂⋃=\,右边是一个无限集并上有限集,不改变对等关系(定理1.3.5),所以A B A ~\.19 设A 为无限集,B 为可数集,若B A \为无限集,证明A B A ~\. 并举反例说明“B A \为无限集”这一条件不可去.证明:因为B 为可数集,所以B A ⋂是至多可数集. 而()()B A B A A ⋂⋃=\,B A \又是无限集,由定理1.3.5知命题成立(与18题类似).20 空间中坐标为有理数的点的全体K 成一可数集.证明:显然{}(,,):,,K a b c a b c Q Q Q Q =∈=⨯⨯是三个可数集的乘积,从而是可数集. 21 1R 中以互不相交的的开区间为元素的集合为至多可数集.证明:设该集合为K . 因为对任意的开区间K b a ∈),(,存在有理数),(b a r ab ∈. 这样,可作一映射Q K f →:,使得()ab r b a f =),(. 由于K 中的开区间是互不相交的,所以这一映射是一单射. 因此Q K f K ⊂)(~,也就说明了K 是一至多可数集.22 1R 上单调函数)(x f 的不连续点的全体A 为至多可数集.证明:不妨设函数单增. 任取断点A x ∈0. 由于函数单调,所以在0x 点的左极限)(0x f -和右极限)(0x f +都存在,且)()(00x f x f ++<. 让断点0x 对应于开区间())(),(00x f x f ++,由于函数单增,所以不同断点所对应的开区间是不相交的. 再利用21题即得.23 设A 为无限集,证明必存在A A ⊂*,使A A ~*且*\A A 为一可数集. 证明:因A 为无限集,故A 有可数的子集{} ,,211a a A =. 令{} ,,,53111a a a A =,{} ,,,64212a a a A =. 取11*\A A A =,则11*\A A A =为可数集,A A ⊂*为无限集(因*12A A ⊂)11*A A A ⋃=,所以A A ~*.24 设A 为可数集,证明A 的所有有限子集的全体是可数集.证明:设{}12,,,,n A a a a =. A 的所有有限子集的全体为K . 对K B ∈∀,设{}m i i i a a a B ,...,,21=,令B 与数组()m i i i ,...,,21对应. 因为不同的集合的元素不完全相同,所以它们对应的数组也不同. 这样由编号定理知K 为至多可数集. 又因所有的单元素集在K 中,所以K 是无限集,因此K 是可数集.25 设A 为其长度不等于零的开区间所组成的不可数集. 证明:存在0>δ,使得A 中有无限多个开区间的长度均大于δ.证明:令n A 为A 中长度不小于n 1的开区间的全体,则 1≥=n n AA . 因为A 为不可数集,所以右端至少有一个集合是无限集(否则,右边是至多可数集). 取相应的的长度为δ即可.26 ]1,0[中无理数的全体成一不可数集.证明:反证法. 假设]1,0[中无理数的全体K 是至多可数集,而]1,0[中有理数的全体0Q 是可数集,这样0[0,1]K Q =是可数集(可数集和至多可数集的并是可数集). 这与]1,0[是不可数集矛盾.27整系数多项式的实根称为代数数,称非代数数的实数为超越数. 证明:代数数的全体成一可数集,进而证明超越数的存在.证明:所有整系数多项式的实根全体正是代数数的全体. 整系数多项式的全体是可数的,而每一个多项式至多有有限个实根. 又可数个有限集的并是至多可数集,这表明代数数的全体是至多可数集. 代数数的全体当然是无限集(因为整数是代数数),所以它是可数集. 因而,也表明超越数的全体是不可数集(利用19题得到).28 证明c a =2,其中a 为可数基数,c 为连续基数.证明:设},,,,{21 n r r r A =,即证明A 的所有子集的全体A 2的势为c . 作从A 2到二进位小数全体K 的映射:2A f K →为 n a a a B f 21.0)(=,其中当B r n ∈时,1=n a ;当B r n ∉时,0=n a . 因为不同的集合的元素不完全相同,所以该映射是单射,故c K A =≤2. 另一方面,作映射:2A g K →为B a a a g n =).0(21 ,其中{}:1,1,2,i i B r a i ===若,该映射也是单射,因此c K A =≥2. 综上,有c K A ==2. 29 ]1,0[上连续函数的全体[0,1]C 的基数是c .证明:因常函数都是连续函数,故[0,1]C R c ≥=. 设0[0,1]Q Q =⋂,则它是可数集. 不妨设{}012,,...,,n Q r r r =. 对任意的[0,1]f C ∈,让其对应于R ∞中的实数组{}12(),(),...,(),n f r f r f r ,则这个对应是从[0,1]C 到R ∞的一个单射. 事实上,若g f ,是对应于同一数组的两个连续函数,即(),...2,1,)(==i r g r f i i . 对任意的实数]1,0[∈a ,存在有理数序列{}]1,0[⊂k i r ,使得)(∞→→k a r k i . 这样由函数的连续性得到)()(lim )(lim )(a g r g r f a f k k i k i k ===∞→∞→,也即f g ≡,也就是说该对应是一个单射.因此[0,1]C 和∞R 的某子集对等,故有[0,1]C R c ∞≤=. 综上,[0,1]C c =.30 ]1,0[上单调函数的全体的基数是c .证明:类似上一题. ]1,0[上单调函数的全体K 的基数显是不小c ,因为)(,)(a ax x f ∀=都是K 中的元素. 对任一单调函数)(x f ,其断点的全体A 是至多可数集(第22题的结论). 令()A Q E ⋃⋂=]1,0[,则E 是可数集,设{} ,,,,21n a a a E =. 让函数)(x f 对应于()∞∈R a f a a f a a f a n n );(,;);(,);(,2211,这个对应是单射(方法类似于上题,不过要多考虑断点罢了). 因此,]1,0[上单调函数的全体K 的基数不超过∞R 的基数c . 命题得证. 31 ]1,0[上实函数的全体的基数是c 2.证明:设]1,0[上实函数的全体为]1,0[R . 对任意的集合]1,0[⊂A ,则其特征函数()[0,1]A x R χ∈,并且不同集合的特征函数是不同的. 所以]1,0[的子集的全体]1,0[2对等于]1,0[R 的一个子集,从而c R 22]1,0[]1,0[=≥. 另一方面,对任意实函数]1,0[R f ∈,让其和集合(){}2]1,0[:)(,R x x f x ⊂∈对应(该集合是函数的图像),当然这一对应是单射,从而]1,0[R 和2R 的某些子集构成的集合对等,也即2[0,1]22R c R ≤=. 综上,c R 2]1,0[=. 32 设c B A =⋃,证明A 和B 中至少有一为c .证明:不妨设,2R B A =⋃B A ,不相交. 显然B A ,的势都不超过c .对任意的R x ∈,作直线}:),{(R y y x L x ∈=,则x L 的势均为c .若存在R x ∈,使得A L x ⊂,则A 的势不小于x L 的势c ;若不存在R x ∈,使得A L x ⊂,即任取R x ∈,必有R x y ∈)(,使得A x y x ∉))(,(,这时必有B x y x ∈))(,(. 这表明集合{}B R x x y x ⊂∈:))(,(,而集合{}R x x y x ∈:))(,(的势为c ,故B 的势不小于c . 综上A 和B 中至少有一不小于c . 又B A ,的势都不超过c ,因此A 和B 中至少有一个为c . 注意:该题不好用反证法,因为集合的势小于c 时不能得到集合是至多可数集(康托连续统假设的不确定性).。
实变函数第一章答案
第一章:集合与实数集(8)设是上的实函数,假若存在M>0,使得对于任何有限个两两不等的实数x1,...,x n,⃒⃒⃒n∑︁k=1f(x k)⃒⃒⃒≤M.证明:{x:f(x)=0}是至多可数集。
证明:令A+={x:f(x)>0},A−={x:f(x)<0}.则{x:f(x)=0}=A+∪A−.所以,只要证明A+,A−都是至多可数集。
我们仅考虑A+.注意到A+=∪∞n=1A n,+,其中A n,+={x:|f(x)|>1/n}.这样问题就归结为证明对于任意的n,A n是至多可数集.由假设条件知道:A n是一个有限集合,其中的点的个数不超过[nM]+1个.(9)证明:R上单调函数的间断点是至多可数的.证明:设f是R上的单增函数,我们首先证明:对于任意的x0∈R,lim x→x0−0f(x),limx→x0+0f(x)都是存在有限的.为简单起见,我们仅考虑左极限的存在性.我们只要证明:(a)对于任意的{x n},x n→x0,x n<x0,lim n→∞x n都存在有限(b)对于任意的{x n},x n→x0,x n<x0,{y n},y n→x0,y n<x0,lim n→∞x n=lim n→∞y n.结论(a)是明显的,至于结论(b),我们只要注意到对于任意的n,一定存在N>n使得当m>N时y m>x n,从而f(x m)>f(x n),这依次隐含着lim n→∞f(x n)≤limm→∞f(y m).2同理可证lim n→∞f(x n)≥limm→∞f(y m).现在回到要证明的结论.假如f在x0不连续,则f(x0−0)<f(x0+0),这样我们就得到一个区间(f(x0−),f(x0+)).对于f的任意两个不连续点x1,x2,区间(f(x1−0),f(x1+0))和(f(x2−0),f(x2+0))相互不交(事实上,我们假设x1<x2.注意到f(x1−0)≤f(x1+0)≤f(x2−0)≤f(x2+0),则(f(x1−0),f(x1+0))和(f(x2−0),f(x2+0))相交当然是不可能的),这样我们就知道:从集合{x0:f在x0不连续}到集合{所有开区间但这些开区间两两相互不交}之间存在一一映射.而后者是一个至多可数集,这就证明了我们的结论.(10)设f是[a,b]上的单调增加的函数,并且f([a,b])在[f(a),f(b)]中稠密。
实变函数第一章答案解析
习题1.11.证明下列集合等式.(1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=.证明 (1) )()C \B (cC B A A =)()( c c C B A A B A = c C A B A )()( =)(\)(C A B A = .(2) cC B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \cC B A A =cc C B A )( =)(C B A c =)()(C A B A c =)()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂;(2) ()A B B A =\ 的充分必要条件是:=B A Ø;(3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A cc==== )()()()\(的充要条是:.A B ⊂(2) ccccB A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c= , 于是有cB A ⊂, 可得.∅=B A反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与c B A ⊂矛盾.充分性. 假设∅=B A 成立, 则c B A ⊂, 于是有A B A c= , 即.\)(A B B A =(3) 必要性. 假设B B A B B A \)()\( =, 即.\cC A B A B A == 若,∅≠B取,B x ∈ 则,cB x ∉ 于是,cB A x ∉ 但,B A x ∈ 与cC A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A(2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意 ∞=∈1,n n A x 存在N 使得,NAx ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为 ∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1∞=∞→⊂n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ;(2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E 另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x , 故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ;另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k n n k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0. 由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有kx f x f n 1|)()(|00<-. 取},m ax {21N N N =,则有k c x f n 1)(0->与k x f x f n 1|)()(|00<-同时成立, 于是有kc x f k x f n 1)(1)(00->>+,从而kc x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有 [] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ;综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E5.证明集列极限的下列性质.(1) cn n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____;(2) c n ncn n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ; (4) ()n n n n A E A E ∞→∞→=lim \\lim .证明 (1) cn n n nm c m n c n m m c n n m m cn n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ .(2) c n n n n nm c m c n m m c n n m m cn n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm n n m cm cm n nm mn n A E A E AE A Ec n nm m n c nm m n nm cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n n m n n mA E AE .(4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n n m cm n nm n nm cm m n n A E A E A E A Ec n nm m n c nm m n n m cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n nm n n mA E AE .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且 (1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ; (3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim .习题1.21.建立区间)1,0(与]1,0[之间的一一对应.解 令1111{,,,,}2345E =, 111{0,1,,,}234F =,(0,1)\D E =,则(0,1)ED =,[0,1]F D =.定义:(0,1)[0,1]φ→为: ;11();(1,2,)210;2x x Dx x n n n x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩则φ为(0,1)[0,1]→之间的一个一一对应.2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 定义: :[,][,]a b c d φ→为:()().([,])d c d c bc ad x x a c x x a b b a b a b aφ---=-+=+∀∈--- 可以验证: :[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 令{,,,}234b a b a b a E a a a ---=+++,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a b c d φ→为:;();(1,2.)2;.2d cbc ad x x D b a b a d c b ax c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩可以验证: :(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4]; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4]不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R . 证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯. 任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y b b b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b =, 则得到单射:f A A A ⨯→. 因此由定理 1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知: A A A ≤⨯. 最后, 根据Bernstein 定理知: (0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为: (0,1)~R , 则由对等的传递性知: 2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ.6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数.证明 令221{(,):(1,2,3,)}E x y x y n n =+==, \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+.则,A E D B F D ==. 定义: :A B φ→为:2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩可以验证: :A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern 定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ.习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集.证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集.证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q .其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=.其中)0(≥i E i 无限且不交.4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_000>==--+→→+x f x f x f x f x x x x .于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=,从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x dx E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(dy D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x dx ≤∈}:)3,{(,故a E ≤.习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么? 答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a b a a =≤≤Q Q ],[. 2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明: (1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[. 证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得)()lim ()(lim x f x f x f n n n ==∞→∞→及)()lim ()(lim x g x g x g n n n ==∞→∞→.又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即)),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明: (1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c 2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射. (3) 由(1)知:c P b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c ≤=,故c b a F 2],[=.4.证明:c n =C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n =C . 5.证明:若E 为任一平面点集且至少有一内点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==; (2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E EF E EF EE F E E E F E F ====,()\()()()\c c c EF F EF F E F F F E F ===.所以\\()()\E F E EF E F F ==. (2) 因为()\()()()(\)(\),c c c c E F G EF G EFG EG FG E G F G ====所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== .证明 (1)1111\()()(\)ccn n n n n n n n A B A B A B A B ∞∞∞∞=======. (2)1111\()()(\)c c n n nn n n n n A B A B A B A B ∞∞∞∞=======.3.证明:22[][][]c cE f g c E f E g +≥⊂≥≥,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥, 则有()2c f x <且()2cg x <, 于是()()()()f x g x f g x c +=+<,故()x E f g c ∉+≥. 所以()()()22c cE f g c E f E g +≥⊂≥≥.4.证明:n R 中的一切有理点之集nQ 与全体自然数之集对等.证明 因为0Q =ℵ,所以0Q Q Q Q n=⨯⨯⨯=ℵ(推论1.3.1). 又因为0N =ℵ, 所以0Q n N ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数?6.证明:一切有理系数的多项式之集][x Q 是可数集. 证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][Q ][Q 0∞==n n x x显然,Q~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x =7.证明:一切实系数的多项式之集][x R 的基数为c . 证明 记},R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][R ][R 0∞==n n x x显然,R ~][R 1n +x n 所以,R][R 1n c x n ==+ 因此由定理1.4.3知:.][R c x =.8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==0n n AA 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R c B A B ===9.证明:A B B A \~\,则B A ~.证明 因为),()\(),()\(B A A B B B A B A A ==又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A 所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <.证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <.11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =. 证明同上.。
实变函数第一章答案
实变函数第一章答案习题1、11.证明下列集合等式.(1) ()()()C A B A C B A I I I \\=; (2) ()()()C B C A C B A \\\Y Y =;(3) ()()()C A B A C B A I Y \\\=. 证明 (1) )()C \B (cC B A A I I I =)()( c c C B A A B A I I Y I I = c C A B A )()( I I I =)(\)(C A B A I I = 、(2) cC B A A I Y Y )(C \B)(=)()(c c C B C A I Y I ==)\()\(C A C A Y 、(3) )(\C)\(B \cC B A A I = c c C B A )(I I =)(C B A c Y I = )()(C A B A c I Y I =)()\(C A B A I Y =、2.证明下列命题.(1) ()A B B A =Y \的充分必要条件就是:A B ?; (2) ()A B B A =\Y 的充分必要条件就是:=B A I ?; (3) ()()B B A B B A \\Y Y =的充分必要条件就是:=B ?.证明 (1) A B A B B B A B B A B B A cc====Y Y I Y Y I Y )()()()\(的充要条就是:.A B ?(2) ccccB A B B B A B B A B B A I I Y I I Y Y ===)()()(\)(必要性、设A B B A =\)(Y 成立,则A B A c=I , 于就是有cB A ?, 可得.?=B A I反之若,?≠B A I 取B A x I ∈, 则B x A x ∈∈且, 那么B x A x ?∈且与cB A ?矛盾、充分性、假设?=B A I 成立, 则cB A ?, 于就是有A B A c=I , 即.\)(A B B A =Y(3) 必要性、假设B B A B B A \)()\(Y Y =, 即.\cC A B A B A I Y == 若,?≠B 取,B x ∈ 则,cB x ? 于就是,cB A x I ? 但,B A x Y ∈ 与cC A B A I Y =矛盾、充分性、假设?=B 成立, 显然B A B A \=Y 成立, 即B B A B B A \)()\(Y Y =、 3.证明定理1、1、6.定理1、1、6 (1) 如果{}n A 就是渐张集列, 即),1(1≥??+n A A n n 则{}n A 收敛且Y ∞=∞→=1;lim n n n n A A(2) 如果{}n A 就是渐缩集列, 即),1(1≥??+n A A n n 则{}n A 收敛且I ∞=∞→=1lim n n n n A A证明 (1) 设),1(1≥??+n A A n n 则对任意Y ∞=∈1,n n A x 存在N 使得,NAx ∈ 从而),(N n A x N ≥?∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=?Y 又因为Y ∞=∞→∞→??1,lim lim n n n n n n A A A由此可见{}n A 收敛且Y ∞=∞→=1;lim n n n n A A(2) 当)1(1≥??+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥?<+k n n k k 使得),1(≥?∈k A x k n 于就是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ?∈ 可见.lim 1I=∞→?n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=??I所以可知{}n A 收敛且I ∞=∞→=1.lim n n n n A A4.设f 就是定义于集合E 上的实值函数,c 为任意实数,证明: (1)+≥=>∞=n c f E c f E n 1][1Y ;(2) ??+<=≤∞=n c f E c f E n 1][1I ;(3) 若))(()(lim E x x f x f n n ∈?=∞→,则对任意实数c 有->=->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111I I Y I .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立、即,1+≥∈n c f E x 那么.11Y ∞=+≥∈n n c f E x 故[];11Y ∞=+≥?>n n c f E c f E另一方面, 若,11Y ∞=+≥∈n n c f E x 则存在+∈Z n 0使得,110Y ∞=+≥∈n n c f E x 于就是c n c x f >+≥01)(, 故[]c f E x >∈、则有[].11Y ∞=+≥?>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于就是I ∞=+<∈11n n c f E x , 故有[];11I ∞=+另一方面, 设I ∞=+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[]I∞=+≤11n n c f E c f E 、(3) 设[]c f E x ≥∈, 则c x f ≥)(、由),)(()(lim E x x f x f n n ∈?=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥?<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥->∈∞→k k c f E x n n , 所以I ∞=∞→->∈11lim k n n k c f E x , 故[]I ∞=∞→->?≥11lim k n n k c f E c f E ;另一方面, 设I∞=∞→->∈101lim k n n k c f E x , 则对任意+∈Z k 有->∈∞→k c f E x n n 1lim 0、由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈?=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有k x f x f n 1|)()(|00<-、取},m ax {21N N N =,。
实变函数第一章习题解答
第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(inf sup =≥∈x mA nm N b χ ,即)(inf lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
实变函数集合标准答案
实变函数集合标准答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 集合一、 內容小结1. 这一章学习了集合的概念、表示方法、集合的运算(并、交、差、补);引入了集合列的上、下极限和极限的运算;对集合运算规则作了仔细的讨论,特别是德摩根公式。
2. 引入了集合对等的概念,证明了判别两个集合对等的有力工具——伯恩斯坦定理。
3. 引入了集合基数的概念,深入地研究了可数基数和连续基数。
二、 学习要点1. 准确熟练地掌握集合的运算法则,特别要注意集合运算既有和代数运算在形式上一许多类似的公式,但也有许多本质。
但是千万不要不加证明地把代数恒等式搬到集合运算中来。
例如:(a+b)-a=b,但是(A+B)-B=A 却不一定成立。
条件为A,B 不交。
2. 可数集合是所有无限集中最小的无限集。
若可数A 去掉可数B 后若还无限则C 必可数。
3. 存在不可数集。
无最大基数集。
以下介绍学习中应掌握的方法4. 肯定方面与否定方面。
B X B X ∉∈与,5. 集合列的上、下限集是用集合运算来解决分析问题的基础,应很好地掌握。
其中用交并表示很重要。
对第四章的学习特别重要。
6. 基数部分重点:集合对等、构造集合的一一对应;利用对等的传递性(伯恩斯坦定理)来进行相应的证明。
7. 集合可数性的证明方法很重要:可排列、与已知可数集对等、利用集合的运算得到可数、第四节定理6.8. 证明集合基数为C 中常用到已知的基数为C 的集合。
∞E R n ,三、 习题解答1. 证明:)()()(C A B A C B A =证明 则若设,).(A x C B A x ∈∈ B A x ∈,得).()(C A B A x ∈若则同样有设,C B x ∈B A x ∈且C A x ∈,得).()(C A B A x ∈因此)()()(C A B A C B A ⊂设)()(C A B A x ∈则若,.A x ∈当然有)()(C A B A x ∈,若,.A x ∉由B A x ∈且C A x ∈,可知B x ∈若.且c x ∈.,所以,C B x ∈同样有).(C B A x ∈因此⊂)()(C A B A )(C B A ,所以)()()(C A B A C B A = 2. 证明⑴B B A B A A B A -=-=-)()( ⑵)()()(C A B A C B A -=- ⑶)()(C B A C B A -=--⑷)()()(C A B A C B A -=--⑸)()()()(D B C A D C B A -=-- ⑹.)(B A B A A =-- 证明 ⑴().)()()()(B A B C A A C A B C A C A B A C A B A A s s s s s -====-B C B A B B A s )()(=-=B A B C B B C A s s -=)()( ⑵).()(()(()(()()()()()()(C B A C C B A C C B A A C B A C C A C B A C A C B A C A B A s s s s s s -=====-⑶)()()()(C B A C B C A CC B C A C B A s s s -===--⑷).()()()()()()()(C A B A C A B C A C B C A C C B C A C C B A C B A s s s s s -====-=--⑸).()()()()()()()(D B C A D B C C A D C C B C A D C B A s s s -===--⑹.)()()(B A B A C A B C A C A B A A s s s ===--3. 证明:)()()(C B C A C B A --=- ;).()()(C A B A C B A --=- 证明:).()()()()()(C B C A C C B C C A C C B A C B A s s s --===-).()()()()()(C B A C B C A C C B C A C C A B C A C A B A s s s s s -====--4.证明: ∞=∞==11.)(i i s i i s A C A C证明 设)(1∞=∈i i s A C x ,则S x ∈,但 ∞=∉1i i A x ,因此对任意i ,i A x ∉,所以i s A C x ∈,因而 ∞=∈1.i i s A C x设 ∞=∈1.i i s A C x 则任意i , i s A C x ∈,即S x ∈,i A x ∉,因此则S x ∈,但∞=∉1i i A x ,得)(1∞=∈i i s A C x ,所以 ∞=∞==11.)(i i s i i s A C A C5.证明:⑴ Λ∈Λ∈-=-αααα)()(B A B A ; ⑵ Λ∈Λ∈-=-αααα)()(B A B A . 证明 ⑴ Λ∈Λ∈Λ∈Λ∈-===-αααααααα)()()()(B A B C A B C A B A ss ⑵ Λ∈Λ∈Λ∈Λ∈-===-αααααααα)()()()(B A B C A B C A B A ss .6.设{}n A 是一列集合,作11A B =,1),(11>-=-=n A A B n n n νν。
实变函数习题解答(1)
第一章习题解答1、证明 A (B C)=(A B) (A C)证明:设x∈A (B C),则x∈A或x∈(B C),若x∈A,则x∈A B,且x∈A C,从而x∈(A B) (A C)。
若x∈B C,则x∈B且x∈C,于是x∈A B且x∈A C,从而x∈(A B) (A C),因此A (B C) ⊂ (A B) (A C) (1)设x∈(A B) (A C),若x∈A,则x∈A (B C),若x∈A,由x∈A B 且x∈A C知x∈B且x∈C,所以x∈B C,所以x∈A (B C),因此(A B) (A C) ⊂ A (B C) (2)由(1)、(2)得,A (B C)=(A B) (A C) 。
2、证明①A-B=A-(A B)=(A B)-B②A (B-C)=(A B)-(A C)③(A-B)-C=A-(B C)④A-(B-C)=(A-B) (A C)⑤(A-B) (C-D)=(A C)-(B D)(A-B)=A BA-(A B)=A C(A B)=A (CA CB)=(A CA) (A CB)=φ (A CB)=A-B(A B)-B=(A B) CB=(A CB) (B CB)=(A CB) φ=A-B②(A B)-(A C)=(A B) C(A C)=(A B) (CA CC)=(A B CA) (A B CC)=φ [A (B CC)]=A (B-C)③(A-B)-C=(A CB) CC=A C(B C)=A-(B C)④A-(B-C)=A C(B CC)=A (CB C)=(A CB) (A C)=(A-B) (A C)⑤(A-B) (C-D)=(A CB) (C CD)=(A C) (CB CD)=(A C) C(B D)=(A C)-(B D)⑥A -(A -B)=A C(A CB)=A (CA B)=(A CA) (A B)=φ (A B)=A B3、证明: (A B)-C =(A -C) (B -C)A -(B C)=(A -B) (A -C)证明:(A B)-C =(A B) CC=(A CC) (B CC)=(A -(A -B) (A -C)=(A CB) (A CC)=(A A) (CB CC)=A C(B C)=A -(B C)4、证明:s C (∞=1i i A )=∞=1i s C i A 证明:设x ∈s C (∞=1i i A ),则x ∈∞=1i i A ,于是,i ∀、x ∈i A ,从而x ∈C i A ,所以,x ∈∞=1i C i A ,所以,s C (∞=1i i A )⊂∞=1i s C i A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1.11.证明下列集合等式.(1) ()()()C A B A C B A I I I \\=; (2) ()()()C B C A C B A \\\Y Y =; (3) ()()()C A B A C B A I Y \\\=. 证明 (1) )()C \B (cC B A A I I I =)()( c c C B A A B A I I Y I I = c C A B A )()( I I I =)(\)(C A B A I I = .(2) cC B A A I Y Y )(C \B)(=)()(c c C B C A I Y I ==)\()\(C A C A Y .(3) )(\C)\(B \cC B A A I = c c C B A )(I I =)(C B A c Y I = )()(C A B A c I Y I =)()\(C A B A I Y =.2.证明下列命题.(1) ()A B B A =Y \的充分必要条件是:A B ⊂; (2) ()A B B A =\Y 的充分必要条件是:=B A I Ø; (3) ()()B B A B B A \\Y Y =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A cc====Y Y I Y Y I Y )()()()\(的充要条 是:.A B ⊂(2) ccccB A B B B A B B A B B A I I Y I I Y Y ===)()()(\)(必要性. 设A B B A =\)(Y 成立,则A B A c=I , 于是有cB A ⊂, 可得.∅=B A I 反之若,∅≠B A I 取B A x I ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与cB A ⊂矛盾.充分性. 假设∅=B A I 成立, 则c B A ⊂, 于是有A B A c=I , 即.\)(A B B A =Y(3) 必要性. 假设B B A B B A \)()\(Y Y =, 即.\cC A B A B A I Y == 若,∅≠B 取,B x ∈ 则,c B x ∉ 于是,c B A x I ∉ 但,B A x Y ∈ 与c C A B A I Y =矛盾.充分性. 假设∅=B 成立, 显然B A B A \=Y 成立, 即B B A B B A \)()\(Y Y =. 3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且Y ∞=∞→=1;lim n n n n A A(2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且I∞=∞→=1.lim n n n n A A证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意Y ∞=∈1,n n A x 存在N 使得,NAx ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂Y 又因为Y ∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A由此可见{}n A 收敛且Y ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1I ∞=∞→⊂n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂I 所以可知{}n A 收敛且I ∞=∞→=1.lim n n n n A A4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明:(1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1Y ;(2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1I ;(3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111I I Y I .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11Y ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11Y ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E另一方面, 若,11Y ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110Y ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11Y ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于是I ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11I ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E另一方面, 设I ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[]I∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E .(3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以I ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x ,故[]I ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ; 另一方面, 设I∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k n n k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0.由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Zk , 存在2N 使得当2N n ≥时, 有kx f x f n 1|)()(|00<-. 取},m ax {21N N N =, 则有k c x f n 1)(0->与kx f x f n 1|)()(|00<-同时成立, 于是有kc x f k x f n 1)(1)(00->>+, 从而k c x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有[]I ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ;综上所述:[].11lim 111I YI I ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E5.证明集列极限的下列性质.(1) cn n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____;(2) c n ncn n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ;(4) ()n n n n A E A E ∞→∞→=lim \\lim .证明 (1) cn n n nm c m n c n m m c n n m m cn n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____YI Y Y I Y .(2) c n n n n nm c m c n m m c n n m m cn n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛I I Y I YI . (3) ()YI Y I YII I ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm n n m cm cm n nm m n n A E A E A E A Ec n nm mn c nm m n n m cm AE A E A E )())(()(111IY Y Y YI I I I ∞=∞=∞=∞=∞=∞====I Y ∞=∞=∞→==1lim \\n n m n n mA E AE .(4) ()I Y I Y I Y I I∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n n m cm n nm n nm cm m n n A E A E AE A Ec n nm m n c nm m n n m cmA E A E AE )())(()(111YI I I I Y I I I ∞=∞=∞=∞=∞=∞====YI∞=∞=∞→==1lim \\n nm n n m A E A E .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A I Y 都收敛且 (1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim Y Y ; (2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim I I ; (3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim .习题1.21.建立区间)1,0(与]1,0[之间的一一对应. 解 令1111{,,,,}2345E =L , 111{0,1,,,}234F =L ,(0,1)\D E =,则(0,1)E D =U ,[0,1]F D =U . 定义:(0,1)[0,1]φ→为: ;11();(1,2,)210;2x x Dx x n n n x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩L 则φ为(0,1)[0,1]→之间的一个一一对应.2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 定义: :[,][,]a b c d φ→为:()().([,])d c d c bc adx x a c x x a b b a b a b aφ---=-+=+∀∈--- 可以验证: :[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 令{,,,}234b a b a b a E a a a ---=+++L ,{,,,,}23d c d c F c d c c --=++L (,)\D a b E =. 定义:(,)[,]a b c d φ→为:;();(1,2.)2;.2d cbc ad x x D b a b a d c b ax c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩L 可以验证: :(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[Y ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4]U ; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4]U 不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R . 证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯.任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y b b b ==L L 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b =L , 则得到单射:f A A A ⨯→. 因此由定理1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知: A A A ≤⨯. 最后, 根据Bernstein 定理知: (0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为: (0,1)~R , 则由对等的传递性知: 2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ.6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数. 证明 令221{(,):(1,2,3,)}E x y x y n n =+==L , \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+L .则,A E D B F D ==U U . 定义: :A B φ→为:2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩L 可以验证: :A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern 定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ.习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集.证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x ΛΛ 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集.证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q I )1,0(:→E f . 因为Y I I ∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q所以Y Y I I ∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q .其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=-I ΛI 且Q . 又因为Q Q I I ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q I ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E Y =无限不可数. 如此下去,可得),3,2,1(Λ=n E n 都可数且不相交,从而ΛY Y Y Y Y 1011)()\(E E E E E E i i n i ==∞=∞=.其中)0(≥i E i 无限且不交.4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_000>==--+→→+x f x f x f x f x x x x .于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=,从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x dx E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(dy D d x D I ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x dx ≤∈}:)3,{(,故a E ≤.习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么? 答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a b a a =≤≤Q Q I ],[. 2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明: (1) 设},,,,{],[21ΛΛI n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()(Λ==k r g r f k k ;(2) 公式)),(,),(),(()(21ΛΛn r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[.证明 (1) 必要性. 显然.充分性. 假设),2,1)(()(Λ==k r g r f k k 成立. 因为},,,{\],[321Λr r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得)()lim ()(lim x f x f x f n n n ==∞→∞→及)()lim ()(lim x g x g x g n n n ==∞→∞→.又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即)),(,),(),(()),(,),(),((2121ΛΛΛΛn n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明: (1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射.(3) 由(1)知:c P b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c ≤=,故c b a F 2],[=.4.证明:c n =C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n =C . 5.证明:若E 为任一平面点集且至少有一内点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\Y I ==; (2) ()()()G F G E G F E \\\I I =.证明 (1) 因为\()()()()()\c c c c c E E F E E F E E F E E E F E F ====I I I I U I U I ,()\()()()\c c c E F F E F F E F F F E F ===U U I I U I .所以\\()()\E F E E F E F F ==I U .(2) 因为()\()()()(\)(\),c c c c E F G E F G E F G E G F G E G F G ====I I I I I I I I I所以()()()G F G E G F E \\\I I =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞==Y Y ;(2) ()B A B A n n n n \\11∞=∞==I I .证明 (1)1111\()()(\)ccnn n n n n n n A B A B A B A B ∞∞∞∞=======I I U U U U .(2)1111\()()(\)c c n n n n n n n n A B A B A B A B ∞∞∞∞=======I I II I I .3.证明:22[][][]c c E f g c E f E g +≥⊂≥≥U ,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥U , 则有()2c f x <且()2cg x <, 于是()()()()f x g x f g x c +=+<,故()x E f g c ∉+≥. 所以()()()22c cE f g c E f E g +≥⊂≥≥U .4.证明:nR 中的一切有理点之集n Q 与全体自然数之集对等.证明 因为0Q =ℵ,所以0Q Q Q Q n=⨯⨯⨯=ℵL (推论1.3.1). 又因为0N =ℵ, 所以0Q nN ==ℵ, 故Q ~nN .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数?6.证明:一切有理系数的多项式之集][x Q 是可数集. 证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x ΛΛ于是.][Q ][Q 0Y ∞==n n x x显然,Q ~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x =7.证明:一切实系数的多项式之集][x R 的基数为c .证明 记},R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x ΛΛ于是.][R ][R 0Y ∞==n n x x显然,R ~][R 1n +x n 所以,R ][R 1n c x n ==+ 因此由定理1.4.3知:.][R c x =8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210ΛΛn P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体Y ∞==n nAA 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A Y 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R cB A B ===Y9.证明:A B B A \~\,则B A ~. 证明 因为),()\(),()\(B A A B B B A B A A I Y I Y ==又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A I I I I I I所以由保并性知),()\(~)()\(B A A B B A B A I Y I Y即.~B A10.证明:若,,D B B A <≤则D A <.证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <.11.证明:若c B A =Y ,则c A =或c B =.证明 假设,a B A == 则有,a B A =Y 这与c B A =Y 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z Y ,则存在+∈Z k 使得c A k =.证明同上.。