正余弦定理ppt
合集下载
正弦定理和余弦定理课件PPT
![正弦定理和余弦定理课件PPT](https://img.taocdn.com/s3/m/833426cc376baf1ffd4fade8.png)
直角三角形的一个锐角的对边与斜边的比叫做这个 角的正弦.
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
A. 3
B.2
C. 5
D. 7
【解析】选D.因为a2=b2+c2-2bccosA=22+32-2×2×3×
cos 60°=7,所以a=
7.
3.在△ABC中,a=3,b=4,c= ,则此三角形的最大角为
37
.
【解析】由c>b>a知C最大,
因为cosC=
a2
所以C=120°.
b2 c2 2ab
32 42 37 234
【拓展延伸】利用平面图形的几何性质和 勾股定理证明余弦定理 ①当△ABC为锐角三角形时,如图, 作CD⊥AB,D为垂足,则CD=bsinA, DB=c-bcosA,则a2=DB2+CD2=(c-bcosA)2+(bsinA)2 =b2+c2-2bccosA,其余两个式子同理可证;
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
A. 3
B.2
C. 5
D. 7
【解析】选D.因为a2=b2+c2-2bccosA=22+32-2×2×3×
cos 60°=7,所以a=
7.
3.在△ABC中,a=3,b=4,c= ,则此三角形的最大角为
37
.
【解析】由c>b>a知C最大,
因为cosC=
a2
所以C=120°.
b2 c2 2ab
32 42 37 234
【拓展延伸】利用平面图形的几何性质和 勾股定理证明余弦定理 ①当△ABC为锐角三角形时,如图, 作CD⊥AB,D为垂足,则CD=bsinA, DB=c-bcosA,则a2=DB2+CD2=(c-bcosA)2+(bsinA)2 =b2+c2-2bccosA,其余两个式子同理可证;
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c
正弦定理和余弦定理ppt课件
![正弦定理和余弦定理ppt课件](https://img.taocdn.com/s3/m/fa42cc8f2dc58bd63186bceb19e8b8f67c1cef27.png)
总结词
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。
正弦定理与余弦定理时PPT课件
![正弦定理与余弦定理时PPT课件](https://img.taocdn.com/s3/m/5b9b581fc8d376eeafaa3195.png)
第15页/共28页
• 解法二:已知等式变形为
• b2(1-cos2C)+c2(1-cos2B)= 2bccosB·cosC,
• ∴b2+c2=b2cos2C+c2cos2B+ 2bccosB·cosC,
• ∵b2cos2C+c2cos2B+2bccosBcosC • =(bcosC+ccosB)2=a2, • ∴b2+c2=a2,∴△ABC为直角三角形.
得aab2+ =b62-ab=7 ⇒aab2+ =b62.=13 7 分
消去 b 并整理得 a4-13a2+36=0, 解得 a2=4,a2=9.9 分
所以ab= =23 或ab= =32.
故 a+b=5.12 分 第19页/共28页
•变式训练4.若本例题中(2)的条件不变,
试求“△ABC内切圆的半径r”.
由bcb30bcsin303由正弦定理sinccsinbc60或120c60a90c120a30abc为等腰三角形abca3b4c373743边c最大则角c最大bc2ababcsinasinbsincsinasinbsinccosc2ab9t25t49t3t5t1201203ab2cosasinbsincabc180sincsina2cosasinbsinc2cosasinbsinacosbcosasinbsina根据余弦定理上式可化为coscabc为等边三角形由2cosasinbsinc得cosa2sinb2b3ab4bsinb2bccosbcoscabcsinccsinb2bccosbcoscb2sinbsinccosbcoscsinbsincsinbsinccosbcosccosbc0cosa02bccosbcosc2bccosbcoscbcoscccosbabc2csina
形,且角C为____直__角;a2+b2>c2⇔△ABC是
• 解法二:已知等式变形为
• b2(1-cos2C)+c2(1-cos2B)= 2bccosB·cosC,
• ∴b2+c2=b2cos2C+c2cos2B+ 2bccosB·cosC,
• ∵b2cos2C+c2cos2B+2bccosBcosC • =(bcosC+ccosB)2=a2, • ∴b2+c2=a2,∴△ABC为直角三角形.
得aab2+ =b62-ab=7 ⇒aab2+ =b62.=13 7 分
消去 b 并整理得 a4-13a2+36=0, 解得 a2=4,a2=9.9 分
所以ab= =23 或ab= =32.
故 a+b=5.12 分 第19页/共28页
•变式训练4.若本例题中(2)的条件不变,
试求“△ABC内切圆的半径r”.
由bcb30bcsin303由正弦定理sinccsinbc60或120c60a90c120a30abc为等腰三角形abca3b4c373743边c最大则角c最大bc2ababcsinasinbsincsinasinbsinccosc2ab9t25t49t3t5t1201203ab2cosasinbsincabc180sincsina2cosasinbsinc2cosasinbsinacosbcosasinbsina根据余弦定理上式可化为coscabc为等边三角形由2cosasinbsinc得cosa2sinb2b3ab4bsinb2bccosbcoscabcsinccsinb2bccosbcoscb2sinbsinccosbcoscsinbsincsinbsinccosbcosccosbc0cosa02bccosbcosc2bccosbcoscbcoscccosbabc2csina
形,且角C为____直__角;a2+b2>c2⇔△ABC是
6.4.3余弦定理与正弦定理课件(人教版)
![6.4.3余弦定理与正弦定理课件(人教版)](https://img.taocdn.com/s3/m/cd84906d591b6bd97f192279168884868762b882.png)
所以由余弦定理可得,a2=b2+c2-2bccos A=b2+c2-bc,
所以bc=b2+c2-bc,即(b-c)2=0,
所以b=c,结合A=60°可得△ABC一定是等边三角形.
正弦定理
思考:怎么解决AAS型的解三角形问题?
例.在ABC中,已知角 A, B, 边a, 求边b.
A
c
b
C
a
B
b
a
若ABC为直角三角形,有 sin B, sin A
bsin C 72
2
sin B= c =50sin C>sin C= 2 .
所以B>45°,所以B+C>180°,故三角形无解.
反思感悟
(2)在△ABC中,已知a,b和A,以点C为圆心,以边长a为半径
画弧,此弧与除去顶点A的射线AB的公共点的个数即为三角形
解的个数,解的个数见下表:
A为钝角
A为直角
所以
b 2 c 2 a 2 2ca cosC
余弦定理——向量法
余弦定理的文字描述:三角形中任何一边的平方,等于其他两
边的平方的和减去这两边与它们的夹角的余弦的积的两倍. 即
a b c 2bc cos C
2
2
2
b c a 2ca cos C
2
2
2
c a b 2ab cos C
C
B
图6.4-8
| c |2 (a b) (a b) a a b b 2a b a 2 b 2 2 | a | | b | cos C
c 2 a 2 b 2 2ab cosC
同理可得 a 2 b 2 c 2 2bc cosC
所以bc=b2+c2-bc,即(b-c)2=0,
所以b=c,结合A=60°可得△ABC一定是等边三角形.
正弦定理
思考:怎么解决AAS型的解三角形问题?
例.在ABC中,已知角 A, B, 边a, 求边b.
A
c
b
C
a
B
b
a
若ABC为直角三角形,有 sin B, sin A
bsin C 72
2
sin B= c =50sin C>sin C= 2 .
所以B>45°,所以B+C>180°,故三角形无解.
反思感悟
(2)在△ABC中,已知a,b和A,以点C为圆心,以边长a为半径
画弧,此弧与除去顶点A的射线AB的公共点的个数即为三角形
解的个数,解的个数见下表:
A为钝角
A为直角
所以
b 2 c 2 a 2 2ca cosC
余弦定理——向量法
余弦定理的文字描述:三角形中任何一边的平方,等于其他两
边的平方的和减去这两边与它们的夹角的余弦的积的两倍. 即
a b c 2bc cos C
2
2
2
b c a 2ca cos C
2
2
2
c a b 2ab cos C
C
B
图6.4-8
| c |2 (a b) (a b) a a b b 2a b a 2 b 2 2 | a | | b | cos C
c 2 a 2 b 2 2ab cosC
同理可得 a 2 b 2 c 2 2bc cosC
正弦定理和余弦定理-PPT课件
![正弦定理和余弦定理-PPT课件](https://img.taocdn.com/s3/m/490f5aa5f8c75fbfc77db25b.png)
22
类型一
正弦定理和余弦定理的应用
解题准备:
1.正弦定理和余弦定理揭示的都是三角形的边角关系,根据题 目的实际情况,我们可以选择其中一种使用,也可以综合起 来运用.
2.在求角时,能用余弦定理的尽量用余弦定理,因为用正弦定 理虽然运算量较小,但容易产生增解或漏解.
23
3.综合运用正、余弦定理解三角形问题时,要注意以下关系式
32
∵0<A<π,0<B<π,∴sin2A=sin2B
∴2A=2B或2A=π-2B,即A=B或A+B= .
2
∴△ABC是等腰三角形或直角三角形.
33
解法二:同解法一可得2a2cosAsinB=2b2cosBsinA,
由正、余弦定理得
a2b•
b2
c2
a
2
=b2a•
a2 c2 b2
2bc
2ac
1 2 3 2 1 3.
2
2
(2)当|BC|=4时,S△=
1 2
|AB|·|BC|·sinB
1 2 3 4 1 2 3.
2
2
∴△ABC的面积为 2 3 或 3.
27
[反思感悟]本题主要考查正弦定理、三角形面积公式及分类 讨论的数学思想,同时也考查了三角函数的运算能力及推 理能力.
28
40
设云高CM x m,则CE x h,
DE x h, AE x h .
tan
又AE x h , x h x h
tan tan tan
解得x tan tan gh hgsin( ) m.
tan tan
sin( )
41
[反思感悟]在测量高度时,要理解仰角、俯角的概念.仰角和俯 角都是在同一铅垂面内,视线与水平线的夹角,当视线在水 平线之上时,称为仰角;当视线在水平线之下时,称为俯角.
第4章第6节正弦定理余弦定理课件共47张PPT
![第4章第6节正弦定理余弦定理课件共47张PPT](https://img.taocdn.com/s3/m/83b18374e3bd960590c69ec3d5bbfd0a7956d5e6.png)
=
6+ 4
2 .
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
点评:在△ABC中,若A=m,则B+C=π-m.从而B=π-m-C 或C=π-m-B,由此可消去B或C.
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
[跟进训练]
=4或b=5.]
1234
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
02
细研考点·突破题型
考点一 考点二 考点三
利用正、余弦定理解三角形 利用正、余弦定理解决三角形面积问题 判断三角形的形状
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
2.三角形常用面积公式
(1)S=12a·ha(ha 表示边 a 上的高);
(2)S=12absin
1
1
C=___2_a_c_s_in__B___=____2_b_c_s_in__A__;
(3)S=12r(a+b+c)(r 为内切圆半径).
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
因此,选条件②时问题中的三角形存在,此时c=2 3.
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
方案三:选条件③.
由C=π6和余弦定理得a2+2ba2b-c2=
3 2.
高三数学总复习《正弦定理与余弦定理》课件
![高三数学总复习《正弦定理与余弦定理》课件](https://img.taocdn.com/s3/m/e254867325c52cc58bd6be46.png)
答案:C
课时作业(三十) 正弦定理与余弦定理
一、选择题
12 1.(2009 全国Ⅱ已知 ) ABC中, cotA , 则cosA ( 5 12 5 5 12 A. B. C. D. 13 13 13 13 )
12 5 解析 :由cotA 知A为钝角, cosA . 5 13
解析 :由正弦定理 3sinBcosA cosAsinC cosCsinA 3 sin A C sinB,cosA . 3
3 答案 : 3
题型二 余弦定理的应用
例2 1 (2009 广东)在 ABC中, A、B、C的对边 分别为a、b、c, 若a c 6 2 , A 75, 则b ( A.2 B.4 2 3 C.4 2 3 ) D. 6 2
)
A.直角三角形,但不是等腰三角形
B.等腰三角形,但不是直角三角形
C.直角三角形或等腰三角形 D.等腰直角三角形
解析 :由正弦定理可知 又 a b c sinA sinB sinC
a b c , cosB sinB, cosC sinC, sinA cosB cosC 又B、C为 ABC的内角, B C 45 ABC为等腰直角三角形.
注意:要熟记一些常见结论,如:①三角形三内角A,B,C成等差 数列的充要条件是B=60°;
②若三内角的正弦值成等差数列,则三边也成等差数列;
③△ABC是正三角形的充要条件是三内角A,B,C成等差数列 且对应三边a,b,c成等比数列.
4.已知三角形的两边及一边的对角解三角形
(1)先判断三角形解的情况,在△ABC中,已知a,b,A时,判断方法
)
D.等腰或直角三角形
第五章第六节正弦定理和余弦定理课件共58张PPT
![第五章第六节正弦定理和余弦定理课件共58张PPT](https://img.taocdn.com/s3/m/153cd59dba4cf7ec4afe04a1b0717fd5360cb238.png)
A,bsin
C=csin
B,
cos
C=a2+2ba2b-c2
2.三角形中常用的面积公式
(1)S=12 ah(h 表示边 a 上的高);
(2)S=12
1
1
bcsin A=___2__a_c_s_in_B____=__2__a_b_si_n_C___;
(3)S=12 r(a+b+c)(r 为三角形的内切圆半径).
解析: 在△ABC 中, 由余弦定理及 a=2 2 ,b=5,c= 13 ,有 cos
C=a2+2ba2b-c2
=
2 2
π .又因为 C∈(0,π),所以 C= 4
.
π 在△ABC 中,由正弦定理及 C= 4 ,a=2 2 ,c= 13 ,可得 sin A=
a sin C c
=2 1313
.
答案:
π 4
变形
(1)a=2R sin A,b=_2_R_s_in_B___,c= __2_R_s_in_C___;
cos A=b2+2cb2c-a2
;
(2)a∶b∶c=_si_n_A_∶__s_i_n_B_∶__s_in_C___; cos B=c2+2aa2c-b2 ;
(3)asin B=bsin asin C=csin A
考点·分类突破
⊲学生用书 P84
利用正弦、余弦定理解三角形
(1)(2020·全国卷Ⅲ)在△ABC 中,cos C=23 ,AC=4,BC=3,则
tan B=( )
A. 5
B.2 5
C.4 5
D.8 5
(2)(2020·广东省七校联考)若△ABC 的内角 A,B,C 所对的边分别为 a,
b,c,已知 2b sin 2A=3a sin B,且 c=2b,则ab 等于( )
第六章6.4.3余弦定理、正弦定理PPT课件(人教版)
![第六章6.4.3余弦定理、正弦定理PPT课件(人教版)](https://img.taocdn.com/s3/m/1193062fce84b9d528ea81c758f5f61fb73628a1.png)
训练题
1.[2019·江西九江一中高一检测]若三角形的三边长之比是1∶ 3 ∶2,
则其所对角之比是( A ) A.1∶2∶3 B.1∶ 3 ∶2 C.1∶ 2 ∶ 3 D. 2 ∶ 3 ∶2
2. [2019·江西赣州五校高一联考]已知△ABC中,a∶b∶c=2∶ 6 ∶
( 3 +1),求△ABC中各角的度数.
训练题
1. 2019·江西九江一中高一检测]设△ABC的内角A,B,C的对边分别为
a,b,c,且cos A= 3 ,cos B= 5 ,b=3,则c=
5
13
14 5
.
2. [2019·北京东城区高三二模]在△ABC中,A= ,a2+b2-c2=ab, 4
c=3,则C=
3 ,a=
6.
3.已知两边及一边的对角解三角形 例5在△ABC中,a= 3 ,b= 2 ,B=45°,求A,C,c.
【解】 ∵ A=45°,C=30°,∴ B=180°-(A+C)=105°.
由 a = c 得a= csinA =10 sin45 =10 2 .
sinA sinC
sinC
sin30
由 b = c 得b= csinB =10 sin105 =20sin 75°.
sinB sinC
sinC
sin30
∵ sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=
【解】 由正弦定理及已知条件,有 3 = 2 ,得sin A= 3 .
sinA sin45
2
∵ a>b,∴ A>B=45°.∴ A=60°或120°.
当A=60°时,C=180°-45°-60°=75°,
6.4.3第三课时余弦定理、正弦定理应用举例PPT课件(人教版)
![6.4.3第三课时余弦定理、正弦定理应用举例PPT课件(人教版)](https://img.taocdn.com/s3/m/2b7c8a6c773231126edb6f1aff00bed5b8f37347.png)
4.如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,
塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.
解 如图,过点C作CE∥DB,延长BA交CE于点E,
设CD=x m,则AE=(x-20) m,
∵tan
60°=CBDD,∴BD=tanCD60°=
x= 3
3 3x
m.
在△AEC 中,x-20= 33x,解得 x=10(3+ 3)m. 故山高 CD 为 10(3+ 3)m.
解 设缉私船应沿CD方向行驶t h,才能最快截获(在D点)走私船, 则 CD=10 3t n mile,BD=10t n mile. ∵BC2=AB2+AC2-2AB·AC·cos A=( 3-1)2+22-2( 3-1)·2cos 120°=6,
∴BC= 6,
∵sBinCA=sin
∠ACABC,∴sin
【训练 3】 如图,在海岸 A 处发现北偏东 45°方向,距 A 点( 3-1) n mile 的 B 处有一艘走私船,在 A 处北偏西 75°方向,与 A 距离 2 n mile 的我方缉私船,奉 命以 10 3 n mile/h 的速度追截走私船,此时走私船正以 10 n mile/h 的速度,从 B 处向北偏东 30°方向逃窜,问:缉私船沿什么方向行驶才能最快截获走私船?
D.α+β=180°
解析 根据题意和仰角、俯角的概念画出草图,如图,知α=β,故应选B.
答案 B
3.两灯塔A,B与海洋视察站C的距离都等于a km,灯塔A在C北偏东30°,B在C南偏东
60°,则A,B之间的距离为( )
A. 2a km
B. 3a km
C.a km
D.2a km
解析 △ABC 中,AC=BC=a,∠ACB=90°,AB= 2a.
《正弦定理余弦定理》课件
![《正弦定理余弦定理》课件](https://img.taocdn.com/s3/m/8945353ca517866fb84ae45c3b3567ec102ddce0.png)
THANKS
感谢观看
REPORTING
基础习题2
基础习题3
已知三角形ABC中,角A、B、C所对 的边分别为a、b、c,若$a = 8, b = 10, C = 45^{circ}$,求边c。
在三角形ABC中,已知A=60°,a=3, b=4, 求角B的大小。
进阶习题
进阶习题1
在三角形ABC中,已知A=45°, a=5, b=5sqrt{2}, 求边c。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应角的正弦值的比等于其他两边的平方和与该边的平方的差的平 方根。余弦定理则是指在一个三角形中,任意一边的平方等于其他两边的平方和减去两倍的另一边与其对应角的 余弦值的乘积。
定理的推导过程
总结词
正弦定理和余弦定理的推导过程涉及到三角函数的定义、性质以及一些基本的 代数运算。
进阶习题2
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 10, b = 8, C = 120^{circ}$,求 边c。
进阶习题3
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 6, b = 8, C = 60^{circ}$,求边c。
综合习题
综合习题1
面积求解
总结词
余弦定理还可以用于计算三角形的面积,通过已知的两边及其夹角,使用面积公式进行计算。
详细描述
已知边a、边b和夹角C,可以使用余弦定理结合面积公式计算三角形ABC的面积,公式为:S = 1/2 ab sin(C)。
PART 04
正弦定理与余弦定理的对 比与联系
REPORTING
定理的异同点
详细描述
首先,利用三角函数的定义和性质,我们可以得到一些基本的等式。然后,通 过一系列的代数运算,将这些等式转化为正弦定理和余弦定理的形式。
正弦定理和余弦定理课件PPT
![正弦定理和余弦定理课件PPT](https://img.taocdn.com/s3/m/c9bd4ff3e87101f69f3195e8.png)
在钝角三角形 ABC 中,a=1,b=2,c=t,且 C 是最大角,则 t 的取值范围是________.
[错解] ∵△ABC 是钝角三角形且 C 是最大角,∴C>90°, ∴cosC<0,∴cosC=a2+2ba2b-c2<0, ∴a2+b2-c2<0,即 1+4-t2<0. ∴t2>5.又 t>0,∴t> 5, 即 t 的取值范围为( 5,+∞).
sin A
3
y 4sin x 4sin( 2 x) 2 3 3
4 3 sin(x ) 2 3, 6
A ,0 B x 2 .
3
3
故 x ( , 5),sin(x ) (1 ,1],
6 66
62
∴y的取值范围为 (4 3,6 3].
正、余弦定理的综合应用 【名师指津】正、余弦定理的综合应用
(2)由于 a:b:c=1: 3:2, 可设 a=x,b= 3x,c=2x. 由余弦定理的推论,得 cosA=b2+2cb2c-a2 =32x×2+43xx2×-2xx2= 23,故 A=30°. 同理可求得 cosB=12,cosC=0,所以 B=60°,C=90°.
已知三角形的三边长分别为 x2+x+1,x2-1 和 2x+ 1(x>1),求这个三角形的最大角.
∵∠ADC=45°,DC=2x, ∴在△ADC 中,根据余弦定理,得 AC2=AD2+DC2-2AD×DC×cos45°, AC2=4x2-4x+2, 又 AC= 2AB, ∴AC2=2AB2, 即 x2-4x-1=0,解得 x=2± 5. ∵x>0,∴x=2+ 5,即 BD=2+ 5.
名师辨误做答
第一章
解三角形
第一章
1.1 正弦定理和余弦定理
《正余弦定理的应用》课件
![《正余弦定理的应用》课件](https://img.taocdn.com/s3/m/ad90a7497dd184254b35eefdc8d376eeaeaa179e.png)
《正余弦定理的应用》 ppt课件
目录
Contents
• 正余弦定理的基本概念 • 正余弦定理的应用场景 • 正余弦定理的实际应用案例 • 正余弦定理的扩展应用 • 总结与展望
01 正余弦定理的基本概念
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形边长和对应角正弦值之间 的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应的角的正弦值的比等于其他两 边的比,即 a/sinA = b/sinB = c/sinC = 2R,其中a、b、c分别代表三角形的三 边,A、B、C分别代表与三边对应的角,R代表三角形的外接圆半径。
余弦定理的定义
总结词
余弦定理是三角形中另一个重要的定 理,它描述了三角形边长的平方和与 对应角的余弦值之间的关系。
详细描述
余弦定理是指在一个三角形中,任意 一边的平方和等于其他两边平方和减 去2倍的这两边与它们夹角的余弦的乘 积,即 a² = b² + c² - 2bc cosA。
正余弦定理的相互关系
总结词
正弦定理和余弦定理是相互关联的,它们可以互相推导。
详细描述
根据正弦定理,我们可以推导出余弦定理。例如,在△ABC中,由正弦定理可知 a/sinA = b/sinB = c/sinC = 2R ,则 a² = (2RsinA)² = 4R²sin²A,同理 b² = 4R²sin²B,c² = 4R²sin²C。将这三个等式代入余弦定理的公式中, 即可得到余弦定理的证明。反之亦然,也可以由余弦定理推导出正弦定理。
02 正余弦定理的应用场景
三角形的边角关系问题
总结词
解决三角形边角关系问题时,正余弦定理可以提供重要的数 学工具。
目录
Contents
• 正余弦定理的基本概念 • 正余弦定理的应用场景 • 正余弦定理的实际应用案例 • 正余弦定理的扩展应用 • 总结与展望
01 正余弦定理的基本概念
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形边长和对应角正弦值之间 的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应的角的正弦值的比等于其他两 边的比,即 a/sinA = b/sinB = c/sinC = 2R,其中a、b、c分别代表三角形的三 边,A、B、C分别代表与三边对应的角,R代表三角形的外接圆半径。
余弦定理的定义
总结词
余弦定理是三角形中另一个重要的定 理,它描述了三角形边长的平方和与 对应角的余弦值之间的关系。
详细描述
余弦定理是指在一个三角形中,任意 一边的平方和等于其他两边平方和减 去2倍的这两边与它们夹角的余弦的乘 积,即 a² = b² + c² - 2bc cosA。
正余弦定理的相互关系
总结词
正弦定理和余弦定理是相互关联的,它们可以互相推导。
详细描述
根据正弦定理,我们可以推导出余弦定理。例如,在△ABC中,由正弦定理可知 a/sinA = b/sinB = c/sinC = 2R ,则 a² = (2RsinA)² = 4R²sin²A,同理 b² = 4R²sin²B,c² = 4R²sin²C。将这三个等式代入余弦定理的公式中, 即可得到余弦定理的证明。反之亦然,也可以由余弦定理推导出正弦定理。
02 正余弦定理的应用场景
三角形的边角关系问题
总结词
解决三角形边角关系问题时,正余弦定理可以提供重要的数 学工具。
数学人教A版(2019)必修第二册6.4.3.2正弦定理(共45张ppt)
![数学人教A版(2019)必修第二册6.4.3.2正弦定理(共45张ppt)](https://img.taocdn.com/s3/m/0636105e7dd184254b35eefdc8d376eeaeaa1720.png)
)
√
)
练习巩固
题型一:已知两角和一边解三角形
例7:在∆ABC中,已知B = 45°,A = 15°,c = 3 + 3,解这个三角形.
解:由三角形内角和定理,得:
= 180° − ( + ) = 180° − (15° + 30°) = 120°.
由正弦定理,得: =
=
转化
转化
定量计算的公式:余弦定理及其推论
定量计算的公式
新知探究
问题1:通过对直角三角形的研究,观察它的角和三边之间的关系,猜想
它们之间的联系.
A
根据锐角三角函数,在∆中,有:
= , = ,
c
b
则:
=
= .
又因为 = 90° = 1,所以
=
= 2(为∆外接圆半径).
同时,有
∆
1
1
1
= = =
2
2
2
a
b
c
新知探究
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即:
=
=
= 2(为∆外接圆半径).
同时,有
∆
1
1
1
= = =
2
2
2
辨析1:判断正误.
(1)正弦定理只适用于锐角三角形.(
(2)正弦定理不适用于直角三角形.(
×
×
)
)
(3)在某一确定的三角形中,各边与它所对角的正弦的比是定值.(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习永远不晚。 JinTai College
3 (3)在△ ABC中,已知 b2 c2 a2 bc,则角A
课堂小结
1.解三角形(对计算能力有一些要求) 2.判断三角形解的情况(易错点) 3.公式的变形应用(能力的提高)
变式练习.在△ABC中,a 3,sin B 1 ,C ,则b
26
正、余弦定理公式的变形.
(1)正弦定理 a 2R sin A
(2)在△ ABC中,若2b cos B a cosC c cos A,则B
类型二、判断三角形的形状 例2( . 1)在△ ABC中,若a2 b2 c2 ab,且2 cos Asin B sin C,
试判断ABC的形状
(2)在△ ABC中,若a2 tan B b2 tan A,则三角形 ABC的形状是
课堂小结
1.变形公式(记忆是表象,理解是关键) 2.利用变形公式解三角形 3.判断三角形的形状
变式练习.在△ ABC中,若
tan tan
A B
a2 b2
, 则ABC 的形状是()
A.直角三角形 B.等腰或直角三角形 C.不能确定 D.等腰三角形
谢 谢 配 合
感谢您的阅读! 为 了 便于学习和使用, 本文档下载后内容可 随意修改调整及打印。
C.2个
D.不确定
(5)在△ ABC中,a 50,b 100, A 45,则此三角形的解得情况 是
A.无解
B.有一解
C.有两解
D.解的个数不确定
例2.(1)在△ ABC中,AB 3, BC 4, B 60,则AC
(2)在△ ABC中,A, B,C所对的边长分别是 a,b, c,且
A ,a 3,b 1,则c
§3.2.1正弦定理 和余弦定理
三角形的一些性质: (1)大边对大角
若a b,则A B,则sinA sinB(A, B (0,))
(2)三角形内角和为180
A B C sin(A B) sin( C) sin C cos(A B) cos( C) -cosC
类型一、利用正、余弦定理解三角形 例1(. 1)在△ ABC中,A 45,C 30,c 6,则a
sin A
a
2R
b 2R sin B c 2R sn C c 2R
a : b : c sin A: sin B : sin C
abc
a
sin A sin B sin C sin A
(2)余弦定理
此处省略,见黑板
类型一、解三角形 例1(. 1)在△ ABC中,若b cosC c cos B 3a sin A,则角C的大小是
(2)在△ ABC中,若A 60,C 45,b 4,则 此三角形最小边的长为
(3)在△ ABC中,已知a 14,b 16, A 45,则B()
A.无解
B.有一解
C.有两解
D.解的个数不确定
(4)在△ ABC中,a 4,b 4 2, A 45,则三角形解的个数是( )
A.0个
B.1个