共发射极基本放大电路分析

合集下载

基本共射极放大电路电路分析

基本共射极放大电路电路分析

基本共射极放大电路电路分析3.2.1基本共射放大电路1.放大电路概念:基本放大电路一般是指由一个三极管与相应元件组成的三种基本组态放大电路。

a.放大电路主要用于放大微弱信号,输出电压或电流在幅度上得到了放大,输出信号的能量得到了加强。

b.输出信号的能量实际上是由直流电源提供的,经过三极管的控制,使之转换成信号能量,提供给负载。

■■童■ Br - - ■:必)iy, :信号慷:I ■t>A放大电路!»!2.电路组成:(1)三极管T;(2)VCC :为JC提供反偏电压,一般几〜几十伏;(3)RC :将IC的变化转换为Vo的变化,一般几K〜几十K。

VCE=VCC-ICRC RC,VCC同属集电极回路。

(4)VBB :为发射结提供正偏。

(习R十一般为儿1 K - JLT-Rb一般,程骨V開=e7V当%*宀只£时;,V B,I B A(6)Cb1,Cb2 :耦合电容或隔直电容,(7)Vi :输入信号(8)Vo :输出信号(9)公共地或共同端,电路中每一点的电位实际上都是该点与公共端之间的电位差。

图中各电压的极性是参考极性,电流的参考方向如图所示。

其作用是通交流隔直流。

V⑵输入电阻RiI£黒 b ZCKt亡/〒气V.V2^3.共射电路放大原理f' h : 1112V峠变化% %变化7变化 %尸%-叫好变化 > %变化SOOK A 4KTHl/cc/jt 躍—=40w/{ Ic = E h = \ .6rffA J cE = f4v-AVr = -bn y T M = —5 址44.放大电路的主要技术指标放大倍数/输入电阻Ri /输出电阻Ro /通频带(1)放大倍数放大电路的输出信号的电压和电流幅度得到 了念大,所以输出功零也龛筋「所肢大.对赦夫电ffilfilH'W:电压放人侣数;凰=峙电 电流放脸倚tt : ■半二扫冷 功率ttXMSi :心=£『尸=峡!鰹 通常它们蛊;fi 按F 张怙宦义的4放大俗数定 义式中各有其S 如图所示,慮频段九—中频段一■久高频詁(3)输出电阻Ro输出电阻是表明放大电路帯负栽的能力,饨大表明 放大电路带负载的能力差,心的宦义:R 、=4-g(町根捌图"}・在帯竝肘,测得!色 鶴 JF 跑时的繭dj 为J*畀 则;心人! 丁 乂(厂:=口}认C 」叫 / 4 K 10 — 1 : %注总:肚大倍数、输入电阻、输岀电阻通常^^;11在 E 弦信巧下的它渝琴®, iHr n-放k 电呂&处于威k 状态且输;IM 伙珥的条件卜V 们息义.(4)通频带放大电路的增率的歯数4在低预段和 高频段放大缶数祁要下降。

9 共射极放大电路

9 共射极放大电路

江 阴 学 院
• 三极管微变等效电路模型的建立
1 使用条件
低频 小信号 变化量
江 阴 学 院
输入回路可等效为
ib
B
u be
B
等效为
ib
u be
江 阴 学 院
rbe
E
对于小功率三极管:
E
26(mV ) rbe 200( ) (1 β ) I E (mA )
rbe一般为几百欧到几千欧。
基极电流的瞬时值(交流分量+直流分量)
共射放大电路的电压放大作用
+UCC RB C1 + C2 + + iB iC + + T uCE uBE – uo – iE – iC RC
江 阴 学 院
+ ui

uo = 0 uBE = UBE uCE = UCE
uCE
无输入信号(ui = 0)时:
uBE UBE tO iB IB tO
分析对象:各极电压电流的直流分量。 所用电路:放大电路的直流通路。
江 阴 学 院
设置Q点的目的: (1) 使放大电路的放大信号不失真; (2) 使放大电路工作在较佳的工作状态,静态是 动态的基础。
分压偏置放大电路——工作点稳定
RB1、RB2——分压电阻,保证VB恒定。
U CC
RC
江 阴 学 院
RB1
波形分析
RB
iC
C1 +
+UCC RC
江 阴 学 院
ui
+
iB
t ui

t + + iB iC u T uCE C + uBE – – t iE

共射极基本放大电路分析

共射极基本放大电路分析

共射极基本放大电路分析为了更好地理解共射极基本放大电路,我们需要进行以下几个方面的分析:1.伏安特性分析:首先我们需要了解晶体管的伏安特性曲线,它描述了晶体管的电流与电压之间的关系。

晶体管的伏安特性曲线通常具有三个区域:截止区域、饱和区域和放大区域。

在截止区域,输入电压较低,晶体管处于截止状态,没有电流通过。

在饱和区域,输入电压较高,晶体管处于饱和状态,有最大的电流通过。

在放大区域,输入电压介于截止电压和饱和电压之间,晶体管将以放大信号的形式输出。

2.小信号模型分析:在共射极基本放大电路中,输入信号通常是小信号,我们可以将晶体管视为线性放大器。

我们可以使用小信号模型来简化电路,将晶体管视为电流放大器和电压放大器。

在这种情况下,共射极基本放大电路可以被看作是一个共射极放大器。

3.增益分析:共射极基本放大电路的放大增益是指输出电压与输入电压之间的比值。

放大增益通常用β表示,β是晶体管的电流放大因子或射极电流与基极电流之比。

增益值可以通过测量输入和输出信号的幅度来计算。

4.截止频率分析:共射极基本放大电路的截止频率是指输入信号频率超过该频率时,晶体管的放大增益开始下降。

截止频率可以通过晶体管的频率响应特性来确定。

5.稳定性分析:共射极基本放大电路的稳定性是指输出信号对于电源电压和温度变化的抗干扰能力。

稳定性分析可以通过电压分压器和电流源的设计来实现。

除了上述的分析,还可以对共射极基本放大电路进行功率分析、频率响应分析、电流增益分析等等。

这些分析可以帮助我们更好地理解共射极基本放大电路的工作原理,并且有助于我们进行电路设计和性能优化。

总结起来,共射极基本放大电路是一种重要的放大电路,需要对其伏安特性、小信号模型、增益、截止频率和稳定性等方面进行详细分析,以便更好地理解其工作原理并进行电路设计和优化。

基本放大电路_共发射极放大电路的静态分析和动态分析

基本放大电路_共发射极放大电路的静态分析和动态分析

300
(1
)
26(mV) IE (mA )
第五章 基本放大电路
输出回路
IB
iC +
uCE

ic +c
βib
uce
−e
iC
IC IC
Q
共发射极放大电路
IB
UCE
uCE
ic ib 集电极和发射极之间可等效为
一个受ib控制的电流源。
第五章 基本放大电路
共发射极放大电路
ib +b ube

ic
c
+
e
三极管的小信号模型 放大电路的小信号模型 计算放大电路的性能指标
第五章 基本放大电路
共发射极放大电路
三极管的小信号模型 输入回路
iB
UCE
iB
+
+UCE
rbe
U BE IB
ube ib
IB
Q IB
u−BE
− 动态输入电阻
0
UBE uBE
b
ib +
ube
e−
rbe
低频小功率管输入电阻的估算公式
rbe
第五章 基本放大电路
共发射极放大电路
2. 用图解法确定静态工作点Q
图解步骤:
用估算法求出基极电流IB。 根据IB在输出特性曲线中找到对应曲线。
作直流负载线。
UCE=VCC – ICRC
M(VCC,0)
N(0,VCC) RC
MN称放大电路的直流负载
iC
N VCC
RC
IC
线,斜率为−1/RC。
0
确定静态工作点Q。
uce

基本放大电路其分析方法

基本放大电路其分析方法

二、基本放大电路及其分析方法一个放大器一般是由多个单级放大电路所组成,着重讨论双极型半导体三极管放大电路的三种组态,即共发射极,共集电极和共基极三种基本放大电路。

从共发射极电路入手,推及其他二种电路,其中将图解分析法和微变等效电路分析法,作为分析基础来介绍。

分析的步骤,首先是电路的静态工作点,然后分析其动态技术指标。

对于放大器来说,主要的动态技术指标有电压放大倍数、输入阻抗和输出阻抗。

.共射极基本放大电路的组成及放大作用在实践中,放大器的用途是非常广泛的,它能够利用三极管的电流控制作用把微弱的电信号增强到所要求的数值,为了了解放大器的工作原理,先从最基本的放大电路学习:图称为共射极放大电路,要保证发射结正偏,集电极反偏Ib=(V BB-V BE)/Rb,对于硅管V BE约为左右,锗管约为左右,I B=/Rb这个电路的偏流I B决定于V BB和Rb的大小,V BB和Rb 一经确定后,偏流I B就固定了,所以这种电路称为固定偏流电路,Rb又称为基极偏置电阻,电容Cb1和Cb2为隔直电容或耦合电容,在电路中的作用是“传送交流,隔离直流”,放大作用的实质是利用三极管的基极对集电极的控制作用来实现的.如下图上图是共射极放大电路的简化图,它在实际中用得比较多的一种电路组态,放大电路的主要性能指标,常用的有放大倍数、输入阻抗、输出阻抗、非线性失真、频率失真以及输出功率和效率等。

对于不同的用途的电路,其指标各有侧重。

初步了解放大电路的组成及简单工作原理后,就可以对放大电路进行分析。

主要方法有图解法和微变等效法。

.图解分析法静态工作情况分析当放大电路没有输入信号时,电路中各处的电压,电流都是不变的直流,称为直流工作状态简称静态,在静态工作情况下,三极管各电极的直流电压和直流电流的数值,将在管子的特性曲线上确定一点,这点称为静态工作点,下面通过例题来说明怎样估算静态工作点。

解:Cb1与Cb2的隔直作用,对于静态下的直流通路,相当于开路,计算静态工作点时,只需考虑图中的Vcc、Rb、Rc及三极管所组成的直流通路就可以了,I B=(Vcc-)/Rb(I C=βI B+I CEO )I C=βI B,V CE=V CC-I C R C如已知β,利用上式可近似估算放大电路的静态工作点。

共发射极放大电路

共发射极放大电路

UBQU RC B1CRRBB22
U CQ U CC ICQ R C
IEQUBQRE0.7V
UCEQ UCQUEQ
UB 0
U BQ
R b1 Rb1 Rb2
VCC
2 .79 V
Ucc I EQ
U BQ U BEQ Re
2 .1mA
UC
UE
0 IEQ
U BQ
U BEQ Re
2.1mA
U CEQ VCC I EQ (Rc Re ) 2.34V
U BQ
R b1 Rb1 Rb2
V CC
2 .79 V
I EQ
U BQ U BEQ Re
2 .1mA
U EQ 2.1V
I EQ
U BQ
U BEQ Re
2.1mA
U CEQ V CC I EQ ( R c R e ) 2 .34 V U CEQ VCC I EQ ( Rc Re ) 2.34V
2 .79 V
I EQ
U BQ U BEQ Re
2 .1mA
U EQ 2.1V
I EQ
U BQ
U BEQ Re
2.1mA
U CEQ V CC I EQ ( R c R e ) 2 .34 V U CEQ VCC I EQ ( Rc Re ) 2.34V
U BQ
R b1 Rb1 Rb2
U U
CC
BEQ
I BQ
(1 )
R R B
e
Rb
I I
CQ
BQ
U U I R R ( )
CEQ
CC CQ c
e
+ UCC
Rc
IB Q
+ U BEQ

共发射极基本放大电路

共发射极基本放大电路

8.2 共发射极基本放大电路8.2.1 放大电路的概念在生产中,常常把温度、压力、流量等的变化,通过传感器变换成微弱的电信号,要实现对这些信号的传输或控制,就需要一定的电路使微弱的电信号不失真或在规定的失真量范围内将其放大。

实现这一功能的电路称为放大电路。

放大电路实质上是一种能量控制电路。

它通过具有较小能量的输入信号控制有源元件(晶体管、场效应管等)从电源吸收电能,使其输出一个与输入变化相似但数值却大得多的信号。

8.2.2 共发射极基本放大电路的组成由三极管组成的放大电路有共发射极、共集电极和共基极三种基本组态。

本节以应用最广泛的共发射极放大电路(简称共射电路)为例来对放大电路的组成及工作原理进行分析。

图8.10是共发射极基本放大电路(单管电压放大电路),输入端接交流信号u i;输出端接负载电阻R L,输出电压为u o。

图8.10 共发射极基本放大电路1. 电路中各元件作用(1) 晶体管VT晶体管是NPN型,它是整个电路的核心。

若输入回路有一个微弱的信号电压u i,加在基极和发射极之间有一个微弱的交变电压u BE,引起基极输入微弱的交变电流i B,于是在集电极回路内引起了较大的集电极电流i C= i B。

根据能量守恒定律,能量是不能放大的,该电路是以能量较小的输入信号通过晶体管的“控制作用”去控制电源V CC供给的能量,致使输出端获得一个能量较大的信号。

这就是放大作用的实质。

(2) 集电极电源V CCV CC是放大电路的直流电源,它有两个作用。

一方面保证晶体管VT的发射结处于正向偏置、集电结处于反向偏置,使晶体管工作在放大状态。

另一方面为整个放大电路提供能源。

V CC的数值一般为几伏到几十伏。

(3) 集电极电阻R C集电极负载电阻R C一方面配合V CC ,使晶体管集电结加反向偏置电压;另一方面将晶体管集电极电流i C的变化转换成电压u CE的变化,送到输出端从而实现电压放大。

若没有R C,则输出端的电压始终等于V CC,就不会随输入信号变化了。

共发射极放大电路

共发射极放大电路

7.1.3 动态分析
1. 图解法
(1) 负载开路时输入和输出电压、电流波形 的分析
的波形
根据ui波形,在输入特性曲线上求iB和uBE
根据iB波形,在输出特性曲线和直流负载 线上求iC、 uRC和uCE的变化 ,如图7.5所示。
第12页/共49页
第13页/共49页
(2) 带负载时输入和输出电压、电流波形分 析
Ro/
U I
RC
,所以
第42页/共49页
将有关数据分别代入上式得
A
/ u
=
-
0.36
R
/ i
=103.25

R
/ o
=3

由此可见,电压放大倍数下降了很多,但输入 电阻得到了提高。
第43页/共49页
40 当改用β=100的三极管后,其静态工作点为
IUE =B REU BE
3.5 0.7 2
为了减小和避免非线性失真,必须合理地选
择静态工作点Q的位置,并适当限制输入信号ui 的
幅度。一般情况下,Q点应大致选在交流负载线的
中点,当输入信号ui 的幅度较小时,为了减小管子
的功耗,Q点可适当选低些。若出现了截止失真, 通常采用提高静态工作点的办法来消除,即通过减
小基极偏置电阻RB的阻值来实现;若出现了饱和失 真,则反向操作,即增大RB。
作交流负载线:
10 先作出直流负载线MN,确定Q点。
20 在uCE坐标轴上,以UCE为起点向正方向取
一段IC
R
/ L
的电压值,得到C点。
30 过CQ作直线CD,即为交流负载线,如
图7. 5所示。
(3) 放大电路的非线性失真

共发射极放大电路的特点

共发射极放大电路的特点

共发射极放大电路的特点一、引言共发射极放大电路是一种常见的放大电路,其特点是具有高输入阻抗、低输出阻抗和较大的电压增益。

本文将从以下四个方面对共发射极放大电路的特点进行详细介绍。

二、基本结构共发射极放大电路由三个元件组成:晶体管、输入电容和负载电阻。

其中,晶体管作为主要的放大器,输入电容用于隔离直流偏置,负载电阻用于提供输出信号。

三、特点分析1. 高输入阻抗由于共发射极放大电路中晶体管的基极接地,因此其输入端具有高阻抗。

这种高输入阻抗可以有效地隔离外部信号源,并减少对信号源的影响。

2. 低输出阻抗在共发射极放大电路中,负载电阻与晶体管并联,形成了一个并联反馈回路。

这种并联反馈回路可以有效地降低输出端的输出阻抗,从而提高了输出信号的稳定性和传输能力。

3. 较大的电压增益由于共发射极放大电路中晶体管的输出信号是从集电极输出,因此其电压增益较大。

另外,在负载电阻和输入电容的作用下,晶体管的放大倍数还可以进一步提高。

4. 容易产生交越失真由于共发射极放大电路中存在反馈回路,因此其容易产生交越失真。

这种失真现象会导致输出信号波形变形,从而影响整个系统的性能。

四、应用领域共发射极放大电路广泛应用于各种音频、视频和无线通信系统中。

其中,音频放大器是最常见的应用之一。

在音频放大器中,共发射极放大电路可以实现对音频信号的放大和处理,并将其转换为可听的声音。

五、总结综上所述,共发射极放大电路具有高输入阻抗、低输出阻抗和较大的电压增益等特点。

它广泛应用于各种音频、视频和无线通信系统中,并在这些领域中发挥着重要作用。

同时,由于其容易产生交越失真等缺点,在实际应用时需要注意相应的调试和优化工作。

基本共射极放大电路

基本共射极放大电路

2.3 图解 分析法
2.3.2 动态工作情况分析
3. BJT的三个工作区
②放大电路 的动态范围
放大电路要想 获得大的不失真输 出幅度,要求:
• 工作点Q要设置在 输出特性曲线放大区 的中间部位;
• 要有合适的交流负载线。
2.3 图解 分析法
2.3.2 动态工作情况分析
4. 输出功率和功率三角形
放大电路向电阻性负载提供的输出功率
=1.62 k
Au空= - RC /rbe=-60 5/1.62=-186 Au载= - RL /rbe=-60 (5//5)/1.62=-93
EC
uo UBE=UB-UE
=UB - IE RE
IE = IC +IB IC
+EC 静态工作点稳定过程
RB1 C1
I1 RC IC C2
IB
C
ui
RB2
B
I2
E
RE
RL
IE CE
UB
R B2 R B1 R B2
EC
UB被认为较稳定
uo
U本BE=电U路B-稳UE压的 过 于程 加=U实 了B R际- IEE是形R由成E
iCiC
VCC VVCRCCcC RRc c
ICQ ICICQQ
Q Q
Q Q
斜斜率率 -IIBIBQBQQ
11 RRc c
VVCCCEQ VC EQVC EQ
VCC vvCCEE
2.3
2. 放大电路如图所示。当测得 BJT的VCE 接近VCC的值时,问 管子处于什么工作状态?可能 的故障原因有哪些?
Po
Vom 2
Iom 2
1 2
Vom

4.1.2-4.1.3-基本共射极放大电路的分析方法ok

4.1.2-4.1.3-基本共射极放大电路的分析方法ok
解:(1) I BQ
例题
VCC VBE 12V 40μA Rb 300k
共射极放大电路
ICQ βIBQ 80 40μA 3.2mA
VCEQ VCC Rc ICQ 12V 2k 3.2mA 5.6V
静态工作点为Q(40A,3.2mA,5.6V),BJT工作在放大区。 VCC 12V I 120μA ICQ IBQ 80 120μA 9.6mA (2)当Rb=100k时, BQ R 100k b
vBE=VBEQ+vbe iB=IBQ+ib iC=ICQ+ic vCE=VCEQ+vce
各值都含有直流分量和交流分量。
3. 负载电阻RL对放大电路的影响
(1)对直流通路、直流分量、直流负载线的影响 (2)对交流通路、交流分量、交流负载线的影响
3. 负载电阻RL对放大电路的影响
(1)对直流通路、直流分量、直流负载线有无影响
2. BJT的H参数及微变等效模型 H参数微变等效模型 受控电流源hfeib ,反 映了BJT的基极电流对集电 极电流的控制作用。电流源 的流向由ib的流向决定。 hrevce是一个受控电压 源。反映了BJT输出回路电 压对输入回路的影响。 H参数都是小信号参数,即微变参数或交流参数。
H参数与工作点有关,在放大区基本不变。
vs Vsm sinωt
vBE (VBB vs ) iB Rb
2. 动态工作情况的图解分析 根据iB的变化范围在输出特性曲线图上画出iC和vCE 的波 形 交流负载线 (交流负载线) vCE VCC iC Rc
2. 动态工作情况的图解分析 共射极放大电路中的电压、 电流波形
ICS 1.5
3 Q’

共射极基本放大电路

共射极基本放大电路

为了使放大电路能够正常工作,三极管必须处于放大状态。 因此,要求三极管各极的直流电压、直流电流必须具有合适
的静态工作参数IB、IC、UBE、UCE ,也即是放大电路的静态工
作点。静态工作点是放大电路工作的基础,它设置的合理及 稳定与否,将直接影响放大电确定静态工作点。
交点,即为静态工作点Q。从Q点查出结果与估算法所得 结果一样。
2.动态工作情况
当接入正弦信号时,电路将处在动态工作情况,可
以根据输入信号电压ui通过图解确定输出电压uo,从而 可以得出ui与uo之间的相位关系和动态范围。 图解的步 骤是先根据输入信号电压ui在输入特性上画出ib的波形, 然后根据ib的变化在输出特性上画出ic和UBE的波形,如图
图 7.4 图解法分析动态工作情况
设放大电路的输入电压正弦波,当它加到放大电路
值得指出的是, 放大作用是利用晶体管的基极对集电极的 控制作用来实现的, 即在输入端加一个能量较小的信号,通过 晶体管的基极电流去控制流过集电极电路的电流, 从而将直流
电源VCC的能量转化为所需要的形式供给负载。 因此, 放大作
用实质上是放大器件的控制作用;放大器是一种能量控制部件
1.2共射极基本放大电路的分析
态时的集电极电流
IC IB ICEO IB
(7-2)
由图7.2的输出回路可知 静态时的集电极与发射极间 电压
VCC
Rb
IB Rc
IC
(+12V)
300KΩ
4KΩ
U CE VCC IC RC
(7-3)
图 7.2 共射放大电路直流通 路图从式(7-1),由图7.2所 示参数可求得
UBE
T UCE
件组成,信号源电压ui从AO端输入,放大后的信号电压uo从BO端

共射极基本放大电路-ppt课件全

共射极基本放大电路-ppt课件全

稳定电路的静态工作点。
上一页 下一页 返回
共射极基本放大电路
(2) 静态工作点的估算
直流通路如图(b)所示。
当三极管工作在放大区时,IBQ很小。当满
足I1>>IBQ时,I1≈I2,则有:
UBQ Rb1Rb2Rb2VCC
IEQ
UB
UBEQ Re
IC Q IEQ
I BQ
I CQ
U CE V Q C C IC(R Q c R e)
IBS
ICS
VCC
Rc
上一页
下一页
返回
共射极基本放大电路 4. 动态分析
所谓动态,是指放大电路输入信号ui不为零
时的工作状态。当放大电路中加入正弦交流信号
ui时,电路中各极的电压、电流都是在直流量的
基础上发生变化,即瞬时电压和瞬时电流都是由 直流量和交流量叠加而成的。
上一页 下一页 返回
共射极基本放大电路
共射极基本放大电路
1) 保证三极管工作在放大区 2) 保证信号有效的传输 2. 放大电路中电压、电流的方向及符号规定 1) 电压、电流正方向的规定 为了便于分析,规定:电压的正方向都以输入、 输出回路的公共端为负,其他各点均为正;电流方 向以三极管各电极电流的实际方向为正方向。
上一页 下一页 返回
1. 静态图解法
以图7(a)所示共射放大电路为例,分析静态时,电容C1和
C2视为开路,这时电路可画成图7(b)所示的直流通路。三极管
的静态工作点的四个量,在基极回路中有IBQ和UBEQ,在集电极
回路中有ICQ和UCEQ,下面分别进行讨论。
上一页 下一页 返回
共射极基本放大电路
返回
共射极基本放大电路

共发射极放大电路的分析

共发射极放大电路的分析

共发射极放大电路的分析
一、直流分析:
1.确定工作点:首先需要确定晶体管的工作点,即输入直流电压和输出直流电压。

通过射极电阻的分压原理,可以计算出射极电阻的电流和电压,从而确定工作点。

2.确定偏置电路:为了使晶体管在工作点时处于线性放大区,并避免过饱和或者截止,需要设计偏置电路。

常见的偏置电路有电流镜电路、共射极负反馈电路等。

3.分析直流通路:根据电路的连接方式,确定各电阻的电压和电流。

通过欧姆定律和基尔霍夫定律,可以计算出各节点的电压和电流。

二、交流分析:
1.交流模型:根据晶体管的小信号等效模型,进行交流分析。

通常将晶体管看作是一个受控电压源和电阻组成的电路。

其中,受控电压源用于描述输入信号的影响,电阻用于描述晶体管的放大特性。

2.确定输入阻抗:通过交流模型,计算出输入阻抗。

输入阻抗可以反映输入信号对电路的影响程度。

3.确定输出阻抗:通过交流模型,计算出输出阻抗。

输出阻抗可以反映电路对负载的驱动能力。

4.确定增益:通过计算输入电压和输出电压之比,可以得到电路的增益。

增益可以衡量电路放大信号的能力。

在共发射极放大电路的分析中,还需注意以下几点:
1.负载:应根据负载特性,选择适当的电阻和电容,以提高电路的稳
定性和性能。

2.频率特性:晶体管的频率响应、输入输出阻抗随频率的变化等,也
需要进行分析和优化。

3.反馈:可以通过负反馈来改善电路的性能,增加稳定性和减小波动。

总结:。

1.5共发射极放大电路的分析(静态分析)ppt课件

1.5共发射极放大电路的分析(静态分析)ppt课件
静态分析:确定放大电路的静态值。 — 静态工作点Q:IBQ、ICQ、UCEQ
分析方法:估算法、图解法。 分析对象:各极电压电流的直流分量。 所用电路:放大电路的直流通路。
设置 Q 点的目的: 使放大电路工作在较佳的工作状态,保证信号不失真地放大。
1.画出下图放大电路的直流通路
对直流信号电容 C 可看作开路(即将电容断开)
IC f (U CE ) IB 常 数
IC/mA
UCC
直流负载线
由IB确定的那条输 出特性与直流负载
RC
线的交点就是Q点
Q
ICQ

I BQ

U CC
U BEQ RB
O
UCEQ
UCC UCE /V
tan 1
RC
直流负载线斜率
10.2 共发射极放大电路的分析
10.2.1 静态分析
4.静态工作点与RB的关系

U CC RB

12V 300K

40A
ICQ IBQ 37.5 0.04mA 1.5 mA
IBQ
+
+T UBEQ–
UCEQ –
U CEQ U CC ICQ RC
12 1.5 4V 6V
注意:电路中 IBQ 和 ICQ 的数量级不同
3 .用图解法确定静态值 用作图的方法确定静态值
使放大电路工作在较佳的工作状态,保证信号不 失真地放大。
5.改变RB电阻可以改变Q 点。
U CEQ U CC ICQ RC
iC / mA
VCC
Rc Q'
3
80 直流负载线 60 静态工作点
2 1
Q

电子技术-共发射极基本放大电路课件

电子技术-共发射极基本放大电路课件
由此可以得出:
无交流输入信号电压时,三极管各电极都是恒定的电压和 流:IB、UBE和 IC、UCE ,称为静态值。这些静态值分别 在输入、输出特性曲线上对应着一点,称为静态工作点,
用Q表示。这时的静态量可表示为IBQ、ICQ、UCEQ。
三、共发射极放大电路的直流、交流通路
(1)共发射极放大电路的直流通路:
+ ui

习惯画法ห้องสมุดไป่ตู้
一、共发射极放大电路的组成
(1)晶体管 V:
放大电路中的核心器件。具有电流放大作用, 可将微小的基极电流转换成较大的集电极电流。 (2) 集电极电源EC: 不仅为输出信号提供能 量,还为发射结加正向偏 置电压、集电结加反向偏 + 置电压,使晶体管起到放 ui – 大作用。
RB C1 + +EC C2 + + iB iC + T uCE + uBE – uo – iE – RC
重点应掌握共发射极放大电路静态工作点的分析。
作业
1、画出共发射极放大电路图,并说明各组 成元器件的作用。 2、画出共发射极放大电路的直流通路图。
+UCC Rb C1
+
ICQ =( U - U )/R CC CEQ C =(12-6)/2 ICQ≈β IBQ IBQ ≈ ICQ/ β =3/50=0.06mA =3mA
Rc
+
C2
V
ui
uo
IBQ≈UCC/ Rb Rb ≈ UCC/ IBQ =12/ 0.06=200K


本堂课我们主要学习了共发射极放大电路和直流 通路、交流通路的画法以及静态工作点的估算。
1、静态时的情况
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共发射极基本放大电路分析
【摘要】电子技术是一门实践性很强的课程,如何让学生学好知识,提高学习兴趣,培养适应当今社会发展的职业技术人才,在教学中注重教学方法是关键,也是实践性教学的一个重要环节。

【关键词】电子技术;共发射极基本放大电路;教学方法
一、三极管放大器的组成元件
下图为共发射极基本放大电路。

当输入端加入微弱的交流电压信号ui时,输出端就得到一个放大了的输出电压uo。

由于放大器的输出功率比输入功率大,而输出功率通过直流电源转换获得,所以放大器必须加上直流电源才能工作。

从这一点来说,放大器实质上是能量转换器,它把直流电能转换成交流电能。

放大器是由三极管、电阻、电容和直流电源等元器件组成。

对模拟信号进行处理最基本的形式是放大。

在生产实践和科学实验中,从传感器获得的模拟信号通常都很微弱,只有经过放大后才能进一步处理,或者使之具有足够的能量来驱动执行机构,完成特定的工作。

放大电路的核心器件是三极管,三极管的电流放大作用与三极管内部pn的特殊结构有关。

(其中ui是要放大的输入信号,uo是放大以后的输出信号,vbb是基极电源,该电源的作用是使三极管的发射结处在正向偏置的状态,vcc是集电极电源,该电源的作用是使三极管的集电结处在反向偏置的状态,rc是集电极电阻。

)三极管犹如两个反向串联的pn结,如果孤立地看待这两个反向串联的pn结,或将两个普通二极管串联起来组成三极管,是不可能具有电流的放大作用。

具有电流放大作用的三极管,pn结内部结构的特殊性是:(1)发射区半导体的掺杂浓度远高于基区半导体的掺杂浓度,且发射结的面积较小,这样做是为了便于发射结发射电子。

(2)集电结的面积要比发射结的面积大,便于收集电子。

(3)联系发射结和集电结两个pn结的基区非常薄,且掺杂浓度也很低。

上述的结构特点是三极管具有电流放大作用的内因。

要使三极管具有电流的放大作用,除了三极管的内因外,还要有外部条件。

三极管的发射极为正向偏置,集电结为反向偏置是三极管具有电流放大作用的外部条件。

放大器是一个有输入和输出端口的四端网络,要将三极管的三个引脚接成四端网络的电路,必须将三极管的一个脚当公共脚。

取发射极当公共脚的放大器称为共发射极放大器,基本共发射极放大器的电路如图所示。

图中的基极和发射极为输入端,集电极和发射极为输出端,发射极是该电路输入和输出的公共端,所以,该电路称为共发射极电路。

二、放大器概述
放大器:把微弱的电信号放大为较强电信号的电路。

基本特征是功率放大。

共发射极基本放大电路。

当输入端加入微弱的交流电压信号ui时,输出端就得到一个放大了的输出电压uo。

在放大器的输入端加入一个交流电压信号ui,使电路处于交流信号放大状态(动态)。

当交变信号ui经c1加到三极管v的基极时,它与原来的直流电压ube(设为0.7v)进行叠加,使发射结的电压为
ube=ube+ui。

基极电压的变化必然导致基极电流随之发生变化,此
时基极电流为ib=ib+ib。

由于三极管具有电流放大作用,基极电流的微小变化可以引起集电极电流较大的变化。

如果电流放大倍数为β,则集电极电流为ic=βib,即集电极电流比基极电流增大β倍,实现了电流放大。

经放大的集电极电流ic通过电阻rc转换成交流电压uce。

所以三极管的集电极电压也是由直流电压uce和交流电压uce叠加而成,其大小为uce=uce+uce=ucc-icrc。

放大后的信号经c2加到负载rl上。

由于c2的隔直作用,在负载上便得电压的交流分量uce,即uo=uce=-icrc。

式中“一”号表示输出信号电压u0与输入信号电压ui相位相反(相差1800),这种现象称为放大器的反相放大。

放大电路中,左边是输入端,外接信号源,vi、ii 分别为输入电压和输入电流;右边是输出端,外接负载,vo、io分别为输出电压和输出电流。

三、放大倍数的分类
第一,电压放大倍数:a■=■(1);第二,电流放大倍数:a ■=■(2);第三,功率放大倍数:ap=■(3),三者关系为:ap=■=■=ai·av。

四、放大器的增益
增益g:用对数表示放大倍数。

单位为分贝(db)。

第一,功率增益gp =10lgap(db)。

第二,电压增益gv=20lgav(db)。

第三,电流增益gi=20lgai (db)。

增益为正值时,电路是放大器,增益为负值时,电路是衰减器。

例如,放大器的电压增益为20db,则表示信号电压放大了10倍。

又如,放大器的电压增益为-20db,这表
示信号电压衰减到1/10,即放大倍数为0.1。

不难看出,通过以上分析,能够很容易理解到信号的放大过程及其原理,为更进一步理解和学习打下基础。

参考文献
[1]付植桐.电子技术(第2版)[m].高等教育出版社,2004
[2]林平勇,高嵩.电工电子技术(第3版)[m].高等教育出版社,2007。

相关文档
最新文档