人教版八年级数学上册 全等三角形专题练习(解析版)

合集下载

专题01 全等三角形(解析版)

专题01 全等三角形(解析版)

2021-2022学年人教版数学八年级上册压轴题专题精选汇编专题01 全等三角形一.选择题1.(2020秋•东城区期末)如图所示,点O是△ABC内一点,BO平分∠ABC,OD⊥BC于点D,连接OA,若OD=5,AB=20,则△AOB的面积是( )A.20B.30C.50D.100【思路引导】根据角平分线的性质求出OE,最后用三角形的面积公式即可解答.【完整解答】解:过O作OE⊥AB于点E,∵BO平分∠ABC,OD⊥BC于点D,∴OE=OD=5,∴△AOB的面积=,故选:C.2.(2020秋•定西期末)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为( )A.4B.3C.2D.1【思路引导】根据垂线段最短得出当DP⊥BC时,DP的长最小,求出∠ABD=∠CBD,根据角平分线的性质得出此时DP=AD,再得出选项即可.【完整解答】解:当DP⊥BC时,DP的长最小,∵BD⊥CD,∴∠BDC=90°,∵∠A=90°,∠ADB=∠C,∠A+∠ADB+∠ABD=180°,∠BDC+∠C+∠CBD=180°,∴∠ABD=∠CBD,∵∠A=90°,∴当DP⊥BC时,DP=AD,∵AD=4,∴DP的最小值是4,故选:A.3.(2020秋•莫旗期末)如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且与AB互相垂直,点P为线段BC上一动点,连接PE.若AD=8,则PE的最小值为( )A.8B.5C.4D.2【思路引导】过E作EP⊥BC于P,此时PE的值最小,求出AD⊥CD,根据角平分线的性质求出AE=DE=PE,求出AE的长即可.【完整解答】解:过E作EP⊥BC于P,此时PE的值最小,∵AB∥CD,AD⊥AB,∴AD⊥CD,∵BE和CE分别平分∠ABC和∠BCD,∴AE=PE,ED=PE,∴AE=ED=PE,∵AD=8,∴PE=4,即PE的最小值是4,故选:C.4.(2020秋•鞍山期末)如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF⊥AB,垂足为点F,点E在边AC上,若DE=DB,则下列结论不正确的是( )A.DC=DF B.DE=BF C.AC=AF D.AB=AC+CE【思路引导】根据全等三角形的判定和性质解答即可.【完整解答】解:∵Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF⊥AB,垂足为点F,∴DC=DF,故A正确,在Rt△DCE与Rt△DFB中,,∴Rt△DCE≌Rt△DFB(HL),∴CE=BF,故B错误,在Rt△ADC与Rt△ADF中,,∴Rt△ADC≌Rt△ADF(HL),∴AC=AF,故C正确,∴AB=AF+BF=AC+CE,故D正确,故选:B.5.(2020秋•新宾县期末)如图,AB=AD,AC=AE,∠DAB=∠CAE=50°,以下四个结论:①△ADC≌△ABE;②CD=BE;③∠DOB=50°;④点A在∠DOE的平分线上,其中结论正确的个数是( )A.1B.2C.3D.4【思路引导】证明△ADC≌△ABE(SAS),可得出CD=BE,∠ADC=∠ABE,则得出∠DOB=50°,连接OA,过点A作AM⊥CD于点M,AN⊥BE于点N,证明△ABN≌△ADM(AAS),则可得出点A在∠DOE的平分线上.【完整解答】解:∵∠DAB=∠CAE=50°,∴∠DAB+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,在△ADC与△ABE中,,∴△ADC≌△ABE(SAS),∴CD=BE;故①,②正确;如图1,若AB与CD相交于点F,∵△ABE≌△ADC,∴∠ADC=∠ABE,∵∠AFD=∠CFB,∴∠DOB=∠DAB=50°.故③正确.如图2,连接OA,过点A作AM⊥CD于点M,AN⊥BE于点N,∴∠AMD=∠ANB=90°,∵△ABE≌△ADC,∴∠ABN=∠ADM,在△ABN和△ADM中,,∴△ABN≌△ADM(AAS),∴AN=AM,∴点A在∠DOE的平分线上.故④正确.故选:D.6.(2020秋•金昌期末)如图,AD是△ABC的角平分线,CE⊥AD,垂足为F.若∠CAB=30°,∠B=55°,则∠BDE的度数为( )A.35°B.40°C.45°D.50°【思路引导】根据三角形的内角和求出∠ACB=95°,利用三角形全等,求出DC=DE,再利用外角求出答案.【完整解答】解:∵∠CAB=30°,∠B=55°,∴∠ACB=180°﹣30°﹣55°=95°,∵CE⊥AD,∴∠AFC=∠AFE=90°,∵AD是△ABC的角平分线,∴∠CAD=∠EAD=×30°=15°,又∵AF=AF,∴△ACF≌△AEF(ASA)∴AC=AE,∵AD=AD,∠CAD=∠EAD,∴△ACD≌△AED(SAS),∴DC=DE,∴∠DCE=∠DEC,∵∠ACE=90°﹣15°=75°,∴∠DCE=∠DEC=∠ACB﹣∠ACE=95°﹣75°=20°,∴∠BDE=∠DCE+∠DEC=20°+20°=40°,故选:B.7.(2020秋•宜兴市期中)如图,在△ABC中,AB=4,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为( )A.B.C.D.【思路引导】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.【完整解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=4,∴BH=2,AH=2,在Rt△AHC中,∠ACB=45°,∴AH=CH=2,∴AC===2,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,得矩形ENCK,∴CK=EN,∴AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为2,综上所述,AE+BF的最大值为2.故选:B.8.(2020秋•江岸区校级月考)如图,方格中△ABC的三个顶点分别在正方形的顶点(格点上),这样的三角形叫格点三角形,图中可以画出与△ABC全等的格点三角形共有( )个.(不含△ABC)A.28B.29C.30D.31【思路引导】当点B在下面时,根据平移,对称,可得与△ABC全等的三角形有8个,包括△ABC,当点B在其它3条边上时,有3×8=24(个)三角形与△ABC全等,由此即可判断.【完整解答】解:当点B在下面时,根据平移,对称,可得与△ABC全等的三角形有8个,包括△ABC,当点B在其它3条边上时,有3×8=24(个)三角形与△ABC全等,∴一共有:8+24﹣1=31(个)三角形与△ABC全等,故选:D.二.填空题9.(2020秋•南岗区校级月考)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=5,则CH的长为 2 .【思路引导】先由AD⊥BC,CE⊥AB,判断出∠ADB=∠AEH=90°,再判断出∠BAD=∠BCE,进而判断出△HEA≌△BEC,得出AE=EC=5,即可得出结论.【完整解答】解:∵AD⊥BC,CE⊥AB,∴∠ADB=∠AEH=90°,∵∠AHE=∠CHD,∴∠BAD=∠BCE,在△HEA和△BEC中,,∴△HEA≌△BEC(AAS),∴AE=EC=5,则CH=EC﹣EH=AE﹣EH=5﹣3=2.故答案为:2.10.(2020•松北区一模)在△ABC中,点D在AC上,AD=5,AB+AC=16,E是BD中点,∠ACB=∠ABC+2∠BCE,则CD= 2 .【思路引导】延长CE于F,使CE=EF,交AB于点G,根据SAS证明△BEF与△DEC全等,进而利用全等三角形的性质解答即可.【完整解答】解:延长CE于F,使CE=EF,交AB于点G,∵E是BD的中点,∴BE=DE,在△BEF与△DEC中,,∴△BEF≌△DEC(SAS),∴∠F=∠DCE,BF=DC,∵∠ACB=∠ABC+2∠BCE,∴∠DCE=∠ACB﹣∠BCE=∠ABC+∠BCE,∵∠AGC=∠ABC+∠BCE,∴∠AGC=∠DCE,∴∠F=∠DCE=∠AGC=∠BGF,AG=AC,∴BF=BG=CD,设BF=BG=CD=x,∵AD=5,AB+AC=16,∴,解得:x=2,∴CD=2,故答案为:2.11.(2020•荷塘区模拟)在△ABC中,若其内部的点P满足∠APB=∠BPC=∠CPA=120°,则称P为△ABC的费马点.如图所示,在△ABC中,已知∠BAC=45°,设P为△ABC的费马点,且满足∠PBA=45°,PA=4,则△PAC的面积为 4 .【思路引导】如图,延长BP交AC于D,先说明△ABD是等腰直角三角形,△ADP是30°的直角三角形,可得PD和AD的长,根据费马点的定义可得∠APC=120°,从而可知△PDC也是30°的直角三角形,可得CD的长,根据三角形的面积公式可得结论.【完整解答】解:如图,延长BP交AC于D,∵∠BAC=∠PBA=45°,∴∠ADB=90°,AD=BD,∵P为△ABC的费马点,∴∠APB=∠CPA=120°,∴∠BAP=180°﹣120°﹣45°=15°,∴∠PAC=45°﹣15°=30°,∴∠APD=60°,Rt△PAD中,∵PA=4,∴PD=2,AD=2,∵∠APC=120°,∴∠CPD=120°﹣60°=60°,Rt△PDC中,∠PCD=30°,∴CD=2,∴AC=AD+CD=2+2=4,∴△PAC的面积为==4.故答案为:4.12.(2020秋•海珠区校级期中)如图,AD是△ABC的角平分线,DF⊥AB,垂足为点F,DE=DG,△ADG 和△ADE的面积分别为50和39,则△EDF的面积为 5.5 .【思路引导】在线段AC上取一点M,使DM=DE,过点D作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【完整解答】解:如图,在线段AC上取一点M,使DM=DE,过点D作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG =S△ADG﹣S△ADM=50﹣39=11,∴S△DNM =S△EDF=S△MDG=×11=5.5.故答案是:5.5.13.(2020秋•青羊区校级月考)如图,在△ABC中,∠C=90°,D是AB中点,FD⊥ED于D,BE=,AF=,则EF= 3 .【思路引导】延长DE到H,使DH=DE,连接FH,先证△BED≌△AHD(SAS),得AH=BE,∠B=∠DAH,再求出∠FAH=90°,然后由勾股定理求出FH=3,最后由线段垂直平分线上的性质即可得出答案.【完整解答】解:如图,延长DE到H,使DH=DE,连接FH,∵D是AB中点,∴AD=BD,在△BED和△AHD中,,∴△BED≌△AHD(SAS),∴AH=BE=,∠B=∠DAH,∵∠C=90°,∴∠FAH=∠BAC+∠DAH=∠BAC+∠B=180°﹣90°=90°,由勾股定理得,FH===3,∵FD⊥ED,DE=DH,∴EF=FH=3,故答案为:3.14.(2020秋•温岭市期中)如图,AD是△ABC的角平分线,DE⊥AC于点E,DF⊥AB于点F,给出下列结论:①DE=DF;②△ADF≌△ADE;③△ABD和△ACD的面积相等.其中正确结论的序号是 ①② .【思路引导】根据角平分线的性质和全等三角形的判定和性质解答即可.【完整解答】解:∵AD是△ABC的角平分线,DE⊥AC于点E,DF⊥AB于点F,∴DE=DF,故①正确;在Rt△ADF与Rt△ADE中,,∴Rt△ADF≌Rt△ADE(HL),故②正确;∵得不出AB=AC,∴△ABD和△ACD的面积无法判断相等,故③错误;故答案为:①②.15.(2019秋•南岗区校级月考)如图,在△ABC中,∠ACB=90°,点D在边AB上,AD=AC,点E在BC边上,CE=BD,过点E作EF⊥CD交AB于点F,若AF=2,BC=8,则DF的长为 4 .【思路引导】设∠BCD=α,延长AC到点G,使AG=AB,连接BG,延长EF和CA交于点H,根据已知条件证明△CEH≌△CGB,即可解决问题.【完整解答】解:设∠BCD=α,∵∠ACB=90°,∴∠ACD=90°﹣α,∵AD=AC,∴∠ADC=∠ACD=90°﹣α,∴∠CAB=180°﹣2∠ACD=2α,∴∠ABC=90°﹣2α,∵EF⊥CD,∴∠CKF=90°,∴∠DFK=90°﹣(90°﹣α)=α,∴∠CEF=90°﹣α,如图,延长AC到点G,使AG=AB,连接BG,∵AD=AC,∴CD∥GB,BD=CG=CE,∴∠GBC=∠BCD=α,∴∠G=90°﹣α,∴∠G=∠CEF,延长EF和CA交于点H,∴∠H=α=∠GBC,∵∠CAB=2α,∴∠AFH=α,∴∠H=∠AFH,∴AH=AF=2,在△CEH和△CGB中,,∴△CEH≌△CGB(ASA),∴CH=CB=8,∴DF=AD﹣AF=AC﹣AH=CH﹣2AH=8﹣4=4.故答案为:4.16.(2019秋•江汉区期中)如图,AB⊥CD于点E,且AB=CD=AC,若点I是△ACE的角平分线的交点,点F是BD的中点.下列结论:①∠AIC=135°;②BD=BI;③S△AIC =S△BID;④IF⊥AC.其中正确的是 ①③④ (填序号).【思路引导】如图,延长IF到G,使得FG=FI,连接DG,BG,延长FI交AC于K.利用全等三角形的判定和性质,平行四边形的判定和性质一一判断即可.【完整解答】解:如图,延长IF到G,使得FG=FI,连接DG,BG,延长FI交AC于K.∵AB ⊥CD ,∴∠AEC =90°,∴∠EAC +∠ECA =90°,∴∠IAC +∠ICA =∠EAC +∠ECA =45°,∴∠AIC =180°﹣45°=135°,故①正确,∵AB =AC ,∠IAB =∠IAC ,AI =AI ,∴△AIB ≌△AIC (SAS ),∴∠AIB =∠AIC =135°,IA =ID ,∴∠BIC =360°﹣135°﹣135°=90°,同法可证:△ICA ≌△ICD (SAS ),∴∠AIC =∠CID =135°,IA =ID ,∴∠AID =360°﹣135°﹣135°=90°,∴∠DIB +∠AIC =180°,∵DF =FB ,IF =FG ,∴四边形IBGD 是平行四边形,∴ID =BG =AI ,ID ∥BG ,∴∠DIB +∠IBG =180°,∴∠AIC =∠IBG ,∵IA =ID ,IC =IB ,∴△AIC ≌△GBI (SAS ),∴∠GIB =∠ACI ,S △AIC =S △BGI =S 平行四边形DGBI =S △BDI ,故③正确,∵∠GIB +∠CIK =90°,∴∠CIK +∠ICK =90°,∴∠IKC =90°,即IF ⊥AC ,故④正确,不妨设BI =BD ,则△BDI 是等腰直角三角形,显然ID =IB ,即AI =IC ,显然题目不满足这个条件,故②错误.故答案为①③④.17.(2018秋•襄城县期末)如图,△ABC 的内角∠ABC 和外角∠ACD 的平分线相交于点E ,BE 交AC 于点F,过点E作EG∥BD交AB于点G,交AC于点H,连接AE,有以下结论:①∠BEC=∠BAC;②△HEF≌△CBF;③BG=CH+GH;④∠AEB+∠ACE=90°,其中正确的结论有 ①③④ (将所有正确答案的序号填写在横线上).【思路引导】①根据角平分线的定义得到∠EBC=∠ABC,∠DCE=ACD,根据外角的性质即可得到结论;②根据相似三角形的判定定理得到两个三角形相似,不能得出全等;③由BG=GE,CH=EH,于是得到BG﹣CH=GE﹣EH=GH.即可得到结论;④由于E是两条角平分线的交点,根据角平分线的性质可得出点E到BA、AC、BC和距离相等,从而得出AE为∠BAC外角平分线这个重要结论,再利用三角形内角和性质与外角性质进行角度的推导即可轻松得出结论.【完整解答】解:①BE平分∠ABC,∴∠EBC=∠ABC,∵CE平分∠ACD,∴∠DCE=ACD,∵∠ACD=∠BAC+∠ABC,∠DCE=∠CBE+∠BEC,∴∠EBC+∠BEC=(∠BAC+∠ABC)=∠EBC+BAC,∴∠BEC=∠BAC,故①正确;∵②△HEF与△CBF只有两个角是相等的,能得出相似,但不含相等的边,所有不能得出全等的结论,故②错误.③BE平分∠ABC,∴∠ABE=∠CBE,∵GE∥BC,∴∠CBE=∠GEB,∴∠ABE=∠GEB,∴BG=GE,同理CH=HE,∴BG﹣CH=GE﹣EH=GH,故③正确.④过点E作EN⊥AC于N,ED⊥BC于D,EM⊥BA于M,如图,∵BE平分∠ABC,∴EM=ED,∵CE平分∠ACD,∴EN=ED,∴EN=EM,∴AE平分∠CAM,设∠ACE=∠DCE=x,∠ABE=∠CBE=y,∠MAE=∠CAE=z,如图,则∠BAC=180°﹣2z,∠ACB=180﹣2x,∵∠ABC+∠ACB+∠BAC=180°,∴2y+180°﹣2z+180°﹣2x=180°,∴x+z=y+90°,∵z=y+∠AEB,∴x+y+∠AEB=y+90°,∴x+∠AEB=90°,即∠ACE+∠AEB=90°,故④正确;故答案为:①③④.18.(2019秋•潍坊月考)如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于 5.5 .【思路引导】可通过作辅助线,即延长FM到N,使MN=MF,连接BN,延长MF交BA延长线于E,从而利用角之间的关系转化为线段之间的关系,进而最终可得出结论.【完整解答】解:如图,延长FM到N,使MN=MF,连接BN,延长MF交BA延长线于E,∵M是BC中点,∴BM=CM,∠BMN=∠CMF,∴△BMN≌△CMF,∴BN=CF,∠N=∠MFC,又∵∠BAD=∠CAD,MF∥AD,∴∠E=∠BAD=∠CAD=∠CFM=∠AFE=∠N,∴AE=AF,BN=BE,∴AB+AC=AB+AF+FC=AB+AE+FC=BE+FC=BN+FC=2FC,∴FC=(AB+AC)=5.5.故答案为5.5.三.解答题19.(2021春•铁岭月考)如图,在四边形ABCD中,∠B+∠ADC=180°,CE平分∠BCD交AB于点E,连接DE.(1)若∠A=50°,∠B=70°,求∠BEC的度数;(2)若∠A=∠1,试说明∠CDE=∠DCE.【思路引导】(1)求出∠A+∠BCD=180°,求出∠BCD,求出∠BCE,根据三角形内角和定理求出即可;(2)根据三角形内角和定理和∠A+∠BCD=180°求出∠CDE=∠BCE,即可得出答案.【完整解答】解:(1)∵∠A+∠B+∠BCD+∠ADC=360°,∠B+∠ADC=180°,∴∠A+∠BCD=180°,∵∠A=50°,∴∠BCD=130°,∵CE平分∠BCD∴∠BCE=∠BCD=×130°=65°,∵∠B=70°,∴∠BEC=180°﹣65°﹣70°=45°,(2)证明:由(1)知∠A+∠BCD=180°,∴∠A+∠BCE+∠DCE=180°,∵∠CDE+∠DCE+∠1=180°,∠1=∠A,∴∠BCE=∠CDE,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠CDE=∠DCE.20.(2021•南岗区模拟)已知:点E,F在BC上,AF=DE,BE=CF,∠AFE=∠DEF.(1)如图1,求证:AB=CD;(2)如图2,连接AC,BD,AE,DF,在不添加任何辅助线的情况下,请直接写出图2中的四组平行线.【思路引导】(1)证△ABF≌△DCE(SAS),即可得出结论;(2)由全等三角形的性质得∠B=∠C,得AB∥CD,再证四边形ABDC是平行四边形,得AC∥BD,同理证出AF∥DE,AE∥DF.【完整解答】(1)证明:∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,∵∠AFE=∠DEF,∴∠AFB=∠DEC,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS),∴AB=CD;(2)解:图2中的四组平行线为:AB∥CD,AC∥BD,AF∥DE,AE∥DF,理由如下:由(1)得:△ABF≌△DCE,∴AB=DC,∠B=∠C,∴AB∥CD,∴四边形ABDC是平行四边形,∴AC∥BD,∵∠AFE=∠DEF,∴AF∥DE,∵AF=DE,∴四边形AEDF是平行四边形,∴AE∥DF.21.(2020秋•来宾期末)如图,在五边形ABCDE中,AB=DE,AC=AD.(1)请你添加一个与角有关的条件,使得△ABC≌△DEA,并说明理由;(2)在(1)的条件下,若∠CAD =65°,∠B =110°,求∠BAE 的度数.【思路引导】(1)添加∠BAC =∠EDA ,根据SAS 即可判定两个三角形全等;(2)根据全等三角形对应角相等,运用三角形内角和定理,即可得到∠BAE 的度数.【完整解答】解:(1)添加一个角方面的条件为:∠BAC =∠EDA ,使得△ABC ≌△DEA ,理由如下:在△ABC 和△DEA 中,,∴△ABC ≌△DEA (SAS ),(2)在(1)的条件下,∵△ABC ≌△DEA ,∴∠ACB =∠DAE ,∵∠CAD =65°,∠B =110°,∴∠ACB +∠BAC =180°﹣∠B =70°,∴∠DAE +∠BAC =∠ACB +∠BAC =70°,∴∠BAE =∠DAE +∠BAC +∠CAD =70°+65°=135°.22.(2020秋•云南期末)如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是152cm 2,AB =20cm ,AC =18cm ,求DE 的长.【思路引导】根据S △ABC =S △ABD +S △ACD ,再利用角平分线的性质即可解决问题.【完整解答】解:∵AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,∴DE =DF ,∵S △ABC =S △ABD +S △ACD ,∴S △ABC =,∵△ABC 面积是152cm 2,AB =20cm ,AC =18cm ,∴152=,∴10DE +9DF =152,∵DE =DF ,∴19DE =152,∴DE =8.23.(2021春•萧山区月考)如图,在△ABC 中,OE ⊥AB 与点E ,OF ⊥AC 与点F ,且OE =OF .(1)如图①,当O 为BC 中点时,试说明AB =AC ;(2)如图②,当点O 在△ABC 内部,且OB =OC ,试判断AB 与AC 的关系.【思路引导】(1)证Rt △OBE ≌Rt △OCF (HL ),得∠B =∠C ,即可得出AB =AC ;(2)由等腰三角形的性质得∠OBC =∠OCB ,再证Rt △OBE ≌Rt △OCF (HL ),得∠ABO =∠ACO ,则∠ABC =∠ACB ,即可得出结论.【完整解答】(1)说明如下:∵O 为BC 中点,∴BO =CO ,∵OE ⊥AB ,OF ⊥AC ,∴∠OEB =∠OFC =90°,在Rt △OBE 和Rt △OCF 中,,∴Rt △OBE ≌Rt △OCF (HL ),∴∠B =∠C ,∴AB =AC ;(2)解:AB=AC,理由如下:∵OB=OC,∴∠OBC=∠OCB,∵OE⊥AB,OF⊥AC,∴∠OEB=∠OFC=90°,在Rt△OBE和Rt△OCF中,,∴Rt△OBE≌Rt△OCF(HL),∴∠ABO=∠ACO,∴∠ABC=∠ACB,∴AB=AC.24.(2021春•南山区校级期中)如图,在△ABC中,AB=AC=3,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC= 30° ,∠AED= 70° .(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.【思路引导】(1)由平角的定义和三角形外角的性质可求∠EDC,∠DEC的度数;(2)当DC=3时,由“AAS”可证△ABD≌△DCE;(3)分AD=DE,DE=AE,AE=AD三种情况讨论,由三角形内角和和三角形外角的性质可求∠BDA 的度数.【完整解答】解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,∴∠EDC=180°﹣110°﹣40°=30°,∵AB=AC,∴∠B=∠C=40°,∴∠AED=∠EDC+∠C=30°+40°=70°,故答案为:30°,70°;(2)当DC=3时,△ABD≌△DCE,理由如下:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,∴∠BAD=∠CDE,且AB=CD=3,∠B=∠C=40°,∴△ABD≌△DCE(ASA);(3)若AD=DE时,∵AD=DE,∠ADE=40°,∴∠DEA=∠DAE=70°,∵∠DEA=∠C+∠EDC,∴∠EDC=30°,∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°,若AE=DE时,∵AE=DE,∠ADE=40°,∴∠ADE=∠DAE=40°,∴∠AED=100°,∵∠DEA=∠C+∠EDC,∴∠EDC=60°,∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°,若AE=AD时,∠AED=∠ADE=40°,∠DAE=180°﹣40°﹣40°=100°,此时D与B重合,不合题意,舍去.综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形.25.(2021春•沂源县期末)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC 上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.【思路引导】(1)根据角平分线的性质得到DC=DE,根据直角三角形全等的判定定理得到Rt△DCF≌Rt△DEB,根据全等三角形的性质定理得到答案;(2)根据全等三角形的性质定理得到AC=AE,根据(1)的结论得到答案.【完整解答】证明:(1)∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在Rt△DCF和Rt△DEB中,,∴Rt△DCF≌Rt△DEB,∴CF=EB;(2)AF+BE=AE.∵Rt△DCF≌Rt△DEB,∴AC=AE,∴AF+FC=AE,即AF+BE=AE.26.(2020秋•腾冲市期末)(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.【思路引导】(1)由条件可证明△ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;(2)由条件可知∠BAD+∠CAE=180°﹣α,且∠DBA+∠BAD=180°﹣α,可得∠DBA=∠CAE,结合条件可证明△ABD≌△CAE,同(1)可得出结论;(3)由条件可知EM=AH=GN,可得EM=GN,结合条件可证明△EMI≌△GNI,可得出结论I是EG 的中点.【完整解答】解:(1)如图1,∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)DE=BD+CE.如图2,证明如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠DBA=∠CAE,在△ADB和△CEA中..∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE(3)如图3,过E作EM⊥HI于M,GN⊥HI的延长线于N.∴∠EMI=GNI=90°由(1)和(2)的结论可知EM=AH=GN∴EM=GN在△EMI和△GNI中,,∴△EMI≌△GNI(AAS),∴EI=GI,∴I是EG的中点.27.(2020秋•大武口区期末)如图所示,已知△ABC中,点D为BC边上一点,∠1=∠2=∠3,AC=AE,(1)求证:△ABC≌△ADE;(2)若AE∥BC,且∠E=∠CAD,求∠C的度数.【思路引导】(1)由∠1=∠2=∠3,可得∠1+∠DAC=∠DAC+∠2,即∠BAC=∠DAE,又∠1+∠B=∠ADE+∠3,则可得∠B=∠ADE,已知AC=AE,即可证得:△ABC≌△ADE;(2)由题意可得,∠ADB=∠ABD=4x,在△ABD中,可得x+4x+4x=180°,解答处即可;【完整解答】解:(1)∵∠1=∠2=∠3,∴∠1+∠DAC=∠DAC+∠2,即∠BAC=∠DAE,又∵∠1+∠B=∠ADE+∠3,则可得∠B=∠ADE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS);(2)∵AE∥BC,∴∠E=∠3,∠DAE=∠ADB,∠2=∠C,又∵∠3=∠2=∠1,令∠E=x,则有:∠DAE=3x+x=4x=∠ADB,又∵由(1)得AD=AB,∠E=∠C,∴∠ABD=4x,∴在△ABD中有:x+4x+4x=180°,∴x=20°,∴∠E=∠C=20°.28.(2020秋•船营区期末)如图,太阳光线AC与A′C′是平行的,同一时刻两根高度相同的木杆在太阳光照射下的影子一样长吗?说说你的理由.【思路引导】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.【完整解答】解:影子一样长.证明:∵AB⊥BC,A′B′⊥B′C′∴∠ABC=∠A′B′C′=90°∵AC∥A′C′∴∠ACB=∠A′C′B′在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(AAS)∴BC=B′C′即影子一样长.。

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)一选择题1.下列条件不能判定两个直角三角形全等的是( )A. 斜边和一直角边对应相等B. 两个锐角对应相等C. 一锐角和斜边对应相等D. 两条直角边对应相等2.一块三角形玻璃被打碎后店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃能够全等的依据是( )A. ASAB. AASC. SASD. SSS3.如图OD⊥AB于点D OP⊥AC于点P且OD=OP则△AOD与△AOP全等的理由是( )A. SSSB. ASAC. SSAD. HL4.如图为6个边长相等的正方形的组合图形则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°5.如图AC是△ABC和△ADC的公共边下列条件中不能判定△ABC≌△ADC的是( )A. AB=AD,∠2=∠1B. AB=AD,∠3=∠4C. ∠2=∠1,∠3=∠4D. ∠2=∠16.如图已知点B、E、C、F在同一直线上且BE=CF,∠ABC=∠DEF那么添加一个条件后.仍无法判定△ABC≌△DEF的是( )A. AC=DFB. AB=DEC. AC//DFD. ∠A=∠D7.如图点C D在AB同侧∠CAB=∠DBA下列条件中不能判定△ABD≌△BAC的是( )A. ∠D=∠CB. BD=ACC. AD=BCD. ∠CAD=∠DBC8.如图D是AB上一点DF交AC于点E,DE=FE,FC//AB若AB=4,CF=3则BD的长是( )A. 0.5B. 1C. 1.5D. 29.如图△ABC中AB=AC,AD是角平分线BE=CF则下列说法中正确的有( )①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A. 1个B. 2个C. 3个D. 4个10.两组邻边分别相等的四边形叫做“筝形”如图四边形ABCD是一个筝形其中AD=CD AB=CB 在探究筝形的性质时得到如下结论:③四边形ABCD的面积其中正确的结论有.( )A. 0个B. 1个C. 2个D. 3个二填空题11.如图在3×3的正方形网格中∠1+∠2=_______度.12.如图已知AB=AC,EB=EC,AE的延长线交BC于D则图中全等的三角形共有______对.13.如图所示的网格是正方形网格点A,B,C,D均落在格点上则∠BAC+∠ACD=____°.14.如图∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4则AC=______.15.如图在△ABC和△DEF中点B,F,C,E在同一直线上BF=CE,AB//DE请添加一个条件使△ABC≌△DEF这个添加的条件可以是______(只需写一个不添加辅助线).16.如图在△ABC中高AD和BE交于点H且DH=DC则∠ABC=°.17.如图在四边形ABCD中AB=AD,∠BAD=∠BCD=90∘连接AC若AC=6则四边形ABCD的面积为.18.如图∠C=90°,AC=20,BC=10,AX⊥AC点P和点Q同时从点A出发分别在线段AC和射线AX上运动且AB=PQ当AP=______时以点A,P,Q为顶点的三角形与△ABC全等.19.如图△ABC中AB=AC,AD⊥BC于D点DE⊥AB于点E BF⊥AC于点F,DE=3cm则BF=cm.20.如图所示∠E=∠F=90∘,∠B=∠C,AE=AF结论:①EM=FN②AF//EB③∠FAN=∠EAM④△ACN≌△ABM.其中正确的有______ .三解答题21.如图点A,D,C,F在同一条直线上AD=CF,AB=DE,AB//DE.求证:BC=EF.22.如图点C、F、E、B在一条直线上∠CFD=∠BEA,CE=BF,DF=AE写出CD与AB之间的关系并证明你的结论.23.如图B、C、E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE24.已知:如图在△ABC中BE⊥AC垂足为点E,CD⊥AB垂足为点D且BD=CE.求证:∠ABC=∠ACB.25.如图在△ABC中AB=CB,∠ABC=90°,D为AB延长线上一点点E在BC边上且BE=BD 连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°求∠BDC的度数.答案和解析1.【答案】B【解析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A.符合判定HL故本选项正确不符合题意;B.全等三角形的判定必须有边的参与故本选项错误符合题意;C.符合判定AAS故本选项正确不符合题意;D.符合判定SAS故本选项正确不符合题意.故选B.2.【答案】A【解析】本题考查了全等三角形的判定:全等三角形的判定方法中选用哪一种方法取决于题目中的已知条件若已知两边对应相等则找它们的夹角或第三边;若已知两角对应相等则必须再找一组对边对应相等若已知一边一角则找另一组角或找这个角的另一组对应邻边.利用全等三角形判定方法进行判断.【解答】解:这片碎玻璃的两个角和这两个角所夹的边确定从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.3.【答案】D【解析】本题考查了直角三角形全等的判定的知识点解题关键点是熟练掌握直角三角形全等的判定方法HL.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.【解答】解:∵OD⊥AB且OP⊥AC∴△AOD和△AOP是直角三角形又∵OD=OP且AO=AO∴△AOD≌△AOP(HL).故选D.4.【答案】B【解析】本题考查了全等图形准确识图并判断出全等的三角形是解题的关键标注字母利用“边角边”证明△ABC和△DEA全等根据全等三角形对应角相等可得∠1=∠4从而求出∠1+∠3=90°再判断出∠2=45°进而计算即可得解.【解答】解:如图在△ABC和△DEA中{AB=DE∠ABC=∠DEA=90°BC=EA,∴△ABC≌△DEA(SAS)∴∠1=∠4∵∠3+∠4=90°∴∠1+∠3=90°又∵∠2=45°∴∠1+∠2+∠3=90°+45°=135°.故选B.5.【答案】A【解析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS等.利用全等三角形的判定定理:SSS SAS ASA AAS等逐项进行分析即可.判定两个三角形全等时必须有边的参与若有两边一角对应相等时这个角必须是两边的夹角.【解答】解:A.AB=AD∠2=∠1再加上公共边AC=AC不能判定△ABC≌△ADC故此选项符合题意;B.AB=AD∠3=∠4再加上公共边AC=AC可利用SAS判定△ABC≌△ADC故此选项不合题意;C.∠2=∠1∠3=∠4再加上公共边AC=AC可利用ASA判定△ABC≌△ADC故此选项不合题意;D.∠2=∠1∠B=∠D再加上公共边AC=AC可利用AAS判定△ABC≌△ADC故此选项不合题意;故选A.6.【答案】A【解析】解:∵BE=CF∴BE+EC=EC+CF即BC=EF且∠ABC=∠DEF∴当AC=DF时满足SSA无法判定△ABC≌△DEF故A不能;当AB=DE时满足SAS可以判定△ABC≌△DEF故B可以;当AC//DF时可得∠ACB=∠F满足ASA可以判定△ABC≌△DEF故C可以;当∠A=∠D时满足AAS可以判定△ABC≌△DEF故D可以;故选:A.根据全等三角形的判定方法逐项判断即可.本题主要考查全等三角形的判定方法 掌握全等三角形的判定方法是解题的关键 即SSS SAS ASA AAS 和HL .7.【答案】C【解析】本题考查了全等三角形的判定定理的应用 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 符合SSA 和AAA 不能推出两三角形全等. 根据图形知道隐含条件BC =BC 根据全等三角形的判定定理逐个判断即可.【解答】解:A 添加条件∠D =∠C 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理AAS 能推出△ABD ≌△BAC 故本选项错误;B 添加条件BD =AC 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理SAS 能推出△ABD ≌△BAC 故本选项错误;C 添加条件AD =BC 还有已知条件∠CAB =∠DBA BC =BC 不符合全等三角形的判定定理 不能推出△ABD ≌△BAC 故本选项正确;D ∵∠CAB =∠DBA ∠CAD =∠DBC∴∠DAB =∠CBA 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理ASA 能推出△ABD ≌△BAC 故本选项错误;故选C .8.【答案】B【解析】解:∵CF//AB∴∠A =∠FCE ∠ADE =∠F∴在△ADE 和△CFE 中{∠A =∠FCE∠ADE =∠F DE =FE∴△ADE ≌△CFE(AAS)∴AD =CF =3∵AB =4∴DB =AB −AD =4−3=1.故选B .根据平行线的性质 得出∠A =∠FCE ∠ADE =∠F 再根据全等三角形的判定证明△ADE ≌△CFE得出AD=CF根据AB=4CF=3即可求线段DB的长.本题考查了全等三角形的性质和判定平行线的性质的应用能判定△ADE≌△FCE是解此题的关键解题时注意运用全等三角形的对应边相等对应角相等.9.【答案】C【解析】解:∵AB=AC AD平分∠BAC∴BD=DC AD⊥BC故③④正确在RT△BDE和RT△CDF中{BE=CFBD=CD∴RT△BDE≌RT△CDF故②正确∵AD⊥BC∴∠ADC=∠CDF=90°∴BC平分∠EDF.故①错误.故选:C.根据等腰三角形的三线合一可以判断③④正确根据HL可以证明RT△BDE≌RT△CDF可以判断②正确由BC平分∠EDF得出①错误故不难得到结论.本题考查全等三角形的判定和性质等腰三角形的性质角平分线的定义等知识解题的关键是等腰三角形三线合一的性质的应用属于中考常考题型.10.【答案】C【解析】此题考查全等三角形的判定和性质关键是根据SSS证明△ABD与全等和利用SAS证明与全等.【解答】解:如图在△ABD与中故①正确;∴∠ADB=∠CDB在与中∴∠AOD=∠COD=90°∴AC⊥DB故②正确;故③错误.故选C.11.【答案】90【解析】本题考查了全等三角形的判定和性质能看懂图形是解题的关键.首先判定两个三角形全等然后根据全等三角形的性质及直角三角形的性质即可判断得出结论.【解答】解:如图所示:∵∠ACB=∠DCE=90°AC=DC BC=EC∴Rt△ACB≌Rt△DCE∴∠2=∠EDC在Rt△DCE中∠1+∠EDC=90°∴∠1+∠2=90°.12.【答案】3【解析】解:①△ABE≌△ACE∵AB=AC EB=EC∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE∴∠EBD=∠ECD∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.在线段AD的两旁猜想所有全等三角形再利用全等三角形的判断方法进行判定三对全等三角形是△ABE≌△ACE△EBD≌△ECD△ABD≌△ACD.本题考查学生观察猜想全等三角形的能力同时也要求会运用全等三角形的几种判断方法进行判断.13.【答案】90【解析】【解答】解:在△DCE和△ABD中∵{CE=BD=1∠E=∠ADB=90°DE=AD=3∴△DCE≌△ABD(SAS)∴∠CDE =∠DAB∵∠CDE +∠ADC =∠ADC +∠DAB =90°∴∠AFD =90°∴∠BAC +∠ACD =90°故【答案】90.【分析】本题网格型问题 考查了三角形全等的性质和判定及直角三角形各角的关系 本题构建全等三角形是关键.证明△DCE ≌△ABD(SAS) 得∠CDE =∠DAB 根据同角的余角相等和三角形的内角和可得结论. 14.【答案】6【解析】本题考查了全等三角形的判定与性质有关知识 由AAS 证明△ABC ≌△EFC 得出对应边相等AC =EC BC =CF =4 求出EC 即可得出AC 的长.【解答】解:∵AC ⊥BE∴∠ACB =∠ECF =90°在△ABC 和△EFC 中{∠ACB =∠ECF ∠A =∠E AB =EF∴△ABC ≌△EFC(AAS)∴AC =EC BC =CF =4∵EC =BE −BC =10−4=6∴AC =EC =6;故答案为6. 15.【答案】AB =ED【解析】解:添加AB =ED∵BF =CE∴BF +FC =CE +FC即BC =EF∵AB//DE∴∠B =∠E在△ABC 和△DEF 中{AB =ED∠B =∠E CB =FE,∴△ABC ≌△DEF(SAS)故【答案】AB =ED .根据等式的性质可得BC =EF 根据平行线的性质可得∠B =∠E 再添加AB =ED 可利用SAS 判定△ABC ≌△DEF .本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL .注意:AAA SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.16.【答案】45【解析】本题考查了全等三角形的判定与性质 余角的性质 等腰直角三角形 由三角形的高得到∠ADB =∠ADC =∠BEC =90° 结合余角的性质得到∠HBD =∠CAD 易证△HBD ≌△CAD 得到AD =BD 根据等腰直角三角形得到∠ABD =45° 即可得出结论.【解答】解:∵AD ⊥BC BE ⊥AC∴∠ADB =∠ADC =∠BEC =90°∴∠HBD +∠C =∠CAD +∠C =90°∴∠HBD =∠CAD∵在△HBD 和△CAD 中{∠HBD =∠CAD,HDB =∠CDA,DH =DC,∴△HBD ≌△CAD(AAS)∴AD =BD∵∠ADB =90°∴△ABD 为等腰直角三角形∴∠ABD =45° 即∠ABC =45°故答案为45.17.【答案】18【解析】本题考查全等三角形的判定和性质和三角形的面积.过点A 作AE ⊥AC 交CD 的延长线于点E.做出辅助线是解答本题的关键.过点A 作AE ⊥AC 交CD 的延长线于点E 证明△AED ≌△ACB 将四边形ABCD 的面积转化为△ACE 的面积 利用三角形面积公式求解即可.【解答】解:过点A 作AE ⊥AC 交CD 的延长线于点E∵∠EAC =∠BAD =90°∴∠EAD =∠CAB∵∠BAD =∠BCD =90∘∴∠ADC +∠ABC =360°−(∠BAD +∠BCD)=180°又∵∠ADE +∠ADC =180∘∴∠ADE =∠ABC在△AED 与△ACB 中{∠EAD =∠CABAD =AB ∠ADE =∠ABC∴△AED ≌△ACB(ASA)∴AE =AC =6 四边形ABCD 的面积等于△ACE 的面积故S 四边形ABCD =12AC ⋅AE =12×6×6=18.故答案为18. 18.【答案】10或20【解析】解:∵AX ⊥AC∴∠PAQ =90°∴∠C=∠PAQ=90°分两种情况:①当AP=BC=10时在Rt△ABC和Rt△QPA中{AB=PQBC=AP∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时在△ABC和△PQA中{AB=PQAP=AC∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时△ABC与△APQ全等;故【答案】10或20.分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC≌Rt△PQA(HL);即可得出结果.本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法本题需要分类讨论难度适中.19.【答案】6【解析】本题考查了全等三角形的判定与性质三角形的面积利用面积公式得出等式是解题的关键.先利用HL证明Rt△ADB≌Rt△ADC得出S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB又S△ABC=12AC⋅BF将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中{AB=ACAD=AD ∴Rt△ADB≌Rt△ADC∴S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB∵S△ABC=12AC⋅BF∴12AC⋅BF=3AB ∵AC=AB∴12BF=3cm∴BF=6cm.故【答案】6.20.【答案】①③④【解析】此题考查了全等三角形的性质与判别考查了学生根据图形分析问题解决问题的能力.其中全等三角形的判别方法有:SSS SAS ASA AAS及HL.学生应根据图形及已知的条件选择合适的证明全等的方法.由∠E=∠F=90°∠B=∠C AE=AF利用“AAS”得到△ABE与△ACF全等根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等AE与AF相等AB与AC相等然后在等式∠EAB=∠FAC两边都减去∠MAN得到∠EAM与∠FAN相等然后再由∠E=∠F=90°AE=AF∠EAM=∠FAN利用“ASA”得到△AEM与△AFN全等利用全等三角形的对应边相等对应角相等得到选项①和③正确;然后再∠C=∠B AC=AB∠CAN=∠BAM利用“ASA”得到△ACN与△ABM全等故选项④正确;若选项②正确得到∠F与∠BDN相等且都为90°而∠BDN不一定为90°故②错误.【解答】解:在△ABE和△ACF中∠E=∠F=90°AE=AF∠B=∠C∴△ABE≌△ACF(AAS)∴∠EAB=∠FAC AE=AF AB=AC∴∠EAB−∠MAN=∠FAC−∠NAM即∠EAM=∠FAN在△AEM和△AFN中∠E=∠F=90°AE=AF∠EAM=∠FAN∴△AEM≌△AFN(ASA)∴EM=FN∠FAN=∠EAM故选项①和③正确;在△ACN和△ABM中∠C=∠B∠CAN=∠BAM AC=AB∴△ACN≌△ABM(ASA)故选项④正确;若AF//EB∠F=∠BDN=90°而∠BDN不一定为90°故②错误则正确的选项有:①③④.21.【答案】解:∵AB//DE∴∠A =∠EDF∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中{AB =DE∠A =∠EDF AC =DF∴△ABC ≌△DEF(SAS)∴BC =EF .【解析】先证明AC =DF 再根据SAS 推出△ABC ≌△DEF 便可得结论.本题考查了全等三角形的判定和性质的应用 证明三角形的边相等 往往转化证明三角形的全等. 22.【答案】解:CD//AB CD =AB理由是:∵CE =BF∴CE −EF =BF −EF∴CF =BE在△CFD 和△BEA 中{CF =BE∠CFD =∠BEA DF =AE∴△CFD ≌△BEA(SAS)∴CD =AB ∠C =∠B∴CD//AB .【解析】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角对应相等的重要工具.在判定三角形全等时 关键是选择恰当的判定条件. 求出CF =BE 根据SAS 证△CFD ≌△BEA 推出CD =AB ∠C =∠B 根据平行线的判定推出CD//AB .23.【答案】证明:∵AC//DE∴∠ACB =∠E ∠ACD =∠D∵∠ACD =∠B∴∠D =∠B在△ABC 和△EDC 中{∠B =∠D∠ACB =∠E AC =CE∴△ABC ≌△CDE(AAS).【解析】此题主要考查了全等三角形的判定 平行线的性质.首先根据AC//DE 利用平行线的性质可得:∠ACB =∠E ∠ACD =∠D 再根据∠ACD =∠B 证出∠D =∠B 然后根据全等三角形的判定定理AAS 证出△ABC ≌△CDE 即可.24.【答案】证明:∵BE ⊥AC CD ⊥AB∴∠BDC =∠CEB =90°在Rt △BCD 和Rt △CBE 中{BC =CB BD =CE∴Rt △BCD ≌Rt △CBE(HL)∴∠DBC =∠ECB即∠ABC =∠ACB .【解析】本题考查了全等三角形的判定与性质;证明三角形全等是解题的关键.证明Rt △BCD ≌Rt △CBE(HL) 即可得出结论.25.【答案】(1)证明:∵∠ABC =90°∴∠DBC =90°在△ABE 和△CBD 中{AB =CB∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS);(2)解:∵AB =CB ∠ABC =90°∴∠BCA =45°∴∠AEB =∠CAE +∠BCA =30°+45°=75°∵△ABE ≌△CBD∴∠BDC =∠AEB =75°.【解析】(1)由条件可利用SAS证得结论;(2)由等腰直角三角形的性质可先求得∠BCA利用三角形外角的性质可求得∠AEB再利用全等三角形的性质可求得∠BDC.本题主要考查全等三角形的判定和性质掌握全等三角形的判定方法(即SSS SAS ASA AAS和HL)和全等三角形的性质(即全等三角形的对应边相等对应角相等)是解题的关键.。

八年级上学期期末复习《全等三角形》单元试卷(含部分解析) 2024-2025学年人教版数学

八年级上学期期末复习《全等三角形》单元试卷(含部分解析) 2024-2025学年人教版数学

期末复习《全等三角形》单元试卷2024-2025学年人教版数学八年级上册一、选择题1. 下列条件不能确定两个三角形全等的是( )A.三条边对应相等B.两条边及其中一边所对的角对应相等C.两边及其夹角对应相等D.两个角及其中一角所对的边对应相等2. 如图,∠C=∠B,能用ASA来判断△ABD≌△ACE,需要添加的条件是( )A.AE=AD B.AB=ACC.CE=BD D.∠ADB=∠AEC3. 如图在△ABC中,∠ACB=90∘,BE平分∠ABC,DE⊥AB于D,如果AC=3cm,那么AE+DE等于( )A.5cm B.4cm C.3cm D.2cm4. 如图所示,A,B在一水池两侧,若BE=DE,∠B=∠D=90∘,CD=10 m,则水池宽AB=( )m.A.8B.10C.12D.无法确定5. 如图,△ABC≌△BDE,若AB=12,ED=5,则CD的长为( )A.5B.6C.7D.86. 如图所示为打碎的一块三角形玻璃,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是( )A.带①去B.带②去C.带③去D.带①和②去7. 如图,△ABC中,AB=AC,高BD,CE相交于点O,连接AO并延长交BC于点F,则图中全等的直角三角形共有( )A.4对B.5对C.6对D.7对8. 如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136∘,∠BCD=44∘,则∠ADB的度数为( )A.54∘B.48∘C.46∘D.50∘二、填空题9. 如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).10. 如图,在Rt△ACB中,∠C=90∘,AB=23,以点B为圆心,适当长为半径画弧,分别交边EF的长为半径画弧,两弧相交于点P,AB,BC于点E,F,再分别以点E,F为圆心,大于12作射线BP交AC于点D,若CD=1,则△ABD的面积为.11. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=.12. 在平面直角坐标系xOy中,A(0,2),B(4,0),点P与A,B不重合.若以P,O,B三点为顶点的三角形与△ABO全等,则点P的坐标为.13. 如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠B+∠F=.14. 如图,∠C=90∘,AC=20,BC=10,AX⊥AC,点P和点Q同时从点A出发,分别在线段AC和射线AX上运动,且AB=PQ,当AP=时,以点A,P,Q为顶点的三角形与△ABC全等.15. 如图,△ABC中,∠A=60∘,AB>AC,两内角的平分线CD,BE交于点O,OF平分∠BOC交BC于F,(1)∠BOC=120∘;(2)连AO,则AO平分∠BAC;(3)A,O,F三点在同一直线上,(4)OD=OE,(5)BD+CE=BC.其中正确的结论是(填序号).三、解答题16. 如图,D,E分别是AB,AC的中点,BE,CD相交于点O,∠B=∠C,BD=CE.求证:(1) OD=OE;(2) △ABE≌△ACD.17. 如图,AB=DC,AC=DB.求证:∠1=∠2.18. 如图,已知△CAB≌△EAD,且点C,A,D三点在同一直线上.(1) 写出这两个全等三角形的对应顶点、对应边及对应角(2) 若∠CAB=135∘,求∠EAC的度数.(3) 若CA=3 cm,AB=5 cm,求CD的长.19. 已知在△ABC和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=α,AE与BD交于点F.(1) 如图①,当α=90∘时,求证:①△ACE≌△BCD;②AE⊥BD.(2) 如图②,当α=60∘时,∠AFB的度数为.(3) 如图③,∠AFD的度数为(用含α的式子表示).20. 在四边形ABCD中,AB=AD,∠B+∠ADC=180∘,点E是线段BC上的点,∠EAF=1∠BAD.2(1) 如图①,当点F在线段CD上时,试探究线段BE,EF,FD之间的数量关系;(2) 如图②,旋转∠EAF到使得点F在CD的延长线上时,(1)中的结论是否依然成立?若成立说明理由;若不成立,试写出相应的结论并给出你的证明.21. 已知AB=12,AC=BD=8.点P在线段AB上以每秒2个单位长度的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们的运动时间为t s.(1) 如图①,AC⊥AB,BD⊥AB,若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系.(2) 如图②,∠CAB=∠DBA=60∘,设点Q的运动速度为每秒x个单位长度,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x,t的值;若不存在,请说明理由.答案一、选择题1. B2. B3. C4. B5. C6. C7. C8. C二、填空题9. AB =ED 10. 311. 135∘12. (0,−2),(4,2),(4,−2)13. 9014. 10 或 2015. ①②④⑤三、解答题16.(1) 在 △BOD 和 △COE 中,{∠BOD =∠COE,∠B =∠C,BD =CE,∴△BOD ≌△COE (AAS),∴OD =OE .(2) ∵D ,E 分别是 AB ,AC 的中点,∴AD =BD =12AB ,AE =CE =12AC ,∵BD=CE,∴AD=AE,AB=AC,在△ABE和△ACD中,{AB=AC,∠A=∠A,AE=AD,∴△ABE≌△ACD(SAS).17. 在△ABC和△DCB中,AB=DC,AC=DB,BC=CB,∴△ABC≌△DCB(SSS).∴∠A=∠D,又∵∠AOB=∠DOC,∴∠1=∠2.18.(1) 对应顶点:点C对应点E,点A对应点A,点B对应点D.对应边:CA对应EA,CB对应ED,AB对应AD.对应角:∠CAB对应∠EAD,∠C对应∠E,∠B对应∠D.(2) ∵△CAB≌△EAD,∴∠CAB=∠EAD=135∘.∵点C,A,D三点在同一直线上,∴∠EAC=180∘−∠EAD=180∘−135∘=45∘.(3) ∵△CAB≌△EAD,∴AB=AD=5 cm,∴CD=CA+AD=3+5=8 cm.19.(1) ①∵∠ACB=∠DCE=90∘,∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD.②在△ACE和△BCD中,{AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵∠CAE+∠EAB+∠ABC=90∘,∴∠CBD+∠EAB+∠ABC=90∘,∴∠AFB=90∘,∴AE⊥BD.(2) 60∘(3) 180∘−α20.(1) EF=BE+DF.如解图①,延长FD到点G,使DG=BE,连接AG.∵∠B+∠ADF=180∘,∠ADF+∠ADG=180∘,∴∠ADG=∠B.∵BE=DG,∠B=∠ADG,AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG.∵∠BAD=2∠EAF,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD−∠EAF=∠EAF,∴∠EAF=∠GAF.∵AE=AG,∠EAF=∠GAF,AF=AF,∴△AEF≌△AGF(SAS),∴EF=GF.∵FG=DG+DF=BE+DF,即EF=BE+DF.(2) 结论EF=BE+FD不成立,结论:EF=BE−FD.理由如下:如解图②,在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180∘,∠ADF+∠ADC=180∘,∴∠B=∠ADF.∵AB=AD,∠ABG=∠ADF,BG=DF,∴△ABG≌△ADF(SAS).∴∠BAG=∠DAF,AG=AF.∴∠BAD=∠BAG+∠GAD=∠DAF+∠GAD=∠GAF.∵∠BAD=2∠EAF,∴∠GAF=2∠EAF,∴∠GAE=∠FAE.∵AE=AE,∴△AEG≌△AEF(SAS).∴EG=EF,∵EG=BE−BG,∴EF=BE−FD.21.(1) △ACP与△BPQ全等.理由如下:当t=2时,AP=BQ=2×2=4,则BP=AB−AP=12−4=8,∴BP=AC.又∵∠A=∠B=90∘,在△ACP和△BPQ中,{AP=BQ,∠A=∠B,CA=PB,∴△ACP≌△BPQ(SAS).此时PC⊥PQ.证明如下:∵△ACP≌△BPQ,∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠AC=90∘.∴∠CPQ=90∘.即线段PC与线段PQ垂直.(2) ①若△ACP≌△BPQ,则AC=BP,AP=BQ,∴{8=12−2t,2t=tx,解得{t=2,x=2;②若△ACP≌△BQP,则AC=BQ,AP=BP,∴{8=xt,2t=12−2t,解得{t=3,x=83.综上所述,当{t=2,x=2或{t=3,x=83时,△ACP与△BPQ全等.。

人教版初中八年级数学上册第十二章《全等三角形》经典习题(含答案解析)

人教版初中八年级数学上册第十二章《全等三角形》经典习题(含答案解析)

一、选择题1.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .1B解析:B【分析】 先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 2.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .4C解析:C【分析】 过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质得:OE =OF =OD 然后根据△ABC 的面积是12,周长是8,即可得出点O 到边BC 的距离.【详解】如图,过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA .∵点O 是∠ABC ,∠ACB 平分线的交点,∴OE =OD ,OF =OD ,即OE =OF =OD∴S △ABC =S △ABO +S △BCO +S △ACO =12AB ·OE +12BC ·OD +12AC ·OF =12×OD×(AB +BC +AC )=12×OD×8=12 OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.3.如图,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC S 12=,DF 2=,AC 3=,则AB 的长是 ( )A .2B .4C .7D .9D解析:D【分析】求出DE的值,代入面积公式得出关于AB的方程,求出即可.【详解】解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=2,∵S△ABC=S△ABD+S△ACD,∴12=12×AB×DE+12×AC×DF,∴24=AB×2+3×2,∴AB=9,故选:D.【点睛】本题考查了角平分线性质,三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.4.如图,AB与CD相交于点E,AD=CB,要使△ADE≌△CBE,需添加一个条件,则添加的条件以及相应的判定定理正确的是()A.AE=CE;SAS B.DE=BE;SASC.∠D=∠B;AAS D.∠A=∠C;ASA C解析:C【分析】根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B,根据AAS可证明△ADE≌△CBE,故此选项符合题意;D.添加∠A=∠C,根据AAS可证明△ADE≌△CBE,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.关键在于应根据所给的条件判断应证明哪两个三角形全等.5.如图,已知AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是()A .BD +ED =BCB .∠B =2∠DAC C .AD 平分∠EDCD .ED +AC >AD B解析:B【分析】 利用角平分线的性质定理判断A ;利用直角三角形两锐角互余判断B ;证明△AED ≌△ACD ,由此判断C ;利用三角形三边关系得到AC+CD>AD ,由此判断D .【详解】∵AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,∴DE=DC ,∠BAD=∠DAC ,∵BD+DC=BC ,∴BD+ED=BC ,故A 正确;∵∠C=90︒,∴∠B+∠BAC=90︒,∴∠B+2∠DAC=90︒,故B 错误;∵DE ⊥AB ,∴∠AED=∠C=90︒,又∵∠BAD=∠DAC ,DE=CD ,∴△AED ≌△ACD ,∴∠ADE=∠ADC ,∴AD 平分∠EDC ,故C 正确;在△ACD 中,AC+CD>AD ,∴ED +AC >AD ,故D 正确;故选:B .【点睛】此题考查三角形的三边关系,角平分线的性质定理,全等三角形的判定及性质,直角三角形两锐角互余的性质,熟记各知识点并应用解决问题是解题的关键.6.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ C解析:C【分析】 先证明()ABC CED SSS ∆≅∆得到B E ∠=∠、FCD FDC ∠=∠,再根据1802ACE ABC x ∠=︒-∠-︒可得2CFE x ∠=︒;然后根据外角的性质可得2EFC FDC FCD FDC ∠=∠+∠=∠即可解答.【详解】解:在ABC ∆和CED ∆中,AC CD AB CE BC ED =⎧⎪=⎨⎪=⎩,()ABC CED SSS ∴∆≅∆,B E ∴∠=∠,FCD FDC ∠=∠1802180ACE ABC x E CFE ∠=︒-∠-︒=︒-∠-∠,2CFE x ∴∠=︒,2EFC FDC FCD FDC ∠=∠+∠=∠=2x ︒,FDC x ∴∠=︒.故答案为C .【点睛】本题主要考查全等三角形的判定和性质、三角形的外角的性质等知识,弄清题意、理清角之间的关系是解答本题的关键.7.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是( )A .SASB .AASC .SSSD .HL D解析:D直接证明全等三角形,即可确定判断方法.【详解】解:∵AB BC ⊥,CD BC ⊥,∴ABC 与△DCB 均为直角三角形,又AC DB =,BC CB =, ∴()ABC DCB HL ≅,故选:D.【点睛】本题考查全等三角形的判定定理,属于基础题.8.如图,在△ABC 中,点E 和F 分别是AC ,BC 上一点,EF ∥AB ,∠BCA 的平分线交AB 于点D ,∠MAC 是△ABC 的外角,若∠MAC =α,∠EFC =β,∠ADC =γ,则α、β、γ三者间的数量关系是( )A .β=α+γB .β=2γ﹣αC .β=α+2γD .β=2α﹣2γB解析:B【分析】 根据平行线的性质得到∠B=∠EFC=β,由角平分线的定义得到∠ACB=2∠BCD ,根据∠ADC 是△BDC 的外角,得到∠ADC=∠B+∠BCD ,由三角形外角的性质得到∠MAC=∠B+∠ACB ,于是得到结果.【详解】解:∵EF ∥AB ,∠EFC=β,∴∠B=∠EFC=β,∵CD 平分∠BCA ,∴∠ACB=2∠BCD ,∵∠ADC 是△BDC 的外角,∴∠ADC=∠B+∠BCD ,∵∠ADC=γ,∴∠BCD=γ-β,∵∠MAC 是△ABC 的外角,∴∠MAC=∠B+∠ACB ,∵∠MAC=α,∴α=β+2(γ-β),∴β=2γ-α,故选:B .本题考查了三角形外角的性质,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.9.如图,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设运动时间为t(s),当△ACP与△BPQ全等时,则点Q的运动速度为()cm/s.A.0.5 B.1 C.0.5或1.5 D.1或1.5D解析:D【分析】设点Q的运动速度是x cm/s,有两种情况:①AP=BP,AC=BQ,②AP=BQ,AC=BP,列出方程,求出方程的解即可.【详解】解:设点Q的运动速度是x cm/s,∵∠CAB=∠DBA,∴△ACP与△BPQ全等,有两种情况:①AP=BP,AC=BQ,则1×t=4-1×t,则3=2x,解得:t=2,x=1.5;②AP=BQ,AC=BP,则1×t=tx,4-1×t=3,解得:t=1,x=1,故选:D.【点睛】本题考查了全等三角形的判定的应用,以及一元一次方程的应用,掌握方程的思想和分类讨论思想是解此题的关键.10.下列命题,真命题是()A.全等三角形的面积相等B.面积相等的两个三角形全等C.两个角对应相等的两个三角形全等D.两边和其中一边的对角对应相等的两个三角形全等A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A、全等三角形的面积相等,本选项说法是真命题;B 、面积相等的两个三角形不一定全等,本选项说法是假命题;C 、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D 、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题; 故选:A .【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键.二、填空题11.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且2CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是___________.2【分析】根据垂线段最短及角平分线的性质定理求解【详解】解:如图由垂线段最短定理可知:当CE ⊥OB 时CE 的长度最小∵点C 在∠AOB 的平分线上CD ⊥OA ∴CE=CD=2故答案为2【点睛】本题是基础题目解析:2【分析】根据垂线段最短及角平分线的性质定理求解 .【详解】解:如图,由垂线段最短定理可知:当CE ⊥OB 时,CE 的长度最小,∵点C 在 ∠AOB 的平分线上,CD ⊥OA ,∴CE=CD=2,故答案为2 .【点睛】本题是基础题目,熟练掌握垂线段最短及角平分线的性质定理是解题关键.12.如图,△ABE ≌△ADC ≌△ABC ,若∠1=130°,则∠α的度数为________.100°【分析】根据全等三角形对应角相等可得然后根据周角等于求出再根据三角形的内角和定理求出从而得解【详解】解:(对顶角相等)故答案为:【点睛】本题考查了全等三角形对应角相等的性质三角形的内角和定理解析:100°【分析】根据全等三角形对应角相等可得1BAE ∠=∠,ACB E ∠=∠,然后根据周角等于360︒求出2∠,再根据三角形的内角和定理求出2α∠=∠,从而得解.【详解】解:ABE ADC ABC ∆≅∆≅∆,1130BAE ∴∠=∠=︒,ACB E ∠=∠,23601360130130100BAE ∴∠=︒-∠-∠=︒-︒-︒=︒,180DFE E α∴∠=︒-∠-∠,1802AFC ACD ∠=︒-∠-∠,DFE AFC ∠=∠(对顶角相等),1801802E ACD α∴︒-∠-∠=︒-∠-∠,2100α∴∠=∠=︒.故答案为:100︒.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,对顶角相等的性质,准确识图,找出对应角是解题的关键.13.已知在△ABC 中,AB =9,中线AD =4,那么AC 的取值范围是____1<AC <17【分析】作出图形延长AD 至E 使DE =AD 然后利用边角边证明△ABD 和△ECD 全等根据全等三角形对应边相等可得AB =CE 再利用三角形的任意两边之和大于第三边三角形的任意两边之差小于第三边解析:1<AC <17【分析】作出图形,延长AD 至E ,使DE =AD ,然后利用“边角边”证明△ABD 和△ECD 全等,根据全等三角形对应边相等可得AB =CE ,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出AC 的取值范围.【详解】如图,延长AD 至E ,使DE =AD ,∵AD 是△ABC 的中线,∴BD =CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ECD (SAS ),∴AB =CE ,∵AD =4,∴AE =4+4=8,∵AC +CE >AC >CE -AE ,∴9-8<AC <8+9,∴1<AC <17,故答案为:1<AC <17.【点睛】本题考查了全等三角形的判定与性质,三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边,“遇中线,加倍延”构造出全等三角形是解题的关键.14.如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则点A 到直线CD 的距离是_____.4【分析】根据垂直的定义得到∠BCD=延长CD 到H使DH=CD 由线段中点的定义得到AD=BD 根据全等三角形的性质得到AH=BC=4【详解】∵DC ⊥BC ∴∠BCD=∵∠ACB=∴∠ACD=如图延长CD解析:4【分析】根据垂直的定义得到∠BCD=90︒,延长CD 到H 使DH=CD ,由线段中点的定义得到 AD=BD ,根据全等三角形的性质得到 AH=BC=4.【详解】∵ DC ⊥BC ,∴ ∠BCD=90︒,∵ ∠ACB=120︒,∴ ∠ACD=30︒,如图,延长 CD 到 H 使 DH=CD ,∵ D 为 AB 的中点,∴ AD=BD ,在 ΔADH 与 ΔBCD 中,CD DH ADH BDC AD BD =⎧⎪∠=∠⎨⎪=⎩,∴ ΔADH ≅ΔBCD(SAS),∴ AH=BC=4,∠AHD=∠BCD=90°,∴点A 到CD 的距离为4,故答案为:4.【点睛】本题考察全等三角形的判定与性质,正确作出辅助线是解题的关键.15.如图,在△ABC 中,∠ABC 的平分线与外角∠ACE 的平分线交于点D ,若∠D =20°,则∠A =_____.40°【分析】利用角平分线的性质可知∠ABC =2∠DBC ∠ACE =2∠DCE 再根据三角形外角的性质可得出∠D =∠DCE ﹣∠DBE ∠A =∠ACE ﹣∠ABC 即得出∠A =2∠D 即得出答案【详解】∵∠ABC 解析:40°【分析】利用角平分线的性质可知∠ABC =2∠DBC ,∠ACE =2∠DCE .再根据三角形外角的性质可得出∠D =∠DCE ﹣∠DBE ,∠A =∠ACE ﹣∠ABC .即得出∠A =2∠D ,即得出答案.【详解】∵∠ABC 的平分线交∠ACE 的外角平分线∠ACE 的平分线于点D ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠DCE 是△BCD 的外角,∴∠D =∠DCE ﹣∠DBE ,∵∠ACE 是△ABC 的外角,∠A =∠ACE ﹣∠ABC =2∠DCE ﹣2∠DBE =2(∠DCE ﹣∠DBE ),∴∠A =2∠D =40°.故答案为:40°.【点睛】本题考查角平分线和三角形外角的性质,熟练利用角平分线和三角形外角的性质来判断题中角之间的关系是解答本题的关键.16.如图,AC//BD ,OA ,OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,垂足为E ,如果OE 5=,那么AC 与BD 的距离是________【分析】过点作于作于利用平行线的性质可证得OM ⊥BD进而可证得MN 为AC 和BD 的距离根据角平分线的性质可知OE=OM=OE 即可求得MN 的长度【详解】解:如图过点作于作于∵分别平分和∴又∥∴又∴三点共解析:10【分析】过点O 作OM AC ⊥于M ,作ON BD ⊥于N ,利用平行线的性质可证得OM ⊥BD ,进而可证得MN 为AC 和BD 的距离,根据角平分线的性质可知OE=OM=OE ,即可求得MN 的【详解】解:如图,过点O 作OM AC ⊥于M ,作ON BD ⊥于N .∵OA 、OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,∴OM OE ON 5===,又 AC ∥BD ,OM AC ⊥,∴OM BD ⊥,又ON BD ⊥,∴M ,O ,N 三点共线,∴ AC 与BD 之间的距离为MN=OM ON 10+=.故答案为:10.【点睛】本题考查求平行线间的距离、角平分线的性质、八个基本事实,熟练掌握角平分线的性质,作出AC 和BD 之间的距离是解答的关键.17.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.5【分析】根据角平分线的性质及垂线段最短解答【详解】根据垂线段最短可知:当PM ⊥OC 时PM 最小∵OP 平分PD=5∴PM=PD=5故答案为:5【点睛】此题考查角平分线的性质垂线段最短掌握点到直线的所有 解析:5【分析】根据角平分线的性质及垂线段最短解答.【详解】根据垂线段最短可知:当PM ⊥OC 时,PM 最小,∵OP 平分AOC ∠,PD OA ⊥,PD=5,∴PM=PD=5,故答案为:5.【点睛】此题考查角平分线的性质,垂线段最短,掌握点到直线的所有连线中垂线段最短是解题的18.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.ASA 【分析】根据全等三角形的判断方法解答【详解】解:由图可知带第4块去符合角边角可以配一块与原来大小一样的三角形玻璃故答案为:4;ASA 【点睛】本题考查了全等三角形的应用是基础题熟记三角形全等的判解析:ASA【分析】根据全等三角形的判断方法解答.【详解】解:由图可知,带第4块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃. 故答案为:4;ASA【点睛】本题考查了全等三角形的应用,是基础题,熟记三角形全等的判定方法是解题的关键. 19.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.【点睛】本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.20.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.或【分析】对点P 和点Q 是否重合进行分类讨论通过证明全等即可得到结果;【详解】如图1所示:与全等解得:;如图2所示:点与点重合与全等解得:;故答案为:或【点睛】本题主要考查了全等三角形的判定与性质准确解析:1或72【分析】对点P 和点Q 是否重合进行分类讨论,通过证明全等即可得到结果;【详解】如图1所示:PEC ∆与QFC ∆全等,PC QC ,683∴-=-t t ,解得:1t =;如图2所示:点P与点Q重合,PEC与QFC∆全等,638∴-=-t t,解得:72t=;故答案为:1或72.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.三、解答题21.如图,在△ABC中,AC=BC,∠ACB=90°,点D在边BC上(不与点B,C重合),过点C作CE⊥AD,垂足为点E,交AB于点F,连接DF.(1)请直接写出∠CAD与∠BCF的数量关系;(2)若点D是BC中点,在图2中画出图形,猜想线段AD,CF,FD之间的数量关系,并证明你的猜想.解析:(1)∠BCF=∠CAD;(2)AD=CF+DF,证明见解析【分析】(1)由余角的性质可求解;(2)过点B作BG∥AC交CF的延长线于G,由“ASA”可证△ACD≌△CBG,可得CD=BG,AD=CG,由“SAS”可证△BDF≌△BGF,可得DF=GF,可得结论.【详解】解:(1)∠BCF=∠CAD,理由如下:∵CE⊥AD,∴∠CED=∠ACD=90°,∴∠CAD+∠ADC=90°=∠ADC+∠BCF,∴∠CAD=∠BCF;(2)如图所示:猜想:AD =CF +DF ,理由如下:过点B 作BG ∥AC 交CF 的延长线于G ,则∠ACB +∠CBG =180°,∴∠CBG =∠ACD =90°,在△ACD 和△CBG 中,∵CAD BCF AC BC ACD CBG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACD ≌△CBG (ASA ),∴CD =BG ,AD =CG ,∵D 是BC 的中点,∴CD =BG =BD ,∵AC =BC ,∠ACB =90°,∴∠CBA =∠CAB ,∴∠CBA =45°,∴∠FBG =∠CBG ﹣∠CBA =90°﹣45°=45°,∴∠FBG =∠FBD ,在△BDF 和△BGF 中,BF BF FBD FBG BD BG =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△BGF (SAS ),∴DF =GF ,∵AD =CG =CF +FG ,∴AD =CF +DF .【点睛】本题主要考查余角的性质,全等三角形的判定和性质,添加合适的辅助线,构造全等三角形,是解题的关键.22.已知:MON α∠=,点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB α∠=︒-,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,PA 和PB 的数量关系是______.(2)探究证明:如图2,当60MON ∠=︒时,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请直接写出PA ,PB 之间另外的数量关系.(3)拓展延伸:如图3,当60MON ∠=︒,点B 在射线ON 的反向延长线上时,请直接写出线段OC ,OA 及BC 之间的数量关系:______.解析:(1)PA=PB ;(2)成立证明见解析;(3)OA=BC+OC【分析】(1)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(2)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(3)仿照(2)的解法得出△APD ≌△BPC ,从而得出AD=BC ,再根据HL 得出Rt △OPD ≌△RtOPC ,得出OC=OD ,继而得出结论.【详解】(1)作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=90°,∴∠APB=90°,∠CPD=90°,∴∠APD+∠BPD=90°,∠BPC+∠BPD=90°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(2)(1)中的结论还成立理由如下:如图2,作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=60°,∴∠APB=120°,在四边形OCPD 中,∠CPD=360°-90°-90°-60°=120°,∴∠APD+∠BPD=120°,∠BPC+∠BPD=120°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(3)OA=2BC-OB .理由如下:如图3,作PD ⊥OM 于点D ,同(2),可证△APD ≌△BPC ,∴AD=BC ,点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,在Rt △OPD 和RtOPC 中,PC PD OP OP =⎧⎨=⎩∴Rt △OPD ≌△RtOPC ,∴OC=OD ,∴OA-AD=OD=OC ,∴OA-BC=OC ,∴OA=BC+OC .【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、灵活运用类比思想是解题的关键.23.在正方形网格中,网格线的交点叫做格点,三个顶点均在格点上的三角形叫做格点三角形.(1)在图1中计算格点三角形ABC 的面积是__________;(每个小正方形的边长为1) (2)ABC 是格点三角形.①在图2中画出一个与ABC 全等且有一条公共边BC 的格点三角形;②在图3中画出一个与ABC 全等且有一个公共点A 的格点三角形.解析:(1)6;(2)①见解析;②见解析【分析】(1)用割补法求解即可;(2)根据“SSS”画图即可;(3)根据“SSS”画图即可;【详解】解:(1)5×3-12×3×3-12×2×2-12×5×1=6, 故答案为:6;(2)①如图,'A BC 即为所求,②如图,''AB C 即为所求,【点睛】本题考查了“格点三角形的定义”以及全等三角形的判定方法,熟练掌握“SSS”是解答本题的关键.24.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =80°,试求: (1)∠EDC 的度数.(2)若∠BCD =n °,试求∠BED 的度数.(用含n 的式子表示)(3)类比探究:已知AB ∥CD ,BE 、DE 分别是∠ABC 、∠ADC 的n 等分线,ABE ∠=1ABC n ∠,1CDE ADC n∠=∠,∠BAD =α,∠BCD =β,请猜想∠BED = .解析:(1)40︒;(2)1402BED n ∠=︒+︒;(3)1()αβ+n 【分析】(1)根据平行线的性质及角平分线的性质即可得解;(2)过点E 作EF ∥AB ,则EF ∥AB ∥CD ,由AB ∥CD ,BE 平分∠ABC ,推出12BEF ABE n ∠=∠=︒,利用EF ∥CD ,求得∠FED =∠EDC =40°,即可得到 1402BED n ∠=︒+︒;(3)过点E 作EF ∥AB ,则EF ∥AB ∥CD ,利用AB ∥CD 推出∠ABC =∠BCD =β,∠ADC =∠BAD =α,求得1ABE n β∠=,111FED CDE ADC BAD n n n α∠=∠=∠=∠=,利用EF ∥AB ,求出1BEF ABE n β∠=∠=,即可得到1()BED n αβ∠=+. 【详解】解:(1)∵AB ∥CD ,∴∠ADC =∠BAD =80°,又∵DE 平分∠ADC ,∴1402EDC ADC ∠=∠=︒;(2)如图,过点E 作EF ∥AB ,则EF ∥AB ∥CD ,∵AB ∥CD ,∴∠ABC =∠BCD =n °,又∵BE 平分∠ABC ,∴12ABE n ∠=︒, ∵EF ∥AB , ∴12BEF ABE n ∠=∠=︒, ∵EF ∥CD ,∴∠FED =∠EDC =40°,∴1402BED n ∠=︒+︒. (3)1()αβ+n.如图,过点E 作EF ∥AB ,则EF ∥AB ∥CD ,∵AB ∥CD ,∴∠ABC =∠BCD =β,∠ADC =∠BAD =α,∴1ABE n β∠=,111FED CDE ADC BAD n n n α∠=∠=∠=∠=, ∵EF ∥AB , ∴1BEF ABE n β∠=∠=, ∴1()BED nαβ∠=+. 故答案为:1()αβ+n .【点睛】此题考查平行线的性质,角平分线的性质,熟记平行线的性质并正确引出辅助线解决问题是解题的关键.25.已知ABC 是等腰直角三角形,90ACB ∠=︒,BC AC =.直角顶点C 在x 轴上,锐角顶点B 在y 轴上,过点A 作AD x ⊥轴,垂足为点D .当点B 不动,点C 在x 轴上滑动的过程中.(1)如图1,当点C 的坐标是()1,0-,点A 的坐标是()3,1-时,请求出点B 的坐标; (2)如图2,当点C 的坐标是()1,0时,请写出点A 的坐标;(3)如图3,过点A 作直线AE y ⊥轴,交y 轴于点E ,交BC 延长线于点F .AC 与y 轴交于点G .当y 轴恰好平分ABC ∠时,请写出AE 与BG 的数量关系.解析:(1)(0,2);(2)(-1,-1);(3)BG=2AE ,理由见详解【分析】(1)先证明Rt∆ADC ≅Rt∆COB ,结合条件,即可得到答案; (2)先证明∆ADC ≅∆COB ,结合点B ,C 的坐标,求出AD ,OD 的长,即可得到答案; (3)先证明∆BGC ≅∆AFC ,再证明∆ABE ≅∆FBE ,进而即可得到答案. 【详解】(1)∵点C 的坐标是()1,0-,点A 的坐标是()3,1-,∴AD=OC ,又∵AC=BC ,∴Rt∆ADC ≅ Rt∆COB (HL ),∴OB=CD=2,∴点B 的坐标是(0,2);(2)∵AD ⊥x 轴,∴∠DAC+∠ACD=90°,又∵∠OCB+∠ACD=90°,∴∠DAC=∠OCB ,又∵∠ADC=∠COB=90°,AC=BC ,∴∆ADC ≅ ∆COB (AAS ),∵点C 的坐标是()1,0∴AD=OC=1,∵点B 的坐标是(0,2),∴CD=OB=2,∴OD=2-1=1,∴点A 的坐标是(-1,-1);(3)BG=2AE ,理由如下:∵ABC 是等腰直角三角形,90ACB ∠=︒,BC AC =,AE y ⊥轴,∴∠BCA=∠ACF=90°,∠AEG=90°,∴∠GBC+∠BGC=90°,∠GAE+∠AGE=90°,又∵∠BGC=∠AGE ,∴∠GBC=∠FAC ,在∆BGC 和 ∆AFC 中,∵∠GBC=∠FAC ,BC AC =, ∠GBC=∠FAC ,∴∆BGC ≅∆AFC (ASA ),∴BG=AF ,∵BE ⊥AF ,y 轴恰好平分ABC ∠,∴∠ABE=∠FBE ,∠AEB=∠FEB=90°,BE=BE ,∴∆ABE ≅∆FBE ,∴AE=FE ,∴AF=2AE∴BG=2AE .【点睛】 本题主要考查等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握“一线三垂直”模型,是解题的关键.26.在学习了“等边对等角”定理后,某数学兴趣小组的同学继续探究了同一个三角形中边与角的数量关系,得到了一个正确的结论:“在同一个三角形中,较长的边所对的角较大”,简称:“在同一个三角形中,大边对大角”.即,如图:当 AB >AC 时,∠C >∠B .该兴趣小组的同学在此基础上对等腰三角形“三线合一”性质的一般情况,继续进行了深入的探究,请你补充完整:(1)在△ABC 中,AD 是BC 边上的高线.①如图1,若AB =AC ,则∠BAD =∠CAD ;②如图2,若AB ≠AC ,当AB >AC 时,∠BAD ∠CAD .(填“>”,“<”,“=”)证明:∵ AD 是BC 边上的高线,∴∠ADB =∠ADC =90°.∴ ∠BAD =90°-∠B ,∠CAD =90°-∠C .∵AB >AC ,∴ (在同一个三角形中,大边对大角).∴∠BAD ∠CAD .(2)在△ABC 中,AD 是BC 边上的中线.①如图1,若AB =AC ,则∠BAD =∠CAD ;②如图3,若AB ≠AC ,当AB >AC 时,∠BAD ∠CAD .(填“>”,“<”,“=”)证明:解析:(1)①见解析,②∠B<∠C ,>;(2)①见解析;②<【分析】(1)①由HL 证明Rt △ABD ≌Rt △ACD 可得结论;②由AB >AC 得∠C >∠B 即可得出结论;(2)①由SSS 证明△ABD ≌△ACD 可得结论;②作辅助线证明△BDE CDA ≅∆,得BE CA =,∠BED CAD =∠,证得∠BAD BED <∠,即可得到结论.【详解】解:(1)①证明:∵AD 是BC 边上的高线∴∠ADB=∠ADC=90°,在Rt △ADB 和Rt △ADC 中AB AC AD AD =⎧⎨=⎩∴Rt △ABD ≌Rt △ACD∴∠BAD =∠CAD ;②证明:∵ AD 是BC 边上的高线,∴∠ADB =∠ADC =90°.∴ ∠BAD =90°-∠B ,∠CAD =90°-∠C .∵AB >AC , ∴ ∠B<∠C (在同一个三角形中,大边对大角).∴∠BAD > ∠CAD .故答案为:∠B<∠C ,>;(2)①证明:∵AD 是BC 边上的中线∴BD=CD在△ABD 和△ACD 中AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD∴∠BAD=∠CAD②如图,延长AD 至点E ,使AD=ED ,连接BE ,∵AD 是△ABC 的BC 边上的中线,∴BD CD =在△BDE 和△CDA 中,BD CD BDE CDA ED AD =⎧⎪∠=∠⎨⎪=⎩∴△BDE CDA ≅∆∴BE CA =,∠BED CAD =∠,又AB AC >,则AB BE >∴∠BAD BED <∠∴∠BAD CAD <∠.故答案为:<.【点睛】此题主要考查了全等三角形的判定与性质,作出辅助线构造全等三角形是解答此题的关键.27.如图,点,,,B F C E 在一条直线上,,//,//AB DE AB ED AC FD =.求证:(1) AC DF =(2)FB CE =解析:(1)见解析;(2)见解析【分析】(1)根据平行线的性质求出∠B=∠E ,∠ACB=∠DFE ,根据AAS 证出△BAC ≌△EDF ,可得AC=DF ;.(2)由△BAC ≌△EDF ,可证BC=EF ,进而可得FB=CE .【详解】证明:(1)∵AB//ED ,AC//FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△BAC 和△EDF 中ACB DFE B EAB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△EDF (AAS ),∴AC=DF ;(2)∵△BAC ≌△EDF ,∴BC=EF ,∴BC-FC=EF-FC ,∴FB=CE .【点睛】本题考查了全等三角形的性质和判定,平行线的性质,注意:①全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,②全等三角形的对应边相等,对应角相等.28.如图,点D ,E 分别在AB 和AC 上,DE//BC ,点F 是AD 上一点,FE 的延长线交BC 延长线BH 于点G .(1)若∠DBE =40°,∠EBC =35°,求∠BDE 的度数;(2)求证:∠EGH >∠ADE ;(3)若点E 是AC 和FG 的中点,△AFE 与△CEG 全等吗?请说明理由.解析:(1)∠BDE =105°;(2)见解析;(3)全等,理由见解析.【分析】(1)根据平行线的性质得出∠DEB=∠EBC=35°,再根据三角形的内角和定理即可得到结论;(2)根据三角形的外角性质得出∠EGH >∠ABC ,又根据平行线的性质得出∠ABC=∠ADE ,即可得出答案;(3)根据全等三角形判定的“SAS”定理即可得到结论.【详解】(1)解:∵DE//BC ,∠EBC =35°,∴∠DEB =∠EBC =35°,又∵∠BDE+∠DEB+∠DBE =180°,∠DBE =40°,∴∠BDE =105°;(2)证明:∵∠EGH 是△FBG 的外角,∴∠EGH >∠ABC ,又∵DE//BC ,∴∠ABC =∠ADE ,∴∠EGH >∠ADE ;(3)全等.证明:E 是AC 和FG 的中点,∴AE =CE ,FE =GE ,在△AFE 和△CEG 中,AE CE AEF CEG FE GE =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△CGE (SAS ).【点睛】本题考查了三角形的外角性质,平行线的性质的应用,全等三角形的判定,三角形内角和定理,能运用三角形外角性质进行推理是解此题的关键.。

8年级数学人教版上册同步练习全等三角形三角形全等的判定(含答案解析)

8年级数学人教版上册同步练习全等三角形三角形全等的判定(含答案解析)

8年级数学人教版上册同步练习全等三角形三角形全等的判定(含答案解析)12.1全等三角形12.2三角形全等的判定专题一三角形全等的判定1.如图,BD是平行四边形ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB 的平分线DF交BC于点F.求证:△ABE≌△CDF.2.如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________;(2)证明:3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二全等三角形的判定与性质4.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A6B.4 C.23D.55.【2013·襄阳】如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.NMEDB CA6.【2012·泸州】如图,△ABC是等边三角形,D是AB边上一点,以CD为边作等边三角形CDE,使点E﹨A在直线DC的同侧,连接AE.求证:AE∥BC.专题三全等三角形在实际生活中的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60°B.90°C.120°D.150°8.有一座小山,现要在小山A﹨B的两端开一条隧道,施工队要知道A﹨B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A﹨B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边﹨直角边”或“HL”).【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等.3.“HL”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等.【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC≌△DEF,说明A与D,B与E,C与F是对应点,则∠ABC与∠DEF是对应角,边AC与边DF 是对应边.2.判定两个三角形全等的解题思路:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——参考答案:1.证明:平行四边形ABCD 中,AB=CD ,∠A=∠C ,AB ∥CD , ∴∠ABD=∠CDB .∵∠ABE=21∠ABD ,∠CDF=21∠CDB ,∴∠ABE=∠CDF .在△ABE 与△CDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CDF ABE CDAB C A ∴△ABE ≌△CDF . 2.解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒ (2)以DC BD =为例进行证明: ∵CF ∥BE ,∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC =∠EDB , ∴△BDE ≌△CDF . 3.解:(1)添加条件②,③,④中任一个即可,以添加②为例说明. 证明:∵AE=CD ,BE=BD , ∴AB=CB .又∠ABD=∠CBE ,BE=BD , ∴△ADB ≌△CEB . (2)③④.4.B 解析:∵∠ABC =45°,AD ⊥BC ,∴AD =BD ,∠ADC =∠BDH , ∠AHE =∠BHD =∠C .∴△ADC ≌△BDH .∴BH =AC =4.故选B . 5.证明:如图所示,M∵△AEB由△ADC旋转而得,∴△AEB≌△ADC.∴∠3=∠1,∠6=∠C.∵AB=AC,AD⊥BC,∴∠2=∠1,∠7=∠C.∴∠3=∠2,∠6=∠7.∵∠4=∠5,∴∠ABM=∠ABN.又∵AB=AB,∴△AMB≌△ANB.∴AM=AN.6.证明:∵△ABC和△EDC是等边三角形,∴∠BCA=∠DCE=60°.∴∠BCA-∠ACD=∠DCE-∠ACD,即∠BCD=∠ACE.在△DBC和△EAC中,BC=AC,∠BCD=∠ACE,DC=EC,∴△DBC≌△EAC(SAS).∴∠DBC=∠EAC.又∵∠DBC=∠ACB=60°,∴∠ACB=∠EAC.∴AE∥BC.7.B 解析:∵滑梯﹨墙﹨地面正好构成直角三角形,又∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF.∴∠ABC=∠DEF,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.故选B.8.解:在△ABC和△CED中,AC=CD,∠ACB=∠ECD,EC=BC,∴△ABC≌△CED.∴AB=ED.即量出DE的长,就是A﹨B两端的距离.9.解:对.理由:∵AC ⊥AB,∴∠CAB=∠CAB′=90°. 在△ABC 和△AB′C 中,ACB ACB AC AC CAB CAB =⎧⎪=⎨⎪=⎩∠∠′,,∠∠′, ∴△ABC ≌△AB′C (ASA ). ∴AB′=AB .。

人教版八年级上册数学全等三角形(全是经典习题)单元测试题附详细解析

人教版八年级上册数学全等三角形(全是经典习题)单元测试题附详细解析

人教版八年级上册数学全等三角形(全是经典习题)单元测试题附详细解析一、单选题(共10题;共30分)1.(3分)如图,△ABC△△ADE,△C=40°,则△E的度数为()A.80°B.75°C.40°D.70°2.(3分)如图,在△ABC中,∠C=90°,AD是∠CAB的角平分线,DE⊥AB于点E,若BC=6cm,BD=4cm.则DE的长是()A.5cm B.4cm C.3cm D.2cm3.(3分)用直尺和圆规作一个角等于已知角,如图,能得出△A′O′B′=△AOB的依据是().A.SAS B.AAS C.ASA D.SSS4.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,则△1的度数是()A.76°B.62°C.42°D.76°、62°或42°都可以5.(3分)如图,正方形纸片ABCD的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0),若h1=5,h2=2,则正方形ABCD的面积S等于()A.34B.89C.74D.1096.(3分)下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等7.(3分)如图,直线l1,l2,l3表示三条公路。

现要建造一个洗手台P,使P到三条公路的距离都相等,则洗手台P可选择的点有()A.一处B.二处C.三处D.四处8.(3分)如图,一块玻璃被打碎成三块,如果要去玻璃店配一块完全一样的玻璃,那么最合理的办法是()A.带①去B.带②去C.带③去D.带①②③去9.(3分)如图,若要用“HL”证明Rt△ABC△Rt△ABD,则还需补充的条件是()A.AC=AD或BC=BD B.AC=AD且BC=BDC.△BAC=△BAD D.以上都不对10.(3分)如图,边长为5的大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,连结AF并延长交CD于点M.若AH=GH,则CM的长为()A.12B.34C.1D.54二、填空题(共5题;共15分)11.(3分)如图所示,AB=AC,AD=AE,△BAC=△DAE,△1=25°,△2=30°,则△3=.12.(3分)如图,△ABC的三边AB、BC、CA的长分别为30、40、15,点P是三条角平分线的交点,将△ABC分成三个三角形,则SΔAPB︰SΔBPC︰SΔCPA等于13.(3分)如图,AB⊥BC,AD⊥DC,请你添加一个条件,利用“HL”,证明Rt△ABC≌Rt△ADC.14.(3分)如图,△AOB=30°,OP平分△AOB,PD△OB于D,PC△OB交OA于C,若PC=10,则PD=.15.(3分)如图,C 为线段AE 上一动点(不与A、E 重合),在AE 同侧分别作等边△ABC 和等边△CDE,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ△AE;③AP=BQ;④DE=DP;⑤△AOB=60°,其中正确的结论是(把你认为正确的结论的序号都填上).三、解答题(共11题;共75分)16.(5分)如图,点E,F在BC上,BE=CF,△A=△D ,△B=△C.求证:△ABF△△DCE。

人教版初中八年级数学上册第十二章《全等三角形》习题(含答案解析)

人教版初中八年级数学上册第十二章《全等三角形》习题(含答案解析)

一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .52.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100° 3.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a +b -cD .a -b +c 4.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm5.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS6.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 7.下列说法正确的是( )①近似数232.610⨯精确到十分位;②在2,()2--,38-,2--中,最小的是38-;③如图所示,在数轴上点P 所表示的数为15-+;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点.A .1B .2C .3D .48.在以下图形中,根据尺规作图痕迹,能判定射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图3 9.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等10.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等11.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD =180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 12.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④ 13.如图,点C ,D 在线段AB 上,AC DB =,AE //BF ,添加以下哪一个条件仍不能判定△AED ≌△BFC ( )A .ED CF =B .AE BF =C .E F ∠=∠D .ED //CF14.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠ 15.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD二、填空题16.如图,点C 在AOB ∠的平分线上,CD OA ⊥于点D ,且2CD =,如果E 是射线OB 上一点,那么CE 长度的最小值是___________.17.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.18.如图,ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E ,且AB =10cm ,则DEB 的周长是_____cm .19.如图,两根旗杆间相距22米,某人从点B沿BA走向点A,一段时间后他到达点M,=.已知旗杆此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM DMBD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是________秒.20.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若BC=8cm,BD=5cm,AB=10cm,则S△ABD=______.21.如图,点D在BC上,DE⊥AB于点E,DF⊥BC交AC于点F,BD=CF,BE=CD.若∠AFD=145°,则∠EDF=_____.≅,延长BC,分别交AD,ED于点F,G,若22.如图,ABC ADE∠=________︒.∠=︒,10120B∠=︒,30EABCAD∠=︒,则CFD23.如图,线段AB ,CD 相交于点O ,AO=BO ,添加一个条件, 能使AOC BOD ≅,所添加的条件的是___________________________.24.如图,ABC 中,∠C =90°,AD 平分∠BAC , AB =5,CD =2,则ABD △的面积是______25.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______. 26.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题27.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.28.如图,AB ⊥CB ,DC ⊥CB , E 、F 在 BC 上,AF=DE ,BE=CF ,求证:AB =DC .29.如图,点,,,B F C E 在一条直线上,,//,//AB DE AB ED AC FD =.求证:(1) AC DF =(2)FB CE =30.作图:已知ABC 和线段r ,请在ABC 内部作点P ,使得点P 到AC 和BC 的距离相等,并且点A 到点P 的距离等于定长r .(不写作法,保留痕迹)。

八年级数学三角形全等(动点问题)(人教版)(专题)(含答案)

八年级数学三角形全等(动点问题)(人教版)(专题)(含答案)
(1)线段PC的长可用含t的式子表示为( )
A.6-t B.4-t
C.2t D.t
答案:A
解题思路:
点P速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:
①研究基本图形,标注:
②研究动点运动状态,包括起点,终点,状态转折点,速度,时间范围,
如图:
③表达线段长,建等式.
线段BP为已走路程,故BP=t,PC为未走路程,故PC=6-t.
由题意,点P在运动过程中有2个状态转折点,需分成3种情况:
①点P在BC上,对应的时间范围:0≤t≤4;
②点P在CD上,对应的时间范围:4<t≤7;
③点P在DA上,对应的时间范围:7<t≤11.
可知,当点P在CD上运动时,对应的t的取值范围是4≤t≤7.
故选C.
试题难度:三颗星知识点:略
7.(上接第6题)(2)当点P在DA上运动时,线段DP的长可用含t的式子表示为( )cm.
A.1 B.2
C.4 D.5
答案:C
解题思路:
由题意,△DCP≌△DCE,对应关系明确,
要使△DCP≌△DCE,
则需CP=CE,
即 ,
解得 (符合题意)
故选C.
试题难度:三颗星知识点:略
6.已知:如图,在长方形ABCD中,AB=6cm,AD=8cm,点E为BC上一点,且CE=2cm.动点P从点B出发,以每秒2cm的速度沿BC-CD-DA向终点A运动,连接AP,BP,DE.设点P运动时间为t秒.请回答下列问题:
故选A.
试题难度:三颗星知识点:略
4.(上接第3题)(2)若某一时刻,△DCP的面积为10,则此时t的值为( )
A.5 B.
C. D.1
答案:D

人教版八年级数学上册全等三角形的判定角边角判定三角形全等专项小练习(附答案)

人教版八年级数学上册全等三角形的判定角边角判定三角形全等专项小练习(附答案)

人教版八年级数学上册全等三角形的判定角边角判定三角形全等专项小练习(附答案)1.如图,已知∠CAB=∠DAB,则下列:①∠C=∠D;②AC=AD;③∠CBA=∠DBA;④BC=BD条件中,不能判定△ABC≌△ABD的是()A.①B.②C.③D.④2.如图,AB=AC,E,F分别是AB,AC的中点,BF,CE交于点D,连接AD.则此图中全等三角形有( )A.2对B.3对C.4对D.5对3.如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A,B,E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)4.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ABO=∠DCO.能判定△ABC≌△DCB的是.(填正确答案的序号)5.(易错警示题)如图,在平面直角坐标系xOy中,点A的坐标是(2,0),点B 的坐标是(0,4),点C在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当点C的坐标为时,以点C,O,D为顶点的三角形与△AOB 全等.6.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.7.(素养提升题)如图所示,已知DE=AE,点E在BC上,AE⊥DE,AB⊥BC,DC ⊥BC,请问,线段AB,DC和线段BC有何大小关系.并说明理由解题模型 发散思维模型 利用“ASA”或“AAS”证明三角形全等的书写模式如图:点A ,B ,C ,D 在一条直线上,AB =CD ,AE ∥BF ,CE ∥DF .求证:△AEC ≌△BFD .【证明】∵AB =CD ,∴AB +BC =CD +BC ,即AC =BD ,∵AE ∥BF ,CE ∥DF ,∴∠A =∠FBC ,∠D =∠ECA .在△AEC 和△BFD 中,A FBC AC BD ECA D ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴△AEC ≌△BFD (ASA ).1.角边角(ASA )书写模式:如图,在△ABC 与△'''A B C 中,''''A A AB A B B B ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴△ABC ≌△A'B'C'(ASA ).2.角角边(AAS )书写模式:如图,在△ABC 与△'''A B C 中,'''A A B B BC B C ∠=∠⎧⎪∠=∠⎨⎪='⎩,,,∴△ABC ≌△A'B'C'(AAS )参考答案1.答案:D2.答案:C3.答案:AD=AC(∠D=∠C或∠ABD=∠ABC等)4.答案:①③④5.答案:(-4,0),(-2,0),(4,0)6.答案:见解析解析:(1)∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,A DB C AE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)∵△ABE≌△DCF∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°,∵AB=CF,∴CF=CD,∴∠D=∠CFD=1(18040)70 2︒︒︒⨯-=.7.答案:见解析解析:线段AB,DC和线段BC的关系是:BC=AB+DC.理由如下:∵AB⊥BC,DC⊥BC,∴∠ABE=∠ECD=90°,∵AE⊥DE,∴∠AED=90°,在△ABE中,∠BAE+∠AEB=90°,在△DCE中,∠EDC+∠DEC=90°. ∵∠BEA+∠DEC=90°,∴∠BEA=∠EDC,在△ABE和△ECD中,BEA CDEABE ECD DE AE∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ABE≌△ECD(AAS),∴AB=EC,BE=CD,∴BC=BE+EC=DC+AB.。

人教八上:专题二--全等三角形的性质与判定(含解析)

人教八上:专题二--全等三角形的性质与判定(含解析)

专题二全等三角形的性质与判定一、单选题1.下面四个三角形中,与图中的△ABC全等的是()..23A.50°B.59°C.69°D.71°4.如图,点E、F在BC上,AB=CD,AF=DE,AF、DE相交于点G,添加下列哪一个条件,可使得△ABF≌△DCE()A.∠B=∠C B.AG=DG C.∠AFE=∠DEF D.BE=CF5.尺规作图中蕴含着丰富的数学知识和思想方法.如图,为了得到∠MBN=∠PAQ,在用直尺和圆规作图的过程中,得到△ACD≌△BEF的依据是().A.SAS B.SSS C.ASA D.AAS6.已知,如图所示的两个三角形全等,则∠1=()A.72°B.60°C.48°D.50°7.用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,则OP平分∠AOB.做法中用到证明△OMP与△ONP全等的判定方法是()A.SAS B.SSS C.ASA D.HL8.如图,点E、F在BC上,AB=DC,∠B=∠C.添加一个条件后,不能证明△ABF≌△DCE,这个条件可能是()A.∠A=∠D B.BE=CF C.BF=CE D.AF=ED9.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.58°D.50°10.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD11.如图,已知∠CAB=∠DBA,老师要求同学们补充一个条件使△ABC≌△BAD,以下是四个同学补充的条件,其中错误的是()A.AC=BD B.CB=DA C.∠C=∠D D.∠ABC=∠BAD12.用直尺和圆规作一个角等于已知角,如图,能得出∠AOB=∠A′O′B′的依据是()A.SSS B.SAS C.ASA D.AAS13.如图,AB=4厘米,BC=6厘米,∠B=∠C,如果点P在线段BC上以2厘米/秒的速度由B点向C 点运动,同时,点Q从C点出发沿射线CD运动.若经过t秒后,△ABP与△CQP全等,则t的值是()A.1B.1.5C.1或1.5D.1或214.已知图中的两个三角形全等,则∠1的度数是()A.50°B.54°C.60°D.76°15.如图,点E、F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( )A.∠A=∠D B.∠AFB=∠DEC C.AB=DC D.AF=DE16.如图,点B、E、C、F在一条直线上,AB=DE,∠B=∠DEF,要使得△ABC≌△DEF,不能添加的条件是()A.∠A=∠D B.AC=DF C.BE=CF D.AC∥DF17.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1的大小是()A.64°B.65°C.51°D.55°18.如图,工人师傅设计了一种测量零件内径AB的卡钳,卡钳交叉点O为AA′、BB′的中点,只要量出A′B′的长度,就可以知道该零件内径AB的长度.其依据的数学基本据实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.等角对等边D.两点之间线段最短19.如图,在等腰Rt△ABC中,AC=BC,∠ACB=90°,点A(0,a),B(b,0),C(−4,4),其中b<a<0,则a,b之间的数量关系是()A.a+b=−4B.a−b=4C.a+b=−8D.a−b=820.用尺规作图作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.HL D.SSS21.如图,点E、F在BC上,AB=DC,AF=DE,AF、DE相交于点G,要使得△ABF≌△DCE,添加下列哪一个条件()A.∠B=∠C B.GE=GF C.∠AFE=∠DEF D.BF=CE 22.阅读以下作图步骤:①在OA和OB上分别截取OC,OD,使OC=OD;②③23A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC 24.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°25.如图,已知∠CAB=∠DAB,则添加下列一个条件不一定能使△ABC≌△ABD的是( )A.BC=BD B.∠C=∠D C.AC=AD D.∠ABC=∠ABD26.已知:如图,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A+∠D=90°B.∠A=∠2C.△ABC≌△CED D.∠1=∠227.如图,已知ΔABC,下面甲、乙、丙、丁四个三角形中,与ΔABC全等的是()A.甲B.乙C.丙D.丁二、填空题28.如图,点B、C、E三点在同一直线上,且AB=AD,AC=AE,BC=DE,若∠1+∠2+∠3=96°,则∠3的度数为.29.如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,△ADE的周长为cm.30313233.已知:如图,∠B=∠C=90°,AF=DE,BE=CF.求证:AB=DC.34.如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.35.如图,四边形ABCD中,∠B=90°,AB∥CD,M是BC边上的一点,且AM平分∠BAD,DM平分∠ADC,求证:(1)BM=MC;(2)AM⊥MD.36.如图,在Rt△ABC中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过点P作PF⊥AD 交BC的延长线于点F,PF交AC于点H,求证:(1)△ABP≌△FBP;(2)AH=AB−BD.37.如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.38.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD交于点O,OB=OC.求证:∠1=∠2.39.如图,在△ABC中,AB=AC,D、E是BC边上的点,且BD=CE,求证:AD=AE.40.如图,在四边形ABCD中,AB∥CD,E为AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:△CDE≌△FAE.(2)连接BE,当BE⊥CF时,CD=3,AB=2,求BC的长.41.如图,点D、E在△ABC的BC边上,AB=AC,AD=AE,求证:BD=CE.42.我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,AD=CD,AB=CB,对角线AC交BD与点O.(1)请根据你学过的知识直接写出一组全等的三角形______;(2)求证:AC⊥BD.43.如图,AB=CD,AE⊥BC于E,DF⊥BC于F,若CE=BF.(1)求证:AE=DF;(2)求证:AB∥CD.44.如图,BE⊥AD,CF⊥AD,垂足分别为点E,F,AF=DE,∠B=∠C,求证:AB=CD.45.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ADC≌△CEB;(2)延长EB至点F,使得BF=DE,连接AF交CE于点G,若AD=5,BE=3,求DG的长.46.如图,AB=AE,∠B=∠AED,∠1=∠2,求证:AC=AD.47.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE.求证:∠AFB=2∠ACB.48.(变图形—平移型)如图,点C是AB的中点,AD=CE,CD=BE.求证:△ACD≌△CBE.49.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.50.在Rt△ABC中,∠BAC=90°,AB=AC,过直角顶点A作直线MN,BD⊥MN于点D,CE⊥MN于点E.(1)如图1,当MN与BC边不相交时,判断BD,CE,DE之间的数量关系,并说明理由;(2)当MN与边BC相交时,请在图2中画出图形,并直接写出BD,CE,DE之间的数量关系.51.如图,CA=CD,∠1=∠2,BC=EC.求证:AB=DE.52.如图,AD与BC相交于点O,OA=OC,∠A=∠C,BE=DE.求证:OE垂直平分BD.53.如图,点B,E,C,F在同一直线上,相交于点E,AB=DE,AC=DF,∠A=∠D.求证:BE=CF.54.如图,点A、B、C、D在同一直线上,AE=DF,AB=CD,CE=FB.求证:AE∥DF.55.如图,已知AB=AC,BD=CD,DM⊥AB于M,DN⊥AC于N,求证:DM=DN56.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1 B1C全等除外);(2)当△BB1D是等腰三角形且BB1=BD时,求α的值.参考答案题号12345678910答案C C B D B C D D C A题号11121314151617181920答案B A C A D B A A D D题号21222324252627答案D A B B A D B1.C【分析】根据全等三角形的判定方法即可判断.【详解】解:由题可得∠A=180°−60°−54°=66°,∵A选项属于已知两边和其中一边的对角对应相等的情况,不能判定两个三角形全等,故不符合题意;∵B选项中66°角的对边不相同,不能判定两个三角形全等,故不符合题意;∵C选项中已知两边与其中一边的夹角对应相等,所以能判定全等,故C选项符合题意;∵D选项中两对应角的夹边不相等,不能判定两个三角形全等,故不符合题意;故选:C.【点睛】本题考查了全等三角形的判定,牢记判定方法以及正确找出对应边或对应角是解决本题的关键.2.C【分析】由作图可知直线MN为边AC的垂直平分线,再由BD=DC得到AD=DC=BD,利用等边对等角以及三角形内角和定理,进而得到∠B+∠C=90°.【详解】解:由作图可知,直线MN为边AC的垂直平分线,∴DC=AD,∴∠C=∠CAD,∵BD=DC,∴AD=BD,∴∠B=∠BAD,∵∠C+∠B+∠CAD+∠BAD=180°,∴∠B+∠C=90°.故选:C.3.B【分析】由全等三角形的对应角相等,结合三角形内角和定理即可得到答案.【详解】∵两个三角形全等,由全等三角形的性质可知,两幅图中边长为a、b的夹角对应相等,∴∠α=180°−50°−71°=59°,故选:B4.D【分析】根据全等三角形的判定条件逐一判断即可.【详解】解:A、由∠B=∠C,AB=CD,AF=DE,不能证明△ABF≌△DCE,不符合题意;B、由AG=DG,AB=CD,AF=DE,不能证明△ABF≌△DCE,不符合题意;C、由∠AFE=∠DEF,AB=CD,AF=DE,不能证明△ABF≌△DCE,不符合题意;D、由BE=CF即可证明BF=CE,AB=CD,AF=DE,可以由SSS证明△ABF≌△DCE,符合题意;故选D.【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定定理是解题的关键,全等三角形的判定定理有SSS,SAS,AAS,ASA,HL.5.B【分析】此题考查了全等三角形的判定定理,三边对应相等的两个三角形全等,以及作一个角等于已知角,根据用尺规画一个角等于已知角的步骤,据此即可求解,正确理解题中的作图是解题的关键.【详解】解:根据做法可知:AC=BE,AD=BF,CD=EF,∴△ACD≌△BEF(SSS),∴∠MBN=∠PAQ,故选:B.6.C【分析】本题考查了全等三角形的性质,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【详解】解:∵DE=AB=a,DF=AC=c,又∵图中两个三角形全等,∴△ABC≌△DEF,∴∠D=∠A=180°−60°−72°=48°,∴∠1=48°,故选:C.7.D【分析】根据直角三角形全等的判定HL定理,可证△OPM≌△OPN.【详解】解:∵OM=ON,OP=OP,∠OMP=∠ONP=90°,∴△OPM≌△OPN所用的判定定理是HL.故选D.【点睛】本题考查学生的观察能力和判定直角三角形全等的HL定理,本题是一操作题,要会转化为数学问题来解决.8.D【分析】本题主要考查三角形全等的判定,根据SSS,ASA,SAS,AAS逐个判断即可得到答案;【详解】解:∵AB=DC,∠B=∠C,当∠A=∠D构成ASA,能得到△ABF≌△DCE,不符合题意,当BE=CF得到BF=CE构成SAS,能得到△ABF≌△DCE,不符合题意,当BF=CE构成SAS,能得到△ABF≌△DCE,不符合题意,当AF=ED不能得到三角形全等的判定,符合题意,故选:D.9.C【分析】本题主要考查了三角形内角和定理,全等三角形的性质,先根据三角形内角和为180度求出∠2的度数,再根据全等三角形对应角相等即可求出∠1的度数.【详解】解:如图所示,由三角形内角和定理得∠2=180°−50°−72°=58°,由全等三角形的性质可得∠1=∠2=58°,故选:C.10.A【分析】根据全等三角形的判定方法逐项判断即得答案.【详解】解:∵∠ABC=∠BAD,AB=BA,AC=BD,条件为边边角,∴不能证明△ABC≌△BAD,故A符合题意;∵∠ABC=∠BAD,AB=BA,∠CAB=∠DBA,条件为边角边,∴能证明△ABC≌△BAD,故B不符合题意;∵∠ABC=∠BAD,AB=BA,∠C=∠D,条件为角角边,能证明△ABC≌△BAD,故C不符合题意;∵∠ABC=∠BAD,AB=BA,BC=AD,条件为边角边,能证明△ABC≌△BAD,故D不符合题意,故选:A.【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.B【分析】本题考查全等三角形的判定,根据全等三角形的判定定理,逐项分析判断,即可求解.【详解】解:∵∠CAB=∠DBA,AB=BA,∴添加的条件是:AC=BD,根据SAS可证明△ABC≌△BAD,故选项A不符合题意;添加的条件是:CB=DA,无法判断△ABC≌△BAD,故选项B符合题意;添加的条件是:∠C=∠D,根据AAS可证明△ABC≌△BAD,故选项C不符合题意;添加的条件是:∠ABC=∠BAD,根据ASA可证明△ABC≌△BAD,故选项D不符合题意;故选:B12.A【分析】本题主要考查了基本作图、全等三角形的判定与性质等知识点,明确作图过程成为解答本题的关键.通过分析作图的步骤,发现△OCD与△O′C′D′的三条边分别对应相等,于是利用边边边判定△OCD≌△O′C′D′,根据全等三角形对应角相等得∠AOB=∠A′O′B′.【详解】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②作射线O′B′,以O′为圆心,OC长为半径画弧,交O′B′于点D′;③以D′为圆心,CD长为半径画弧,交前弧于点C′;④过点C′作射线O′A′.所以∠A′O′B′就是与∠AOB相等的角.在△O′C′D′与△OCD中,O′C′=OCO′D′=OD,C′D′=CD∴△OCD≌△O′C′D′(SSS),∴∠AOB=∠A′O′B′,即运用的判定方法是SSS.故选:A.13.C【分析】本题考查了全等的性质,解一元一次方程的应用.运用分类讨论的思想是解题的关键.由题意知,BP=2t,CP=6−2t,由△ABP与△CQP全等,分△ABP≌△PCQ,△ABP≌△QCP两种情况,列方程求解即可.【详解】解:由题意知,BP=2t,CP=6−2t,∵△ABP与△CQP全等,∴分△ABP≌△PCQ,△ABP≌△QCP两种情况求解;当△ABP≌△PCQ时,PC=AB,即6−2t=4,解得t=1;当△ABP≌△QCP时,BP=CP,即2t=6−2t,解得t=1.5;综上所述,t的值是1或1.5,故选:C.14.A【分析】本题考查了全等三角形的性质,根据全等三角形的对应边相等,对应角相等去判定对应关系后计算.熟练掌握对应角的判定方法是解题的关键.【详解】解:∵两个三角形全等,∠1是边a的对角,即边b、c夹角,∴∠1的度数是180°−54°−76°=50°.故选:A.15.D【分析】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.根据BE=CF求出BF=CE,再根据全等三角形的判定定理进行分析即可.【详解】解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠B=∠C,∴当∠A=∠D时,利用AAS可得△ABF≌△DCE;当∠AFB=∠DEC时,利用ASA可得△ABF≌△DCE;当AB=DC时,利用SAS可得△ABF≌△DCE;当AF=DE时,无法证明△ABF≌△DCE;故选:D.16.B【分析】本题考查的是添加条件证明三角形全等,熟记全等三角形的判定方法是解本题的关键;本题根据已有的条件AB=DE,∠B=∠DEF,再逐一分析添加的条件结合ASA,SAS,AAS可得答案.【详解】解:∵AB=DE,∠B=∠DEF,∴补充∠A=∠D,可利用ASA证明△ABC≌△DEF,故A不符合题意;补充AC=DF,不能证明△ABC≌△DEF,故B符合题意;补充BE=CF,∴BC=EF,可利用SAS证明△ABC≌△DEF,故C不符合题意;补充AC∥DF,∴∠ACB=∠F,可利用AAS证明△ABC≌△DEF,故D不符合题意;故选B17.A【分析】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.【详解】解:∵两个三角形全等,∴∠1=64°,故选:A.18.A【分析】本题主要考查了三角形全等的判定和性质,解题的关键是熟练掌握两边及其夹角分别相等的两个三角形全等.【详解】解:O为AA′、BB′的中点,∴OA=OA′,OB=OB′,∵∠AOB=∠A′OB′(对顶角相等),∴在△AOB与△A′OB′中,OA=OA′,∠AOB=∠A′OB′OB=OB∴△AOB≌△A′OB′(SAS),∴AB=A′B′,故选:A.19.D【分析】本题考查坐标与图形性质,过点C作坐标轴的垂线,利用AAS证明△BCM≌△ACN,即可求解,解题的关键是构造全等三角形.【详解】解:过点C作x轴和y轴的垂线,垂足分别M和N,∵∠CMO=∠CNO=∠MON=90°,∴四边形CMON是矩形,∴∠MCN=90°,∴∠ACN+∠ACM=90°,∵∠ACB=90°,∠BCM+∠ACM=90°,∴∠BCM=∠ACN,在△BCM和△ACN中,∠BCM=∠ACN∠BMC=∠ANC,BC=AC∴△BCM≌△ACN(AAS),∴BM=AN,又∵点C坐标为(−4,4),∴点M坐标为(−4,0),点N坐标为(0,4).∴BM=−4−b,AN=4−a∴−4−b=4−a即a−b=8.故选:D.20.D【分析】此题主要考查对尺规作图作一个角等于已知角的理解,利用全等三角形的判定方法判断即【详解】解:由作法得OD=O′D′,OC=O′C′,CD=C′D′,在△COD和△C′O′D′中,OD=O′D′OC=O′C′,CD=C′D′∴△COD≌△C′O′D′(SSS),∴∠A′O′B′=∠AOB(全等三角形的对应角相等).故选:D.21.D【分析】本题考查了全等三角形的判定.根据全等三角形的判定方法依次进行判断即可.【详解】解:A、添加∠B=∠C,不能使得△ABF≌△DCE,不符合题意;B、添加GE=GF,不能使得△ABF≌△DCE,不符合题意;C、添加∠AFE=∠DEF,不能使得△ABF≌△DCE,不符合题意;D、添加BF=CE,利用SSS,可以使得△ABF≌△DCE,符合题意;故选:D.22.A【分析】由作图过程可得:OD=OC,CM=DM,再结合DM=DM可得△COM≌△DOM(SSS),由全等三角形的性质可得∠1=∠2即可解答.【详解】解:由作图过程可得:OD=OC,CM=DM,∵DM=DM,∴△COM≌△DOM(SSS).∴∠1=∠2.∴A选项符合题意;不能确定OC=CM,则∠1=∠3不一定成立,故B选项不符合题意;不能确定OD=DM,故C选项不符合题意,OD∥CM不一定成立,则∠2=∠3不一定成立,故D选项不符合题意.故选A.【点睛】本题主要考查了角平分线的尺规作图、全等三角形的判定与性质等知识点,理解尺规作图过程是解答本题的关键.【分析】利用全等三角形的判定依次证明即可.【详解】解:∵AE=CF,∴AE+EF=CF+EF.∴AF=CE.A.在△ADF和△CBE中,{∠A=∠CAF=CE∠AFD=∠CEB,∴△ADF≌△CBE(ASA),正确,故本选项不符合题意.B.根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项符合题意.C.在△ADF和△CBE中,{AF=CE∠AFD=∠CEBDF=BE,∴△ADF≌△CBE(SAS),正确,故本选项不符合题意.D.∵AD∥BC,∴∠A=∠C.由A选项可知,△ADF≌△CBE(ASA),正确,故本选项不符合题意.故选B.【点睛】本题考查了添加条件证明三角形全等,解题的关键是熟练运用判定三角形全等的方法.24.B【分析】本题考查了全等三角形的性质:全等三角形的对应边相等、对应角相等,找准对应角是解题的关键.根据全等三角形的对应角相等可知∠ACB=∠A′CB′,给等式的两边同时减去∠BCA′,可得到∠ACA′=∠BCB′=30°.【详解】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB,∵∠BCA′+∠BCB′=∠BCA′+∠A′CA,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°.故选:B.25.A【分析】根据题目中的已知条件AB=AB,∠CAB=∠DAB,再结合题目中所给选项中的条件,利用全等三角形的判定定理进行分析即可.【详解】解;由图形可知:AB=AB,∠CAB=∠DAB,A.再加上条件BC=BD,不能证明△ABC≌△ABD,故此选项合题意;B. 再加上条件∠C=∠D,可利用AAS可证明△ABC≌△ABD,故此选项不合题意;C. 再加上条件AC=AD,可利用SAS可证明△ABC≌△ABD,故此选项不符合题意;D. 再加上条件∠ABC=∠ABD,可利用ASA可证明△ABC≌△ABD,故此选项不合题意.故选:A【点睛】本题考查全等三角形的判定定理,解题的关键是掌握全等三角形的判定定理.26.D【分析】本题主要考查全等三角形的性质.先根据角角边证明△ABC≌△CED,再根据全等三角形对应边相等,全等三角形的对应角相等的性质对各选项判断后,利用排除法求解.【详解】解:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2,在△ABC和△CED中,∠B=∠E=90°∠A=∠2,AC=CD∴△ABC≌△CED(AAS),故B、C选项正确,不符合题意;∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确,不符合题意;∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,但∠1不一定等于∠2,故D选项错误,符合题意.故选:D.27.B【分析】根据三角形全等的判定逐个判定即可得到答案.【详解】解:由题意可得,B选项符合边角边判定,故选B.【点睛】本题考查三角形全等的判定,解题的关键是熟练掌握三角形全等的几个判定.28.48°/48度,∴在∵∴29先长=∴∴【点睛】本题考查了翻折变换的性质,翻折变换保留原有图形的性质,而且可以使得原有的分散条件相对集中,从而有利于问题的解决.30.AB/BA【分析】本题主要考查全等三角形的判定与性质,证明△ABC≌△ADC是解题的关键.由AAS判断出△ABC≌△ADC即可得到答案.【详解】解:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°,在△ABC,△ADC中,∠1=∠2∠B=∠D,AC=AC∴△ABC≌△ADC(AAS),∴AD=AB.故答案为:AB.31.证明见解析【分析】根据平行得出∠B=∠DEF,然后用“边角边”证明△ABC≌△DEF即可.【详解】证明:∵AB//DE,∴∠B=∠DEF.∵BE=CF,∴BE+EC=CF+EC.∴BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠DEF,BC=EF,∴△ABC≌△DEF.∴∠A=∠D.【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用已知条件,推导证明出全等三角形判定所需条件,运用全等三角形判定定理证明.32.见解析【分析】利用AAS证明△ACO≌△DBO,即可得到结论.【详解】解:证明:在△ACO和△DBO中∠AOC=∠DOB∠A=∠DAC=DB∴△ACO≌△DBO(AAS).∴AO=DO,CO=BO.∴AO+BO=DO+CO∴AB=CD.【点睛】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法是解题的关键.33.详见解析【分析】运用HL定理证明直角三角形全等即可.【详解】∵BE=CF,∴BF=CE在Rt△ABF与Rt△DCE中:{AF=DE BF=CE∴Rt△ABF≌Rt△DCE(HL)∴AB =DC【点睛】本题考查了直角三角形全等的判定与性质,熟练掌握HL定理是解题关键.34.见解析【分析】根据已知条件得出∠AOB=∠COD,进而证明△AOB≌△COD,根据全等三角形的性质即可得证.【详解】证明:∵∠AOD=∠COB,∴∠AOD−∠BOD=∠COB−∠BOD,即∠AOB=∠COD.在△AOB和△COD中,OA=OC,∠AOB=∠COD,OB=OD,∴△AOB≌△COD∴AB=CD.【点睛】本小题考查等式的基本性质、全等三角形的判定与性质等基础知识,考查几何直观、推理能力等,掌握全等三角形的性质与判定是解题的关键.35.(1)见详解(2)见详解【分析】(1)作NM⊥AD,根据角平分线的性质得到BM=MN,MN=CM,等量代换得到答案.(2)根据平行线的性质得到∠BAD+∠ADC=180°,根据角平分线的定义得到∠MAD+∠ADM=90°,根据垂直的定义得到答案;【详解】(1)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM;(2)证明:∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;【点睛】本题考查的是角平分线的性质,掌握平行线的性质和角的平分线上的点到角的两边的距离相等是解题的关键.36.(1)见详解(2)见详解【分析】(1)根据三角形内角和以及角平分线定义得出∠APB=135°,易得∠DPB=45°,可得∠BPF=135°,即可证明△ABP≌△FBP;(2)由(1)结论可得∠F=∠BAD,AP=PF,AB=BF,即可求得∠F=∠CAD,即可证明△APH≌△FPD,可得AH=DF,即可解题.【详解】(1)∵AD、BE分别平分∠BAC、∠ABC,∠ACB=90°,∴∠PAB+∠PBA=12(∠ABC+∠BAC)=45°,∴∠APB=135°,∴∠DPB=45°,∵PF⊥AD,∴∠BPF=135°,在△ABP和△FBP中,∠BPF=∠APB=135°BP=BP∠ABP=∠FBP∴△ABP≌△FBP(ASA);(2)∵△ABP≌△FBP,∴∠F=∠BAD,AP=PF,AB=BF,∵∠BAD=∠CAD,∴∠F=∠CAD,在△APH和△FPD中,∠F=∠CADAP=PF∠APH=∠FPD=90°∴△APH≌△FPD(ASA),∴AH=DF,∵BF=DF+BD,∴AB=AH+BD.∴AH=AB−BD.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABP≌△FBP和△APH≌△FPD是解题的关键.37.见解析【分析】由BE=CF可得BC=EF,即可判定ΔABC≌ΔDEF(SAS),再利用全等三角形的性质证明即可.【详解】∵BE=CF,∴BE+EC=EC+CF,即BC=EF,又∵AB=DE,∠B=∠DEF,∴在ΔABC与ΔDEF中,AB=DE∠B=∠DEF,BC=EF∴ΔABC≌ΔDEF(SAS),∴AC=DF.【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键. 38.见解析【分析】先证明ΔBDO≌ΔCEO(AAS),得到OD=OE,再根据角的平行线性质判定即可.【详解】证明:∵CD⊥AB于D点,BE⊥AC于点E,∴∠BDO =∠CEO =90∘,在ΔBDO 和ΔCEO 中,∠BDO =∠CEO ∠BOD =∠COE OB =OC,ΔBDO≌ΔCEO (AAS),∴OD =OE ,∵OD ⊥AB ,OE ⊥AC ,∴OA 平分∠BAC ,∴∠1=∠2.【点睛】本题考查了三角形全等的判定和性质,角的平分线的判定定理,熟练掌握三角形全等的判定和角的平分线的判定是解题的关键.39.见解析【分析】利用等腰三角形的性质可得∠B =∠C ,再由SAS 证明△ABD≌△ACE ,从而得AD =AE .【详解】证明:∵AB =AC ,∴∠B =∠C ,在△ABD 和△ACE 中,AB =AC ∠B =∠C BD =CE,∴△ABD≌△ACE (SAS ),∴AD =AE .【点睛】本题考查等腰三角形的性质,全等三角形的性质与判定,熟练掌握相关性质定理是解题的关键.40.(1)证明见解析(2)5【分析】此题主要考查全等三角形的判定和性质,解题关键是根据AAS 证明△CDE 和△FAE 全等.(1)根据 AAS 证明△CDE 和△FAE全等即可;(2)根据全等三角形的性质结合线段垂直平分线性质解答即可.【详解】(1)证明:∵AB ∥CD ,∴∠DCE =∠F ,∵点E 是AD 中点,∴DE =AE ,在△CDE 和△FAE 中,∠DCE =∠F ∠CED =∠FEA DE =AE,∴△CDE≌△FAE (AAS);(2)由(1)知△CDE≌△FAE ,∴CE =FE ,CD =AF∵BE ⊥GF ,∴BE 垂直平分CF ,∴BC =BF ,∵CD =3,AB =2,∴AF =CD =3,∴BC =BF =AF +AB =3+2=5.41.证明见解析【分析】本题主要考查了三线合一定理,过点A 作AP ⊥B C 于P ,利用三线合一得到P 为DE 及BC 的中点,再根据线段之间的关系即可得证.【详解】证明:如图,过点A 作AP ⊥B C 于P .∵AB =AC ,∴BP =PC ;∵AD =AE ,∴DP =PE ,∴BP−DP =PC−PE ,∴BD =CE .42.(1)△ABD≌△CBD(2)证明见解析【分析】本题考查的是全等三角形的判定与性质,等腰三角形的性质;熟记等腰三角形的三线合一是解本题的关键.(1)直接利用SSS证明△ABD≌△CBD即可;(2)由△ABD≌△CBD可得∠ADB=∠CDB,再结合等腰三角形的性质可得结论.【详解】(1)解:△ABD≌△CBD,理由如下:在△ABD和△CBD中,AD=CDAB=CB,BD=BD∴△ABD≌△CBD(SSS);(2)∵△ABD≌△CBD,∴∠ADB=∠CDB,∵DA=DC,∴AD⊥AC.43.(1)证明见解析(2)证明见解析【分析】本题主要考查直角三角形的全等判定和性质,(1)根据题意得∠AEB=∠DFC=90°,由CE=BF得BE=CF,则有Rt△CDF≌Rt△BAE,结合全等的性质即可证明;(2)利用Rt△CDF≌Rt△BAE得到对应的角度相等,结合内错角相等两直线平行的判定即可证明;【详解】(1)证明:∵AE⊥BC于E,DF⊥BC于F,∴∠AEB=∠DFC=90°,∵CE=BF,∴CE−EF=BF−EF,∴BE=CF,在Rt△CDF与Rt△BAE中,CD=ABCF=BE,∴Rt△CDF≌Rt△BAE(HL)∴AE=DF,(2)由(1)可知Rt△CDF≌Rt△BAE(HL),∴∠C=∠B,∴AB∥CD.44.证明见解析【分析】本题考查了全等三角形的判定与性质等知识,证△AEB≌△DFC(AAS),即可得出结论.∴∵∴∴在∴∴45(2)((∴∴∠ACD+∠DAC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠DAC=∠ECB.在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠ECB, AC=CB,∴△ADC≌△CEB (AAS)(2)由(1)得△ADC≌△CEB∴CE =AD =5,CD =BE =3,∴BF =DE =CE−CD =5−3=2,∴EF =BF +BE =2+3=5,∴EF =AD .∵AD ⊥CE ,BE ⊥CE ,∴∠FEG =∠ADG =90°在△FEG 和△ADG 中,∠FEG =∠ADG,∠FGE =∠AGD,FE =AD,∴△FEG≌△ADG (AAS),∴DG =EG =12DE =1.46.证明见解析【分析】本题考查三角形全等的判定,先证明∠BAC =∠EAD ,在用ASA 证明△ABC≌△AED 即可,掌握判定三角形全等是解题的关键.【详解】证明∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC∴∠BAC =∠EAD ,在△ABC 和△AED 中,∠B =∠AED AB =AE ∠BAC =∠EAD,∴△ABC≌△AED .∴AC =AD 47.见解析【分析】先根据SSS 定理得出△ABC≌△DEB (SSS ),故∠ACB =∠EBD ,再根据∠AFB 是△BFC 的外角,可知∠AFB =∠ACB +∠EBD ,可得出∠AFB =2∠ACB,故可得出答案.【详解】解:在△ABC和△BDE中,AC=BDAB=EDBC=BE∴△ABC≌△DEB(SSS)∴∠ACB=∠EBD;∵∠AFB=∠ACB+∠EBD,∴∠AFB=2∠ACB【点睛】此题考查全等三角形的判定和性质,同时涉及三角形外角和定理,掌握相关定理知识是解题的关键.48.见解析【分析】根据中点的定义得出AC=CB,即可根据SSS证明△ACD≌△CBE.【详解】证明:∵点C是AB的中点,∴AC=CB.在△ACD和△CBE中,AD=CECD=BE,AC=CB∴△ACD≌△CBE(SSS).【点睛】本题主要考查了的三角形全等的判定,解题的关键是掌握三边都相等的两个三角形全等.49.见解析【分析】由BE=CF可得BF=CE,再结合AB=DC,∠B=∠C可证得△ABF≌△DCE,问题得证.【详解】解∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF和△DCE中,AB=DC∠B=∠CBF=CE∴△ABF≌△DCE,∴∠A=∠D.【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.50.(1)DE=BD+CE,见解析(2)见解析,CE−BD=DE或BD−CE=DE【分析】(1)由BD⊥MN于点D,CE⊥MN于点E,得∠BDA=∠AEC=∠BAC=90°,则∠DAB=∠ECA=90°−∠EAC,而AB=CA,即可证明△DAB≌△ECA,得BD=AE,AD=CE,则BD+CE=AE+AD=DE;(2)分两种情况讨论,一是MN与边BC相交且∠BAD<45°,同理可证△DAB≌△ECA,得BD=AE,AD=CE,则CE−BD=AD−AE=DE;二是MN与边BC相交且∠BAD>45°,同理可证△DAB≌△ECA,得BD=AE,AD=CE,则BD−CE=AE−AD=DE.【详解】(1)证明:∵BD⊥MN,CE⊥MN,∴∠ADB=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠CAE+∠ACE=90°,∴∠BAD=∠ACE,在△ABD和△CAE中,∠ADB=∠CEA∠BAD=∠ACEAB=CA,∴△ABD≅△CAE(AAS);∴AD=CE,BD=AE,∵DE=AD+AE,∴DE=BD+CE;(2)解:CE−BD=DE或BD−CE=DE,理由:如图2,MN与边BC相交且∠BAD<45°,∵BD⊥MN于点D,CE⊥MN于点E,∴∠BDA=∠AEC=90°,∵∠BAC=90°,∴∠DAB=∠ECA=90°−∠EAC,在△DAB和△ECA中,∠DAB=∠ECA∠BDA=∠AEC,AB=CA∴△DAB≌△ECA(AAS),∴BD=AE,AD=CE,∴CE−BD=AD−AE=DE.如图3,MN与边BC相交且∠BAD>45°,∵BD⊥MN于点D,CE⊥MN于点E,∴∠BDA=∠AEC=90°,∵∠BAC=90°,∴∠DAB=∠ECA=90°−∠EAC,在△DAB和△ECA中,∠DAB=∠ECA∠BDA=∠AEC,AB=CA∴△DAB≌△ECA(AAS),∴BD=AE,AD=CE,∴BD−CE=AE−AD=DE.【点睛】此题重点考查直角三角形的两个锐角互余、同角的余角相等、全等三角形的判定与性质等知识,证明△DAB≌△ECA是解题的关键.51.见解析【分析】根据∠1=∠2,可得出∠ACB=∠DCE,然后利用SAS证明△ABC≌△DEC,继而可得出AB=DE.本题考查了全等三角形的判定与性质,熟练掌握SAS证三角形全等是解题的关键.【详解】证明:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA,即∠ACB=∠DCE,在△ABC和△DEC中,CA=CD∠ACB=∠DCE,BC=EC∴△ABC≌△DEC(SAS),∴AB=DE.52.证明见解析【分析】先利用A S A证明△AOB≌△COD,得出OB=OD,根据线段垂直平分线的判定可知点O在线段BD的垂直平分线上,再由BE=DE,得出点E在线段BD的垂直平分线上,即O,E两点都在线段BD的垂直平分线上,从而可证明OE垂直平分BD.【详解】在△AOB与△COD中,∠A=∠C,OA=OC,∠AOB=∠COD,∴△AOB≌△COD(ASA),∴OB=OD,∴点O在线段BD的垂直平分线上,∵BE=DE,∴点E在线段BD的垂直平分线上,∴OE垂直平分BD.【点睛】本题考查了线段垂直平分线的判定:到一条线段两端距离相等的点在这条线段的垂直平分线上,同时考查了全等三角形的判定与性质.53.见解析【分析】根据题意可以证得△ABC≅△DEF,所以BC=EF,即可得到结论.【详解】根据题意,在△ABC和△DEF中,AB=DE∠A=∠D,AC=DF∴△ABC≅△DEF,∴BC=EF,∴BC−CE=EF−CE,∴BE=CF.【点睛】本题考查了全等三角形的判定及性质,熟练掌握全等三角形的判定及性质是解题的关键.54.见解析【分析】本题考查了全等三角形的判定和性质,平行线的判定,熟练掌握全等三角形的判定和性质定理是解题的关键.根据全等三角形的判定和性质定理和平行线的判定定理即可得到结论.【详解】证明:∵AB=CD,∴AB+BC=CD+BC,即:AC=BD,。

人教新版八年级数学上册 第十二章 全等三角形 单元练习试题 (解析版).doc

人教新版八年级数学上册 第十二章 全等三角形   单元练习试题  (解析版).doc

第十二章全等三角形一.选择题(共10小题)1.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形3.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.76°B.62°C.42°D.76°、62°或42°都可以4.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cm B.2cm C.3cm D.4cm5.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.∠A=∠D B.EC=BF C.AB=CD D.AB=BC6.如图,AB∥FC,E是DF的中点,若AB=20,CF=12,则BD等于()A.12 B.8 C.6 D.107.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS8.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点9.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的一条角平分线.其中正确的有()A.1个B.2个C.3个D.4个10.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个二.填空题(共6小题)11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.12.如图,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE ≌△ACD,添加的条件是:.13.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE=.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于度.15.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“”.16.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三.解答题(共6小题)17.如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.18.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.19.已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:△ABC≌△DEF.20.把两个含有45°角的大小不同的直角三角板如图放置,点D在BC上,连接BE,AD,AD 的延长线交BE于点F.说明:AF⊥BE.21.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.22.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC 上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案一.选择题(共10小题)1.解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.2.解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.3.解:∵两个三角形全等,∴∠1=62°,故选:B.4.解:∵△ABC≌△DEF,∴EF=BC=5cm,∵BF=7cm,BC=5cm,∴CF=7cm﹣5cm=2cm,∴EC=EF﹣CF=3cm,故选:C.5.解:∵AE∥DF,∴∠A=∠D,∵AE=DF,∴要使△EAC≌△FDB,还需要AC=BD,∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,故选:C.6.解:∵AB∥FC∴∠ADE=∠EFC∵E是DF的中点∴DE=EF∵∠AED=∠CEF∴△ADE≌△CFE∴AD=CF∵AB=20,CF=12∴BD=AB﹣AD=20﹣12=8.故选:B.7.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.8.解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.9.解:∵AD=AD、∠ADB=∠ADC、BD=CD∴(1)△ABD≌△ACD正确;∴(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD∴(4)AD是△ABC的角平分线.故选:D.10.解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选:B.二.填空题(共6小题)11.解:∵AA′∥BC,∴∠A′AB=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC=∠ABC=70°,∴∠A′AB=∠AA′B=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故答案为:40°.12.解:∠B=∠C,理由是:∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故答案为:∠B=∠C.13.解:如图,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE=8,∴CE=4.故答案为:4.14.解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.15.解:∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,BD=EC,BC=CB,∴Rt△BCD≌Rt△CBE(HL),故答案为:HL.16.解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t 分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.三.解答题(共6小题)17.解:(1)∵△ACF≌△DBE,∠A=50°,∠F=40°,∴∠D=∠A=50°,∠E=∠F=40°,∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE,∴AC=BD,∴AC﹣BC=DB﹣BC,∴AB=CD,∵AD=16,BC=10,∴AB=CD=(AD﹣BC)=3.18.解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.19.证明:∵AB∥DE,∴∠B=∠DEF∵BE=FC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS).20.证明:AF⊥BE,理由如下:由题意可知∠DEC=∠EDC=45°,∠CBA=∠CAB=45°,∴EC=DC,BC=AC,又∠DCE=∠DCA=90°,∴△ECD和△BCA都是等腰直角三角形,∴EC=DC,BC=AC,∠ECD=∠ACB=90°.在△BEC和△ADC中EC=DC,∠ECB=∠DCA,BC=AC,∴△BEC≌△ADC(SAS).∴∠EBC=∠DAC.∵∠DAC+∠CDA=90°,∠FDB=∠CDA,∴∠EBC+∠FDB=90°.∴∠BFD=90°,即AF⊥BE.21.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.22.解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD =CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.。

人教版八年级数学上册《全等三角形(SSS)》专题测试【附解析】

人教版八年级数学上册《全等三角形(SSS)》专题测试【附解析】

人教版八年级数学上册《全等三角形(SSS )》专题过关练习题(解析版)一.选择题.1. 如图,AB=DE,AC=DF,BC=EF,则∠D 等于 ( )A.30°B.50°C.60°D.100°2. 如图,在△ABC 中,AB =AC ,点D 为BC 的中点,那么以下结论不正确的是( )A .△ABD ≌△ACDB .∠B =∠CC .AD 是△ABC 的角平分线 D .AD 不是△ABC 的高3. 如图所示,在△ABC 中,AB=AC ,BE=CE ,则由“SSS ”可以直接判定( )A.△ABD ≌△ACDB. △BDE ≌△CDEC. △ABE ≌△ACED.以上都不对4. 如图,在△ABC 和△FED 中,AC=FD,BC=ED,要利用“SSS ”来判定△ABC 和△FED 全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE=BE;④BF=BE,可利用的是()A.①或②B.②或③C.①或③D.①或④5. 如图是人字型金属屋架的示意图,该屋架由BC,AC,BA,AD四段金属材料焊接而成,其中A,B,C,D四点均为焊接点,且AB=AC,点D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是 ( )A.AD和BC,点DB.AB和AC,点AC.AC和BC,点CD.AB和AD,点A二.填空题.1. 在△ABC中,AB=AC,点D在BC上(不与点B,C重合).只需添加一个条件即可证明△ABD≌△ACD,这个条件可以是(写出一个即可).2. 如图,已知AB=AD,那么添加一个条件后,能利用“SSS”判定△ABC≌△ADC的是__ __.3. 如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=°.4. 工人师傅常用角尺平分一个任意角.作法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由作法得△MOC≌△NOC的依据是__ __.5. 如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB 长为半径作弧,两弧交于点D;连接AD,CD.若∠B=65°,则∠ADC的大小为_ __度.6. 如图,在△ABC中,AD=DE,AB=BE,∠A=83°,则∠CED=__ __.三.解答题.1. 如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.2. 已知AB=AC,BD=CD,试判断∠B与∠C的关系,并说明理由.3. 如图,AB=AC,DB=DC,EB=EC.(1)图中有几对全等三角形?请一一写出来.(2)选择(1)中的一对全等三角形加以证明.4. 如图,已知AD=CB,AE=CF,DE=BF.试说明:DE∥BF.5.根据图中尺规作图的痕迹,先判断得出结论,然后说明你的结论.6.如图,已知AB=AC,AD=AE,BD=CE,求证∠3=∠1+∠2.解析一.选择题.1. 如图,AB=DE,AC=DF,BC=EF,则∠D等于( D )A.30°B.50°C.60°D.100°解析:因为AB=DE,AC=DF,BC=EF,所以△ABC与△DEF全等,所以∠A=∠D,因为。

人教版八年级数学上精练第12章全等三角形三角形全等的判定微专题全等三角形应用的常见类型(含解析)

人教版八年级数学上精练第12章全等三角形三角形全等的判定微专题全等三角形应用的常见类型(含解析)

人教版八年级数学上名师点拨精练第12章全等三角形12.2 三角形全等的判定微专题全等三角形应用的常见类型老师告诉你全等三角形的对应边相等、对应角相等,为我们提供了解决线段相等,角相等的新思路、新方法,因此,判定两个三角形全等是解决线段相等,角相等的问题的基础,全等三角形的判定和性质的应用是各类考试的必考内容之一,主要题型有证明线段、角相等关系、和差关系、位置关系等.类型一、全等三角形在证明线段相等角相等中的应用【典例剖析】例1-1.如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB于点E,点F在BC上,连接DF,且AD=DF.(Ⅰ)求证:CF=AE;(Ⅱ)若AE=3,BF=4,求AB的长.例1-2.如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.【针对训练】1.已知:如图,AB∥DE,AB=DE,AF=DC.求证:∠B=∠E.2.如图,在中,,、分别为、上一点,.若,求证:.3.如图,CA=CD,CB=CE,AB=DE,AB与DE交于点M.(1)求证:∠ACD=∠BCE;(2)连MC,若∠BMC=78°,求∠BMD的度数.类型二、全等三角形在证明线段和差关系的应用【典例剖析】例2-1.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;例2-2.综合与实践:数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:_____,∠BDC=_____°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:_____;【针对训练】1.已知:四边形中,,,,对角线相交于点O,且平分,过点A作,垂足为H.判断线段之间的数量关系:___________;并证明你的结论.2.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE.连结BE,CD,作AF⊥CD,垂足为F,交BE于点G.(1)若∠GAE=70°,求∠ADC的度数;(2)如图2,作EH⊥GF,垂足为H,HF=7,求EH+DF的长;(3)求证:BG=EG.3.如图,AD是△ABC的中线,BE⊥AD,垂足为E,CF⊥AD,交AD的延长线于点F,G是DA延长线上一点,连接BG.(1)求证:BE=CF;(2)若BG=CA,求证:GA=2DE.类型三、全等三角形在证明线段位置关系的应用【典例剖析】例3-1.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.例3-2.已知AB=CD,AD=BC.求证:①AD∥BC;②∠B=∠D.【针对训练】1.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.2.如图,,,,在同一条直线上,于点,于点,,,求证:.3.如图,点A ,B ,C ,D 在一条直线上,AB=CD ,CE ∥BF ,CE=BF ,求证:AE ∥DF .类型四、全等三角形在线段或角的计算中的应用 【典例剖析】例4-1.如图,AB DC =,ABC DCB ∠=∠.(1)求证:BD CA =;(2)若62A ∠=︒,75ABC ∠=︒.求ACD ∠的度数.例4-2.如图,在 ABC △中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作//CF AB 交ED 的延长线于点F ,(1)求证:BDE CDF ≌△△;(2)当AD BC ⊥,1AE =,2CF =时,求AC 的长.【针对训练】1.如图.点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AB 的两侧,且AE BF =,A B ∠=∠,ACE BDF ∠=∠.(1)求证:ACE BDF △△≌; (2)若8AB =,2AC =,求CD 的长.2.如图,四边ABCD 中,对角线AC 、BD 交于点O ,AB AC =,点E 是BD 上一点,且ABD ACD ∠=∠,EAD BAC ∠=∠.(1)求证:AE AD =;(2)若8BD =,5DC =,求ED 的长.3.如图,以ABC △的两边AC ,BC 为边分别向外作ADC △和BEC △,使得BCD ACE ∠=∠,CD CE =,D E ∠=∠.(1)求证:ADC BEC ≌△△;(2)若60CAD ∠=︒,110ABE ∠=︒,求ACB ∠的度数.4.如图,C 是线段AB 的中点,CD 平分ACE ∠,CE 平分BCD ∠,CD CE =.(1)求证:ACD BCE ≅△△; (2)若50D ∠=︒,求B ∠的度数.类型五、全等三角形在生活实际中的应用 【典例剖析】例5-1.小明在物理课上学习了发声物体的振动实验后,对其作了进一步的探究:在一个支架的横杆点O 处用一根细绳悬挂一个小球A ,小球A 可以自由摆动,如图,OA 表示小球静止时的位置.当小明用发声物体靠近小球时,小球从OA 摆到OB 位置,此时过点B 作BD ⊥OA于点D ,当小球摆到OC 位置时,OB 与OC 恰好垂直(图中的A 、B 、O 、C 在同一平面上),过点C 作CE ⊥OA 于点E ,测得CE=15cm,OE=8cm. (1)试说明:OE=BD ; (2)求DE 的长.例5-2.如图,小明在游乐场玩两层型滑梯,每层楼梯的高度相同(EH=HD ),都为2.5米,他想知道左右两个滑梯BC 和EF 的长度是否相等,于是制定了如下方案:课题 探究两个滑梯的长度是否相等 测量工具长度为6米的米尺 测量步骤①测量出线段FD 的长度②测量出线段AB 的长度测量数据DF=2.5米,AB=5米(1)根据小明的测量方案和数据,判断两个滑梯BC 和EF 的长度是否相等?并说明理由. (2)试猜想左右两个滑梯BC 和EF 所在直线的位置关系,并加以证明.【针对训练】1.如图,小明站在堤岸凉亭A点处,正对他的S点停有一艘游艇,他想知道凉亭与这艘游艇之间的距离,于是制定了如下方案.课题测凉亭与游艇之间的距离测量工具皮尺等测量方案示意图测量步骤①小明沿堤岸走到电线杆B旁;②再往前走相同的距离,到达C点;③然后他向左直行,当看到电线杆与游艇在一条直线上时停下来.测量数据AB=10米,BC=10米,CD=5米(1)凉亭与游艇之间的距离是_____米.(2)请你说明小明做法的正确性.2.如图,这是王玲家的养鱼塘,王玲想要测量鱼塘的宽AB,请你帮助她设计一个不必下水而且简单可行的方案,并说明理由,要求在原图上画出该方案的示意图.3.雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.人教版八年级数学上名师点拨精练第12章全等三角形12.2 三角形全等的判定微专题全等三角形应用的常见类型(解析版)老师告诉你全等三角形的对应边相等、对应角相等,为我们提供了解决线段相等,角相等的新思路、新方法,因此,判定两个三角形全等是解决线段相等,角相等的问题的基础,全等三角形的判定和性质的应用是各类考试的必考内容之一,主要题型有证明线段、角相等关系、和差关系、位置关系等.类型一、全等三角形在证明线段相等角相等中的应用【典例剖析】例1-1.如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB于点E,点F在BC上,连接DF,且AD=DF.(Ⅰ)求证:CF=AE;(Ⅱ)若AE=3,BF=4,求AB的长.【解析】(Ⅰ)通过HL证明Rt△CDF≌Rt△EDA,即可得出结论;(Ⅱ)通过HL证明△BED≌△BCD,得BE=BC,再进行等量代换即可.证明:(Ⅰ)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC,∠AED=90°,在Rt△CDF与Rt△EDA中,,∴Rt△CDF≌Rt△EDA(HL),∴CF=AE;(Ⅱ)∵CF=AE,AE=3,∴CF=3,∵BF=4,∴BC=BF+CF=4+3=7,∵DE⊥AB,∴∠DEB=90°,∵∠C=90°,∴∠DEB=∠C,∵BD是∠ABC的平分线,∴∠ABD=∠CBD,在△BED和△BCD中,,∴△BED≌△BCD(AAS),∴BE=BC=7,∴AB=BE+AE=7+3=10.例1-2.如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.【解析】由平行线的性质可得∠A=∠EBC,由“AAS”可证△ABD≌△BEC,可得BD=EC.证明:∵BD∥CE,∴∠ABD=∠C,在△ABD和△ECB中,∴△ABD≌△ECB(SAS),∴AD=EB.【针对训练】1.已知:如图,AB∥DE,AB=DE,AF=DC.求证:∠B=∠E.【解析】由AF=DC,得AC=DF,由AB∥DE,得∠A=∠D,即可证△ABC≌△DEF(SAS),故∠B=∠E.证明:∵AF=DC,∴AF+CF=DC+CF,即AC=DF,∵AB∥DE,∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠B=∠E.2.如图,在中,,、分别为、上一点,.若,求证:.【答案】见解析【解析】先根据条件得出,,再根据判定,即可得到.解:证明:,,,,,,,在与中,,,.【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.3.如图,CA=CD,CB=CE,AB=DE,AB与DE交于点M.(1)求证:∠ACD=∠BCE;(2)连MC,若∠BMC=78°,求∠BMD的度数.【解析】(1)根据SSS证明△ABC≌△DEC,进而利用全等三角形的性质解答即可;(2)根据AAS证明△AGC≌△DHC,进而利用全等三角形的性质解答即可.证明:(1)在△ABC和△DEC中,,∴△ABC≌△DEC(SSS),∴∠ACB=∠DCE,∴∠ACD=∠BCE;(2)过C作CG⊥AB于G,CH⊥DE于H,∵△ABC≌△DEC,∴∠A=∠D,AC=DC,∵∠AGC=∠DHC=90°,在△AGC和△DHC中,,∴△AGC≌△DHC(AAS),∴CG=CH,∴MC平分∠BMD,∴∠BMD=2∠BMC=2×78°=156°.类型二、全等三角形在证明线段和差关系的应用【典例剖析】例2-1.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;【解析】(1)①由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到答案;②由(1)得到AD=CE,CD=BE,即可求出答案;(2)与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案.(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∴△ADC≌△CEB(AAS).②证明:由(1)知:△ADC≌△CEB,∴AD=CE,CD=BE,∵DC+CE=DE,∴AD+BE=DE.(2)证明:∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=EC-CD=AD-BE.例2-2.综合与实践:数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:_____,∠BDC=_____°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:_____;【答案】(1)BE=CF;(2)30;(3)BF=CF+2AM;【解析】(1)根据等腰三角形的性质,利用SAS证明△ABE≌△ACF即可得出结论;(2)根据等腰三角形的性质,利用SAS证明△BAE≌△CAF即可得出结论;(3)根据等腰直角三角形的性质,利用SAS证明△BAE≌△CAE即可得出结论;(4)根据直径所对的圆周角是直角,先找到点P,利用勾股定理计算出BP,再利用第3小题的结论得到三角形的高,△ABP的面积即可求出.解:(1)BE=CF,∠BDC=30°,理由如下:如图1所示:∵△ABC和△ADE都是等腰三角形,∴AB=AC,AE=AF,又∵∠BAC=∠EAF=30°,∴△ABE≌△ACF(SAS),∴BE=CF,∴∠ABE=∠ACD,∵∠AOE∠ABE+∠BAC,∠AOE=∠ACD+∠BDC,∴∠BDC=∠BAC=30°;(2)BE=CF,∠BDC=60°,理由如下:如图2所示:证明:∵∠BAC=∠EAF=120°,∴∠BAC-∠EAC=∠EAF-∠EAC,即∠BAE=∠CAF,又∵△ABC和△AEF都是等腰三角形,∴AB=AC,AE=AF,∴△BAE≌△CAF(SAS)∴BE=CF,∴∠AEB=∠AFC,∵∠EAF=120°,AE=AF,∴∠AEF=∠AFE=30°,∴∠BDC=∠BEF-∠EFD=∠AEB+30°-(∠AFC-30°)=60°;(3)BF=CF+2AM,理由如下:如图3所示:∵△ABC和△AEF都是等腰三角形,∴∠CAB=∠EAF=90°,AB=AC,AE=AF,∴∠CAB-∠CAE=∠FAE-∠CAE,即:∠BAE=∠CAF,∴△BAE≌△CAE(SAS),∴BE=CF,∵AM⊥BF,AE=AF,EAF=90°,∴EF=2AM,∵BF=BE+EF,∴BF=CF+2AM;【针对训练】1.已知:四边形中,,,,对角线相交于点O,且平分,过点A作,垂足为H.判断线段之间的数量关系:___________;并证明你的结论.【答案】,证明见解析【解析】先证明是等边三角形,再证明,最后根据三角形内角和定理证明,在上截取,先证明,得出,再证明,得出,即可解决问题.,证明:∵,,∴是等边三角形,∴,∵,平分,∴,∴,∵,,,∴,在上截取,∵,∴,又,∴,∴,∴∵,∴,∴,∵,∴.【点睛】此题主要考查了全等三角形的判定和性质、等边三角形的判定和性质,三角形内角和定理,角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE.连结BE,CD,作AF⊥CD,垂足为F,交BE于点G.(1)若∠GAE=70°,求∠ADC的度数;(2)如图2,作EH⊥GF,垂足为H,HF=7,求EH+DF的长;(3)求证:BG=EG.【解析】(1)由∠ADC+∠DAF=90°,∠GAE+∠DAF=90°,得∠ADC=∠GAE=70°;(2)可证明△EAH≌△ADF,EH=AF,AH=DF,则EH+DF=AF+AH=HF=7;(3)作EH⊥FG于点H,BI⊥FG交FG的延长线于点I,可证明△BAI≌△ACF,得BI=AF,而EH=AF,所以BI=EH,可证明△BGI≌△EGH,则BG=EG.(1)解:如图1,∵AF⊥CD,∴∠AFD=90°,∴∠ADC+∠DAF=90°,∵∠DAE=90°,∴∠GAE+∠DAF=90°,∴∠ADC=∠GAE=70°,∴∠ADC的度数是70°.(2)解:如图2,∵EH⊥GF,∴∠EHA=∠AFD=90°,由(1)得∠EAH=∠ADF,在△EAH和△ADF中,,∴△EAH≌△ADF(AAS),∴EH=AF,AH=DF,∴EH+DF=AF+AH=HF=7,∴EH+DF的长是7.(3)证明:如图3,作EH⊥FG于点H,BI⊥FG交FG的延长线于点I,∴∠I=∠EHG=∠AFC=90°,∵∠BAC=90°,∴∠BAI=∠ACF=90°-∠CAF,在△BAI和△ACF中,,∴△BAI≌△ACF(AAS),∴BI=AF,由(2)得EH=AF,∴BI=EH,在△BGI和△EGH中,,∴△BGI≌△EGH(AAS),∴BG=EG.3.如图,AD是△ABC的中线,BE⊥AD,垂足为E,CF⊥AD,交AD的延长线于点F,G是DA延长线上一点,连接BG.(1)求证:BE=CF;(2)若BG=CA,求证:GA=2DE.【解析】(1)利用AAS证明△BED≌△CFD,得BE=CF;(2)利用HL证明Rt△BGE≌Rt△CAF,得GE=AF,从而解决问题.证明:(1)∵AD是△ABC的中线,∴BD=CD,∵BE⊥AD,CF⊥AD,∴∠BED=∠F,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴BE=CF;(2)在Rt△BGE和Rt△CAF中,,∴Rt△BGE≌Rt△CAF(HL),∴GE=AF,∴AG=EF.∵△BED≌△CFD,∴DE=DF,∴GA=2DE.类型三、全等三角形在证明线段位置关系的应用【典例剖析】例3-1.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.【解析】(1)根据平行线性质求出∠A=∠B,根据SAS推出即可.(2)根据全等三角形性质推出CD=CE,根据等腰三角形性质求出即可.证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中∴△ACD≌△BEC(SAS),(2)∵△ACD≌△BEC,∴CD=CE,又∵CF平分∠DCE,∴CF⊥DE.例3-2.已知AB=CD,AD=BC.求证:①AD∥BC;②∠B=∠D.【解析】①连接AC,由AB=CD,BC=DA,AC=CA,根据全等三角形的判定定理“SSS”证明△ABC≌△CDA,得∠ACB=∠CAD,则AD∥BC;②由△ABC≌△CDA,得∠B=∠D.证明:①连接AC,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠ACB=∠CAD,∴AD∥BC.②△ABC≌△CDA,∴∠B=∠D.【针对训练】1.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.【解析】(1)根据等腰直角三角形的性质,可以得出△ABE≌△ACD;(2)由△ABE≌△ACD可以得出∠B=∠ACD-45°,进而得出∠DCB=90°,就可以得出结论.(1)△ABE≌△ACD.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD,在△ABE与△ACD中,,∴△ABE≌△ACD;(2)证明∵△ABE≌△ACD,∴∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE.2.如图,,,,在同一条直线上,于点,于点,,,求证:.【答案】见解析【解析】先证明,利用全等三角形的性质解题即可.证明:∵,∴,又∵∴在和中,,∴∴∴【点睛】本题考查全等三角形的判定和性质,平行线的判定,掌握全等三角形的判定方法是解题的关键.3.如图,点A,B,C,D在一条直线上,AB=CD,CE∥BF,CE=BF,求证:AE∥DF.【解析】根据平行线的性质得出∠ACE=∠DBF,求出AC=BD,根据全等三角形的判定得出△AEC≌△DFB,根据全等三角形的性质得出∠A=∠D,根据平行线的判定得出即可.证明:∵CE∥BF,∴∠ACE=∠DBF,∵AB=CD,∴AB+BC=CD+BC,即AC=BD ,在△AEC 和△DFB 中,,∴△AEC ≌△DFB (SAS ), ∴∠A=∠D , ∴AE ∥DF .类型四、全等三角形在线段或角的计算中的应用 【典例剖析】例4-1.如图,AB DC =,ABC DCB ∠=∠.(1)求证:BD CA =;(2)若62A ∠=︒,75ABC ∠=︒.求ACD ∠的度数. 答案:(1)见详解 (2)32︒解析:(1)证明:在ABC △与DBC △中,AB DC ABC DCB BC CB ∠∠⎧⎪⎨⎪⎩===, ()SAS ABC DCB ∴≌△△,BD CA ∴=;(2)ABC DCB ≌△△,75ABC ∠=︒75ABC DCB ∴∠=∠=︒, 62A ∠=︒,75ABC ∠=︒. 180756243ACB ∴∠=︒-︒-︒=︒,754332ACD DCB ACB ∴∠=∠-∠=︒-︒=︒.例4-2.如图,在 ABC △中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作//CF AB 交ED 的延长线于点F ,(1)求证:BDE CDF ≌△△;(2)当AD BC ⊥,1AE =,2CF =时,求AC 的长. (1)答案:见解析 解析://CF AB ,B FCD ∴∠=∠,BED F ∠=∠,AD 是BC 边上的中线,BD CD ∴=, BDE CDF∴≌△△;(2)答案:3解析:BDE CDF≌△△, 2BE CF ∴==,123AB AE BE ∴=+=+=, AD BC ⊥,BD CD =, 3AC AB ∴==.【针对训练】1.如图.点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AB 的两侧,且AE BF =,A B ∠=∠,ACE BDF ∠=∠.(1)求证:ACE BDF △△≌;(2)若8AB =,2AC =,求CD 的长. 答案:(1)见解析 (2)4解析:(1)在ACE △和BDF △中,ACE BDF A BAE BF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AAS ACE BDF ∴△△≌;(2)ACE BDF ≌△△,2AC =,2BD AC ∴==,又8AB =,4CD AB AC BD ∴=--=.2.如图,四边ABCD 中,对角线AC 、BD 交于点O ,AB AC =,点E 是BD 上一点,且ABD ACD ∠=∠,EAD BAC ∠=∠.(1)求证:AE AD =;(2)若8BD =,5DC =,求ED 的长. 答案:(1)见解析 (2)3 解析:(1)BAC EAD ∠=∠,BAC EAC EAD EAC ∴∠-∠=∠-∠,即:BAE CAD ∠=∠, 在ABE △和ACD △中,ABD ACD AB ACBAE CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ASA ABE ACD ∴≌△△,AE AD ∴=;(2)()ASA ABE ACD ≌△△,BE CD ∴=, 8BD =,5DC =,853ED BD BE BD CD ∴=-=-=-=.3.如图,以ABC △的两边AC ,BC 为边分别向外作ADC △和BEC △,使得BCD ACE ∠=∠,CD CE =,D E ∠=∠.(1)求证:ADC BEC ≌△△;(2)若60CAD ∠=︒,110ABE ∠=︒,求ACB ∠的度数. 答案:(1)见解析 (2)80︒ 解析:(1)证明:BCD ACE ∠=∠,BCD ACB ACE ACB ∴∠-∠=∠-∠,即ACD BCE ∠=∠. 又CD CE =,D E ∠=∠,()ADC BEC ASA ∴△≌△;(2)由(1)得ADC BEC △≌△,60CBE CAD ∴∠=∠=︒,AC BC =, CAB CBA ∴∠=∠. 110ABE ∠=︒,1106050CAB CBA ABE CBE ∴∠=∠=∠-∠=︒-︒=︒, 180180505080ACB CAB CBA ∴∠=︒-∠-∠=︒-︒-︒=︒.4.如图,C 是线段AB 的中点,CD 平分ACE ∠,CE 平分BCD ∠,CD CE =.(1)求证:ACD BCE ≅△△; (2)若50D ∠=︒,求B ∠的度数. 答案:(1)证明见解析; (2)70︒. 解析:(1)点C 是线段AB 的中点,AC BC ∴=,又CD 平分ACE ∠,CE 平分BCD ∠,12∴∠=∠,23∠=∠,13∴∠=∠在ACD △和BCE △中,13CD CE AC BC =⎧⎪∠=∠⎨⎪=⎩ACD BCE ∴≅△△(2)123180∴∠+∠+∠=︒12360∴∠=∠=∠=︒ ACD BCE ≅△△ 50E D ∴∠=∠=︒180370B E ∴∠=-∠-∠=︒︒.类型五、全等三角形在生活实际中的应用 【典例剖析】例5-1.小明在物理课上学习了发声物体的振动实验后,对其作了进一步的探究:在一个支架的横杆点O 处用一根细绳悬挂一个小球A ,小球A 可以自由摆动,如图,OA 表示小球静止时的位置.当小明用发声物体靠近小球时,小球从OA 摆到OB 位置,此时过点B 作BD ⊥OA于点D ,当小球摆到OC 位置时,OB 与OC 恰好垂直(图中的A 、B 、O 、C 在同一平面上),过点C 作CE ⊥OA 于点E ,测得CE=15cm,OE=8cm. (1)试说明:OE=BD ; (2)求DE 的长.【解析】(1)利用AAS 证明△COE ≌△OBD ,可得结论;(2)利用全等三角形性质可得答案.解:(1)∵OB⊥OC,∴∠BOD+∠COE=90°,∵CE⊥OA,BD⊥OA,∴∠CEO=∠ODB=90°,∴∠BOD+∠B=90°,∴∠COE=∠B,∵OC=BO,∴△COE≌△OBD(AAS),∴OE=BD;(2)∵△COE≌△OBD,∴CE=OD=15cm,∴DE=OD-OE=7cm.例5-2.如图,小明在游乐场玩两层型滑梯,每层楼梯的高度相同(EH=HD),都为2.5米,他想知道左右两个滑梯BC和EF的长度是否相等,于是制定了如下方案:课题探究两个滑梯的长度是否相等测量工具长度为6米的米尺①测量出线段FD的长度测量步骤②测量出线段AB的长度测量数据DF=2.5米,AB=5米(1)根据小明的测量方案和数据,判断两个滑梯BC和EF的长度是否相等?并说明理由.(2)试猜想左右两个滑梯BC和EF所在直线的位置关系,并加以证明.【解析】(1)证明△BAC≌△EDF(SAS),由全等三角形的性质得出BC=EF;(2)延长BC交EF于点M,由全等三角形的性质得出∠BMF=90°,则可得出结论.解:(1)BC=EF.理由:∵EH=DH=2.5米,∴ED=5米,∴AB=DE,由题意可知四边形CADH为矩形,∴CA=DH=2.5米,∵DF=2.5米,∴CA=DF,∵∠BAC=∠EDF=90°,∴△BAC≌△EDF(SAS),∴BC=EF;(2)BC⊥EF.理由:延长BC交EF于点M,∵∠EDF=90°,∴∠F+∠EDF=90°,∵△BAC≌△EDF,∴∠B=∠DEF,∴∠B+∠F=90°,∴∠BMF=90°,∴EF⊥BM.【针对训练】1.如图,小明站在堤岸凉亭A点处,正对他的S点停有一艘游艇,他想知道凉亭与这艘游艇之间的距离,于是制定了如下方案.课题测凉亭与游艇之间的距离测量工具皮尺等测量方案示意图测量步骤①小明沿堤岸走到电线杆B旁;②再往前走相同的距离,到达C点;③然后他向左直行,当看到电线杆与游艇在一条直线上时停下来.测量数据AB=10米,BC=10米,CD=5米(1)凉亭与游艇之间的距离是_____米.(2)请你说明小明做法的正确性.【答案】5【解析】根据全等三角形的判定和性质即可得到结论.解:(1)凉亭与游艇之间的距离是5米;故答案为:5.(2)理由:在△ABS与△CBD中,,∴△ABS≌△CBD(ASA),∴AS=CD=5米.2.如图,这是王玲家的养鱼塘,王玲想要测量鱼塘的宽AB,请你帮助她设计一个不必下水而且简单可行的方案,并说明理由,要求在原图上画出该方案的示意图.【解析】方案设计为:从A点出发沿与AB垂直的方向到C点,再沿AC方向走到D点,使CD=AC,接着从B点出发,沿与AD垂直的方向走到E点,使E、C、B共线,则测出DE的长解能得到AB 的宽;然后根据全等三角形的判断方法证明△ACB≌△DCE,从而得到AB=DE.解:方案设计为:从A点出发沿与AB垂直的方向到C点,再沿AC方向走到D点,使CD=AC,接着从B点出发,沿与AD垂直的方向走到E点,使E、C、B共线,则测出DE的长解能得到AB的宽.理由如下:∵AD⊥AB,BE⊥AD,∴∠BAC=∠EDC,∵∠BCA=∠ECD,AC=DC,∴△ACB≌△DCE(ASA),∴AB=DE.3.雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.【解析】∠BAD与∠CAD相等,证角相等,常常通过把角放到两个全等三角形中来证,本题OA=OA公共边,可考虑SSS证明三角形全等,从而推出角相等.解:雨伞开闭过程中二者关系始终是:∠BAD=∠CAD,理由如下:∵AB=AC,AE=AB,AF=AC,∴AE=AF,在△AOE与△AOF中,,∴△AOE≌△AOF(SSS),∴∠BAD=∠CAD.。

人教版八年级上册第12章12.2 全等三角形(SAS) 专题过关练习题(解析版)

人教版八年级上册第12章12.2 全等三角形(SAS) 专题过关练习题(解析版)

《全等三角形(SAS )》专题过关练习题一.选择题.1. 如图,在△ABC 和△DEF 中,AB=DE,∠B=∠E,补充下列哪一个条件后,能直接应用“SAS ”判定△ABC ≌△DEF ( )A.∠ACB=∠DFEB.BF=ECC.AC=DFD.∠A=∠D2. 如图,等腰△ABC 中,点D ,E 分别在腰AB ,AC 上,添加下列条件,不能判定△ABE ≌△ACD 的是( )A .AD =AEB .BE =CDC .∠ADC =∠AEBD .∠DCB =∠EBC3.如图,已知,AB DC ABC DCB =∠=∠.能直接判断ABC DCB △≌△的方法是( )A. SASB. AASC. SSSD. ASA4. 如图,在△ABC 和△DEC 中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是 ( )A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.AC=DC,∠A=∠D5. 如图,已知点B,E,C,F 在同一直线上,且BE=CF,∠ABC=∠DEF,那么添加一个条件后.仍无法判定△ABC ≌△DEF 的是 ( )A.AC=DFB.AB=DEC.AC ∥DFD.∠A=∠D6. 如图,在△AOB 和△COD 中,OA =OB ,OC =OD ,OA <OC ,36AOB COD ︒∠=∠=.连接AC 、BD 交于点M ,连接OM .下列结论:①36AMB ︒∠=;②AC BD =;③OM 平分AOD ∠;④MO 平分AMD ∠其中正确的结论个数有( )个.A .4B .3C .2D .1二.填空题.1. 如图,AD 和CB 相交于点E,BE=DE,请添加一个条件,能利用“SAS ”判定 △ABE ≌△CDE(只添加一个条件即可),你所添加的条件是__ _.2. 如图,点B,A,D,E 在同一直线上,BD=AE,BC ∥EF,要使△ABC ≌△DEF,则只需添加一个适当的条件是_ __.(只填一个即可)3. 如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC,BD相交于点O,则图中全等三角形共有对.4. 在△ABC中,AB=5,AC=3,AD是BC边上的中线,则AD的取值范围是 . 三.解答题.1. 如图,点E,F在BC上,BE=FC,AB=DC,∠B=∠C.试说明:∠A=∠D.2. 已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)试说明:BD=CE.(2)试说明:∠M=∠N.3. 如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.4. 在有公共顶点的△ABC和△ADE中,AB=AC,AD=AE,且∠CAB=∠EAD.(1)试说明:CE=BD.(2)若将△ADE绕A点沿逆时针方向旋转,当旋转到点C,E,D在同一条直线上时,如图所示,(1)问中的结论是否成立?如果结论成立,请说明;如果不成立,请说理由.5. 如图,△ABC和△DCE都是等边三角形.△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.《全等三角形(SAS)》专题过关练习题(解析版)一.选择题.1. 如图,在△ABC和△DEF中,AB=DE,∠B=∠E,补充下列哪一个条件后,能直接应用“SAS”判定△ABC≌△DEF ( B )A.∠ACB=∠DFEB.BF=ECC.AC=DFD.∠A=∠D解析:若用“SAS”,必须再证∠B和∠E的另一边相等,由BF=CE可得BC=EF,故选B.2. 如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( B )A.AD=AE B.BE=CD C.∠ADC=∠AEB D.∠DCB=∠EBC解析:本题考查了全等三角形的判定.由全等三角形的判定“SAS ”、“AAS ”、“ASA ”可得,添加选项A 、C 、D 都能判定两三角形全等;而添加选项B 则不能判定两三角形全等,故选B .3.如图,已知,AB DC ABC DCB =∠=∠.能直接判断ABC DCB △≌△的方法是( A )A. SASB. AASC. SSSD. ASA 解析:在△ABC 和△DCB 中,AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴ABC DCB △≌△(SAS),故选:A.4. 如图,在△ABC 和△DEC 中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是 ( C )A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=DC,∠A=∠DD.AC=DC,∠A=∠D解析:因为AB=DE,所以当BC=EC,∠B=∠E 时,满足SAS,可说明△ABC ≌△DEC;当BC=EC,AC=DC 时,满足SSS,可说明△ABC ≌△DEC;当BC=DC,∠A=∠D 时,在△ABC中是ASS,在△DEC 中是SAS,故不能说明△ABC ≌△DEC,故C 符合题意;当AC=DC,∠A=∠D 时,满足SAS,可说明△ABC ≌△DEC.5. 如图,已知点B,E,C,F 在同一直线上,且BE=CF,∠ABC=∠DEF,那么添加一个条件后.仍无法判定△ABC ≌△DEF 的是 ( A )A.AC=DFB.AB=DEC.AC ∥DFD.∠A=∠D解析:因为BE=CF,所以BE+EC=EC+CF,即BC=EF,且∠ABC=∠DEF,所以当AC=DF 时,满足SSA,无法判定△ABC ≌△DEF,故A 符合题意;当AB=DE 时,满足SAS,可以判定△ABC ≌△DEF,故B 不符合题意;当AC ∥DF 时,可得∠ACB=∠F,满足ASA,可以判定△ABC ≌△DEF,故C 不符合题意;当∠A=∠D 时,满足AAS,可以判定△ABC ≌△DEF,故D 不符合题意.6. 如图,在△AOB 和△COD 中,OA =OB ,OC =OD ,OA <OC ,36AOB COD ︒∠=∠=.连接AC 、BD 交于点M ,连接OM .下列结论:①36AMB ︒∠=;②AC BD =;③OM 平分AOD ∠;④MO 平分AMD ∠ 其中正确的结论个数有( )个.A .4B .3C .2D .1 解析:本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.由SAS 证明△AOC ≌△BOD ,得到∠OAC =∠OBD ,由三角形的外角性质得:∠AMB +∠OBD =∠AOB +∠OAC ,得出∠AMB =∠AOB =36°,①正确;根据全等三角形的性质得出∠OCA =∠ODB ,AC =BD ,②正确;作OG ⊥AC 于G ,OH ⊥BD 于H ,如图所示:则∠OGC =∠OHD =90°,由AAS 证明△OCG≌△ODH(AAS),得出OG=OH,由角平分线的判定方法得出MO平分AMD∠,④正确;由∠AOB=∠COD,得出当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM,由△AOC≌△BOD得出∠COM=∠BOM,由MO平分∠BMC得出∠CMO=∠BMO,推出△COM≌△BOM,得OB=OC,而OA=OB,所以OA=OC,而OA OC,故③错误;即可得出结论.正确的有①②④;故选B.二.填空题.1. 如图,AD和CB相交于点E,BE=DE,请添加一个条件,能利用“SAS”判定△ABE≌△CDE(只添加一个条件即可),你所添加的条件是__AE=CE__.解析:添加AE=CE,在△ABE和△CDE中,{BE=DE,∠AEB=∠CED, AE=CE,所以△ABE≌△CDE(SAS).2. 如图,点B,A,D,E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是__BC=EF(或∠BAC=∠EDF,答案不唯一)__.(只填一个即可)3. 如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC,BD相交于点O,则图中全等三角形共有 3 对.解析:全等的三角形有△ABC≌△ADC(SSS),△ABO≌△ADO(SAS),△BOC≌△DOC(SAS).4. 在△ABC中,AB=5,AC=3,AD是BC边上的中线,则AD的取值范围是__1<AD<4__.解析:如图,延长AD至点E使DE=AD,连接CE,因为AD是BC边上的中线,所以BD=CD,在△ABD和△ECD中,因为{BD=CD,∠ADB=∠EDC, AD=ED,所以△ABD≌△ECD(SAS),所以EC=AB=5.在△ACE中,EC-AC<AE<AC+EC. 即5-3<2AD<3+5.所以1<AD<4.三.解答题.1. 如图,点E,F 在BC 上,BE=FC,AB=DC,∠B=∠C.试说明:∠A=∠D.解析:因为BE=FC,所以BE+EF=CF+EF,即BF=CE;又因为AB=DC,∠B=∠C,所以△ABF ≌△DCE(SAS),所以∠A=∠D.2. 已知△ABN 和△ACM 位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)试说明:BD=CE.(2)试说明:∠M=∠N.解析:(1)在△ABD 和△ACE 中,{AB =AC ,∠1=∠2,AD =AE ,所以△ABD ≌△ACE(SAS),所以BD=CE.(2)因为∠1=∠2,所以∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得△ABD ≌△ACE,所以∠B=∠C,在△ACM 和△ABN 中,{∠C =∠B ,AC =AB ,∠CAM =∠BAN ,所以△ACM ≌△ABN(ASA),所以∠M=∠N.3. 如图,已知AB =AC ,AD =AE ,BD 和CE 相交于点O .(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.解析:证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE (SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.4. 在有公共顶点的△ABC和△ADE中,AB=AC,AD=AE,且∠CAB=∠EAD.(1)试说明:CE=BD.(2)若将△ADE绕A点沿逆时针方向旋转,当旋转到点C,E,D在同一条直线上时,如图所示,(1)问中的结论是否成立?如果结论成立,请说明;如果不成立,请说理由.解析:(1)因为∠CAB=∠EAD,所以∠CAB-∠EAB=∠EAD-∠EAB,即∠CAE=∠BAD.在△CAE和△BAD中,因为{AC=AB,∠CAE=∠BAD, AE=AD,所以△CAE≌△BAD(SAS),所以CE=BD.(2)当旋转到点C,E,D在一条直线上时,(1)中的结论CE=BD仍然成立.说明同(1).5. 如图,△ABC和△DCE都是等边三角形.△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.解析:(1)全等.理由是:∵△ABC和△DCE都是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,{CD=CE∠BCD=∠ACEBC=AC,∴△ACE≌△BCD( SAS);。

人教版八年级数学上册 全等三角形专题练习(解析版)

人教版八年级数学上册 全等三角形专题练习(解析版)

人教版八年级数学上册全等三角形专题练习(解析版)一、八年级数学轴对称三角形填空题(难)1.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB6,∵AC=BC2AB=3∴BE=23﹣6;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=12BC=3.故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.2.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长_________ .【答案】3【解析】【分析】过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明CAI≅BAJ,求出°7830∠=∠=,然后求出12IF FJ AF==,,通过设FJ x=求出x,即可求出AF的长.【详解】解:过点A作AF⊥CE交于I,AG⊥BD交于J在CAE 和BAD 中AC AB CAE BADAE AD =⎧⎪∠=∠⎨⎪=⎩∴CAE ≅BAD∴ICA ABJ ∠=∠ ∴BFE CAB ∠=∠(8字形)∴°120CFD ∠= 在CAI 和BAJ 中°90ICA ABJ CAI BJA CA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI ≅BAJ,AI AJ CI BJ ==∴°60CFA AFJ ∠=∠=∴°30FAI FAE ∠=∠= 在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.3.如图,△ABC 是等边三角形,高AD 、BE 相交于点H ,BC=43,在BE 上截取BG=2,以GE 为边作等边三角形GEF ,则△ABH 与△GEF 重叠(阴影)部分的面积为_____.53 【解析】试题分析:如图所示,由△ABC 是等边三角形,BC=433,∠ABG=∠HBD=30°,由直角三角的性质,得∠BHD=90°﹣∠HBD=60°,由对顶角相等,得∠MHE=∠BHD=60°,由BG=2,得EG=BE ﹣BG=6﹣2=4.由GE 为边作等边三角形GEF ,得FG=EG=4,∠EGF=∠GEF=60°,△MHE 是等边三角形;S △ABC =12AC•BE=12AC×EH×3EH=13BE=13×6=2.由三角形外角的性质,得∠BIF=∠FGE ﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG ﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,3S 五边形NIGHM =S △EFG ﹣S △EMH ﹣S △FIN 2233142312--5353.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.4.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.【答案】6; 3×22018.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出a3=4a1,a4=8a1,a5=16a1…进而得出答案.【详解】解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=3,∴A 2B 1=3,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a 2=2a 1=6,a 3=4a 1,a 4=8a 1,a 5=16a 1,以此类推:a 2019=22018a 1=3×22018故答案是:6;3×22018.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a 2=2a 1=6,a 3=4a 1,a 4=8a 1,a 5=16a 1…进而发现规律是解题关键.5.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.【答案】2019122-【解析】【分析】根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:012122h =-=-₁同理21122h =-3211122222h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-,据此求得2020h 的值. 【详解】 解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上又∵ D 是AB 中点,∴DA= DB ,∵DB= DA ₁ ,∴∠BA ₁D=∠B ,∴∠ADA ₁=∠B +∠BA ₁D=2∠B,又∵∠ADA ₁ =2∠ADE ,∴∠ADE=∠B∵DE//BC,∴AA ₁⊥BC ,∵h ₁=1∴AA ₁ =2,∴012122h =-=-₁ 同理:21122h =-; 3211122222h =-⨯=-; …∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-∴20202019122h =-【点睛】本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.6.如图,在四边形ABCD 中,AB AD =,BC DC =,60A ∠=︒,点E 为AD 边上一点,连接BD .CE ,CE 与BD 交于点F ,且CE AB ∥,若8AB =,6CE =,则BC 的长为_______________.【答案】27【解析】【分析】由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.【详解】解:如图,连接AC 交BD 于点O∵AB AD =,BC DC =,60A ∠=︒,∴AC 垂直平分BD ,ABD △是等边三角形∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD ==∵CE AB ∥∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒∴30DAO ACE ∠=∠=︒∴6AE CE ==∴2DE AD AE =-=∵60CED ADB ∠=∠=︒∴EDF 是等边三角形∴2DE EF DF ===∴4CF CE EF =-=,2OF OD DF =-=∴2223OC CF OF =-=∴2227BC BO OC =+=【点睛】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.7.如图,在△ABC 中,AB=AC ,∠BAC=120°,D 为BC 上一点,DA ⊥AC ,AD=24 cm ,则BC 的长________cm .【答案】72 【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC ,∠BAC=120°∴∠B=∠C=30°∵DA ⊥AC ,AD=24 cm∴DC=2AD=48cm ,∵∠BAC=120°,DA ⊥AC∴∠BAD=∠BAC-90°=30°∴∠B=∠BAD∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.8.已知如图,每个小正方形的边长都是1231,,, ....A A A 都在格点上,123345567,, ....A A A A A A A A A 都是斜边在x 轴上,且斜边长分别为2,4,6,.的等腰直角三角形.若123A A A △的三个顶点坐标为()()()1232,0,1,1,0,0A A A -,则依图中规律,则19A 的坐标为 ___________【答案】()8,0-【解析】【分析】根据相邻的两个三角形有一个公共点,列出与三角形的个数与顶点的个数的关系式,再求出A 19所在的三角形,并求出斜边长.然后根据第奇数个三角形,关于直线x=1对称,第偶数个三角形关于直线x=2对称,求出OA 19,写出坐标即可.【详解】解:设到第n 个三角形顶点的个数为y则y=2n+1,当2n+1=19时,n=9,∴A 19是第9个三角形的最后一个顶点,∵等腰直角三角形的斜边长分别为2,4,6....∴第9个等腰直角三角形的斜边长为2×9=18,由图可知,第奇数个三角形在x 轴下方,关于直线x=1对称,∴OA 19=9-1=8,∴19A 的坐标为()8,0-故答案是()8,0-【点睛】本题考查点的坐标变化规律,根据顶点个数与三角形的关系,判断出点A 19所在的三角形是解题关键9.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC 为格点三角形,在图中最多能画出_____个格点三角形与△ABC 成轴对称.【答案】6【解析】【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.10.如图,△ABC中,AC=DC=3,BD垂直∠BAC的角平分线于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为________.【答案】9 2【解析】【分析】首先证明两个阴影部分面积之差=S△ADC,当CD⊥AC时,△ACD的面积最大.【详解】延长BD交AC于点H.设AD交BE于点O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH,∵AD⊥BH,∴BD=DH,∵DC=CA,∴∠CDA=∠CAD,∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC,∵AE=EC,∴S△ABE=14S△ABH,S△CDH=14S△ABH,∵S△OBD−S△AOE=S△ADB−S△ABE=S△ADH−S△CDH=S△ACD,∵AC=CD=3,∴当DC⊥AC时,△ACD的面积最大,最大面积为12×3×3=92.故填:92.【点睛】本题考查等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A(3,2),点B(1,0),以线段AB为边作等腰三角形ABP,使得点P在坐标轴上.则这样的P点有()A.4个B.5个C.6个D.7个【答案】D【解析】【分析】本题是开放性试题,由题意知A、B是定点,P是动点,所以要分情况讨论:以AP、AB为腰、以AP、BP为腰或以BP、AB为腰.则满足条件的点P可求.【详解】由题意可知:以AP、AB为腰的三角形有3个;以AP、BP为腰的三角形有2个;以BP、AB为腰的三角形有2个.所以,这样的点P共有7个.故选D.【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()A.32°B.64°C.65°D.70°【答案】B【解析】【分析】此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案【详解】如图,在△ABC 中,∠B=32°,将△ABC 沿直线m 翻折,点B 落在点D 的位置∠B=∠D=32° ∠BEH=∠DEH∠1=180︒-∠BEH -∠DEH=180︒-2∠DEH∠2=180︒-∠D -∠DEH -∠EHF=180︒-∠B -∠DEH -(∠B+∠BEH)=180︒-∠B -∠DEH -(∠B+∠DEH)=180︒-32°-∠DEH -32°-∠DEH=180︒-64°-2∠DEH∴∠1-∠2=180︒-2∠DEH -(180︒-64°-2∠DEH)=180︒-2∠DEH -180︒+64°+2∠DEH=64°故选B【点睛】此题重点考察学生对图形翻折问题的实际应用能力,等量代换是解本题的关键13.如图,ABC ∆中,3AC DC ==,BD 垂直BAC ∠的角平分线于D ,E 为AC 的中点,则图中两个阴影部分面积之差的最大值为( )A .1.5B .3C .4.5D .9【答案】C【解析】【分析】 首先证明两个阴影部分面积之差=S △ADC ,然后由DC ⊥AC 时,△ACD 的面积最大求出结论即可.【详解】延长BD 交AC 于点H .设AD 交BE 于点O .∵AD ⊥BH ,∴∠ADB =∠ADH =90°,∴∠ABD +∠BAD =90°,∠H +∠HAD =90°. ∵∠BAD =∠HAD ,∴∠ABD =∠H ,∴AB =AH .∵AD ⊥BH ,∴BD =DH .∵DC =CA ,∴∠CDA =∠CAD .∵∠CAD +∠H =90°,∠CDA +∠CDH =90°,∴∠CDH =∠H ,∴CD =CH =AC .∵BD =DH ,AC =CH ,∴S △CDH =12S △ADH 14=S △ABH . ∵AE =EC ,∴S △ABE 14=S △ABH ,∴S △CDH =S △ABE . ∵S △OBD ﹣S △AOE =S △ADB ﹣S △ABE =S △ADH ﹣S △CDH =S △ACD .∵AC =CD =3,∴当DC ⊥AC 时,△ACD 的面积最大,最大面积为12⨯3×392=. 故选C .【点睛】本题考查了等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.14.如图,60AOB ∠=,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE ∆是等腰三角形,那么OEC ∠的度数不可能为( )A .120°B .75°C .60°D .30°【答案】C【解析】【分析】 分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC 是度数即可得到答案.【详解】∵60AOB ∠=,OC 平分AOB ∠,∠AOC=30︒,当OC=CE 时,∠OEC=∠AOC=30︒,当OE=CE 时,∠OEC=180OCE COE ∠∠︒--=120︒,当OC=OE 时,∠OEC=12(180COE ∠︒- )=75︒, ∴∠OEC 的度数不能是60°,故选:C.【点睛】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.15.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC 于F ,AD 交CE 于G .则下列结论中错误的是( )A .AD =BEB .BE ⊥AC C .△CFG 为等边三角形D .FG ∥BC 【答案】B【解析】试题解析:A.ABC 和CDE △均为等边三角形,60AC BC EC DC ACB ECD ∴==∠=∠=︒,,,在ACD 与BCE 中,{AC BCACD BCE CD CF =∠=∠=,ACD BCE ∴≌,AD BE ∴=,正确.B.据已知不能推出F是AC中点,即AC和BF不垂直,所以AC BE⊥错误,故本选项符合题意.C.CFG是等边三角形,理由如下:180606060ACG BCA∠=︒-︒-︒=︒=∠,ACD BCE≌,CBE CAD∴∠=∠,在ACG和BCF中,{CAG CBFAC BCBCF ACG∠=∠=∠=∠,ACG BCF∴≌,CG CH∴=,又∵∠ACG=60°CFG∴是等边三角形,正确.D.CFG是等边三角形,60CFG ACB∴∠︒=∠﹦,.FG BC∴正确.故选B.16.如图,△ABC、△CDE都是等腰三角形,且CA=CB, CD=CE,∠ACB=∠DCE=α,AD,BE相交于点O,点M,N分别是线段AD,BE的中点,以下4个结论:①AD=BE;②∠DOB=180°-α;③△CMN是等边三角形;④连OC,则OC平分∠AOE.正确的是()A.①②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】①根据全等三角形的判定定理得到△ACD≌△BCE(SAS),由全等三角形的性质得到AD=BE;故①正确;②设CD与BE交于F,根据全等三角形的性质得到∠ADC=∠BEC,得到∠DOE=∠DCE=α,根据平角的定义得到∠BOD=180°-∠DOE=180°-α,故②正确;③根据全等三角形的性质得到∠CAD=∠CBE,AD=BE,AC=BC根据线段的中点的定义得到AM=BN,根据全等三角形的性质得到CM=CN,∠ACM=∠BCN,得到∠MCN=α,推出△MNC不一定是等边三角形,故③不符合题意;④过C 作CG ⊥BE 于G ,CH ⊥AD 于H ,根据全等三角形的性质得到CH=CG ,根据角平分线的判定定理即可得到OC 平分∠AOE ,故④正确.【详解】解:①∵CA=CB ,CD=CE ,∠ACB=∠DCE=α,∴∠ACB+∠BCD=∠DCE+∠BCD ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中AC BC ACD BCE CD CE ⎪∠⎪⎩∠⎧⎨=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ;故①正确;②设CD 与BE 交于F ,∵△ACD ≌△BCE ,∴∠ADC=∠BEC ,∵∠CFE=∠DFO ,∴∠DOE=∠DCE=α,∴∠BOD=180°-∠DOE=180°-α,故②正确;③∵△ACD ≌△BCE ,∴∠CAD=∠CBE ,AD=BE ,AC=BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD ,BN=12BE , ∴AM=BN ,在△ACM 和△BCN 中 AC BC CAM CBN AM BN ⎪∠⎪⎩∠⎧⎨=== ∴△ACM ≌△BCN (SAS ),∴CM=CN ,∠ACM=∠BCN ,又∠ACB=α,∴∠ACM+∠MCB=α,∴∠BCN+∠MCB=α,∴∠MCN=α,∴△MNC 不一定是等边三角形,故③不符合题意;④过C 作CG ⊥BE 于G ,CH ⊥AD 于H ,∴∠CHD=∠ECG=90°,∵∠CEG=∠CDH ,CE=CD ,∴△CGE ≌△CHD (AAS ),∴CH=CG ,∴OC 平分∠AOE ,故④正确,故选:B .【点睛】本题综合考查了全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的应用,解此题的关键是根据性质进行推理,此题综合性比较强,有一定的代表性.17.如图,Rt ACB ∆中,90ACB ∠=︒,ABC ∠的平分线BE 和BAC ∠的外角平分线AD 相交于点P ,分别交AC 和BC 的延长线于E ,D .过P 作PF AD ⊥交AC 的延长线于点H ,交BC 的延长线于点F ,连接AF 交DH 于点G .下列结论:①45APB ∠=︒;②PB 垂直平分AF ;③BD AH AB -=;④2DG PA GH =+;其中正确的结论有( )A .4个B .3个C .2个D .1个【答案】A【解析】【分析】 ①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP ,再根据角平分线的定义∠ABP =12∠ABC ,然后利用三角形的内角和定理整理即可得解;②先求出∠APB =∠FPB ,再利用“角边角”证明△ABP 和△FBP 全等,根据全等三角形对应边相等得到AB =BF ,AP =PF ;③根据直角的关系求出∠AHP =∠FDP ,然后利用“角角边”证明△AHP 与△FDP 全等,根据全等三角形对应边相等可得DF =AH ;④求出∠ADG =∠DAG =45°,再根据等角对等边可得DG =AG ,再根据等腰直角三角形两腰相等可得GH =GF ,然后根据即可得到DG GH =+. 【详解】解:①∵∠ABC 的角平分线BE 和∠BAC 的外角平分线,∴∠ABP =12∠ABC , ∠CAP =12(90°+∠ABC )=45°+12∠ABC , 在△ABP 中,∠APB =180°−∠BAP−∠ABP , =180°−(45°+12∠ABC +90°−∠ABC )−12∠ABC , =180°−45°−12∠ABC−90°+∠ABC−12∠ABC , =45°,故本小题正确;②∵PF ⊥AD ,∠APB =45°(已证),∴∠APB =∠FPB =45°,∵∵PB 为∠ABC 的角平分线,∴∠ABP =∠FBP ,在△ABP 和△FBP 中,APB FPB PB PBABP FBP ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABP ≌△FBP (ASA ),∴AB =BF ,AP =PF ;∴PB 垂直平分AF ,故②正确;③∵∠ACB =90°,PF ⊥AD ,∴∠FDP +∠HAP =90°,∠AHP +∠HAP =90°,∴∠AHP =∠FDP ,∵PF ⊥AD ,∴∠APH =∠FPD =90°,在△AHP 与△FDP 中,90AHP FDPAPH FPDAP PF∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AHP≌△FDP(AAS),∴DF=AH,∵BD=DF+BF,∴BD=AH+AB,∴BD−AH=AB,故③小题正确;④∵AP=PF,PF⊥AD,∴∠PAF=45°,∴∠ADG=∠DAG=45°,∴DG=AG,∵∠PAF=45°,AG⊥DH,∴△ADG与△FGH都是等腰直角三角形,∴DG=AG,GH=GF,∴DG=GH+AF,∴FG=GH,AF=2PA故2DG PA GH=+.综上所述①②③④正确.故选:A.【点睛】本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.18.如图钢架中,∠A=a,焊上等长的钢条P1P2, P2P3, P3P4, P4P5……来加固钢架.著P1A= P1P2,且恰好用了4根钢条,则α的取值范圈是( )A.15°≤ a <18°B.15°< a ≤18°C.18°≤ a <22.5°D.18° < a ≤ 22.5°【答案】C【解析】【分析】由每根钢管长度相等,可知图中都是等腰三角形,利用等腰三角形底角一定是锐角,可推出取值范围.【详解】∵AB=BC=CD=DE=EF∴∠P 1P 2A=∠A=a由三角形外角性质,可得∠P 2P 1P 3=2∠A=2a同理可得,∠P 1P 3P 2=∠P 2P 1P 3=2a ,∠P 3P 2P 4=∠P 3P 4P 2=∠A+∠P 1P 3P 2=3a ,∠P 4P 3P 5=∠P 4P 5P 3=∠A+∠P 3P 4P 2=4a ,在△P 4P 3P 5中,∠P 3P 4P 5=180°-2∠P 4P 3P 5=180°-8a当∠P 5P 4B ≥90°即∠P 5P 4A ≤90°时,不能再放钢管,∴3180890+-≤a a ,解得a ≥18°又∵等腰三角形底角只能是锐角,∴4a <90°,解得a <22.5∴1822.5οο≤<a故选C.【点睛】本题考查等腰三角形的性质,掌握等腰三角形的底角只能是锐角是关键.19.如图,已知:∠MON =30°,点A 1、A 2、A 3 ···在射线ON 上,点1B 、2B 、3B ···在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,若112OA =,则△667A B A 的边长为( )A .6B .12C .16D .32【答案】C【解析】【分析】 根据等腰三角形与等边三角形性质以及直角三角形中30°角所对应的直角边等于斜边的一半111OA A B =,112122321122A B A B A B A B ===…以此类推得出答案即可 【详解】∵△112A B A 是等边三角形,∴∠112A B A =∠112B A A =60°又∵∠MON =30°∴∠11OB A =30°∴∠12OB A =∠212A B B =90°,1112112A B OA A B ===又∵△223A B A 是等边三角形∴22A B ∥11A B∴∠22OB A =∠11OB A =30°∴在Rt△212A B B 中,22A B =212A B =1以此类推,得出△667A B A 的边长=1222222⋅⋅⋅⋅⋅=16 所以答案为C 选项【点睛】本题主要考查了等腰三角形与等边三角形性质以及30°角的直角三角形的性质,熟练掌握相关概念通过题目发现规律是解题关键20.如图,在△ABC 中,BI ,CI 分别平分∠ABC,∠ACB,过I 点作DE∥BC,交AB 于D ,交AC 于E ,给出下列结论:①△DBI 是等腰三角形;②△ACI 是等腰三角形;③AI 平分∠BAC;④△ADE 周长等于AB +AC .其中正确的是( )A .①②③B .②③④C .①③④D .①②④【答案】C【解析】【分析】 根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB 平分∠ABC ,∴∠DBI =∠CBI .∵DE ∥BC ,∴∠DIB =∠CBI ,∴∠DBI =∠DIB ,∴BD =DI ,∴△DBI 是等腰三角形.故本选项正确;②∵∠BAC 不一定等于∠ACB ,∴∠IAC 不一定等于∠ICA ,∴△ACI 不一定是等腰三角形. 故本选项错误;③∵三角形角平分线相交于一点,BI ,CI 分别是∠ABC 和∠ACB 的平分线,∴AI 平分∠BAC .故本选项正确;④∵BD =DI ,同理可得EI =EC ,∴△ADE 的周长=AD +DI +EI +AE =AD +BD +EC +AE =AB +AC . 故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.。

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析

人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) B.∠BAE=∠CADA.AB=AC C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) 第3题图第5题图 第2题图第6题图AB C DA.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC ≌△CED D .∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于 点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ; ②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A 、3个 B 、2个 C 、1个 D 、0个二、填空题(每题3分,共21分)11.如图6,AC=AD,BC=BD,则△ABC≌ ;应用的判定方法是 .12.如图7,△ABD≌△BAC,若AD=BC,则∠BAD的对应角为 .13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm ,则点D到AC的距离为 .B C DA 图6 D O CBA 图8 A D CB图7 第9题图 第7题图14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得△AOD≌△COB,从而可以得到AD= .15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明 ≌ 得到AB=DC,再利用“ ”证明△AOB≌ 得到OB=OC. 16.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是 .17.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 . 三、解答题(共29分)18. (6分)如右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.解: ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( ) 19. (8分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm ,FH=1.1 cm ,HM=3.3 cm ,求MN和HG 的长度.第19题图图10 DCBA20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.(10分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE;②DF⊥BC.B C EF A23.(10分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12章·全等三角形(详细答案)一、选择题 CBDCD BDCDC二、填空题 11、△ABD SSS 12、∠ABC 13、3cm 14、∠COB SAS CB 15、△ABC △DCB AAS △DOC 16、相等 17、○3 两角和它们的夹边分别相等的两个三角形全等三、解答题18、AD CAD AB=AC ∠BAD=∠CAD AD=AD SAS19、B 解:(1)EF=MN EG=HN FG=MH ∠F=∠M ∠E=∠N ∠EGF=∠MHN (2)∵△EFG ≌△NMH ∴MN=EF=2.1cm∴GF=HM=3.3cm ∵FH=1.1cm ∴HG=GF -FH=3.3-1.1=2.2cm 20、解:∵DE ∥AB ∴∠A=∠E在△ABC 与△CDE 中∠A=∠E BC=CD∠ACB=∠ECD∴△ABC ≌△CDE(ASA)∴AB=DE21、证明:∵AB ∥DE∴∠A=∠EDF∵BC ∥EFCA∴∠ACB=∠F∵AD=CF∴AC=DF在△ABC与△DEF中∠A=∠EDFAC=DF∠ACB=∠F△ABC≌△DEF(ASA)四、解答题22、证明:①∵BE⊥CD∴∠BEC=∠DEA=90°在Rt△BEC与Rt△DEA中BC=DABE=DE∴Rt△BEC≌Rt△DEA(HL)②∵Rt△BEC≌Rt△DEA∴∠C=∠DAE∵∠DEA=90°∴∠D+∠DAE=90°∴∠D+∠C=90°∴∠DFC=90°∴DF⊥BC23、证明:在△ABC与△ADC中1=∠2AC=AC3=∠4∴△ABC≌△ADC(ASA)∴CB=CD在△ECD与△ECB中CB=CD∠3=∠4CE=CE∴△ECD≌△ECB(SAS)∴∠5=∠6第十二章全等三角形一、填空题(每小题4分,共32分).1.已知:///ABC A B C ∆∆≌,/A A ∠=∠,/B B ∠=∠,70C ∠=︒,15AB cm =,则/C ∠=_________,//A B =__________.2.如图1,在ABC ∆中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形_______对.图1 图2 图33. 已知△ABC ≌△A ′B ′C ′,若△ABC 的面积为10 cm 2,则△A ′B ′C ′的面积为______ cm 2,若△A ′B ′C ′的周长为16 cm ,则△ABC 的周长为________c m . 4. 如图2所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,若要使△ABC ≌△DEF ,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部. 7.如图4,两平面镜α、β的夹角 θ,入射光线AO 平行于β,入射到α上,经两 次反射后的出射光线CB 平行于α,则角θ等于________.8.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分) 9.如图6,AE =AF ,AB =AC ,E C 与B F 交于点O ,∠A =600,∠B =250,则∠E OB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( ) A .35 cm B .30 cm C .45 cm D .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD= BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC , 得到ED=AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )NAMC B图7 图8 图9 图10A.边角边公理 B.角边角公理; C.边边边公理 D.斜边直角边公理13.如图9,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3C.2:3 D.1:414.如图10,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.图11第十二章全等三角形。

全等三角形压轴训练(多解、动点、新定义型压轴)(解析版)—24-25学年八年级数学上册单元(人教版)

全等三角形压轴训练(多解、动点、新定义型压轴)(解析版)—24-25学年八年级数学上册单元(人教版)

全等三角形压轴训练(多解、动点、新定义型压轴)目录题型一 利用三角形全等求时间或线段长的多解问题...........................................................................................1题型二 与全等三角形有关的多结论问题 (7)题型三 全等三角形中的动点综合问题 (13)题型四 全等三角形中的新定义型综合问题 (27)题型一 利用三角形全等求时间或线段长的多解问题【答案】4【分析】本题主要考查了全等三角形的性质和判定,解一元一次方程,先设运动全等;分两种情况:12x x -=,得出x =01 压轴总结02 压轴题型∴CAP V ≌PBQ V ;②若BP AP =,则12x x -=,解得:6x =,可知12(cm)BQ AC =¹,此时CAP V 与PQB △不全等.综上所述:运动4s 后CAP V 与PQB △全等.故答案为:4.巩固训练1.(23-24七年级下·陕西西安·期末)如图,ABC V 中,90ACB Ð=°,6cm AC =,8cm BC =,直线l 经过点C 且与边AB 相交.动点P 从点A 出发沿A C B ®®路径向终点B 运动;动点Q 从点B 出发沿B C A ®®路径向终点A 运动.点P 和点Q 的速度分别为1cm /s 和2cm /s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PE l ^于点E ,QF l ^于点F ,设运动时间为t 秒,则当t 为( )秒时,PEC V 与QFC V 全等.A .12或43B .2或45或10C .1或43D .2或143或12由题意得,,AP t BQ ==∵6cm,8cm AC BC ==,由题意得,,2AP t BQ ==∵6cm,8cm AC BC ==,∴6,28CP t CQ t =-=-,当PEC QFC △≌△,则PC CQ =,由题意得,AP t =,∵6cm AC =,∴6,6CP t CQ =-=,2.(23-24八年级上·重庆·阶段练习)如图,在长方形ABCD 中,4,6AB AD ==,延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA →→向终点A 运动,设点P 的运动时间为t 秒,当t 的值为 秒时,ABP V 与DCE △全等.3.(23-24八年级上·山东日照·阶段练习)如图,CA AB ^,垂足为点A ,12AB =米,6AC =米,射线BM AB ^,垂足为点B ,动点E 从A 点出发以2米/秒沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED CB =,当点E 经过 秒时(不包括0秒),由点D E B 、、组成的三角形与BCA V 全等.【答案】3秒或9秒或12【分析】本题考查了三角形全等的判定与性质,分四种情况:当点E 在线段AB 上,AC BE =时,ACB BED V V ≌;当E 在BN 上,AC BE =时,ACB BED V V ≌;当E 在线段AB 上,AB EB =时;当E 在BN 上,AB EB =时,ACB BDE V V ≌;分别利用三角形全等的性质进行求解即可,熟练掌握三角形全等的判定与性质是解此题的关键.【详解】解:当点E 在线段AB 上,AC BE =时,ACB BED V V ≌,6AC =Q ,6BE \=,1266AE AB BE \=-=-=,\点E 的运动时间为623¸=(秒);当E 在BN 上,AC BE =时,ACB BED V V ≌,6AC =Q ,6BE \=,12618AE AB BE \=+=+=,\点E 的运动时间为1829¸=(秒);当E 在线段AB 上,AB EB =时,此时E 在A 点未动,时间为0秒,不符合题意;当E 在BN 上,AB EB =时,ACB BDE V V ≌,12AB =Q ,12BE \=,121224AE AB BE \=+=+=,\点E 的运动时间为24212¸=(秒);综上所述,当点E 经过3秒或9秒或12秒时(不包括0秒),由点D E B 、、组成的三角形与BCA V 全等,故答案为:3秒或9秒或12.4.如图,ABC V 中,90ACB Ð=°,12AC =,16BC =,点P 从A 点出发沿A C B ®®路径向终点运动,终点为B 点;点Q 从B 点出发沿B C A ®®路径向终点运动,终点为A 点.点P 和Q 分别以2和6的运动速【答案】1或72或12【分析】根据题意分为五种情况,根据全等三角形的性质得出可.【详解】解:设点运动t秒时,以Q PE l^,QF l^,\90PEC QFCÐ=Ð=°,Q90ACBÐ=°,\90EPC PCEÐ+Ð=°,Q 由①知:PC CQ =,\212616t t -=-,=1t \;因为此时60t -<,所以此种情况不符合题意;122616PC t t =-=-,7=2t ;④当Q 到A 点停止,P 在BC ⑤因为P 的速度是每秒2,Q 题型二 与全等三角形有关的多结论问题例题:(23-24七年级下·江西吉安·期末)如图,在Rt AEB V 和Rt AFC △中,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于点N ,90E F ÐÐ==°,EAC FAB ÐÐ=,AE AF =.给出下列结论:①B C Ð=Ð;②CD DN =;③BE CF =;④ACN ABM @V V .其中正确的结论是( )A .①③④B .①②③④C .①②③D .①②④【答案】A 【分析】本题考查了两个全等三角形的判定及性质,根据已知条件判定两个三角形全等,可得到对应边及对应角相等,据此可判断①③,再结合条件证明两个三角形全等,可得到④,即可求得结果,灵活运用两个全等三角形的条件及性质是解题的关键.【详解】解:∵EAC FAB Ð=Ð,∴EAB FAC Ð=Ð,在EAB V 和FAC V 中,90E F AE AFEAB FAC Ð=Ð=°ìï=íïÐ=Ðî,∴()ASA EAB FAC V V ≌,∴,,B C BE CF AB AC Ð=Ð==,∴①③都正确,在ACN ABM △和△中,B C AB AC CAN BAM Ð=Ðìï=íïÐ=Ðî,∴()ASA ACN ABM V V ≌,故④正确,根据已知条件无法证明②是否正确,故①③④正确,故选:A .巩固训练1.(23-24七年级下·四川巴中·期末)如图,在Rt ABC △中,点M ,N 分别是边AB BC ,上的点,且M ,N 两点满足AM CN =,BP AN ^交AC 于点P ,过点P 作PQ MC ^交AN 延长线于点Q ,交BC 于点F ,AN 与CM 交于点E ,若AB BC =,则下列结论:①连接BE ,则BE 平分ABC Ð;②AME CNE △≌△;③CFQ AME Ð=Ð;④AQ CE PQ =+.成立的是( ).A .①②③B .①②④C .②③④D .①②③④【答案】D 【分析】本题主要考查了等腰直角三角形的性质、全等三角形的判定等知识点,灵活运用全等三角形的判定与性质成为解题的关键.先证明()SAS AMC CNA V V ≌可得MCA NAC Ð=Ð,再证明()AAS AME CNE V V ≌可得ME NE =,进而证明()SSS BME BNE V V ≌得到MBE NBE Ð=Ð即可判定①;由()SAS AMC CNA V V ≌可得MCA NAC Ð=Ð,然后证明()AAS AEM CEN V V ≌即可判定②;由全等三角形的性质可得AME ENC Ð=Ð,再结合三角形外角的性质即可判定③;先证明()ASA BHE CHP ÐÐV V ≌可得EH HP =,再证明()AAS EGH PDH V V ≌可得HG HD =,然后证明()HL QGH QHD V V ≌可得QE QP =,再说明AE CE =,最后根据线段的和差及等量代换即可证明结论.【详解】解:∵AB BC =,∴BAC BCA Ð=Ð,∵AM CN =,∴()SAS AMC CNA V V ≌,∴MCA NAC Ð=Ð.∵AM CN =,AEM NEC Ð=Ð,∴()AAS AME CNE V V ≌,即②正确;∴ME NE =,∵AB BC =,AM CN =,∴MB BN =,∵BE BE =,∴()SSS BME BNE V V ≌,∴MBE NBE Ð=Ð,即BE 平分ABC Ð,故①正确;∵()AAS AEM CEN V V ≌,∴AME ENC Ð=Ð,BCM BAE Ð=Ð,∵90ENC BAE ABC BAN Ð=Ð+Ð=Ð+°,90CFQ BCM CDF BCM Ð=Ð+Ð=Ð+°,∴ENC CFQ Ð=Ð,即③正确;∴BNQ CFQ Ð=Ð∴90,90BNQ CBP BGN CBP QFC BCH QDC BCH Ð=Ð+Ð=Ð+°Ð=Ð+Ð=Ð+°,∴CBP BCM Ð=Ð,∴BH CH =,∵45MBE NBE Ð=Ð=°,45BCA Ð=°,∴EBN CBP BCA BCM Ð-Ð=Ð-Ð,即EBP ECP Ð=Ð,∵BHE CHP Ð=Ð,∴()ASA BHE CHP V V ≌,∴EH HP =,∵90EGH HDP Ð=Ð=°,EHG PHD Ð=Ð,∴()AAS EGH PDH V V ≌,∴HG HD =,如图:连接HQ ∵90QGH QDH Ð=Ð=°,HQ HQ =,∴()HL QGH QHD V V ≌,∴QE QP =,∵AEM CEN V V ≌,∴AE CE =,∴AQ AE EQ CE PQ =+=+,即④正确.故选D .2.(23-24八年级下·黑龙江哈尔滨·开学考试)如图所示,在ABC V 中,90BAC Ð=°,AD BC ^于D ,BE 平分ABC Ð交AD 于E ,F 在BC 上,并且BF AB =,则下列四个结论:①EF AC ∥,②EFB BAD Ð=Ð,③AE EF =,④ABE FBE △≌△,其中正确的结论有( )A .①③B .②④C .②③④D .①②③④【答案】D【分析】本题主要考查了全等三角形的判定与性质、角平分线的定义;根据SAS 证明ABE FBE △≌△,再利用三角形全等的性质证明EFB BAD Ð=Ð,AE EF =,进而得出EF AC ∥,熟练掌握全等三角形的判定和性质是解此题的关键.【详解】解:Q BE 平分ABC Ð交AD 于E ,ABE FBE \Ð=Ð,在ABE V 和FBE V 中,AB BF ABE FBE BE BE =ìïÐ=Ðíï=î,()SAS ABE FBE \V V ≌,故④正确;EFB BAD AE EF \Ð=Ð=,,故②③正确;90BAC Ð=°Q ,AD BC ^于D ,90BAE ABD \Ð+Ð=°,90C ABD Ð+Ð=°,C BAE EFB \Ð=Ð=Ð,EF AC ∥∴,故①正确;综上所述,正确的有①②③④,故选:D .3.(22-23七年级下·江苏南通·期末)如图,在ABC V 中,90BAC Ð=°,高AD 与角平分线BE 相交于点F ,DAC Ð的平分线AG 分别交BC ,BE 于点G ,O ,连接FG ,下列结论:①C EBG Ð=Ð;②AEF AFE Ð=Ð;③AG EF ^;④ACD ABG S S =△△,其中所有正确结论的序号是( )A .①②④B .②③C .③④D .②③④题型三 全等三角形中的动点综合问题例题:(23-24七年级下·上海闵行·期末)如图,已知在 ABC V 中, (060)AB BC ABC a a =Ð=<<°,,,射线AM AB ^,点P 为射线AM 上的动点(点P 不与点A 重合),连接BP ,将线段BP 绕点B 顺时针旋转角度α后, 得到线段BQ , 连接PQ 、QC .(1)试说明 PAB QCB V V ≌的理由;(2)延长QC 交射线AM 于点D ,在点P 的移动过程中, QDM Ð的大小是否发生变化?若改变请说明理由,若不改变,请求出 QDM Ð的大小(用含α的代数式表示);(3)当BQ AC ∥时, AB m AP n ==,, 过点Q 作QE 垂直射线AB , 垂足为E ,那么 AEQ S =V (用m 、 n 的代数式表示) .【答案】(1)理由见解析(2)不改变,QDM aÐ=(3)mn【分析】(1)先证明PBA QBC Ð=Ð,再根据两条边相等,即可证得两个三角形全等;(2)先证明()SAS DAB DCB V V ≌,得到DA DC =,DBA DBC Ð=Ð,再计算出DBA Ð的值,再证明DAC DBA Ð=Ð,最后根据三角形外角定理即可求得QDM Ð的大小;(3)证明QB 是ABE Ð的角平分线,根据角平分线定理得到BC BE =,QE QC =,再根据BC AB m ==,QC PA n ==,即可得到BE 和QE ,根据三角形面积公式进行计算即可.【详解】(1)证明:根据旋转的性质得到PN QB =,PBQ a Ð=,∴PBQ ABC Ð=Ð,∴PBA QBC Ð=Ð,∵PB QB PBA QBC AB BC =ìïÐ=Ðíï=î,∴()SAS PAB QCB V V ≌;(2)解:如下图所示,连接BD ,∵()SAS PAB QCB V V ≌,∴90QCB PAB Ð=Ð=°,∵BQ AC ∥,∴ACB CBQ CAB Ð=ÐÐ,∵ACB CAB Ð=Ð,∴QBE CBQ Ð=Ð,∴QB 是ABE Ð的角平分线,1.(23-24八年级上·湖南株洲·期末)如图,等腰Rt ACB △中,90ACB Ð=°,AC BC =,E 点为射线CB 上一动点,连接AE ,作AF AE ^且AF AE =.(1)如图1,过F 点作FG AC ^交AC 于G 点,求证:V V ≌AGF ECA ;(2)如图2,连接BF 交AC 于D 点,若3AD CD =,求证:E 点为BC 中点;(3)如图3,当E 点在CB 的延长线上时,连接BF 与AC 的延长线交于D 点,若43BC BE =,则AD CD = .AGF ECA QV V ≌,FG AC BC \==,在FGD V 和BCD △中,由(1)(2)知:V AGF CD DG \=,AG CE =\47AC AG =,\4AC =,2.(23-24八年级上·江西赣州·阶段练习)如图(1),在Rt ABC △中,90C Ð=°,8cm AC =,6cm BC =,10cm AB =,现有一动点P ,从点A 出发,沿着三角形的边AC CB BA ®®运动,回到点A 停止,速度为2cm /s ,设运动时间为s t .(1)如图(1),当t =________时,APC △的面积等于ABC V 面积的一半:(2)如图(2),在DEF V 中,90E Ð=°,4cmDE =,5cm DF =,D A Ð=Ð.在ABC V 的边上,若另外有一个动点Q ,与点P 同时从点A 出发,沿着边AB BC CA ®®运动,回到点A 停止.在两点运动过程中的某一时刻,恰好APQ △全等于DEF V ,求点Q 的运动速度.∴13cm 2CP BC ==∴()8311s 22t +==当P 在AB 上时,如图,∴12AP BP AB ===∴(6851922t ++==综上所述,当t 为(2)解:设点Q∴425x ¸=¸,解得52x =;②当点P 在AC 上,点Q 在∴5cm AP DF AQ DE ====,∴524x ¸=¸,解得85x =;③当点P 在AB 上,点Q 在∴5cm AP DF AQ DE ====,∴点P 的路程为68105++-∴19220x ¸=¸,解得4019x =;④当点P 在AB 上,点Q 在∴4cm AP DE AQ DF ===,∴点P 的路程为68104++-∴20219x ¸=¸,解得1910x =;∴Q 运动的速度为5cm/s 2或853.如图,在等腰ABC V 中,BA BC =,100ABC Ð=°,AB 平分WAC Ð.在线段AC 上有一动点D ,连接BD ,E 为直线AW 上异于A 的一点,连接BE 、DE .(1)如图1,当点E 在射线AW 上时,若DE AE DC +=,直接写出:EBD Ð=______;(2)如图2,当点E 在射线AW 的反向延长线上时,①若(1)中的结论仍成立,则DE 、AE 、DC 应满足怎样的数量关系,请证明;②若6BCD ABDE S S -=V 四边形,且25DE AE =,94AD AE =,求ABC S V 的值.4.(23-24八年级上·浙江嘉兴·期末)如图,在直角坐标系xOy 中,点()0,4A ,点B 为x 轴正半轴上一个动点,以AB 为边作ABC V ,使BC AB =,90ABC Ð=°,且点C 在第一象限内.(1)如图1,若()2,0B ,求点C 的坐标.(2)如图2,过点B 向x 轴上方作BD OB ^,且BD BO =,在点B 的运动过程中,探究点C ,D 之间的距离是否为定值.若为定值,求出该定值,若不是,请说明理由.(3)如图3,过点B 向x 轴下方作BD OB ^,且BD BO =,连结CD 交x 轴于点E ,当ABD △的面积是BEC V 的面积的2倍时,求OE 的长.【答案】(1)点C 的坐标为(6,2)(2)点C ,D 之间的距离是为定值,定值为4,理由见解析(3)6OE =【分析】本题考查坐标与图形,全等三角形的判定及性质,添加辅助线,构造全等三角形是解决问题的关键.90Q,Ð=°ABC\Ð+Ð=°,90ABO CBDÐ+Ð=°Q,OAB ABO90\Ð=Ð,OAB CBDAOBÐìï90OBA ABD Ð+Ð=°Q ,DBC ÐOBA DBC \Ð=Ð,在OAB V 和DCB △中,OB OBA AB =ìïÐíï=î()SAS OAB DCB \V V ≌.CF BO \=,BD BO =Q ,CF BD \=,4BF OA ==.CEF DEB Ð=ÐQ ,CFE Ð=()AAS CFE DBE \V V ≌,题型四 全等三角形中的新定义型综合问题例题:(23-24七年级下·辽宁本溪·期末)新定义:如果两个三角形不全等但面积相等,那么这两个三角形叫做积等三角形.【初步尝试】(1)如图1,在ABC V 中,4AB AC BC >=,,P 为边BC 上一点,若ABP V 与ACP V 是积等三角形,求BP 的长;【理解运用】(2)如图2,ABD V 与ACD V 为积等三角形,若24AB AC ==,,且线段AD 的长度为正整数,求AD 的长.【综合应用】(3)如图3,在Rt ABC △中90,BAC AB AC Ð=°=,过点C 作MN AC ^,点D 是射线CM 上一点,以AD 为边作Rt ,90,ADE DAE AD AE Ð=°=V ,连接BE .请判断BAE V 与ACD V 是否为积等三角形,并说明理由.【答案】(1)2;(2)2;(3)是积等三角形,证明见解析【分析】本题考查了等腰直角三角形的性质,三角形的中线的性质,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题.(1)利用三角形的中线的性质即可解决问题;(2)证明ADB NDC V V ≌,推出2AB NC ==,利用三角形的三边关系即可解决问题;(3)过过点E 作EH AB ^于点H ,先证明HAE CAD V V ≌, 则,AC AH EH CD ==,然后再依据积等三角形(2)解:如图2,延长V为积等三角形,QV与ACDABD\=BD CD(3)是积等三角形证明:如图3,过点E作^QMN AC\Ð=Ð=°ACD AHE90巩固训练1.(2024八年级下·全国·专题练习)定义:顶角相等且顶点重合的两个等腰三角形叫做“同源三角形”,我们称这两个顶角为“同源角”.如图,ABC V 和CDE V 为“同源三角形”,AC BC =,CD CE =,ACB Ð与DCE Ð为“同源角”.(1)如图1,ABC V 和CDE V 为“同源三角形”,试判断AD 与BE 的数量关系,并说明理由.(2)如图2,若“同源三角形”ABC V 和CDE V 上的点B ,C ,D 在同一条直线上,且90ACE Ð=°,则Ð=EMD ______°.(3)如图3,ABC V 和CDE V 为“同源三角形”,且“同源角”的度数为90°时,分别取AD ,BE 的中点Q ,P ,连接CP ,CQ ,PQ ,试说明PCQ △是等腰直角三角形.【答案】(1)AD BE =,详见解析(2)45(3)见解析【分析】本题考查了新定义,全等三角形的判定与性质,等腰直角三角形的判定,三角形内角和定理等知识,(1)由“同源三角形”的定义可证ACD BCE Ð=Ð,然后根据SAS 证明≌ACD BCE V V 即可;(2)由“同源三角形”的定义和90ACE Ð=°可求出45DCE ACB Ð==°,由(1)可知≌ACD BCE V V ,得ADC BEC ÐÐ=,然后根据“8”字形图形即可求出EMD Ð的度数;(3)由(1)可知≌ACD BCE V V ,可得CAQ CBP BE AD ÐÐ=,=,根据SAS 证明ACQ BCP △≌△,可得CQ CP ACQ BCP =Ð=Ð,,进而可证结论成立;熟练掌握全等三角形的判定与性质是解答本题的关键.【详解】(1)AD BE =.理由:∵ABC V 和CDE V 是“同源三角形”,∴ACB DCE Ð=Ð,∴ACD BCE Ð=Ð.在ACD V 和BCE V 中,ACBC ACD BCE CD CE =ìïÐ=Ðíï=î,∴()SAS ACD BCE V V ≌,∴AD BE =.(2)∵ABC V 和CDE V 是“同源三角形”,∴ACB DCE Ð=Ð.∵90ACE Ð=°,∴45DCE ACB Ð=Ð=°.由(1)可知≌ACD BCE V V ,∴ADC BEC ÐÐ=.∵MOE COD Ð=Ð,∴45EMD DCE Ð=Ð=°.故答案为:45;(3)由(1)可知≌ACD BCE V V ,∴CAQ CBP Ð=Ð,BE AD =.AD ,BE 的中点分别为,Q P ,∴AQ BP =.在ACQ V 和BCP V 中,CA CB CAQ CBP AQ BP =ìïÐ=íï=î,∴()SAS ACQ BCP V V ≌,∴CQ CP =,ACQ BCP Ð=Ð.∵90BCP PCA °Ð+Ð=,∴90ACQ PCA °Ð+Ð=,∴90PCQ Ð=°,∴PCQ △是等腰直角三角形.2.(23-24七年级下·陕西宝鸡·期末)【阅读理解】定义:在同一平面内,点A ,B 分别在射线PM ,PN 上,过点A 垂直PM 的直线与过点B 垂直PN 的直线交于点Q ,则我们把AQB Ð称为APB Ð的“边垂角”.【迁移运用】(1)如图1,CD ,BE 分别是ABC V 的两条高,两条高交于点F ,根据定义,我们知道DBE Ð是DCE Ð的“边垂角”或DCE Ð是DBE Ð的“边垂角”,DAE Ð的“边垂角”是______;(2)若AQB Ð是APB Ð的“边垂角”,则AQB Ð与APB Ð的数量关系是______;(3)若ACD Ð是ABD Ð的“边垂角”,且AB AC =.如图2,BD 交AC 于点E ,点C 关于直线BD 对称点为点F ,连接AF ,EF ,且45CAF Ð=°,求证:BE CF CE =+.【答案】(1)DFEÐ(2)AQB APB Ð=Ð或180AQB APB Ð+Ð=°(3)见解析【分析】本题主要考查了全等三角形的性质与判定,四边形内角和定理:(1)根据“边垂角”的定义即可得到答案;(2)分两种情况画出图形,根据四边形的内角和定理以及等角的余角相等即可得出结论;(3)延长,BA CD 交于点G ,先证明(ASA)ABE ACG V V ≌,再证明(SAS)AGF AEF V V ≌,依据题意得出GF EC =,即可得到结论.【详解】(1)解:根据“边垂角”的定义,DAE Ð的“边垂角”是DFE Ð;(2)解:若AQB Ð是APB Ð的“边垂角”,分两种情况①如图,Q AQB Ð是APB Ð的“边垂角”,,AQ PA BQ PB \^^,190,290AQB APB \Ð+Ð=°Ð+Ð=°,12Ð=ÐQ ,AQB APB \Ð=Ð,②如图,Q AQB Ð是APB Ð的“边垂角”,,AQ PA BQ PB \^^,90,90PAQ PBQ \Ð=°Ð=°,360PAQ AQB APB PBQ Ð+Ð+Ð+Ð=°Q ,\180AQB APB Ð+Ð=°,综上所述,AQB Ð与APB Ð的数量关系是AQB APB Ð=Ð或180AQB APB Ð+Ð=°;(3)解:延长,BA CD 交于点G ,Q ACD Ð是ABD Ð的“边垂角”,∴CG BD BG AC ⊥,⊥,90,90ABE AEB ACD DEC \Ð+Ð=°Ð+Ð=°,AEB DEC Ð=ÐQ ,ABE ACF \Ð=Ð,90BAE CAG \Ð=Ð=°,AB AC =Q ,\(ASA)ABE ACG V V ≌,,AG AE BE CG \==,45FAC Ð=°Q ,9045GAF FAC \Ð=°-Ð=°,AF AF =Q ,\(SAS)AGF AEF V V ≌,GF EF \=,Q 点C 关于直线BE 对称点为点F ,EF EC \=,BE CG CF FG CF EF CF CE \==+=+=+,BE CF CE \=+;3.(23-24七年级下·辽宁沈阳·阶段练习)【阅读理解】定义:在同一平面内,点A ,B 分别在射线PM ,PN 上,过点A 垂直PM 的直线与过点B 垂直PN 的直线交于点Q ,则我们把AQB Ð称为APB Ð的“边垂角”.【迁移运用】(1)如图1,CD ,BE 分别是ABC V 的两条高,两条高交于点 F ,根据定义,我们知道DBE Ð是DCE Ð的“边垂角”或DCE Ð是DBE Ð的“边垂角”,DAE Ð的“边垂角”是 ;(2)若AQB Ð是APB Ð的“边垂角”,则AQB Ð与APB Ð的数量关系是 ;(3)若ACD Ð是ABD Ð的“边垂角”,且AB AC =.①如图2,已知B C Ð=Ð,BD 交AC 于点E ,点C 关于直线BD 对称点为点F ,连接AF ,EF ,且 45CAF Ð=°,90BAC Ð=°,求证:BE CF CE =+;对于上述问题,小明有这样的想法:在BD 上截取BH CF =,连接AH ,如图3.你明白小明的做法吗?接下来请你求证BE CF CE =+.②如图4,若92CD BD +=,直接写出四边形ABDC 的面积.【答案】(1)DFE Ð②如图,Q AQB Ð是APB Ð的“边垂角”,,AQ PA BQ PB \^^,90,90PAQ PBQ \Ð=°Ð=°,综上所述,AQB Ð与APB Ð的数量关系是AQB APB Ð=Ð或180AQB APB Ð+Ð=°;(3)解:①延长,BA CD 交于点G ,Q ACD Ð是ABD Ð的“边垂角”,90,90ABE AEB ACD DEC \Ð+Ð=°Ð+Ð=°,AEB DEC Ð=ÐQ ,ABE ACF \Ð=Ð,90BAE CAG \Ð=Ð=°,AB AC =Q ,\(ASA)ABE ACG V V ≌,,AG AE BE CG \==,45FAC Ð=°Q ,9045GAF FAC \Ð=°-Ð=°,AF AF =Q ,\(SAS)AGF AEF V V ≌,GF EF \=,Q 点C 关于直线BE 对称点为点F ,EF EC \=,BE CG CF FG CF EF CF CE \==+=+=+,BE CF CE \=+;②连接AD ,过点A 作AE AD ^与DB 延长交于点E ,Q ACD Ð是ABD Ð的“边垂角”,180ACD ABD \Ð+Ð=°,180ABE ABD Ð+Ð=°Q ,ABE ACD \Ð=Ð,90DAC BAD BAD EAB Ð+Ð=Ð+Ð=°Q ,【点睛】本题主要考查新定义,四边形的内角和定理,直角三角形的性质,全等三角形的判定与性质,熟练理解“边垂角”的定义是解题的关键.4.(22-23七年级下·江苏淮安α(0180a °<<°)得到AB ¢,把AC 绕点A 逆时针旋转β得到AC ¢,连接B C ¢¢.当180a b +=°时,我们称AB C ¢¢△是ABC V 的“旋补三角形”,AB C ¢¢△边B C ¢¢上的中线AD 叫做ABC V 的“旋补中线”,点A 叫做“旋补中心”.(1)【探索一】如图1,AB C ¢¢△是ABC V 的“旋补三角形”,AD 是ABC V 的“旋补中线”,探索AD 与BC 的数量关系.在探索这个问题之前,请先阅读材料:【材料】如图2在ABC V 中,若10AB =,8BC =.求AC 边上的中线BD 的取值范围.是这样思考的:延长BD 至E ,使DE BD =,连结CE .利用全等将边AB 转化到CE ,在BCE V 中利用三角形三边关系即可求出中线BD 的取值范围.中线BD 的取值范围是 .请仿照上面材料中的方法,猜想图1中AD 与BC 的数量关系,并给予证明.(2)【探索二】如图3,当90a b ==°时,AB C ¢¢△是ABC V 的“旋补三角形”,AE BC ^,垂足为点E ,AE 的反向延长线交B C ¢¢于点D ,探索AD 是否是ABC V 的“旋补中线”,如果是,请给出证明,如果不是,请说明理由.【答案】(1)19BD <<;2BC AD =,证明见解析;(2)AD 是ABC V 的“旋补中线”, 证明见解析【分析】(1)材料:三角形三边关系可得CE BC BE CE BC -<<+,进而可得中线BD 的取值范围;探索一:延长AD 至点E 使AD DE =,连接C E ¢,证明()SAS B DA CDE ¢≌V V ,可得AB CE ¢=,B AD E ¢Ð=Ð,求出BAC AC E ¢Ð=Ð,再证()SAS ABC C EA ¢≌V V ,根据全等三角形的性质可得结论;(2)作C H AD ¢^于H ,作B F AD ¢^交AD 延长线于F ,求出B B AF ¢Ð=Ð,证明()AAS ABE B AF ¢≌V V ,可得=B F AE ¢,同理证明()AAS ACE C AH ¢≌V V ,可得=AE C H ¢,求出=B F C H ¢¢,可证()AAS B DF C DH ¢¢≌V V ,根据全等三角形的性质可得B D C D ¢=¢,然后可得AD 是ABC V 的“旋补中线”.【详解】(1)解:材料:由题意得:10AB CE ==,8BC =,2BE BD =,由三角形三边关系可得:CE BC BE CE BC -<<+,即218BD <2<,∴19BD <<,故答案为:19BD <<;探索一:2BC AD =;证明:如图1,延长AD 至点E 使AD DE =,连接C E ¢,∵AD 是ABC V 的“旋补中线”,∴AD 是AB C ¢¢△的中线,即B D CD ¢=,又∵B DA C DE ¢¢Ð=Ð,∴()SAS B DA C DE ¢¢V V ≌,∴AB C E ¢¢=,B AD E ¢Ð=Ð,∵AB AB ¢=,∴AB C E ¢=,∵AD 是ABC V 的“旋补中线”,∴180BAC B AC BAC B AD EAC ¢¢¢Ð+Ð=Ð+Ð+Ð=°,∵180AC E E EAC ¢Ð+Ð+Ð=°,B AD E ¢Ð=Ð,∴BAC AC E ¢Ð=Ð,∵AC AC ¢=,BAC AC E ¢Ð=Ð,AB C E¢=∴()SAS ABC C EA ¢≌V V ,∴2BC AE AD ==.(2)AD 是ABC V 的“旋补中线”;证明:如图,作C H AD ¢^于H ,作B F AD ¢^交AD 延长线于F ,∵AE BC ^,∴90F BEA Ð=Ð=°,∴90BAE B Ð+Ð=°,∵90a b ==°,即90BAB CAC ¢¢Ð=Ð=°,∴90BAE B AF ¢Ð+Ð=°,∴B B AF ¢Ð=Ð,又∵¢=BA AB ,∴()AAS ABE B AF ¢≌V V ,∴=B F AE ¢,又∵90AEC C HA ¢Ð=Ð=°,90CAC ¢Ð=°,∴90CAE C Ð+Ð=°,90CAE C AH ¢Ð+Ð=°,∴C C AH ¢Ð=Ð,∵CA AC ¢=,∴()AAS ACE C AH ¢≌V V ,∴=AE C H ¢,∴=B F C H ¢¢,∵90F C HD ¢Ð=Ð=°,B DF C DH ¢¢Ð=Ð,∴()AAS B DF C DH ¢¢≌V V ,∴B D C D ¢=¢,∴AD 是AB C ¢¢△的中线,∴AD 是ABC V 的“旋补中线”.【点睛】本题主要考查了全等三角形的判定和性质、同角的余角相等,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.。

最新人教版八年级数学上册全等三角形证明经典50题及答案解析-精品试题.do..

最新人教版八年级数学上册全等三角形证明经典50题及答案解析-精品试题.do..

全等三角形证明50题1、已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 A D B C ∴AD=2 1. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB =延长CD 与P ,使D 为CP 中点。

连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90 ∴平行四边形ACBP 为矩形∴AB=CP=1/2AB 2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 证明:连接BF 和EF A B C D E F 2 1 D A B C ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。

∵ ∠ABC=∠AED 。

∴ ∠ABE=∠AEB 。

∴ AB=AE 。

在三角形ABF 和三角形AEF 中AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G B A C D F 2 1 E CG∥EF,可得,∠EFD=CGD DE=DC ∠FDE=∠GDC(对顶角)∴△EFD≌△CGD EF=CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2 ∴△AGC为等腰三角形,AC=CG 又EF=CG ∴EF=AC 4.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS )∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 5. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE A 证明:在AE上取F,使EF=EB,连接CF ∵CE⊥AB ∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF ∴∠B=∠CFE ∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA ∵AC平分∠BAD ∴∠DAC=∠FAC ∵AC=AC ∴△ADC≌△AFC(SAS)∴AD=AF ∴AE=AF+FE=AD+BE 6. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 A D B C 7. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB =解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 D A B C 8. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 证明:连接BF 和EF 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、八年级数学全等三角形解答题压轴题(难)1.如图1,等腰△ABC中,AC=BC=42, ∠ACB=45˚,AO是BC边上的高,D为线段AO上一动点,以CD为一边在CD下方作等腰△CDE,使CD=CE且∠DCE=45˚,连结BE.(1) 求证:△ACD≌△BCE;(2) 如图2,在图1的基础上,延长BE至Q, P为BQ上一点,连结CP、CQ,若CP=CQ=5,求PQ的长.(3) 连接OE,直接写出线段OE的最小值.【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】试题分析:()1根据SAS即可证得ACD BCE≌;()2首先过点C作CH BQ⊥于H,由等腰三角形的性质,即可求得45DAC∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ 的长.()3OE BQ⊥时,OE取得最小值.试题解析:()1证明:∵△ABC与△DCE是等腰三角形,∴AC=BC,DC=EC,45ACB DCE∠=∠=,45ACD DCB ECB DCB∴∠+∠=∠+∠=,∴∠ACD=∠BCE;在△ACD和△BCE中,,AC BCACD BCEDC EC=⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE∴≌;()2首先过点C作CH BQ⊥于H,(2)过点C作CH⊥BQ于H,∵△ABC是等腰三角形,∠ACB=45˚,AO是BC边上的高,45DAC∴∠=,ACD BCE≌,45PBC DAC∴∠=∠=,∴在Rt BHC中,2242422CH BC=⨯=⨯=,54PC CQ CH===,,3PH QH∴==,6.PQ∴=()3OE BQ⊥时,OE取得最小值.最小值为:42 2.OE=-2.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC 交AC 的延长线于F ,同(1)证出△DBE≌△CFD,得出EB=DF ,即可得出结论.试题解析:(1)证明:如图,作DF ∥BC 交AC 于F ,则△ADF 为等边三角形∴AD=DF ,又∵ ∠DEC=∠DCB ,∠DEC+∠EDB=60°,∠DCB+∠DCF=60° ,∴ ∠EDB=∠DCA ,DE=CD ,在△DEB 和△CDF 中,120EBD DFC EDB DCF DE CD ,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF ,∴BD=DF ,∴BE=AD .(2). EB=AD 成立;理由如下:作DF ∥BC 交AC 的延长线于F ,如图所示:同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,又∵∠DBE=∠DFC=60°,∴△DBE ≌△CFD(AAS ),∴EB=DF ,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.3.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【解析】【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE,∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,∴∠MCF=∠NCG,在△MCF和△NCG中,CMF CNGCM CNMCF NCG∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF≌△NCG(ASA),∴CF=CG(全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.4.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【答案】(1)见解析(2)成立(3)△DEF为等边三角形【解析】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900.∵∠BAC=900,∴∠BAD+∠CAE=900.∵∠BAD+∠ABD=900,∴∠CAE=∠ABD.又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE="AE+AD=" BD+CE.(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)△DEF为等边三角形.理由如下:由(2)知,△ADB ≌△CEA ,BD=AE ,∠DBA =∠CAE ,∵△ABF 和△ACF 均为等边三角形,∴∠ABF=∠CAF=600.∴∠DBA+∠ABF=∠CAE+∠CAF .∴∠DBF=∠FAE .∵BF=AF ,∴△DBF ≌△EAF (AAS ).∴DF=EF ,∠BFD=∠AFE .∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.∴△DEF 为等边三角形.(1)因为DE=DA+AE ,故由AAS 证△ADB ≌△CEA ,得出DA=EC ,AE=BD ,从而证得DE=BD+CE .(2)成立,仍然通过证明△ADB ≌△CEA ,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD . (3)由△ADB ≌△CEA 得BD=AE ,∠DBA =∠CAE ,由△ABF 和△ACF 均等边三角形,得∠ABF=∠CAF=600,FB=FA ,所以∠DBA+∠ABF=∠CAE+∠CAF ,即∠DBF=∠FAE ,所以△DBF ≌△EAF ,所以FD=FE ,∠BFD=∠AFE ,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF 是等边三角形.5.如图①,在ABC 中,90BAC ∠=︒,AB AC =,AE 是过A 点的一条直线,且B 、C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+.(2)若将直线AE 绕点A 旋转到图②的位置时(BD CE <),其余条件不变,问BD 与DE 、CE 的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE ,理由见解析.【解析】【分析】(1)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AE=AD+DE ,所以BD=DE+CE ;(2)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AD+AE=BD+CE ,所以BD=DE-CE .【详解】解:(1)∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∵AE=AD+DE ,∴BD=DE+CE ;(2)BD 与DE 、CE 的数量关系是BD=DE-CE ,理由如下:∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE ,∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∴AD+AE=BD+CE ,∵DE=BD+CE ,∴BD=DE-CE .【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS ,SAS ,AAS ,HL 等.这种类型的题目经常考到,要注意掌握.6.综合实践如图①,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为点D E 、,2.5, 1.7AD cm DE cm ==.(1)求BE 的长;(2)将CE 所在直线旋转到ABC ∆的外部,如图②,猜想AD DE BE 、、之间的数量关系,直接写出结论,不需证明;(3)如图③,将图①中的条件改为:在ABC ∆中,,AC BC D C E =、、三点在同一直线上,并且BEC ADC BCA α∠=∠=∠=,其中α为任意钝角.猜想AD DE BE 、、之间的数量关系,并证明你的结论.【答案】(1)0.8cm;(2)DE=AD+BE;(3)DE=AD+BE ,证明见解析.【解析】【分析】(1)本小题只要先证明ACD CBE ≅,得到AD CE =,CD BE =,再根据2.5, 1.7AD cm DE cm ==,CD CE DE =-,易求出BE 的值;(2)先证明ACD CBE ≅,得到AD CE =,CD BE =,由图②ED=EC+CD ,等量代换易得到AD DE BE 、、之间的关系;(3)本题先证明EBC DCA ∠=∠,然后运用“A AS”定理判定BEC CDA ≅,从而得到,BE CD EC AD ==,再结合图③中线段ED 的特点易找到AD DE BE 、、之间的数量关系.【详解】解:(1)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∵90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCEAC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-= ∴0.8BE cm =(2)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∴90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+(3)∵BEC ADC BCA α∠=∠=∠=∴180BCE ACD a ︒∠+∠=-180BCE BCE a ︒∠+∠=-∴ACD BCE ∠=∠在ACD 与CBE △中, ADC E a ACD BCE AC BC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+【点睛】本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.7.(1)在等边三角形ABC 中,①如图①,D ,E 分别是边AC ,AB 上的点,且AE CD =,BD 与EC 交于点F ,则BFE ∠的度数是___________度;②如图②,D ,E 分别是边AC ,BA 延长线上的点,且AE CD =,BD 与EC 的延长线交于点F ,此时BFE ∠的度数是____________度;(2)如图③,在ABC ∆中,AC BC =,ACB ∠是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,且AE CD =,BD 与EC 的延长线交于点F ,若ACB α∠=,求BFE ∠的大小(用含法α的代数式表示).【答案】(1)60;(2)60;(3)BFE α∠=【解析】【分析】 (1)①只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD ,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;②只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD=∠DCF ,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(2)只要证明△AEC ≌△CDB ,可得∠E=∠D ,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】解:(1)①如图①中,∵△ABC 是等边三角形,∴AC=CB ,∠A=∠BCD=60°,∵AE=CD ,∴△ACE ≌△CBD ,∴∠ACE=∠CBD ,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;②如图②,∵△ABC 是等边三角形,∴AC=CB ,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD ,∴△ACE ≌△CBD ,∴∠ACE=∠CBD=∠DCF ,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60;(2)如图③中,图③点O 是AC 边的垂直平分线与BC 的交点,OC OA ∴=,OAC ACO α∴∠=∠=180EAC DCB α∴∠=∠︒=-,AC BC =,AE CD =,AEC CDB ∴∆≅∆, E D ∴∠=∠,BFE D DCF E ECA OAC α∴∠=∠+∠=∠+∠=∠=.【点睛】本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.8.在等边ABC 中,点D 是边BC 上一点.作射线AD ,点B 关于射线AD 的对称点为点E .连接CE 并延长,交射线AD 于点F .(1)如图,连接AE ,①AE 与AC 的数量关系是__________;②设BAF α∠=,用α表示BCF ∠的大小;(2)如图,用等式表示线段AF ,CF ,EF 之间的数量关系,并证明.【答案】(1)①AB=AE;②∠BCF=α;(2) AF-EF=CF,理由见详解.【解析】【分析】(1)①根据轴对称性,即可得到答案;②由轴对称性,得:AE=AB,∠BAF=∠EAF=α,由ABC是等边三角形,得AB=AC,∠BAC=∠ACB=60°,再根据等腰三角形的性质和三角形内角和等于180°,即可求解;(2)作∠FCG=60°交AD于点G,连接BF,易证∆FCG是等边三角形,得GF=FC,再证∆ACG≅∆BCF(SAS),从而得AG=BF,进而可得到结论.【详解】(1)①∵点B关于射线AD的对称点为点E,∴AB和AE关于射线AD的对称,∴AB=AE.故答案是:AB=AE;②∵点B关于射线AD的对称点为点E,∴AE=AB,∠BAF=∠EAF=α,∵ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠EAC=60°-2α,AE=AC,∴∠ACE=1180(602)602αα⎡⎤--=+⎣⎦,∴∠BCF=∠ACE-∠ACB=60α+-60°=α.(2)AF-EF=CF,理由如下:作∠FCG=60°交AD于点G,连接BF,∵∠BAF=∠BCF=α,∠ADB=∠CDF,∴∠ABC=∠AFC=60°,∴∆FCG是等边三角形,∴GF=FC,∵ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠ACG=∠BCF=α.在∆ACG和∆BCF中,∵CA CBACG BCFCG CF=⎧⎪∠=∠⎨⎪=⎩,∴∆ACG≅∆BCF(SAS),∴AG=BF,∵点B关于射线AD的对称点为点E,∴AG=BF=EF,∵AF-AG=GF,∴AF-EF=CF.【点睛】本题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.9.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB≌△CEA,∴AE=BD,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.10.如图1,已知CF是△ABC的外角∠ACE的角平分线,D为CF上一点,且DA=DB.(1)求证:∠ACB=∠ADB;(2)求证:AC+BC<2BD;(3)如图2,若∠ECF=60°,证明:AC=BC+CD.【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)过点D分别作AC,CE的垂线,垂足分别为M,N,证明Rt△DAM≌Rt△DBN,得出∠DAM=∠DBN ,则结论得证;(2)证明Rt △DMC ≌Rt △DNC ,可得CM=CN ,得出AC+BC=2BN ,又BN <BD ,则结论得证;(3)在AC 上取一点P ,使CP=CD ,连接DP ,可证明△ADP ≌△BDC ,得出AP=BC ,则结论可得出.【详解】(1)证明:过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,∵CF 是△ABC 的外角∠ACE 的角平分线,∴DM =DN ,在Rt △DAM 和Rt △DBN 中,DA DB DM DN =⎧⎨=⎩, ∴Rt △DAM ≌Rt △DBN (HL ),∴∠DAM =∠DBN ,∴∠ACB =∠ADB ;(2)证明:由(1)知DM =DN ,在Rt △DMC 和Rt △DNC 中,DC DC DM DN =⎧⎨=⎩, ∴Rt △DMC ≌Rt △DNC (HL ),∴CM =CN ,∴AC +BC =AM +CM +BC =AM +CN +BC =AM +BN ,又∵AM =BN ,∴AC +BC =2BN ,∵BN <BD ,∴AC +BC <2BD .(3)由(1)知∠CAD =∠CBD ,在AC 上取一点P ,使CP =CD ,连接DP ,∵∠ECF =60°,∠ACF =60°,∴△CDP 为等边三角形,∴DP =DC ,∠DPC =60°,∴∠APD =120°,∵∠ECF =60°,∴∠BCD =120°,在△ADP 和△BDC 中,APD BCD PAD CBD DA DB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADP ≌△BDC (AAS ),∴AP =BC ,∵AC =AP +CP ,∴AC =BC +CP ,∴AC =BC +CD .【点睛】本题是三角形综合题,考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.。

相关文档
最新文档