天然气酸性组分的脱除复习进程

合集下载

天然气酸性气体的脱除

天然气酸性气体的脱除

天然气酸性气体的脱除天然气酸性气体的脱除第一节概述在天然气中含有的硫化氢(H2S)、二氧化碳(CO2)和有机硫化合物,统称为酸性气体。

在天然气中的有机硫化合物主要有二硫化碳(CS2)、羰基硫(COS)、硫醇(RSH)、硫醚(RSR`)及二硫醚(RSSR`)等。

天然气中酸性气体的存在,具有相当大的危害。

硫化氢是一种具有臭鸡蛋的刺激性恶臭味的无色气体,有毒,它可以麻痹人的中枢神经系统,经常与硫化氢接触能引起慢性中毒;硫化氢具有强烈的还原性,易受热分解,在有氧存在时易腐蚀金属;易被吸附于催化剂的活性中心使催化剂“中毒”;在有水存在时能形成氢硫酸对金属有较强的腐蚀;H2S还会产生氢脆腐蚀。

二氧化碳在有水存在时,会对金属形成较强的腐蚀;同时CO2含量过高,会降低天然气的热值。

有机硫大多无色有毒,低级有机硫比空气轻,易挥发。

有机硫中毒能引起恶心、呕吐、血压下降,甚至心脏衰竭、呼吸麻痹而死亡。

因此,在化工生产中对酸气性组分是有严格要求的,必须严格控制天然气中酸性组分的含量。

从天然气中脱除酸性组分的工艺过程称为脱硫、脱碳,习惯上统称为天然气脱硫。

第二节天然气酸性组分脱除的方法天然气酸性组分的脱除,其目的是按不同用途把天然气中的酸性气体脱除到要求的范围内。

目前,国内外报道过的脱硫方法有近百种(1)。

就其过程的物态特征而言,可分为干法和湿法两大类;在习惯上将采用溶液或溶剂作脱硫剂的方法统称为湿法,将采用固体作脱硫剂的脱硫方法统称为干法。

就其作用机理而言,可分为化学溶剂吸收法、物理溶剂吸收法、物理—化学吸收法、直接氧化法、固体吸收/吸附法及膜分离法等。

一、化学溶剂吸收法化学溶剂吸收法又称化学吸收法,是以可逆化学反应为基础,以碱性溶液为吸收溶剂(化学溶剂),在低温高压下,溶剂与原料气中的酸性组分(主要是H2S和CO2)反应生成某种化合物,在升高温度、降低压力的条件下该化合物又能分解放出酸气并使溶剂得以再生。

这类方法中最具有代表性是醇胺法和碱性盐溶液法。

《天然气集输》课程综合复习资料

《天然气集输》课程综合复习资料

《天然气集输》课程综合复习资料一、判断题1.天然气脱酸气工艺中常用的醇胺类吸收剂主要有一乙醇胺、二乙醇胺、二甘醇胺、二异丙醇胺和甲基二乙醇胺,其中二异丙醇胺和甲基二乙醇胺的凝固点低,适宜在高寒地区使用。

答案:错2.甘醇脱水工艺主要由甘醇高压吸收和常压再生两部分组成。

答案:对3.井口防冻,即防止采气过程中生成水合物。

国内较多采用注入防冻剂法,其次是加热法防止水合物生成。

答案:错4.燃烧是一种同时有热和光发生的强烈氧化反应。

燃烧必需具备两个条件:有可燃物质,以及能导致着火的火源。

答案:错5.凝液回收率指回收装置单位时间内凝液的摩尔量与原料气摩尔量之比,用来描述回收装置从天然气内脱出凝液的能力。

凝液回收率与气体组成、压力和制冷温度有关,且温度愈低、气体内含可液化组分愈多、压力愈高,则凝液回收率愈高。

答案:对6.工业上常用提馏塔或分馏塔对天然气凝液进行稳定处理,分馏稳定塔与提馏稳定塔相比能够回收较多的中间组分,且所得稳定凝析油数量和质量都优于提馏稳定塔。

答案:对7.通常集气站中的节流阀将全站操作压力分成两个等级。

凡有压力变化的系统,在低一级的压力系统应设置超压泄放安全阀。

答案:对8.凝析气田处理站布站方式中的分散处理是建设几个具有部分或全部相同功能的处理站,每个站处理若干口井的物流。

答案:对9.在天然气冷凝分离轻烃回收工艺中,节流膨胀制冷、冷剂制冷和透平膨胀机制冷均可达到所需要的制冷温度。

答案:对10.采气管道的限压保护一般通过井场装置的安全阀来实现。

另外,天然气集气站进站前管道上设置的紧急放空阀和超压报警设施,对采气管道的安全也能起保证作用。

答案:对二、填空题1.天然气的体积系数是指天然气在地层条件下所占体积与其在地面条件下的体积之比,天然气体积系数可视为仅是气藏压力的函数。

天然气体积系数的倒数称之()。

答案:天然气膨胀系数2.根据天然气中C3以上烃类液体的含量多少,把天然气划分为贫气和()。

答案:富气3.天然气的溶解度是指()。

第6章酸性气体脱除第1节

第6章酸性气体脱除第1节
31
① 氧化铁法
其化学原理为: 2Fe2O3+ 6H2S→2Fe2S3+6H2O(脱硫) 2Fe2S3+ 3O2→2Fe2O3+6S(再生)
反应在常温和碱性条件下进行最顺利,温度超 过66.7℃,以及在中性或酸性条件下都会使氧化 铁失去结晶水而难于再生。主要用于处理H2S含 量不超过24g/m3天然气。
且受溶剂再生程度的限制,净化率较化学吸 收法低。
17
① 冷甲醇法
冷甲醇法(Rectisol法)是以甲醇为吸 收剂,在低温(低于-50℃)下吸收酸性气 体的物理吸收法。
甲醇在高压低温下CO2和H2S有很高的 溶解度,适宜于酸气分压大于1.0MPa的原 料气,可选择性地脱除H2S、CO2并可同时 脱除有机硫化物。
20
② 聚乙二醇二甲醚法
聚乙二醇二甲醚法用于含CO2量高、 H2S量低,酸气分压高的原料气,对H2S有 一定选择性。在脱硫过程中可同时调整气 体的水露点 或烃露点。
21
(3)化学—物理吸收法
化学—物理吸收法是一种将化学吸收剂 与物理吸收剂联合应用的酸气脱除法,目 前以环丁砜法为常用。物理吸收溶剂是环 丁砜,化学吸收溶剂可以用任何一种醇胺 化合物,但常用的是二异丙醇胺(DIPA) 和甲基二乙醇胺(MDEA)。
26
ADA法脱硫原理
H2S + Na2CO3→NaHS+NaHC03 2NaHS+ 4NaVO3 + H2O→Na2V4O9+
4NaOH+ 2S↓ Na2V4O9+ 2NaOH+H2O+2ADA(o)
→4NaVO3+2HADA(r) O2+2HADA(r) →2ADA(o)+2H2O

天然气脱酸性气体

天然气脱酸性气体
感谢您的观看
原料气的预处理
去除杂质
在进入脱酸性气体工艺之前,原料气需要经过除尘、除油、除水等预处理,以 去除其中的固体颗粒、油和水分等杂质,防止对后续工艺造成影响。
调整组分
根据不同脱酸性气体工艺的需求,可能需要对原料气的组分进行调整,例如通 过添加氮气或调整氢气与一氧化碳的比例,以达到最佳的工艺效果。
吸收剂的选择与再生
优点
适用于处理高浓度的酸性气体,且分离效果好。
缺点
需要消耗大量能源,设备投资较大。
膜分离法
原理
利用高分子膜对不同气体的透过性差异,使酸性气体与其他组分实 现分离。
优点
操作简单,能耗低,适用于处理低浓度的酸性气体。
缺点
膜的透过性能受多种因素影响,如温度、压力等,且膜的寿命较短, 需要定期更换。
04 脱酸性气体的工艺流程
天然气脱酸性气体
目 录
• 引言 • 酸性气体的来源与性质 • 天然气脱酸性气体的方法 • 脱酸性气体的工艺流程 • 脱酸性气体的设备与设施 • 脱酸性气体的效果与效益 • 结论与展望
01 引言
天然气脱酸性气体的意义
提高天然气质量
保障安全
通过脱除酸性气体,可以显著提高天 然气的质量,使其满足管道输送和用 户使用的要求。
尾气的处理与排放
尾气处理
在脱酸性气体工艺中,部分未被吸收的酸性气体和再生气中的有害物质需要进行 尾气处理。常见的尾气处理方法包括洗涤、吸附、催化燃烧等,以去除其中的有 害物质,防止对环境造成污染。
排放标准
根据国家和地区的环保法规,脱酸性气体工艺的尾气排放应符合相应的标准。因 此,需要对尾气进行监测和控制,确保其达标排放。
05 脱酸性气体的设备与设施

天然气加工工艺学——第四章 天然气酸性组分脱除

天然气加工工艺学——第四章 天然气酸性组分脱除
工艺可能产生的废气、废液、废料及其处理问题; 工艺的复杂程度,可靠性及工业经验; 估计的投资费用; 估计的能耗及物料消耗费用; 装置建设者的自身经验,这也是涉及工艺取舍的一个因
素。
3、国外脱硫脱碳工艺选择方法简介
以下是国外选择天然气脱硫脱 碳工艺形成的一些方法和经验,包 括区分不同工艺的应用区间、不同 工艺的排序或量化比较,以及不同 工艺的组合。
(4) 高压、高酸气浓度的天然气
主要脱除大量CO2的工况,可考虑选用膜分离法、 物理溶剂法或活化MDEA法;
需要同时大量脱除H2S和CO2的工况,可分两步 处理,第一步以选择性胺法处理原料气以获得 富H2S酸气送克劳斯装置,第二步以混合胺法 (Miscellaneous Processes )或常规胺法处理达净 化指标;
1、胺法工艺流程
常规胺法流程 (2) 胺液分流流程 (3) 吸收塔装设内冷器的流程
以下介绍常规胺法流程:
1—原料气 2—湿净化气 3—闪蒸气体 4—酸气 5—贫液 6—富液 A—吸收塔 B—闪蒸罐 C—贫富液换热器 D—再生塔 E-重沸器 F-贫液冷却器
常规胺法工艺流程
流程叙述
(3) 物理-化学吸收法(Sulphinol )
兼有物理、化学吸收剂的优点, 能选择性脱硫,可脱有机硫,再生 能耗低,吸收重烃,是目前天然气 脱硫领域运用最广泛的方法之一, 典型代表是砜胺法(Sulphinol )。
(4) 直接氧化法(Direct conversion processes )
利用溶剂与酸气发生氧化还原反 应脱除硫,此法工艺简单,但净化 度不高,有废液污染问题,常用方 法有铁碱法(Stretford),蒽醌二磺酸 盐法(Takahax )。
(2) 湿法
如化学吸收法、物化吸收法等

天然气脱酸处理的工艺设计

天然气脱酸处理的工艺设计

天然气脱酸处理的工艺设计
近年来,随着经济快速发展和人口增长,环境问题日益凸显,空气质量、大气污染、水污染等问题引起了人们的高度关注。

在众多环保措施中,天然气脱酸处理技术成为降低大气污染的一种重要方式,下面就为大家详细介绍一下天然气脱酸处理的工艺设计。

第一步:天然气脱酸处理前的准备工作
天然气脱酸处理前需要进行充分的准备工作,包括设备安装、原料准备、物料运输等,确保天然气处理工作安全、稳定实施。

第二步:天然气预处理
对于含碳酸盐和硫化物的原料天然气,需要进行预处理,包括加热、降压、除水、除油、除硫、除碳酸盐等步骤,以达到后续工作的要求。

第三步:酸性气体处理
将处理后的天然气送入酸气吸收塔中,在酸气吸收塔中与氢氧化钠或乙二醇等碱性物质混合,将二氧化碳等酸性成分吸收。

这一步一般采用稀溶液吸收技术,可以大幅降低后续处理工作的难度和成本。

第四步:脱酸剂再生
将饱和的脱酸剂送至再生塔中,在高温高压环境下对吸收的二氧化碳等酸性成分进行分解和脱附。

这一步会产生大量的二氧化碳气体和稀释的脱酸剂,需要后续处理。

第五步:再循环和处理
将再生塔中产生的二氧化碳和脱酸剂进行复合,直至达到再次使用的标准。

同时,将处理过程中产生的废气进行收集和处理,以达到环保要求。

总之,天然气脱酸处理工艺设计需要按照一定的步骤进行,确保处理效果,同时也要注意环境保护等问题。

未来,天然气脱酸处理技术将得到更多应用,我们需要持续加强研究和开发,为保护环境贡献力量。

之二、天然气脱酸(醇胺法)

之二、天然气脱酸(醇胺法)

3、二甘醇胺(DGA)
二甘醇胺(DGA)的特点: (1)蒸气压低,挥发性弱,溶剂的蒸发损失小;
(2)H2S净化程度高,即使贫液温度高达54℃也可保证 H2S净化度,因此溶液冷却可仅使用空冷而不用水 冷,故适用于沙漠及干旱地区; (3)腐蚀性略低于MEA,二甘醇胺(DGA)水溶液的质 量分数比一乙醇胺(MEA)高,溶液的循环量较小, 再生所需的热负荷较低; (4)对H2S和CO2的吸收无选择性,同时也吸收羰基硫 (COS)和二硫化碳(CS2)并与之发生不可逆化学反应。
(2)碳酸钾及带有各种催化剂的碳酸钾溶液, 主要介绍热碳酸钾。
1、一乙醇胺(MEA) 一乙醇胺(MEA)的特点:
(1)在各种醇胺中其分子量最小、碱性最强、与酸气的反 应速度最快、酸气负荷最高,能够迅速吸收天然气中的 酸性气体,易于降低天然气中酸性气体浓度,而且脱除 一定量的酸气所需要循环的溶液较少;
3、吸收-解吸系统
吸收-解吸
吸收
填料塔或板式塔
再生
吸收剂溶液吸收溶质。 吸收剂溶液内溶质浓度逐 步增大并趋于平衡溶解度, 此时该吸收剂逐步丧失对 溶质的吸收能力。 富含溶质的吸收剂溶液 称为富液。
通过解吸使富液释 放吸收的溶质,恢复其 吸收剂原有的吸收能力,
再生后、恢复吸收能力
的溶液称为贫液。
第三节 化学吸收法
以物理溶剂和化学溶剂配制的混合溶剂 作为吸收剂,兼有物理吸收和化学吸收剂作 用。 如:砜胺法。
5、直接氧化法
对H2S直接氧化使其转化成元素硫, 如:Claus(克劳斯)法。 在天然气工业中常用于天然气脱出酸 气的处理,适合于处理流量小、酸气浓度 很高的原料气 。
6、膜分离法
是利用气体中各组分通过薄膜渗透性 能的区别,将某种气体组分从气流中分离 和提浓,从而达到天然气脱酸性气的目的。

天然气脱水工艺流程介绍

天然气脱水工艺流程介绍
①工艺简单,操作容易,占地面积小;
②不需要额外加入溶剂,不需再生,无二次污染;
③可利用天然气本身的压力作为推动力,几乎没有压力损失;
④操作弹性大,可通过调节膜面积和工艺参数来适应处理量
的波动。
低温分离装置
原料气
乙二醇贫液
原料气预冷器 原料气预冷器
乙二醇贫液
J-TLeabharlann 原料气预冷器阀原料气预冷器
干气外输
低温分离方法在塔 里木的应用
• 塔中六天然气处理装置:大庆设计院设计,设计 处理天然气86万方/天、凝析油产量为1.8万吨/年, 于2007年4月建成投产。 装置通过经J-T阀节流 降温[加注乙二醇防冻]实现天然气净化。
• 牙哈320万方/日凝析气处理装置:设计处理天然 气320万方/天、凝析油产量为50万吨/年, 2000 年10月31日投产装置通过经J-T阀节流降温[加注 乙二醇防冻],脱除天然气中的水,并实现轻烃回 收。
原因:这些沉积物主要 是变质甘醇、未被过滤 掉的杂质。
措施:在重沸器、缓冲 罐底部开口并加一阀门, 可以在生产过程中对沉 积物进行取样分析,以便 采取相应的应对措施,
天然气的携带损失
甘醇发泡
甘醇损失
盐污染及高温降解
甘醇的氧化分解
• 降低甘醇损失的措施:
①选择合适的操作参数:各种操作参数中,温度的影响最大。
• 低温分离温度是实现干气输送控制的核心 点似的净化指标。对于固定组分的天然气, 在管输过程中的一定压力变化范围内,水 露点将随压力的降低而减小,烃露点将随 压力的降低而升高。因此气田内天然气净 化处理时,低温分离温度的确定受制于外 输管道末段输送压力降低后天然气的温度 和环境温度。
※我国国家标准GB178202-1999中规定,在天然气交接点的压力和温 度条件下,水露点应比最低环境温度低5℃,烃露点应低于最低环境度。

MDEA脱酸性气体

MDEA脱酸性气体

MDEA法脱除天然气中酸性气体技术作者:王士颖目录摘要关键字正文一、概述二、脱除天然气中酸性气体的方法三、MDEA法脱酸工艺技术四、MDEA法脱酸存在的问题摘要天然气中通常含有CO2、H2S和有机硫化合物,这三者又通称为酸性气体。

这些酸性气体的存在会造成金属材料腐蚀,并污染环境,在低温过程中结冰堵塞仪表和管线,还会导致催化剂中毒等危害,影响产品质量,因此需要把气体中的酸性气体含量脱除到标准要求的规格。

脱酸方法众多,本文结合设计过项目中的MDEA法脱除酸性气体装置的实际经验,介绍了MDEA法脱酸工艺技术及存在的问题。

关键字MDEA 脱除天然气酸性气体正文一、概述天然气中通常含有CO2、H2S和有机硫化合物,这三者又通称为酸性气体。

硫化氢是一种具有臭鸡蛋的刺激性恶臭味的无色气体,有毒,它可以麻痹人的中枢神经系统,经常与硫化氢接触能引起慢性中毒;硫化氢具有强烈的还原性,易受热分解,在有氧存在时易腐蚀金属;易被吸附于催化剂的活性中心使催化剂“中毒”;在有水存在时能形成氢硫酸对金属有较强的腐蚀;H2S还会产生氢脆腐蚀。

二氧化碳在有水存在时,会对金属形成较强的腐蚀;同时CO2含量过高,会降低天然气的热值。

有机硫大多无色有毒,低级有机硫比空气轻,易挥发。

有机硫中毒能引起恶心、呕吐、血压下降,甚至心脏衰竭、呼吸麻痹而死亡。

因此,在化工生产中必须把气体中的酸性气体含量脱除到标准要求的规格。

二、脱除天然气中酸性气体的方法就其过程的物态特征而言,可分为干法和湿法两大类;在习惯上将采用溶液或溶剂作脱酸剂的方法统称为湿法,将采用固体作脱酸剂的方法统称为干法。

就其作用机理而言,可分为化学溶剂吸收法、物理溶剂吸收法、物理—化学吸收法、固体吸收/吸附法及膜分离法等。

(一)化学溶剂吸收法化学溶剂吸收法又称化学吸收法,是以可逆化学反应为基础,以碱性溶液为吸收溶剂(化学溶剂),在低温高压下,溶剂与原料气中的酸性组分(主要是H2S和CO2)反应生成某种化合物,在升高温度、降低压力的条件下该化合物又能分解放出酸气并使溶剂得以再生。

之二、天然气脱酸(醇胺法)综述

之二、天然气脱酸(醇胺法)综述
硫化物应力开裂: 金属在拉应力和酸性环境中(含H2S ,硫化物和 水)形成电化学腐蚀,产生原子氢和Fes,原子氢通过 表层的FeS渗入金属晶格,是金属韧劲下降,在金属 组织缺陷处原子氢聚集成氢分子,使金属内部产生极 大的局部应力,在外载荷和内应力的作用下韧性降低 的金属突然开裂并迅速扩大,这种现象为硫化物应力 开裂
(2)碳酸钾及带有各种催化剂的碳酸钾溶液, 主要介绍热碳酸钾。
1、一乙醇胺(MEA) 一乙醇胺(MEA)的特点:
(1)在各种醇胺中其分子量最小、碱性最强、与酸气的反 应速度最快、酸气负荷最高,能够迅速吸收天然气中的 酸性气体,易于降低天然气中酸性气体浓度,而且脱除 一定量的酸气所需要循环的溶液较少;
油气集输工作内容
天然气净化、加工流程框图
气体 净化
气体 加工
第二部分 天然气脱酸
天然气中存在酸性气体(H2S、CO2)影响:
有剧毒,污染环境,燃烧产生二氧化硫等污染空气 增加天然气对金属腐蚀 H2S(25.35,23.37 MJ/m3 )降低天然气的热值(31.4 MJ/m3)。 硫磺回收(1000/吨)
76~88℃
醇胺溶液吸收并 和酸气发生化学 反应形成胺盐
38~82℃ 76~88℃
高温使胺盐分 解放出酸气溶 液得到再生 高温水蒸汽
88~105℃
固液杂质
115~120℃
1~3%
1一入口涤气器;2一吸收塔;3一“甜气”出口分离器;4一循环泵;5一贫胺冷却器;6 一闪蒸罐;7一除固过滤器;8 一碳粒过滤器;9-增压泵;10-缓冲罐;1 1一贫/富胺液 换热器;12一再生塔;13一回流冷凝器;14一回流泵;15一重沸器;16一回流罐
热碳酸钾的特点:
(4)要求碳酸钾溶液质量分数小于35%,否则将产 生重碳酸盐类沉淀; (5)溶液内含有固体悬浮物和重烃时会产生发泡和 溶剂损失; (6)溶液有极强的腐蚀性,需要向系统注入防腐剂。

天然气酸性气体的脱除

天然气酸性气体的脱除

天然气酸性气体的脱除第一节概述在天然气中含有的硫化氢(H2S)、二氧化碳(CO2)和有机硫化合物,统称为酸性气体。

在天然气中的有机硫化合物主要有二硫化碳(CS2)、羰基硫(COS)、硫醇(RSH)、硫醚(RSR`)及二硫醚(RSSR`)等。

天然气中酸性气体的存在,具有相当大的危害。

硫化氢是一种具有臭鸡蛋的刺激性恶臭味的无色气体,有毒,它可以麻痹人的中枢神经系统,经常与硫化氢接触能引起慢性中毒;硫化氢具有强烈的还原性,易受热分解,在有氧存在时易腐蚀金属;易被吸附于催化剂的活性中心使催化剂“中毒”;在有水存在时能形成氢硫酸对金属有较强的腐蚀;H2S还会产生氢脆腐蚀。

二氧化碳在有水存在时,会对金属形成较强的腐蚀;同时CO2含量过高,会降低天然气的热值。

有机硫大多无色有毒,低级有机硫比空气轻,易挥发。

有机硫中毒能引起恶心、呕吐、血压下降,甚至心脏衰竭、呼吸麻痹而死亡。

因此,在化工生产中对酸气性组分是有严格要求的,必须严格控制天然气中酸性组分的含量。

从天然气中脱除酸性组分的工艺过程称为脱硫、脱碳,习惯上统称为天然气脱硫。

第二节天然气酸性组分脱除的方法天然气酸性组分的脱除,其目的是按不同用途把天然气中的酸性气体脱除到要求的范围内。

目前,国内外报道过的脱硫方法有近百种(1)。

就其过程的物态特征而言,可分为干法和湿法两大类;在习惯上将采用溶液或溶剂作脱硫剂的方法统称为湿法,将采用固体作脱硫剂的脱硫方法统称为干法。

就其作用机理而言,可分为化学溶剂吸收法、物理溶剂吸收法、物理—化学吸收法、直接氧化法、固体吸收/吸附法及膜分离法等。

一、化学溶剂吸收法化学溶剂吸收法又称化学吸收法,是以可逆化学反应为基础,以碱性溶液为吸收溶剂(化学溶剂),在低温高压下,溶剂与原料气中的酸性组分(主要是H2S和CO2)反应生成某种化合物,在升高温度、降低压力的条件下该化合物又能分解放出酸气并使溶剂得以再生。

这类方法中最具有代表性是醇胺法和碱性盐溶液法。

天然气脱酸处理的工艺设计

天然气脱酸处理的工艺设计

天然气脱酸处理的工艺设计
天然气脱酸处理是一种重要的工艺流程,用于去除天然气中的酸性成分,以提高天然气的质量和安全性。

该过程通常包括多个步骤,如氧化、吸收、再生和压缩等。

在进行天然气脱酸处理的工艺设计时,需要考虑多种因素,如天然气的成分、流量和压力等,以及各种化学试剂的选择和投放量、设备的选择和设计等。

其中,氧化和吸收是天然气脱酸处理的核心步骤。

在氧化反应中,通常使用氧气或空气作为氧化剂,将酸性物质氧化成二氧化碳和水,以便在后续步骤中更好地去除。

在吸收步骤中,常用的化学试剂包括甲醇、二甲醚、苯胺和三乙醇胺等,这些试剂能够与酸性物质反应生成盐和水,从而达到去除酸性物质的目的。

在进行天然气脱酸处理的工艺设计时,还需要考虑到设备的选择和设计。

一般来说,脱酸设备主要包括吸收塔、再生塔、泵和换热器等。

在吸收塔和再生塔的设计中,需要考虑到流量、压力、温度和化学试剂的投放量等因素,并选择合适的填料和塔板结构,以保证吸收效率和再生效率。

同时,在泵和换热器的选择和设计中,需要考虑到流量、压力、温度和粘度等因素,并选择合适的材料和结构,以确保设备的稳定运行和长期使用。

总之,天然气脱酸处理是一项复杂的工艺,其设计需要考虑多种因素和步骤。

只有在充分考虑到各种因素的情况下,才能设计出高效、经济、稳定的脱酸处理工艺。

- 1 -。

天然气中酸性组分的脱除技术

天然气中酸性组分的脱除技术

天然气中酸性组分的脱除技术西华师范大学应化09级9班顾秀梅摘要:本文介绍了可用于天然气脱硫脱碳装置高压富液能量回收的三种液力透平结构特点和效率特性,剖析了第一代液力透平能量回收方式在工业应用中存在的问题,提出采用第二代液力透平增压泵的优点和可行性,并对两代技术应用效果进行了对比。

关键词:天然气脱硫脱碳酸性组分脱除引言: 来自地下储层的天然气通常不同程度地含有H2S、CO2和有机硫化物(RSH、COS)等酸性组分,在开采、集输和处理时会造成设备和管道腐蚀,而且含硫成分往往有毒、有害并且具有难闻的臭味,会污染环境和威胁人身安全;当天然气用作化工原料时,还会引起催化剂中毒,同时,CO2含量过高将降低天然气的热值。

当天然气中的H2S、CO2等酸性组分含量超过商品气气质标准时,必须进行脱除处理。

从酸性天然气中脱除H2S、CO2等酸性组分的工艺过程称为脱硫脱碳或脱酸气。

若该过程主要是脱除H2S和有机硫化物则称为天然气脱硫,若主要是脱除CO2则称为脱碳。

目前,国内外报道过的湿法和干法脱硫方法有近百种。

国内常用的天然气湿法脱硫方法是MDEA法和MDEA—环丁砜法等(1)。

1 脱硫脱碳方法的分类1.1化学溶剂法以碱性溶液为吸收溶剂(化学溶剂),与天然气中的酸性组分(主要是H2S和CO2)反应生成某种化合物。

1.2化学吸收法可分为:①醇胺法,主要包括:一乙醇胺(MEA)法、二乙醇法(DEA)法、二甘醇胺(DGA)法、二异丙醇胺法(DIPA)法、甲基二乙醇胺(MDEA)法等。

醇胺法是最常用的天然气脱硫方法。

此法适用于从天然气中大量脱硫和二氧化碳。

②碱性盐溶液法,主要包括:改良热减法、氨基酸盐法;它们虽然能脱除硫化氢,但主要用于脱除二氧化碳,在天然气工业中应用不多。

1.3物理溶剂法采用有机化合物为吸收溶剂(物理溶剂),对天然气中的酸性组分进行物理吸收而将它们从气体中脱除。

主要包括多缩乙二醇法和砜胺法等。

物理吸收法的溶剂通常靠多级闪蒸进行再生,不需蒸汽和其它热源,还可同时使气体脱水。

《天然气处理与加工》课程综合复习资料

《天然气处理与加工》课程综合复习资料

《天然气处理与加工》综合复习资料一、填空与选择1. 天然气中的酸性组分对天然气的含水量影响。

(几乎没有、有)2. 能和天然气中的水生成Ⅱ型水合物的化合物是不能和水生成水合物的化合物。

(甲烷、乙烷、丙烷、正丁烷、戊烷)3. 在天然气回收NGL的工艺中,天然气脱水主要是为防止水在低温下生成固体堵塞设备和管道。

4. 天然气所含的酸性气CO2和H2S均可用乙醇胺水溶液吸收脱除,是属于化学吸收,其特点是CO2的含量H2S的吸收。

(不影响、影响)5. 用单乙醇胺吸收天然气中的酸性组分时,吸收塔的温度应控制在℃以下。

6. 气体等熵膨胀总是比节流膨胀产生的温度效应。

(更大、较小)7. 在LPG回收工艺中,其冷凝压力一般应控制在MPa;在NGL回收工艺中,其冷凝压力一般应控制在MPa。

8. 在天然气吸附法脱水工艺中,最常用的三种吸附剂是:;;;其中的吸附脱水性能最好。

9. 在LNG生产过程中,目前应用较为广泛的制冷工艺是:制冷循环。

10. 原油稳定是从原油中回收及其以下的烃类物质。

二、判断题1. “CNG”是指用于汽车发动机燃料的压缩天然气。

()2. 对于多组分体系,混合物的临界压力并不等于混合物能够汽化的最大压力。

()3. 天然气的烃露点是指天然气中的烃类开始冷凝的温度,与压力有关。

()4. 天然气中的酸性组分对天然气的含水量几乎没有影响。

()5. 天然气水合物是水与天然气中烃类组份反应生成的液体化合物。

()6. 在天然气吸附脱水过程中,和硅胶相比,分子筛吸附剂更能降低天然气的水露点。

()7. 天然气中饱和水的含量随着温度和压力的升高而升高。

()。

8. 在天然气回收NGL的工艺中,天然气脱水主要是为防止水在低温下生成固体水合物堵塞设备和管道。

()9. 用乙醇胺脱除天然气中的H2S和CO2时,由于是化学吸收过程,所以CO2的含量大小不会影响H2S 吸收平衡()10. 用单乙醇胺吸收天然气中的酸性气时,吸收塔的温度应控制在49℃以下。

天然气脱酸性气体[专业内容]

天然气脱酸性气体[专业内容]
组分从气流中分离和提浓,从而达到天然气脱酸性气的目的。适 用于从天然气内分出大量CO2的场合。
高等教育
9
二、吸收与解吸
1、吸收 利用气体混合物中各组分在某种溶剂内的溶解性差别,使易
溶解的气体溶解于溶剂中而从气体中分出,这一过程称为吸收。 易溶解的气体组分称为溶质,溶剂称吸收剂。 根据是否有明显的化学反应,吸收又分为两类:
高等教育
3
对于民用燃料必须达到很严格的商品天然气质量要求:为防止 天然气管输系统的腐蚀和保障居民健康,我国于2001年7月1日开 始实施的“天然气”国家标准 GB 17820-1999 规定:
作为民用燃料的一级天然气H2S含量不大于6 mg/m3,总硫含 量不大于100mg/m3;二级天然气H2S含量不大于20mg/m3,总硫 含量不大于200 mg/m3。
(5)凝固点低(-12.5℃),适宜在高寒地区使用。
高等教育
23
4、二异丙醇胺(DIPA) 相应的工艺过程称ADIP,ADIP工艺也用于LPG脱除H2S和
COS。在欧洲多用于处理练厂气。
二异丙醇胺(DIPA)特点: (1)蒸气压低,挥发性弱,溶剂的蒸发损失小; (2)腐蚀性弱,溶液浓度高,溶液的循环量小,再生所需的热负荷
贫液与半贫液分流流程
高等教育
18
3、几个吸收塔富液共用一个换热再生系统的流程 在某些情况下,天然气净化厂内几个吸收塔的富液可以
合并至一套换热再生系统处理,习惯上简称“多合一”流 程。 “多合一”流程的优点: ① 节省投资,降低运行管理费用,减少装置检修费用,缩短 检修时间; ② 使得装置能耗下降; ③ 工厂增减处理量的操作变得非常简单。
(7)与羰基硫(COS)和二硫化碳(CS2)发生不可逆化学反应,需要配

天然气脱酸气

天然气脱酸气

第二节天然气脱酸性气体天然气中存在酸性气体(H2S、CO2)杂质:增加天然气对金属的腐蚀;当利用天然气作化工原料时,还会使催化剂中毒,影响产品和中间产品的质量; 污染环境;降低天然气的热值。

含有H2S和硫化物的天然气称为酸性天然气不含H2S的天然气称为“甜气”、脱硫气或净化气。

天然气脱酸性气体方法一、化学溶剂吸收法 工作原理:以弱碱性溶液为吸收剂,与酸性组分(H2S和CO2)反应生成化合物。

吸收了酸气的富液在高温低压的条件下放出酸气,使溶液再生、恢复吸收酸气的活性,使脱酸过程连续进行。

各种醇胺溶液是使用最广泛的吸收剂。

醇胺法净化天然气醇胺溶液在吸收塔内的低温高压下吸收H2S和CO2气体,生成相应的胺盐并放出热量。

在再生塔内溶液被加热到一定温度,在低压高温下溶液中的胺盐分解,重新放出酸气,同时使溶液得到再生。

醇胺脱硫装置的典型工艺流程醇胺法净化天然气的工艺流程原料气由吸收塔下部进塔自下而上流动,同由上向下的醇胺溶液逆流接触,醇胺溶液吸收酸气后,净化天然气由塔顶流出;吸收酸气的富醇胺液由吸收塔底流出,经过闪蒸罐,放出吸收的烃类气体;富醇胺液在再生塔内放出大部分酸气;酸气在重沸塔内进一步解吸,醇胺液得到较完全再生。

醇胺脱酸气系统在运行中常遇到的问题胺溶剂损失和降解胺液损失正常损失甜气带走的损失、从闪蒸罐排出的闪蒸气带走的损失、再生塔回流罐排放的气体带走的损失等。

非正常损失溶剂循环系统的跑、冒、滴、漏,吸收塔内溶液发泡增加的溶剂损失等。

高于正常损失。

降解损失远高于正常损失和非正常损失。

降解:醇胺溶液变质、吸收酸气能力降低的现象热降解:溶液温度过高产生的变质现象;氧化降解:溶液和氧接触产生热稳定性极好、不能再生的产物,从而导致的变质现象;化学降解气流中的CO2、有机硫、和醇胺产生副化学反应,产生难以完全再生的降解产物。

醇胺脱酸气系统在运行中常遇到的问题溶液发泡:导致装置压降波动、处理量和脱酸效率大幅降低,使溶剂消耗量大幅上升。

天然气酸性组分的脱除

天然气酸性组分的脱除

天然气酸性组分的脱除天然气中通常含有H2S、CO2和有机硫等酸性组分,在水存在下会腐蚀金属,含硫组分有难闻臭味、剧毒、使催化剂中毒等缺点,需要净化处理后方能符合标准。

商品天然气用管道输送往用户,因用途不同,用户对气质要求不同。

就管输来说,主要根据安全平衡供气并兼顾到人身健康安全而确定各项具体指标。

在各种天然气脱硫方法中溶液吸收法应用较广,其中以胺法最有代表性,80年代发展起来的MDEA法能有选择性脱除H2S,目前,在我国应用较多。

一、天然气脱除酸性组分的方法天然气脱除酸性组分指脱硫和脱碳,以脱硫为主。

天然气脱硫主要指脱硫化氢,当含有有机硫(硫醇、硫醚、COS/CS2等)时,也需将其脱除以达到气质标准;天然气中的CO2同时被脱除至标准。

1、脱硫脱碳的方法方法有化学溶剂法、物理溶剂法、物理化学溶剂法、直接转化法、非再生性法、膜分离及低温分离法。

(1)化学溶剂法:主要特点:净化度高,适应性宽、经验丰富,应用广。

方法原理;靠酸碱反应吸收酸气,升温吐出酸气。

方法:MEA、DEA 、SNPA-DEA、Adip、Econamine、Mdea、FLEXSOPB、Benfield等在化学溶剂法中,各种胺法应用广泛,所使用的胺有一乙醇胺MEA、二乙醇胺DEA、二异丙醇胺DIPA、甲基二乙醇胺Mdea、二甘醇胺DGA以及80年代工业化的为阻胺等。

而Benfield等活化热碱法广泛用于合成气脱碳,在天然气中较少应用。

(2)物理溶剂法:主要特点:再生能耗低、吸收重烃、高净化度需有特殊再生措施,主要用于脱碳方法原理;靠物理溶解吸收及闪蒸吐出酸气。

方法:selexol 、fluor solvent物理溶剂法selexol(多乙二醇二甲醚)及fluor solvent(碳酸丙烯脂)等较适合于处理酸气分压高而重烃含量低的天然气,当要求较高的净化度时则需采用气提等再生措施。

(3)物理化学溶剂法:主要特点:脱有机硫好,再生能耗较低,吸收重烃方法原理;兼有化学法及物理法二者的特点。

mdea脱碳操作规程

mdea脱碳操作规程

MDEA脱碳操作规程一、引言本文档旨在规范MDEA(二甲醚胺)脱碳操作流程,保证操作的安全性、稳定性和高效性。

MDEA脱碳是一种常用的脱除天然气中酸性组分的方法,具有广泛的应用领域。

本操作规程适用于MDEA脱碳的日常操作和维护管理。

二、操作流程1. 原料准备•确保原料MDEA的准备充足,并与供应商保持合理的库存。

•检验MDEA的质量,确保符合相关标准和要求。

若有质量异常,禁止使用。

•根据需要准备其他操作所需的辅助药剂和试剂,确保其安全性和质量。

2. 系统准备•检查MDEA脱碳系统的设备和管道的完整性和安全性,确保无泄漏和故障。

•确保储存罐中MDEA的容量充足,并且按照规定进行充注和排放操作。

•检查相关仪表的工作状态,如温度、压力、流量计等,并对其进行校准和调整。

3. 操作步骤3.1. 开机与调试•打开MDEA脱碳系统的电源,并检查主控制面板的工作状态。

•按照设备操作手册,逐步操作设备的启动程序,确保各设备能够正常运行。

•对系统中的压力、温度、流量等参数进行监测和记录,确保系统处于正常操作条件。

3.2. 注入MDEA•根据脱碳系统容器的大小和设计要求,将事先准备好的MDEA缓慢注入系统。

•在注入过程中,密切观察系统的压力和温度变化,并按需进行相应的调整。

3.3. 运行与监测•根据操作手册和系统要求,启动脱碳系统,使其正常运行。

•监测和记录脱碳系统中的关键参数,例如MDEA浓度、进出料温度、压力、流量等。

•定期检查和清洁系统中的滤网和反应器,确保其正常运行。

3.4. 停机与维护•在操作结束后,关闭脱碳系统的电源,停机前需确保系统处于安全状态。

•清理设备和管道中的残余物质,避免堵塞和积累。

•对设备和管道进行定期的维护和保养,包括清理、校准和润滑。

4. 安全措施•在操作过程中,所有操作人员需佩戴防护设备,如安全眼镜、防护手套和防护服等。

•操作人员需接受相关的安全培训,了解操作规程和相应的急救措施。

•定期进行安全检查和风险评估,及时更新并实施相应的改进措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天然气酸性组分的脱除天然气酸性组分的脱除天然气中通常含有H2S、CO2和有机硫等酸性组分,在水存在下会腐蚀金属,含硫组分有难闻臭味、剧毒、使催化剂中毒等缺点,需要净化处理后方能符合标准。

商品天然气用管道输送往用户,因用途不同,用户对气质要求不同。

就管输来说,主要根据安全平衡供气并兼顾到人身健康安全而确定各项具体指标。

在各种天然气脱硫方法中溶液吸收法应用较广,其中以胺法最有代表性,80年代发展起来的MDEA法能有选择性脱除H2S,目前,在我国应用较多。

一、天然气脱除酸性组分的方法天然气脱除酸性组分指脱硫和脱碳,以脱硫为主。

天然气脱硫主要指脱硫化氢,当含有有机硫(硫醇、硫醚、COS/CS2等)时,也需将其脱除以达到气质标准;天然气中的CO2同时被脱除至标准。

1、脱硫脱碳的方法方法有化学溶剂法、物理溶剂法、物理化学溶剂法、直接转化法、非再生性法、膜分离及低温分离法。

(1)化学溶剂法:主要特点:净化度高,适应性宽、经验丰富,应用广。

方法原理;靠酸碱反应吸收酸气,升温吐出酸气。

方法:MEA、DEA 、SNPA-DEA、Adip、Econamine、Mdea、FLEXSOPB、Benfield 等在化学溶剂法中,各种胺法应用广泛,所使用的胺有一乙醇胺MEA、二乙醇胺DEA、二异丙醇胺DIPA、甲基二乙醇胺Mdea、二甘醇胺DGA以及80年代工业化的为阻胺等。

而Benfield等活化热碱法广泛用于合成气脱碳,在天然气中较少应用。

(2)物理溶剂法:主要特点:再生能耗低、吸收重烃、高净化度需有特殊再生措施,主要用于脱碳方法原理;靠物理溶解吸收及闪蒸吐出酸气。

方法:selexol 、 fluor solvent物理溶剂法selexol(多乙二醇二甲醚)及fluor solvent(碳酸丙烯脂)等较适合于处理酸气分压高而重烃含量低的天然气,当要求较高的净化度时则需采用气提等再生措施。

(3)物理化学溶剂法:主要特点:脱有机硫好,再生能耗较低,吸收重烃方法原理;兼有化学法及物理法二者的特点。

方法:sullfinol(-D 、-M)、selefining、OPTISOL、amisol等Sullfinol法应用最广的物理化学溶剂法,它对于中至高酸气分压的天然气有广泛的适应性,有良好的脱有机硫能力,能耗也较低。

sullfinol-M法则既能选择性脱除H2S又可脱除有机硫。

Amisol法以醇胺-甲醇溶液在常温下脱除酸气,富液气提再生。

selefining、OPTISOL法均以叔胺物理溶剂及水的混合物作吸收剂,有选择脱硫能力。

(4)直接转化法靠氧化还原反应将H2S氧化为元素硫。

集脱硫与硫回收为一体,溶液容硫低。

也常称为氧化还原法,早期开发并应用较广的有STRETFORD,主要用于处理煤气。

80年代问世的Lo-CatⅡ法(用EDTA及多醛基糖络合铁溶液吸收并氧化应用H2S)推广的速度颇快,尤其以处理废气的自动循环法单塔流程颇有特色,目前在天然气领域的应用增多。

对H2S浓度低而量又不大的天然气有应用价值。

Sulfolin法用含钒及有机氮化物溶液,Sulferox法以总铁浓度高达4%的络合铁溶液,Unisulf法用以芳烃磺酸盐络合的钒盐溶液吸收并氧化H2S。

(5)非再生性法与H2S反应,定期排放。

简易、废液需要妥善处理。

适用于边远且H2S含量很低的小井气,Chemsweet法使用的ZnO粉/Zn(Ac)浆液脱H2S,有较多应用;Slurrisweet法使用的铁化合物,现场应用的不多。

(6)膜分离法靠气体渗透速率不同而分离。

能耗低,适合处理高含C02的气体。

能耗低,可实现无人操作,适用于粗脱,已应用于CO2驱油伴生气处理。

对于含有大量酸气的天然气,使用膜分离法作为粗脱步骤是适宜的。

(7)低温分离法靠低温分馏而分离。

用于C02驱油伴生气处理。

是专用于CO2驱油伴生气的处理,可根据对产品的不同要求而安排二塔、三塔及四塔流程。

二、溶液吸收法脱硫溶液吸收法包括化学吸收、物理吸收、物理化学吸收法,虽然他们的吸收机理不同,但它们的工艺流程及所用设备都具有相似性,在互换溶液时稍做改造即可,它们在天然气脱硫工业中占着重要的位置。

化学吸收法以胺法为代表,物理吸收法应用的较多的是Sulfinol-D和sulfinol-M法。

2.1胺法从天然气中脱除H2S、CO2的许多现有溶剂中,烷醇胺类是普遍公认和广泛应用的。

胺法工艺从30年代实现工业化以来,一直作为工业气流净化的主要方法,经过半个多世纪的发展已取得了长足进步,研究成功了一系列的溶剂和方法,在气体脱硫工业中已居于突出地位。

2.1.1醇胺性质天然气脱硫中常用的醇胺有MEA\DEA\TEA\DIPA\DGA\MDEA等。

在它们的结构中都有OH基和氮,OH基是结构中是化合物成为醇胺而非简单的胺类的基团,氮是所谓的胺基氮。

研究表明胺的同系物的第一个成员是氨(NH3),氨能用于从天然气中脱除酸气,但它的挥发性及其它问题造成了操作困难。

三、过程的化学反应原理烷基醇胺类化合物至少有一个羟基与一个氨基。

通常认为羟基能降低化合物的蒸汽压,并增加在水中的溶解度;而氨基则在水溶液中提供了所需的碱度,以促使对酸性气体的吸收。

当醇胺的水溶液用来吸收CO2与H2S时,所发生的主要反应如下:伯胺 RNH2+H2S 可逆反应 RNH3+ + HS- 瞬间反应2 RNH2+CO2可逆反应 RNH3+ + RNHCOO- 中速反应RNH2+ CO2+ H2O可逆反应 RNH3+ + HCO3- 慢反应仲胺 R2NH+H2S 可逆反应 R2NH2+ + HS- 瞬间反应2 R2NH+CO2可逆反应 R2NH2+ + R2NHCOO- 中速反应R2NH+ CO2+ H2O可逆反应 R2NH2+ + HCO3- 慢反应叔胺 R2R′N+H2S 可逆反应 R2 R′NH+ + HS- 瞬间反应2 R2 R′N+CO2 不反应R2 R′N+ CO2+ H2O可逆反应 R2 R′NH+ + HCO3- 慢反应由上述反应方程式看出,醇胺法脱酸性气原理基本类似,但醇胺与硫化氢的反应是瞬间反应,各种醇胺与硫化氢的反应速度均明显高于气相硫化氢的扩散速度,吸收过程属于气膜控制过程。

但醇胺同二氧化碳的反应要复杂的多,伯胺、仲胺既能直接与二氧化碳生成氨基甲酸盐的快反应,还与CO2和H2O进行生成碳酸氢盐的慢反应,而叔胺由于氮原子上已无氢原子相连,只能进行生成碳酸氢盐的慢反应,醇胺与二氧化碳的传质过程属于液膜控制过程。

在评价醇胺吸收H2S和CO2过程的选择性时,基于醇胺与H2S之间反应前提下,由于各种醇胺与CO2之间的反应速度不同而体现出来,正因为在动力学上的差异,叔胺在有CO2存在的下表现出对H2S有较好的选择性。

1、一乙醇胺MEA一乙醇胺是各种胺中最强的碱,所以它与酸气反应最迅速。

它既可以脱H2S,又可以脱CO2,一般认为在这两种酸气之间没有选择性。

在普通的胺中因其分子量最低,故在单位重量或体积的基础上它具有最大的酸气负荷。

这意味着脱除一定量的酸气所需要的循环溶液较少。

此外,在化学性能方面,MEA是稳定的,能最大限度的降低胺降解,用蒸汽气提可以将酸气组分分离。

MEA同羰基硫和二硫化碳的反应是不可逆的,这造成溶剂损失和反应的固体产物在溶液中积累。

MEA具有比其他胺更高的蒸汽压,因蒸发而造成大量的溶剂损失,此办法可以用净化的水洗来解决。

在MEA 同CO2的反应速度比H2S的反应速度要慢些,然而,不能认为此法是有选择性的,因为在处理天然气除去H2S以达到管输要求,CO2容易被吸收几乎完全被脱出掉。

MEA容易将酸气浓度降低到管输要求(一般管输要求为H2S低于7mg/Nm3)2、二乙醇胺DEA它同MEA在原理和操作上是类似的。

一个主要的差别是它与羰基硫及二硫化碳的反应速度比MEA要慢,得到的产物也不同。

结果二乙醇胺与这些硫化物反应所造成的损失最大限度的减少,因此,对于以这些杂质为主的炼厂气和人造煤气,采用这种方法特别有效。

二乙醇胺是非选择性的,即可脱硫也可脱碳,用二乙醇胺降低H2S浓度到管输要求,有时会遇到困难,然而,改良的二乙醇胺能将H2S脱除到2。

3mg/Nm3的水平。

3、三乙醇胺TEA作为第一个应用到工业的,是叔胺,但由于同H2S/CO2反应性差,已被MEA、DEA 所代替。

4、二甘醇胺DGA它是天然气脱硫较新的成员,属于伯胺,具有作为伯胺特点,高反应性、低平衡分压等全部潜在的优点,在相当低的情况下,能达到令人满意的H2S管输标准。

尽管属于伯胺,但它仍保持与DEA一样的在再生后的溶液中残余酸气浓度低的优点。

特别适于高寒、缺水地区的采用。

5、二异丙醇胺DIPA6、甲基二乙醇胺MDEA它是用于天然气脱硫的烷醇胺家族的另一个新成员。

属于叔胺,由于它在二氧化碳存在,对硫化氢具有选择反应能力,所以近年备受关注。

50年代初,它作为脱硫剂首次被提及,目前已经广泛应用。

采用它代替其它胺,改善了酸气质量和操作条件,也降低了能耗。

它即可单独使用,也可同环丁砜合并使用,对于净化低含硫,高碳硫比,高含有机硫的天然气是目前最优化的方法。

在我国四川气田的净化厂大多采用它来脱硫。

7、空间位阻胺它是指在氮原子上带有一个或多个具有空间位阻结构的非链状取代基团的醇胺类化合物。

此法包括三种工艺,SE型用于选择性脱硫,PS型用于脱硫脱碳,HP型用于合成气脱碳。

8、溶液浓度MEA与DEA脱硫在工艺方案中的主要差别是溶液浓度,MEA通常使用浓度为15%-25%(重)的水溶液,DEA使用10%-20%(重)改进型浓度,其SNPA则使用较高DEA浓度,方法的单元流程是常规的,但DEA浓度升至30%(重)或更高。

DIPA、DGA、MDEA也使用较高的浓度,DIPA和MDEA的典型浓度范围在水溶液中为30%-50%(重),DGA农业大致为40%-70%(重)。

胺类以水溶液形式使用,故不论进入的酸性气体是否脱水,净化气都为水蒸气所饱和。

对于大多数胺法,这意谓着脱硫之后需要继续脱水。

克服这个缺点的一种方法是使用MEA或DEA与乙二醇或三甘醇组合,胺与甘醇的组合通常在脱除酸气组分方面起了优越的作用,但是脱水不如常规的甘醇脱水装置。

由于甘醇-胺使用存在严重的腐蚀,所以没有广泛应用。

相关文档
最新文档