数学建模之因子分析法
因子分析法详细步骤
![因子分析法详细步骤](https://img.taocdn.com/s3/m/d8155664cdbff121dd36a32d7375a417866fc1a5.png)
• Heywood现象 • 残差矩阵
五、因子旋转
• 目的:使因子负荷两极分化,要么接近于0,要么接近于1。 • 常用的旋转方法:
(1)方差最大正交旋转(varimax orthogonal rotation) • 基本思想:使公共因子的相对负荷(lij/hi2)的方差之和最大,且保持原公共因子的正交性和
• 确定公共因子数; • 计算公共因子的共性方差hi2; • 对载荷矩阵进行旋转,以求能更好地解释公共因子; • 对公共因子作出专业性的解释。
四、因子分析提取因子的方法 • 主成分法(principal component factor)
aij jlji
i 1,2,..., p; j 1,2,...,m
因子分析法详细步骤
二、因子分析模型
一般地,设X=(x1, x2, …,xp)’为可观测的随机变量,且有 • f=(f1,f2,…,fm)’为公共(共性)因子(common factor),简称因子(factor)
X ii a i1 f1 a i2 f2 a im fm e i
• e=(e1,e2,…,ep)’为特殊因子(specific factor) f和e均为不可直接观测的随机变量 • μ=(μ1,μ2,…,μp)’为总体x的均值 • A=(aij)p*m为因子负荷(载荷)(factor loading)矩阵
通常先对x作标准化处理,使其均值为零,方差为1.这样就有
假定(1)fi的均数为0,方差为1;
(2)ei的均数为0,方差为δi;
x af af af e (3) fi与ei相互独立.
因子分析数学模型
![因子分析数学模型](https://img.taocdn.com/s3/m/aa12f65359eef8c75fbfb3c4.png)
因子分析数学模型1、因子分析看基本思想因子分析是一种旨在寻找隐藏在多变量数据中,无法直接观察到却影响或支配可观测变量的潜在因子,并估计潜在因子对可观测变量的影响程度,以及潜在因子之间的相关性的一种多元统计分析方法。
其基本思想是从分析多变量数据的相关关系入手,找到支配这种相关关系的少数几个相关独立的潜在因子,并通过建立起这些潜在因子与原变量之间的数量关系来预测潜在因子的状态,帮助发现隐藏在原变量之间的某种客观规律性。
因子分析和主成分分析都能起到清理多个原始变量内在结构关系的作用,但主成分分子重在综合原始变量信息,而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法。
因子分析法就是这些潜在因子的数学模型方法,它是在主成分的基础上构筑若干个意义较为明确的潜在因子,以它们为框架分析原变量,以考察原变量间的联系与区别。
2、因子分析的基本原理3、因子分析的数学模型假设对n例样品观测了p个指标,即,,…,,得到观测数据。
我们的任务就是从一组观测数据出发,通过分析各指标,,…,之间的相关性,找出支配作用的潜在因子,使得这些因子可以解释各个指标之间的相关性。
因子分析模型描述如下:(1)X=(,,…,)是可观测随机变量,均值向量E(X)=0,协方差Cov(X)与相关矩阵R相等,(只要将变量标准化即可实现)。
(2)F=(,,…,)(m<=p)是不可测的向量,其均值E(F)=0,协方差矩阵Cov(F)=1,即向量的各分量是独立的。
(3)e=(,,…,)与F相互独立,且E(e)=0,e的协方差矩阵是对角矩阵,即各分量e之间是相互独立的。
则因子分析的数学模型如下:由于该模型是针对变量进行的,各因子是正交的,所以也称为R型正交因子模型。
其矩阵形式为:X=AF+e。
其中:X= A= F= ,e=对于因子分析,要求数据和模型满足以下假设条件:●是均值为0、方差为1的随机变量;●是均值为0 ,方差为常数的正太随机变量。
因子分析数学模型
![因子分析数学模型](https://img.taocdn.com/s3/m/be46652824c52cc58bd63186bceb19e8b8f6ec2c.png)
因子分析数学模型因子分析是一种统计方法,用于研究多个变量间的关系,并将其通过线性组合的方式转化为少数几个影响变量的因子。
因子分析模型是一种数学模型,旨在解释变量之间的相关性,找出潜在的因子影响变量的变异程度。
因子分析的数学模型可以分为两个阶段。
第一阶段是提取因子,通过主成分分析的方法从原始变量中提取出少数几个因子。
主成分分析的核心是将原始变量进行线性组合,使得新的变量能够解释尽可能多的原始变量的变异。
主成分分析将提取的因子按照解释的变异程度排序,选择解释性较好的因子作为主成分。
第二阶段是因子旋转,通过变换因子的坐标轴方向,使得因子能够具有较好的解释性和可解释性。
因子旋转可以使用正交旋转或斜交旋转的方法进行。
正交旋转将因子的坐标轴变换为正交的坐标轴,使得因子之间没有相关性;斜交旋转将因子的坐标轴变换为斜交的坐标轴,使得因子之间可以存在相关性。
根据具体问题的需求,选择适当的旋转方法。
因子分析的数学模型可以表示为:Y=λ1F1+λ2F2+…+λnFn+e其中,Y是观测变量的向量,包括m个变量;F是因子的向量,包括n个因子;λ是因子载荷的矩阵,表示观测变量对因子的影响程度;e是误差项。
因子载荷矩阵λ可以用来衡量观测变量与因子之间的关系,越大表示对应观测变量越受该因子的影响。
因子分析的数学模型还可以进一步扩展为混合因子分析模型。
混合因子分析模型考虑了因子间的相关性和观测变量间的相关性,通过引入协方差矩阵和错误项协方差矩阵,对因子和观测变量的相关性进行建模。
混合因子分析模型可以更准确地描述变量之间的关系,并提供更可靠的因子载荷和因子得分。
总之,因子分析是一种通过线性组合的方式转化变量间关系的统计方法,其数学模型可以用来解释变量之间的相关性,并提取出影响变量的少数几个因子。
因子分析的数学模型在社会科学、市场调研等领域具有广泛的应用价值。
最新因子分析法详细步骤ppt课件
![最新因子分析法详细步骤ppt课件](https://img.taocdn.com/s3/m/5a047ba6541810a6f524ccbff121dd36a32dc407.png)
六、因子得分
• Thomson法,即回归法
回归法得分是由Bayes思想导出的,得 到的因子得分是有偏的,但计算结果 误差较小。
• Bartlett法
Bartlett因子得分是极大似然估计,也是 加权最小二乘回归,得到的因子得分 是无偏的,但计算结果误差较大。
• 因子得分可用于模型诊断,也可用作 进一步分析的原始资料。
每一个公共因子的载荷系数之平方和 等于对应的特征根,即该公共因子的 方差。
p
j
ai2j
g
2 j
i1
• 极大似然法(maximum likelihood factor)
假定原变量服从正态分布,公共因 子和特殊因子也服从正态分布,构 造因子负荷和特殊方差的似然函数, 求其极大,得到唯一解。
• 主因子法(principal factor)
设原变量的相关矩阵为R=(rij),其逆 矩阵为R-1=(rij)。各变量特征方差 的初始值取为逆相关矩阵对角线元 素的倒数,δi’=1/rii。则共同度 的初始值为(hi’)2=1- δi’=1-1/rii。
以(hi’)2代替相关矩阵中的对角线上的元素, 得到约化相关矩阵。
(h1’)2 r12 … r1p
r21 (h2’)2 … r2p
R’= .
. ….
.
. ….
rp1 rp2 … (hp’)2
R’的前m个特征根及其对应的单位化特征向 量就是主因子解。
• 迭代主因子法(iterated principal factor)
主因子的解很不稳定。因此,常以估计 的共同度为初始值,构造新的约化矩 阵,再计算其特征根及其特征向量, 并由此再估计因子负荷及其各变量的 共同度和特殊方差,再由此新估计的 共同度为初始值继续迭代,直到解稳 定为止。
数学模型中的因子分析法
![数学模型中的因子分析法](https://img.taocdn.com/s3/m/ee5af9c4a1116c175f0e7cd184254b35eefd1a98.png)
数学模型中的因子分析法因子分析是一种常用的数学模型,用于解释多个变量之间的关系和发现潜在的因素。
它是一种降维技术,旨在将众多变量转化为较少数量的无关因子。
因子分析在统计学、心理学和市场研究等领域广泛应用,可用于数据降维、消除多重共线性、提取潜在特征、构建模型等等。
在因子分析中,有两种主要类型:探索性因子分析(Exploratory Factor Analysis,EFA)和验证性因子分析(Confirmatory Factor Analysis,CFA)。
探索性因子分析用于发现数据中的潜在因素,而验证性因子分析则用于验证已经提出的因素模型是否符合实际数据。
探索性因子分析的步骤如下:1.提出假设:确定为什么要进行因子分析以及预期结果,用于指导后续的数据分析。
2.数据准备:收集和整理要进行因子分析的数据,确保数据的可用性和准确性。
3.因子提取:通过主成分分析或最大似然法等方法,提取出能够解释数据变异最大的因子。
4.因子旋转:因子旋转是为了使提取出的因子更易于解释和理解。
常用的旋转方法有正交旋转和斜交旋转等。
5.因子解释和命名:对于每个提取出的因子,需要根据变量的载荷矩阵和旋转后的载荷矩阵进行解释和命名。
载荷矩阵表示每个因子与每个变量之间的关系。
6.结果评估:对于提取出的因子,需要进行信度和效度的评估。
信度评估包括内部一致性和稳定性等指标;效度评估包括构造效度和相关效度等指标。
验证性因子分析通常用于验证已经提出的因子模型是否符合实际数据。
其步骤包括:1.提出假设:确定已存在的因子模型,并对其进行理论和实际的验证。
2.选择分析方法:确定适合验证性因子分析的模型拟合方法,如最大似然法或广义最小二乘法等。
3.构建模型:将因子模型转化为测量模型,并建立测量方程。
4.模型拟合:对构建的测量模型进行拟合,评估模型的拟合度,如χ²检验、准则拟合指数(CFI)等。
5.修正模型:根据拟合域冒去改进模型的拟合,如剔除不显著的路径、修正测量方程等。
第6章 因子分析法
![第6章 因子分析法](https://img.taocdn.com/s3/m/8481da675acfa1c7aa00cced.png)
数学模型
因子 分析 的模 型
为什么要旋转因子 建立了因子分析模型的目的不仅仅 要找出公共因子以及对变量进行分 组,更重要的要知道每个公共因子的 意义,以便进行进一步的分析,如果 每个公共因子的含义不清,则不便于 进行实际背景的解释。由于因子载荷 阵是不惟一的,所以应该对因子载荷 阵进行旋转。使因子载荷阵的结构简 化,使载荷矩阵中每列或行的元素平 方值向0和1两极分化。
几个重要概念:
(1). 某个因子与某个原变量的相关系数,主要反映该公共 (1).因子载荷: 因子载荷: 某个因子与某个原变量的相关系数,主要反映该公共
因子对相应原变量的贡献力大小。 因子对相应原变量的贡献力大小。
(2). 对某一个原变量来说,其在所有因子上的载荷的平 (2).变量共同度: 变量共同度: 对某一个原变量来说,其在所有因子上的载荷的平
KMO统计量 (2)
生育率的影响因素分析
生育率受社会、经济、文化、计划生育政策等很多 因素影响,但这些因素对生育率的影响并不是完全独立 的,而是交织在一起,如果直接用选定的变量对生育率 进行多元回归分析,最终结果往往只能保留两三个变量,其他变 量的信息就损失了。因此,考虑用因子分析的方法,找出变量 间的数据结构,在信息损失最少的情况下用新生成的因子对生 育率进行分析。 选择的变量有:多子率、综合节育率、初中以上文化程度比 例、城镇人口比例、人均国民收入。下表是1990年中国30个 省、自治区、直辖市的数据。
没有旋转的因子结构 Factor1 x1 x2 x3 x4 x5 -0.76062 0.56898 0.89184 0.87066 0.89076 Factor2 0.55316 -0.76662 0.25374 0.34618 0.36962
数学模型中的因子分析法
![数学模型中的因子分析法](https://img.taocdn.com/s3/m/9a4f2f72f46527d3240ce0ae.png)
'
'
1
2
p
A a ij
称为因子载荷阵
pm
X AF
• 因子分析步骤: • 前四步骤不主成分步骤相同,在此略。 5.求初始因子载荷阵A。 6.若公因子的含义丌清楚,丌便于实际解释时,将 初始因子阵作旋转处理,直到达到要求。 7.根据因子载荷大小说明因子具体含义。 • 将因子表示成原指标变量线性组合,估计因子得 分。 • 用每个因子的贡献率作权数,给出多指标综合评 价值。
6
3
0 . 959439 X
5
0 . 0 . 055029 X
• • • • • • • • • • • • • • • • •
Obs
Prin1 Prin2 1 -0.38118 2 0.57795 3 0.69219 4 0.22635 5 -0.82981 6 -1.19410 7 -1.63568 8 0.95195 9 0.46501 10 -1.45693 11 -0.29401 12 0.08041 13 -2.11628 14 -0.94513 15 6.74015 16 -0.88090
• 主成分分析法:就是设法将原来的具有一定相关 性的变量戒者指标,重新组成一组新的相互无关 的少数几个综合变量戒指标,以此代替原来的变 量戒指标。简单的说就是降维。 • 应用:综合评价(系统评估)
例:对我国上市公司的经济效益进行综合评判。
上市公司 qinghua beida 资金利税率 x1 产值利税率 x2 百元销售成 本利润x3 百元销售收 入利税x4 流动资金周 转次数x5 主营利润增 长率x6
5.41 7.21
因子分析数学模型
![因子分析数学模型](https://img.taocdn.com/s3/m/b4bb63e7da38376bae1fae02.png)
因子旋转
通过坐标变换使每个原始变量在尽可能少的因子之间有密切的关系, 这样因子解的实际意义更容易解释,并为每个潜在因子赋予有实际意义 的名字。
计算因子得分
求出各样本的因子得分,有了因子得分值,则可以在许多分析中使用 这些因子,例如以因子的得分做聚类分析的变量,做回归分析中的回 归因子。
因子分析计算步骤与实例分析
X4 3290.73 2871.62 2871.81 1499.14 1550.15 2059.35 1940.46 2075.42
对我国30个省市自治区的农业生产情况作因子分析。
从农业生产条件和生产结果及效益出发,选取六项指
标分别为:X1—乡村劳动力人口(万人)、X2—人均 经营耕地面积(亩)、X3—户均生产性固定资产原值 (元)、X4—家庭基本纯收入(元)、X5—人均农业 总产值(千元/人)、X6—增加值占总产值比重(%) 原始资料数据如下页表:
因子的相关系数。用统计学术语叫权重,表示Xi 依赖Fj 的份量(比重)。
cov( X i , Fj ) aij
变量共同度的统计意义
因子载荷阵A中第i行元素的平方和,即
h a 2ij
2 i j 1 m
称为变量Xi 的共同度。 为了说明它的统计学意义,对Xi的表达式两边求方差,即
var( X i ) var( ait Ft )
简记为
X = AF + ε
且满足
m p
1 1 D (F ) 0 0 Im 1
cov(F, ε) 0
12 2 2 D(ε) 0 0 2 p
因子分析的目的
通过模型
X = AF + ε
以F 代替X ,由于m≤p,从而达到简化变量维
因子分析数学模型
![因子分析数学模型](https://img.taocdn.com/s3/m/e234bd836037ee06eff9aef8941ea76e58fa4ad1.png)
因子分析数学模型因子分析是一种常用的多元统计分析方法,主要用于分析多个观测变量之间的相关关系。
它通过寻找潜在因子,将多个观测变量转化为较少的几个因子,从而减少变量间的复杂性,进而更好地解释观测数据。
因子分析的数学模型可以表示为:X=ΛF+Ψ其中,X是一个n×p的数据矩阵,表示n个观测对象对p个观测变量的测量结果。
Λ是一个n×m的因子载荷矩阵,表示每个观测变量与每个因子之间的线性关系。
F是一个m×p的因子矩阵,表示每个观测对象在每个因子上的得分。
Ψ是一个n×p的特殊因子载荷矩阵,表示每个观测变量与测量误差的关系。
在因子分析模型中,通过最小化测量误差来确定因子载荷矩阵Λ和特殊因子载荷矩阵Ψ。
最小化误差的方式通常使用最小二乘法,目标函数可以表达为:min(Ψ, Λ) = ∑[x_i - (λ_i1f_1i + λ_i2f_2i + ... +λ_imf_m_i)]^2其中,x_i是观测对象i的观测数据,λ_ij是观测变量j与因子i 的载荷系数,f_ij是观测对象i在因子j上的得分。
通过最小化目标函数,可以得到最优的因子载荷矩阵Λ和特殊因子载荷矩阵Ψ,从而揭示出观测变量之间的潜在因子结构。
在因子分析模型中,还存在一些特殊的情况,包括主成分分析和确认性因子分析。
主成分分析是因子分析的一种特殊情况,它假设所有的观测变量都与因子完全相关,即Ψ为零矩阵。
主成分分析通过计算特征值和特征向量来确定因子载荷矩阵Λ,并选择前几个最大的特征值对应的特征向量作为因子。
确认性因子分析则是在因子分析的基础上进行参数约束,通过设定因子载荷矩阵和特殊因子载荷矩阵的一些限制来验证和验证潜在因子结构的模型。
因子分析是一种灵活性较高的统计方法,可以应用于很多领域,如心理学、教育学、市场营销和金融等。
通过因子分析,我们可以更好地理解和解释观测数据之间的关系,并提取出具有实际意义的因子。
因子分析数学模型
![因子分析数学模型](https://img.taocdn.com/s3/m/064cca59974bcf84b9d528ea81c758f5f61f2913.png)
因子分析数学模型因子分析是一种常用的多元统计方法,用于研究变量之间的关联关系和构建数学模型。
其基本思想是将原始变量通过主成分分析或最大似然估计等方法进行转化,得到一组新的综合变量,即因子。
因子分析数学模型描述了原始变量与因子之间的关系,可以用来提取变量的共同信息、简化数据分析过程、减少变量的维度等。
矩阵模型是因子分析的核心数学模型,其假设对于m个观测值和n个变量,存在一个矩阵F(m×k)表示k个共同因子,以及一个矩阵L(n×k)表示每个变量与因子的负荷载。
k是共同因子的个数。
此外,还有一个k×k的协方差矩阵Ψ描述了共同因子之间的关系,以及一个n×n的协方差矩阵Σ描述了变量之间的关联关系。
这个模型可以用数学公式表示为:X=FL^T+E其中,X是观测值矩阵,F是因子矩阵,L是负荷载矩阵,E是特殊因子矩阵,"+"表示矩阵的加法,T表示矩阵的转置。
观测模型是加强版的矩阵模型,它假设每个变量的观测值是由共同因子、特殊因子和测量误差组成。
观测模型中,负荷载矩阵L和特殊因子矩阵E被看作是模型的参数,测量误差项被看作是随机变量。
因此,观测模型可以用数学公式表示为:X=FL^T+E+ε其中,ε是测量误差项,其服从一个均值为零、协方差矩阵为Ψ的多元正态分布。
为了推断因子分析数学模型,需要使用各种统计方法来估计模型的参数。
最常用的方法是主成分分析和最大似然估计法。
主成分分析是一种无信息损失的线性变量转换方法,它将原始变量通过线性组合转换成一组互不相关的主成分。
主成分分析可以用于确定共同因子的个数和负荷载矩阵的估计值。
最大似然估计法是一种参数估计方法,它基于假设观测值服从多元正态分布,通过最大化似然函数来求解参数的估计值。
最大似然估计法可以用于估计负荷载矩阵和协方差矩阵的估计值。
总之,因子分析数学模型是一种实现多变量数据分析和建模的重要方法。
通过构建数学模型,可以提取共同因子、简化数据分析过程、减少变量的维度等。
因子分析数学模型
![因子分析数学模型](https://img.taocdn.com/s3/m/cc3d3043a7c30c22590102020740be1e650ecc34.png)
因子分析数学模型一、引言因子分析是一种强大的统计方法,用于从一组变量中提取出潜在的公共因子。
这种方法在许多领域都有广泛的应用,包括社会科学、心理学、经济学和生物学等。
它的主要目标是减少数据集的维度,同时保留原始数据中的重要信息。
这种方法有助于解释变量之间的关系,揭示隐藏在数据中的结构。
本文将详细介绍因子分析的数学模型及其实现过程。
二、因子分析数学模型1、公共因子模型因子分析的公共因子模型可以表示为:X = AF + ε其中,X是观测数据矩阵,A是因子载荷矩阵,F是公共因子矩阵,ε是特殊因子矩阵。
这个模型的意思是,观测数据X可以由公共因子F和特殊因子ε加权组合而成。
公共因子代表了所有观测变量之间的共性,而特殊因子则代表了每个观测变量的独特性。
2、因子载荷矩阵因子载荷矩阵A描述了每个观测变量与公共因子之间的关系。
矩阵中的每个元素aij表示第i个观测变量在第j个公共因子上的载荷。
通过求解因子载荷矩阵,我们可以找出公共因子对观测变量的影响程度。
3、旋转矩阵在因子分析中,旋转矩阵是一种重要的工具,用于优化公共因子的解释。
旋转矩阵可以使得公共因子的解释更加直观和有意义。
常见的旋转方法包括方差最大旋转(varimax)和正交旋转(quartimax)等。
三、实现过程1、确定公共因子的数量在开始因子分析之前,我们需要确定公共因子的数量。
常见的确定公共因子数量的方法有基于特征值的方法、基于解释方差的方法以及基于碎石图的方法等。
2、求解因子载荷矩阵在确定了公共因子的数量后,我们需要求解因子载荷矩阵。
常用的求解方法有基于主成分分析的方法、基于最大似然估计的方法以及基于最小二乘法的方法等。
3、旋转因子载荷矩阵通过旋转因子载荷矩阵,我们可以优化公共因子的解释。
常见的旋转方法包括方差最大旋转和正交旋转等。
旋转后的因子载荷矩阵可以帮助我们更好地理解公共因子与观测变量之间的关系。
4、解释公共因子我们需要对提取的公共因子进行解释。
数学建模因子分析
![数学建模因子分析](https://img.taocdn.com/s3/m/c818d56a336c1eb91a375d96.png)
主成分分析的基本思想
(以两个变量为例)
多维变量的情形类似,只不过是一个高维椭球,无法 直观地观察 每个变量都有一个坐标轴,所以有几个变量就有几主 轴。首先把椭球的各个主轴都找出来,再用代表大多 数数据信息的最长的几个轴作为新变量,这样,降维 过程也就完成了 找出 的 这些 新 变量 是原来变量的线性 组合,叫做主成分
第二部分 因子分析
因子分析的意义和数学模型 因子分析的步骤 因子分析的应用
因子分析的意义和数学模型
什么是因子分析?
(factor analysis)
由Charles Spearman于1904年首次提出的 与主成分分析类似,它们都是要找出少数几个新的 变量来代替原始变量 不同之处:主成分分析中的主成分个数与原始变量 个数是一样的,即有几个变量就有几个主成分,只 不过最后我们确定了少数几个主成分而已。而因子 分析则需要事先确定要找几个成分 ,也称为因子 (factor),然后将原始变量综合为少数的几个因子, 以再现原始变量与因子之间的关系,一般来说,因 子的个数会远远少于原始变量的个数
什么是因子分析?
(factor analysis)
因子分析可以看作是主成分分析的推广和扩展,但 它对问题的研究更深入、更细致一些。实际上,主 成分分析可以看作是因子分析的一个特例 简言之,因子分析是通过对变量之间关系的研究, 找出能综合原始变量的少数几个因子,使得少数因 子能够反映原始变量的绝大部分信息,然后根据相 关性的大小将原始变量分组,使得组内的变量之间 相关性较高,而不同组的变量之间相关性较低。因 此,因子分析属于多元统计中处理降维的一种统计 方法,其目的就是要减少变量的个数,用少数因子 代表多个原始变量
主成分分析的基本思想
数学建模之因子分析法
![数学建模之因子分析法](https://img.taocdn.com/s3/m/827047534531b90d6c85ec3a87c24028915f85fc.png)
数学建模之因子分析法
因子分析是一种常用的数学建模方法,用于分析观测变量之间的内在关系和结构。
它通过分析多个观测变量之间的相关性,将它们综合起来解释数据的变异,从而推断潜在的因子或维度。
因子分析的主要目的是降低变量的维度,并发现观测变量之间隐藏的结构成分。
因子分析的一般步骤如下:
1.收集数据:首先,我们需要收集一组变量,这些变量可以是连续型的数据,也可以是离散型的数据。
2. 确定因子数目:在进行因子分析之前,我们需要确定分析所需的因子数目。
可以通过一些统计方法,如Kaiser准则、平行分析或层次分析等来确定。
3.进行因子提取:利用因子提取方法,如主成分分析法(PCA)或最大似然法(ML)等,将原始变量转化为一组因子。
4.因子旋转:由于因子提取得到的因子可能存在模糊性,我们需要对因子进行旋转来使其更具解释性。
常用的旋转方法有方差最大旋转和方差等于1旋转等。
5.因子得分和解释:通过计算因子得分,我们可以得到每个样本的因子得分,从而评估每个样本对于每个因子的贡献。
此外,通过对因子负荷矩阵进行解释,我们可以确定每个因子所代表的具体含义。
6.结果解释和应用:最后,根据因子得分和因子负荷矩阵的结果,我们可以解释数据的变异,并根据需要进一步应用于相关的问题。
因子分析在实际应用中有很多方面的应用,例如心理学、社会学、市场调研等。
在心理学中,因子分析可以用于评估人格特征、心理健康等方面的变量。
在市场调研中,因子分析可以帮助我们发现消费者偏好和行为模式。
因子分析还可以用于降维,减少冗余信息,从而提高其他模型的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因子分析
因子分析就是一种降维、简化数据的技术。
它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并用少数几个“抽象”的变量来表示其基本的数据结构。
这几个抽象的变量被称作“因子”,能反映原来众多变量的主要信息。
原始的变量是可观测的显在变量,而因子一般是不可观测的潜在变量。
1.因子分析法的应用
①汽车行业业绩评价研究(下载文档), ②上市公司盈利能力及资本结构实证分析, ③生育率影响因素分析。
2.步骤
①对原始数据进行标准化处理 用12,,
,m x x x 表示因子分析指标的m 个变量,评价对象有n 个,ij a 表示第i
个评价对象对应于第j 个指标的取值。
将每个指标值ij a 转化为标准化指标ij a ,即
,(1,2,
,;1,2,
,)ij j
ij j
a a i n j m s μ-=
==
式中:11n j ij i a n μ==∑,21
1()1n
j ij j i s a n μ==--∑ 相应地,标准化指标变量为
,(1,2,
,)j j
j j
x x j m s μ-=
=
②计算相关系数矩阵R
()ij m m R r ⨯=
1
,(,1,2,
,)1
n
ki
kj
k ij a
a r i j m n =⋅=
=-∑
式中:1,ii ij ji r r r ==,ij r 是第i 个指标和第j 指标之间的相关系数。
③计算初等载荷矩阵
解特征方程0=-R I λ,得到特征值(1,2,,)i i m λ=12,0m λλλ≥≥≥≥,再
求出相对应的特征值i λ的特征向量(1,2,,)i u i m =,其中12(,,
,)T j j j mj u u u u =,
得到初等载荷矩阵为
11,
,m m u λ⎤Λ=⎦
④ 确定主因子的个数()k k m ≤ 一般选取使得累计贡献率11
85%k
m
i
i
i i λλ
==≥∑∑的这k 个主因子,对k 个因子载
荷矩阵作旋转,用()
1k Λ表示1Λ的前k 列,T 表示正交矩阵,则得矩阵()21k T Λ=Λ,建立因子模型,即
1111111,
.
k k m
m mk k x F F x F F αααα=++⎧⎪
⎨⎪=++⎩ ⑥计算因子得分,作出综合评价
求出单个因子的得分函数ˆj F ,用ˆij F 表示第i 个样本对第j 个因子的得分估计值,Y 表示原始数据标准化后的矩阵,则总得分为
1ˆˆ()ij n k k
F F YR -⨯==
Λ 例题
我国上市公司赢利能力与资本结构的实证分析已知上市公司的数据见表1
表1 上市公司数据
试用因子分析法对上述企业进行综合评价。
模型的建立
①对原始数据进行标准化处理 用12,,
,m x x x 表示因子分析指标的m 个变量,评价对象有n 个,ij a 表示第i
个评价对象对应于第j 个指标的取值。
将每个指标值ij a 转化为标准化指标ij a ,即
,(1,2,
,;1,2,
,)ij j
ij j
a a i n j m s μ-=
==
式中:11n j ij i a n μ==∑,21
1()1n
j ij j i s a n μ==--∑ 相应地,标准化指标变量为
,(1,2,
,)j j
j j
x x j m s μ-=
=
②计算相关系数矩阵R
()ij m m R r ⨯=
1
,(,1,2,
,)1
n
ki
kj
k ij a
a r i j m n =⋅=
=-∑
式中:1,ii ij ji r r r ==,ij r 是第i 个指标和第j 指标之间的相关系数。
③计算初等载荷矩阵
解特征方程0=-R I λ,得到特征值(1,2,,)i i m λ=12,0m λλλ≥≥≥≥,再
求出相对应的特征值i λ的特征向量(1,2,,)i u i m =,其中12(,,
,)T j j
j mj u u u u =,
得到初等载荷矩阵为
11,
,m m u λ⎤Λ=⎦
④ 确定主因子的个数()k k m ≤ 一般选取使得累计贡献率11
85%k
m
i
i
i i λλ
==≥∑∑的这k 个主因子,对k 个因子载
荷矩阵作旋转,用()1k Λ表示1Λ的前k 列,T 表示正交矩阵,则得矩阵()21k T Λ=Λ,建立因子模型,即
1111111,.
k k m
m mk k x F F x F F αααα=++⎧⎪
⎨⎪=++⎩ 模型的求解:
我们选取两个主因子。
利用MATLAB 程序计算得旋转后的因子贡献及贡献率见表2,因子载荷阵见表3。
表2 贡献率数据
表3 旋转因子分析表
计算因子得分,作出综合评价
我们用回归方法求单个因子得分函数
11
ˆ,1,2,
,j j jm m F b x b x j k =++=
用ˆij
F 表示第i 个样本对第j 个因子的得分估计值,则 11
ˆ,(1,2,
,;1,2,,)ij j i jm im F b x b x i n j k =++==
即
1121
112222112k k m m
km b b b b b x R B b b x -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 用Y 表示原始数据标准化后的矩阵,则总得分为
1ˆˆ()ij n k
F F YR B -⨯== 计算得出各个因子得分函数为
1123421234
0.5310.16150.18310.50150.0450.51510.5810.0199F x x x x F x x x x =+-+=-++-
总得分为
12
44.4941.886.17
F F F +=
计算出16家上市公司赢利能力的综合得分见表4。
表416家上市公司赢利能力的综合得分。