氨碱法生产纯碱工艺

合集下载

纯碱生产工艺简介

纯碱生产工艺简介

纯碱生产工艺简介氨碱法(又称索尔维法)它是比利时工程师苏尔维(1838~1922)于1892年发明者的纯碱制法。

他以食盐(氯化钠)、石灰石(经焙烧分解成生石灰和二氧化碳)、氨气为原料去制备纯碱。

先并使氨气灌入饱和状态食盐水中而成氨盐水,再灌入二氧化碳分解成溶解度较小的碳酸氢钠结晶和氯化铵溶液。

其化学反应原理就是:nacl+nh3+h2o+co2=nahco3↓+nh4cl将经过滤、洗涤得到的nahco3微小晶体,再加热煅烧制得纯碱产品。

2nahco3=na2co3+h2o+co2↑放出的二氧化碳气体可回收循环使用。

含有氯化铵的滤液与石灰乳[ca(oh)2]混合加热,所放出的氨气可回收循环使用。

cao+h2o=ca(oh)2,2nh4cl+ca(oh)2=cacl2+2nh3↑+2h2o原盐搅拌后,并使固态的nacl溶水,这个过程就是化盐,饱和状态的nacl溶液经过回应,盐水里的沙泥等杂物经洗泥桶排在渣场。

nacl溶液经过碳化尾气净氨塔,碳化尾气净氨塔内进行化学反应,如下:吸氨和碳化过程,就是在上述碳化尾气净氨塔内的未反应的nacl溶液再进一步的充份反应。

其中海水加热主要就是加热设备。

将氨盐水与co2气在碳化塔内进行反应,生成nahco3结晶悬浮液。

原理方程式:2nh3+co2→nh2coonh4nh2coonh4+h2o→nh4hco3+nh3nacl+nh4hco3→nahco3+nh4cl上述nahco3溶液经真空过滤器后,展开重灰焙烧,而nh4cl溶液循环利用。

这个过程产生的是轻质纯碱,一般轻质纯碱密度为500-600kg/m3,重质纯碱密度为1000-1200kg/m3此过程主要就是固相水合法生产重质纯碱,通常重质纯碱密度为1000-1200kg/m3。

重质纯碱性状:白色颗粒状的无水物,易溶于水,常温时暴露在空气中能吸收co2和水,并放出热量,逐渐转成nahco3且结块。

我国的重质纯碱生产大体分成三种方法:固相水合法、液相水合法和结晶法。

纯碱工艺流程

纯碱工艺流程

纯碱工艺流程
《纯碱工艺流程》
纯碱,又称碳酸钠,是一种重要的化工原料,广泛用于玻璃、肥料、碱液等行业。

纯碱的生产过程通常采用氨法或苏尔法工艺,下面将介绍纯碱氨法工艺的生产流程。

1. 原料准备
纯碱氨法工艺的主要原料包括石灰石、氨气和食盐。

首先将石灰石煅烧得到石灰,再和水和氨气反应得到氢氧化钙。

接着将氢氧化钙与食盐进行水合反应,生成氢氧化钠、氯化氢气和氨气。

最后,通过蒸发和结晶,得到纯碱产品。

2. 溶解和过滤
将氢氧化钠溶解在水中得到氢氧化钠溶液,再经过过滤,去除悬浮固体杂质。

3. 脱硫
将氢氧化钠溶液中的硫化物通过加入空气或者其他氧化剂将其氧化成硫酸,并通过沉淀或者其他方式将其分离。

4. 结晶和干燥
将脱硫后的氢氧化钠溶液通过结晶器结晶,得到碱液浓缩和纯碱晶体。

最后,通过干燥设备将纯碱晶体干燥,得到最终产品。

以上就是纯碱氨法工艺的生产流程,通过各种反应和分离过程,将原料转化成为纯碱产品。

这个工艺流程不仅能够高效地生产
纯碱产品,还可以循环利用部分副产物,减少资源浪费,保护环境。

氨碱法生产纯碱的工艺过程

氨碱法生产纯碱的工艺过程
03
02
粗盐处理
对粗盐进行除杂、脱水和干燥等处 理,得到精盐。
废水处理
对生产过程中产生的废水进行处理 ,达到排放标准后排放。
04
母液回收与利用的设备
母液分离器
用于分离粗盐和二次母液。
二次母液回收设备
包括蒸发器、结晶器等设备,用于回收二次 母液中的氯化铵。
粗盐处理设备
包括过滤器、干燥器等设备,用于处理粗盐 。
盐水精制的工艺流程
石灰纯碱法
将石灰加入盐水中,使镁离子形成氢氧化镁沉淀,然后加入纯碱, 使钙离子形成碳酸钙沉淀,最后过滤分离,得到高纯度的盐水。
加压加灰法
将石灰和二氧化碳同时加入盐水中,使镁离子形成碳酸镁沉淀,然 后过滤分离,再对滤液进行蒸馏,得到高纯度的盐水。
膜过滤法
利用膜过滤技术,将盐水通过膜过滤器,使钙、镁等离子被截留,得 到高纯度的盐水。
沉淀与分离
在沉淀池中,碳酸氢钠晶体逐渐析出,与溶 液分离。
碳酸氢钠加热分解
将分离出的碳酸氢钠加热至一定温度,使其 分解成碳酸钠和水。
回收氯化铵
加热后的溶液回收氯化铵,作为副产品出售 。
氨盐水碳酸化的设备
混合器
用于将氨盐水与二氧化碳混合。
沉淀池
用于使碳酸氢钠晶体沉淀并分离。
加热器
用于加热碳酸氢钠溶液至分解温度。
废水处理设备
包括沉淀池、过滤器等设备,用于处理生产 过程中产生的废水。
THANKS
感谢观看
05
04
分离
将碳酸氢钠和氯化铵的混合溶液进行 分离,得到碳酸氢钠和氯化铵产品。
02
石灰石的破碎与消化
石灰石的破碎
石灰石破碎
将大块石灰石破碎成小块,以便 于后续的消化和溶出过程。

氨碱法

氨碱法

氨碱法(又称索尔维法)
它是比利时工程师苏尔维(1838~1922)于1892年发明的纯碱制法。

他以食盐(氯化钠)、石灰石(经煅烧生成生石灰和二氧化碳)、氨气为原料来制取纯碱。

先使氨气通入饱和食盐水中而成氨盐水,再通入二氧化碳生成溶解度较小的碳酸氢钠沉淀和氯化铵溶液。

其化学反应原理是:NaCl+NH3+H2O+CO2=NaHCO3↓+NH4Cl
将经过滤、洗涤得到的NaHCO3微小晶体,再加热煅烧制得纯碱产品。

2NaHCO3=Na2CO3+H2O+CO2↑放出的二氧化碳气体可回收循环使用。

含有氯化铵的滤液与石灰乳[Ca(OH)2]混合加热,所放出的氨气可回收循环使用。

CaO+H2O =Ca(OH)2,2NH4Cl+Ca(OH)2=CaCl2+2NH3↑+2H2O
氨碱法(又称索尔维法)
它是比利时工程师苏尔维(1838~1922)于1892年发明的纯碱制法。

他以食盐(氯化钠)、石灰石(经煅烧生成生石灰和二氧化碳)、氨气为原料来制取纯碱。

先使氨气通入饱和食盐水中而成氨盐水,再通入二氧化碳生成溶解度较小的碳酸氢钠沉淀和氯化铵溶液。

其化学反应原理是:NaCl+NH3+H2O+CO2=NaHCO3↓+NH4Cl
将经过滤、洗涤得到的NaHCO3微小晶体,再加热煅烧制得纯碱产品。

2NaHCO3=Na2CO3+H2O+CO2↑放出的二氧化碳气体可回收循环使用。

含有氯化铵的滤液与石灰乳[Ca(OH)2]混合加热,所放出的氨气可回收循环使用。

CaO+H2O =Ca(OH)2,2NH4Cl+Ca(OH)2=CaCl2+2NH3↑+2H2O。

氨碱法纯碱生产工艺

氨碱法纯碱生产工艺

氨碱法纯碱生产工艺
氨碱法纯碱生产工艺也称为索尔维法,是比利时科学家索尔维于1892年创立的。

其纯碱生产工艺主要包括以下步骤:
1.盐水精制:为了除去粗盐水中的钙、镁等杂质,需要进行盐水精制。

通过加入氢氧化钠、氯化钡等物质,使杂质成为沉淀物过滤除去。

然后将盐水加热,除去其中的溶解物,得到精制的饱和盐水。

2.吸氨:氨碱法的核心步骤之一是使盐水饱和氨化。

通过加压使氨气溶解在饱和盐水中,制成氨盐水。

3.碳酸化:将氨盐水与二氧化碳反应,生成碳酸氢钠结晶,然后经过滤、洗涤、煅烧等工序,得到纯碱产品。

此时的滤液中含有氯化铵,加入食盐使它结晶析出,经过滤、干燥即得氯化铵产品。

在整个工艺过程中,还需要对各个步骤产生的废液、废气等进行处理,以达到环保要求。

此外,氨碱法生产纯碱时,设备的选择和操作条件的控制也都十分重要,它们直接影响到产品的质量和产量。

氨碱法制备纯碱实验报告

氨碱法制备纯碱实验报告

一、实验目的1. 了解氨碱法制备纯碱的原理及过程;2. 掌握氨碱法制备纯碱的实验操作步骤;3. 熟悉实验仪器的使用方法;4. 分析实验过程中可能出现的问题及解决方法。

二、实验原理氨碱法(索尔维法)是一种制备纯碱(碳酸钠)的工业方法,其主要原理是利用氨与二氧化碳反应生成碳酸氢铵,再经过加热分解得到纯碱。

具体反应方程式如下:2NH3 + CO2 + H2O → (NH4)2CO3(NH4)2CO3 → 2NH3 + CO2 + H2O + Na2CO3三、实验仪器与试剂1. 实验仪器:烧杯、试管、漏斗、玻璃棒、铁架台、加热装置、滤纸、滤液瓶等;2. 实验试剂:氨水、二氧化碳、饱和食盐水、碳酸氢铵、氢氧化钠、氢氧化钙等。

四、实验步骤1. 准备实验仪器,检查其是否完好;2. 将一定量的饱和食盐水倒入烧杯中;3. 向烧杯中加入适量的氨水,搅拌均匀;4. 将二氧化碳气体通入烧杯中的溶液中,观察溶液颜色变化;5. 当溶液颜色变为深蓝色时,停止通入二氧化碳气体;6. 将烧杯中的溶液过滤,收集滤液;7. 将滤液加热至沸腾,观察溶液中是否有沉淀产生;8. 当溶液中出现沉淀时,停止加热;9. 将沉淀物过滤,收集滤液;10. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;11. 当溶液颜色变为红色时,停止加入氢氧化钠;12. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;13. 当溶液中出现沉淀时,停止加热;14. 将沉淀物过滤,收集滤液;15. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;16. 当溶液颜色变为绿色时,停止加入氢氧化钙;17. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;18. 当溶液中出现沉淀时,停止加热;19. 将沉淀物过滤,收集滤液;20. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;21. 当溶液颜色变为紫色时,停止加入碳酸氢铵;22. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;23. 当溶液中出现沉淀时,停止加热;24. 将沉淀物过滤,收集滤液;25. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;26. 当溶液颜色变为红色时,停止加入氢氧化钠;27. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;28. 当溶液中出现沉淀时,停止加热;29. 将沉淀物过滤,收集滤液;30. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;31. 当溶液颜色变为绿色时,停止加入氢氧化钙;32. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;33. 当溶液中出现沉淀时,停止加热;34. 将沉淀物过滤,收集滤液;35. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;36. 当溶液颜色变为紫色时,停止加入碳酸氢铵;37. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;38. 当溶液中出现沉淀时,停止加热;39. 将沉淀物过滤,收集滤液;40. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;41. 当溶液颜色变为红色时,停止加入氢氧化钠;42. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;43. 当溶液中出现沉淀时,停止加热;44. 将沉淀物过滤,收集滤液;45. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;46. 当溶液颜色变为绿色时,停止加入氢氧化钙;47. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;48. 当溶液中出现沉淀时,停止加热;49. 将沉淀物过滤,收集滤液;50. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;51. 当溶液颜色变为紫色时,停止加入碳酸氢铵;52. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;53. 当溶液中出现沉淀时,停止加热;54. 将沉淀物过滤,收集滤液;55. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;56. 当溶液颜色变为红色时,停止加入氢氧化钠;57. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;58. 当溶液中出现沉淀时,停止加热;59. 将沉淀物过滤,收集滤液;60. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;61. 当溶液颜色变为绿色时,停止加入氢氧化钙;62. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;63. 当溶液中出现沉淀时,停止加热;64. 将沉淀物过滤,收集滤液;65. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;66. 当溶液颜色变为紫色时,停止加入碳酸氢铵;67. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;68. 当溶液中出现沉淀时,停止加热;69. 将沉淀物过滤,收集滤液;70. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;71. 当溶液颜色变为红色时,停止加入氢氧化钠;72. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;73. 当溶液中出现沉淀时,停止加热;74. 将沉淀物过滤,收集滤液;75. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;76. 当溶液颜色变为绿色时,停止加入氢氧化钙;77. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;78. 当溶液中出现沉淀时,停止加热;79. 将沉淀物过滤,收集滤液;80. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;81. 当溶液颜色变为紫色时,停止加入碳酸氢铵;82. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;83. 当溶液中出现沉淀时,停止加热;84. 将沉淀物过滤,收集滤液;85. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;86. 当溶液颜色变为红色时,停止加入氢氧化钠;87. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;88. 当溶液中出现沉淀时,停止加热;89. 将沉淀物过滤,收集滤液;90. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;91. 当溶液颜色变为绿色时,停止加入氢氧化钙;92. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;93. 当溶液中出现沉淀时,停止加热;94. 将沉淀物过滤,收集滤液;95. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;96. 当溶液颜色变为紫色时,停止加入碳酸氢铵;97. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;98. 当溶液中出现沉淀时,停止加热;99. 将沉淀物过滤,收集滤液;100. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;101. 当溶液颜色变为红色时,停止加入氢氧化钠;102. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;103. 当溶液中出现沉淀时,停止加热;104. 将沉淀物过滤,收集滤液;105. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;106. 当溶液颜色变为绿色时,停止加入氢氧化钙;107. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;108. 当溶液中出现沉淀时,停止加热;109. 将沉淀物过滤,收集滤液;110. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;111. 当溶液颜色变为紫色时,停止加入碳酸氢铵;112. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;113. 当溶液中出现沉淀时,停止加热;114. 将沉淀物过滤,收集滤液;115. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;116. 当溶液颜色变为红色时,停止加入氢氧化钠;117. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;118. 当溶液中出现沉淀时,停止加热;119. 将沉淀物过滤,收集滤液;120. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;121. 当溶液颜色变为绿色时,停止加入氢氧化钙;122. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;123. 当溶液中出现沉淀时,停止加热;124. 将沉淀物过滤,收集滤液;125. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;126. 当溶液颜色变为紫色时,停止加入碳酸氢铵;127. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;128. 当溶液中出现沉淀时,停止加热;129. 将沉淀物过滤,收集滤液;130. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;131. 当溶液颜色变为红色时,停止加入氢氧化钠;132. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;133. 当溶液中出现沉淀时,停止加热;134. 将沉淀物过滤,收集滤液;135. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;136. 当溶液颜色变为绿色时,停止加入氢氧化钙;137. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;138. 当溶液中出现沉淀时,停止加热;139. 将沉淀物过滤,收集滤液;140. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;141. 当溶液颜色变为紫色时,停止加入碳酸氢铵;142. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;143. 当溶液中出现沉淀时,停止加热;144. 将沉淀物过滤,收集滤液;145. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;146. 当溶液颜色变为红色时,停止加入氢氧化钠;147. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;148. 当溶液中出现沉淀时,停止加热;149. 将沉淀物过滤,收集滤液;150. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;151. 当溶液颜色变为绿色时,停止加入氢氧化钙;152. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;153. 当溶液中出现沉淀时,停止加热;154. 将沉淀物过滤,收集滤液;155. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;156. 当溶液颜色变为紫色时,停止加入碳酸氢铵;157. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;158. 当溶液中出现沉淀时,停止加热;159. 将沉淀物过滤,收集滤液;160. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;161. 当溶液颜色变为红色时,停止加入氢氧化钠;162. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;163. 当溶液中出现沉淀时,停止加热;164. 将沉淀物过滤,收集滤液;165. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;166. 当溶液颜色变为绿色时,停止加入氢氧化钙;167. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;168. 当溶液中出现沉淀时,停止加热;169. 将沉淀物过滤,收集滤液;170. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;171. 当溶液颜色变为紫色时,停止加入碳酸氢铵;172. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;173. 当溶液中出现沉淀时,停止加热;174. 将沉淀物过滤,收集滤液;175. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;176. 当溶液颜色变为红色时,停止加入氢氧化钠;177. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;178. 当溶液中出现沉淀时,停止加热;179. 将沉淀物过滤,收集滤液;180. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;181. 当溶液颜色变为绿色时,停止加入氢氧化钙;182. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;183. 当溶液中出现沉淀时,停止加热;184. 将沉淀物过滤,收集滤液;185. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;186. 当溶液颜色变为紫色时,停止加入碳酸氢铵;187. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;188. 当溶液中出现沉淀时,停止加热;189. 将沉淀物过滤,收集滤液;190. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;191. 当溶液颜色变为红色时,停止加入氢氧化钠;192. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;193. 当溶液中出现沉淀时,停止加热;194. 将沉淀物过滤,收集滤液;195. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;196. 当溶液颜色变为绿色时,停止加入氢氧化钙;197. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;198. 当溶液中出现沉淀时,停止加热;199. 将沉淀物过滤,收集滤液;200. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;201. 当溶液颜色变为紫色时,停止加入碳酸氢铵;202. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;203. 当溶液中出现沉淀时,停止加热;204. 将沉淀物过滤,收集滤液;205. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;206. 当溶液颜色变为红色时,停止加入氢氧化钠;207. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;208. 当溶液中出现沉淀时,停止加热;209. 将沉淀物过滤,收集滤液;210. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;211. 当溶液颜色变为绿色时,停止加入氢氧化钙;212. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;213. 当溶液中出现沉淀时,停止加热;214. 将沉淀物过滤,收集滤液;215. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;216. 当溶液颜色变为紫色时,停止加入碳酸氢铵;217. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;218. 当溶液中出现沉淀时,停止加热;219. 将沉淀物过滤,收集滤液;220. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;221. 当溶液颜色变为红色时,停止加入氢氧化钠;222. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;223. 当溶液中出现沉淀时,停止加热;224. 将沉淀物过滤,收集滤液;225. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;226. 当溶液颜色变为绿色时,停止加入氢氧化钙;227. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;228. 当溶液中出现沉淀时,停止加热;229. 将沉淀物过滤,收集滤液;230. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;231. 当溶液颜色变为紫色时,停止加入碳酸氢铵;232. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;233. 当溶液中出现沉淀时,停止加热;234. 将沉淀物过滤,收集滤液;235. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;236. 当溶液颜色变为红色时,停止加入氢氧化钠;237. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;238. 当溶液中出现沉淀时,停止加热;239. 将沉淀物过滤,收集滤液;240. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;241. 当溶液颜色变为绿色时,停止加入氢氧化钙;242. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;243. 当溶液中出现沉淀时,停止加热;244. 将沉淀物过滤,收集滤液;245. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;246. 当溶液颜色变为紫色时,停止加入碳酸氢铵;247. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;248. 当溶液中出现沉淀时,停止加热;249. 将沉淀物过滤,收集滤液;250. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;251. 当溶液颜色变为红色时,停止加入氢氧化钠;252. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;253. 当溶液中出现沉淀时,停止加热;254. 将沉淀物过滤,收集滤液;255. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;256. 当溶液颜色变为绿色时,停止加入氢氧化钙;257. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;258. 当溶液中出现沉淀时,停止加热;259. 将沉淀物过滤,收集滤液;260. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;261. 当溶液颜色变为紫色时,停止加入碳酸氢铵;262. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;263. 当溶液中出现沉淀时,停止加热;264. 将沉淀物过滤,收集滤液;265. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;266. 当溶液颜色变为红色时,停止加入氢氧化钠;267. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;268. 当溶液中出现沉淀时,停止加热;269. 将沉淀物过滤,收集滤液;270. 将滤液加入适量的氢氧化钙,观察溶液颜色变化;271. 当溶液颜色变为绿色时,停止加入氢氧化钙;272. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;273. 当溶液中出现沉淀时,停止加热;274. 将沉淀物过滤,收集滤液;275. 将滤液加入适量的碳酸氢铵,观察溶液颜色变化;276. 当溶液颜色变为紫色时,停止加入碳酸氢铵;277. 将溶液加热至沸腾,观察溶液中是否有沉淀产生;278. 当溶液中出现沉淀时,停止加热;279. 将沉淀物过滤,收集滤液;280. 将滤液加入适量的氢氧化钠,观察溶液颜色变化;28。

氨碱法纯碱生产工艺概述

氨碱法纯碱生产工艺概述

第二章氨碱法纯碱生产工艺概述第一节氨碱法基本生产原理及总流程简述一、氨碱法生产纯碱的特点及总流程氨碱法生产纯碱的技术成熟,设备基本定型,原料易得,价格低廉,过程中的NH3循环使用,损失较少。

能大规模连续化生产,机械化自动化程度高,产品的质量好,纯度高。

该法的突出缺点是:原料利用率低,主要是指NaCl的利用率低,废渣排放量大。

严重污染环境,厂址选择有很大局限性,石灰制备和氨回收系统设备庞大,能耗较高,流程较长。

针对上述不足和合成氨厂副产CO2的特点,提出了氨碱两大生产系统组成同一条连续的生产线,用NaCl,NH3和CO2同时生产出纯碱和氯化铵两种产品——即联碱法。

氨碱法生产纯碱的总流程见图5-19。

二、氨碱法制纯碱的生产工艺流程1、氨碱法生产纯碱的流程示意如图5-1所示。

其过程大致如下:2、氨碱法纯碱生产工艺流程框图:3、氨碱法纯碱生产工序的基本划分:(1)石灰工序:CO 2和石灰乳的制备,石灰石经煅烧制得石灰和CO 2,石灰经消化得石灰乳;(2)盐水工序:盐水的制备和精制;(3)蒸吸工序: 盐水氨化制氨盐水及母液中氨的蒸发与回收;原盐 石灰石 无烟煤CO 2 NH 3 废液 重质纯碱 轻质纯碱盐水精制 盐水吸氨 氨盐水碳化 石灰煅烧 石灰乳制备 母液蒸馏 重碱过滤 重碱煅烧 水合(4)碳滤工序: 氨盐水碳化制得重碱及其重碱过滤和洗涤;(5)煅烧工序:重碱煅烧得纯碱成品及CO2;和重质纯碱的生产;(6)CO2压缩工序:窑气CO2、炉气CO2的压缩工碳酸化制碱。

三、氨碱法纯碱生产原理及工艺流程叙述氨碱法生产纯碱的原料是食盐和石灰石,燃料为焦炭(煤)。

氨作为催化剂在系统中循环使用。

原料盐(海盐、岩盐、天然盐水)经精制吸氨、碳化、结晶、过滤,再煅烧即为成品。

母液经石灰乳中和后,氨蒸发并回收使用,氯化钙则排放。

其化学反应为:氨碱法具有原料来源丰富和方便,生产过程均在气液相间进行,可以大规模连续化生产及产品质量好、成本低等优点。

纯碱生产—氨碱法生产纯碱工艺参数

纯碱生产—氨碱法生产纯碱工艺参数

滤饼
受热
NaHCO3 H2O
NH4HCO3 NaCl
70~75% 14~18% 3.0~3.5% 0.3~0.4%
③分解 ①挥发游离水分 ②分解
Na2CO3
6~8%
3、NaHCO3过滤与煅烧工序
• NH4HCO3分解除消耗热量和增大氨耗外,对产品质量没有影响。 • 当滤饼中夹杂NH4Cl时,煅烧发生反应:NaHCO3+NH4Cl→ NaCl+CO2↑+
氨碱法生产纯碱工艺参数
目前纯碱的生产基本都是采用两大制碱技术,即氨碱法或联碱法。氨碱法是将 煅烧石灰石得到的CO2通入氨盐水中,碳酸化析出NaHCO3晶体,再煅烧得到纯 碱的过程。而联碱法是将合成氨工艺与氨碱法工艺联合使用,并副产氯化铵的过 程。 下面主要学习氨碱法生产纯碱过程中氨盐水的制备、氨盐水的碳酸化、碳酸氢 钠的过滤与煅烧和氨的回收等工序的工艺参数。
1、氨盐水制备工序
氨气(来自蒸氨塔)
NH3 CO2
65% 12%
H2O
23%
吸氨过程
液相吸收NH3和CO2:氨溶于水的物理吸收、氨水 吸收CO2的化学吸收。 CO2与NH3在溶液中作用生成(NH4)2CO3 ,使氨分 压低于同一浓度氨水的氨平衡分压,有利于吸氨过程。
温度降低,有利于吸氨。但氨在盐水中的溶解度小于在清水中的溶解度,即相同氨摩尔分 数时,氨盐水上方氨的分压比纯氨水上方氨的平衡分压高,这不利于盐水吸氨。 盐水吸氨时,体积膨胀,密度减小,随氨气带来的水蒸气也冷凝,稀释饱和食盐水,使氨 盐水的体积有显著增大,比盐水体积增大约14% ~18%。
释程度。 温度不宜太低,否则会生成(NH4)2CO3·2H2O,NH4HCO3等结晶堵塞管道和
设备。 盐水进吸氨塔前用冷却水冷至25~30℃,氨气进吸收塔的气温控制在55~

氨碱法制纯碱导学提纲

氨碱法制纯碱导学提纲

第三节海水“制碱”一、氨碱法制取纯碱一、导学提纲1、纯碱的制取⑴、原料:、、、。

⑵、工艺流程:饱和食盐水———饱和氨盐水———NaHCO3———NaCO3先向饱和食盐水中通入,制成饱和氨盐水,在加压并不断通入的条件下,使NaHCO3 晶体析出,过滤后将NaHCO3 加热分解即得纯碱。

⑶、反应原理:;。

⑷、优缺点:优点:原料经济、生产的纯碱纯度高、副产品NH3和CO2可循环使用、制造步骤简单适合大规模生产。

缺点:NaCl的利用率只有72%—74%,回收NH3时生成的CaCl2用处不大且污染环境。

2、纯碱的用途纯碱在化学工业中的用途极广,如、、、等均需要大量的纯碱,纯碱还广泛应用于、、、等领域。

3、碳酸氢钠⑴碳酸氢钠俗称,又称,化学式为。

⑵碳酸氢钠是一种色晶体,溶于水,其水溶液显性,受热易分解,化学方程式为。

⑶碳酸氢钠在生产和生活中有许多重要用途,你都知道哪一些?二、交流共享1、用氨碱法制取纯碱时,为什么氨盐水比食盐水更容易吸收CO2?2、氨盐水吸收CO2后生成的NaHCO3和NH4Cl ,哪种物质首先析出?为什么?3、用氨碱法制取纯碱时,为什么说是以氨为媒介?三、拓展应用我国化工专家侯德榜发明的“侯氏制碱法”的基本原理是:在浓氨水中通入足量的CO2生成一种盐,然后在此溶液中加入细小的食盐粉末,由于NaHCO3 在该状态下溶解度很小,呈晶体析出,同时由于NaHCO3 不稳定,加热后生成纯碱、水和二氧化碳。

根据以上叙述回答下列问题:⑴用上述方法进行生产时,所用的起始原料是(填化学),最终产品是。

⑵有关反应的化学方程式为、、。

该生产过程中没有涉及的基本反应类型是⑶有人认为侯氏制碱法的优点有四:A、生产过程中部分产品可选为起始原料使用;B副产品是一种可利用的氮肥;C反应不需要加热;D副产品不会造成环境污染,你认为其中正确的是(用代号回答)。

纯碱生产—氨碱法生产纯碱工艺流程

纯碱生产—氨碱法生产纯碱工艺流程
✓出现结合氨,对碳化不利。
✓没有结合氨; ✓消耗了最终产品纯碱。
常用石灰-碳酸铵法
3、氨盐水的制备
作用:制备碳酸化所要求浓度的氨盐水。吸氨用的氨来自蒸氨塔(用石灰乳处理碳酸 化后母液所回收的氨,含有CO2和水蒸气)。
NH3(g)+H2O (l) =NH4OH (l); 氨气中的CO2也会溶入溶液,并反应生成碳酸铵:
氨碱法生产纯碱工艺流程
氨碱法是以氨作为中间媒介生产纯碱的一种方法,该法原料价廉易得,产 品纯度较高,且部分二氧化碳和氨可循环使用;整个制作步骤简单,适用 大规模生产。 本节课学习氨碱法生产纯碱的工艺流程。
氨碱法生产纯碱的工艺流程
原盐:制备饱和食盐水,除去Mg2+, Ca2+ ,得精制食盐水。 精制食盐水送吸氨塔吸收氨气(氨 气来自蒸氨塔回收),得氨盐水,送 往碳酸化塔。 氨盐水吸收CO2得到NaHCO3和 NH4Cl,生成的NaHCO3经煅烧分解 为Na2CO3 、 CO2和H2O。
6、氨的回收
加入石灰乳时,结合氨分离成游离氨,并从液相驱出: 2NH4Cl+Ca(OH)2=2NH3+CaCl2+2H2O 母液中存在NaCl和CaCl2,CaCl2与氨化合降低氨分压,NaCl可提高平衡氨 分压,两者的作用近似抵消。 蒸馏游离氨时,物系可简化为NH3—CO2—H2O体系,蒸馏结合氨时,物系 可简化为NH3—H2O体系。
1 • 石灰石煅烧及生石灰消化 2 • 食盐水的制备和精制 3 • 氨盐水的制备 4 • 氨盐水的碳酸化 5 • 碳酸氢钠的过滤与煅烧 6 • 氨的回收
1、石灰石煅烧及生石灰消化
作用:石灰石煅烧得到的CO2用于氨盐水的碳酸化;生石灰消化后用于回收氨。 石灰石内配入一定比例的无烟煤送入石灰窑内,在窑底送入空气供燃料燃烧。 石灰石在窑内被加热,分解生成CaO和CO2。 窑气经过泡沫塔冷却、除尘和静电除尘两级净化后送压缩工序。 生石灰在化灰机内加入海水使生石灰消化制成石灰乳,送往蒸氨塔。

氨碱法生产纯碱生产工艺

氨碱法生产纯碱生产工艺

氨碱法生产纯碱生产工艺氨碱法是一种常用的纯碱生产工艺,下面将介绍氨碱法生产纯碱的工艺流程和主要设备。

氨碱法是以氯化钠为原料,通过氨法和碱法两个反应过程,制取氯碱化工产品。

纯碱是其中的一种重要产品。

氨碱法生产纯碱的主要工艺流程如下:1. 氨法反应:首先将氯化钠和氨气送入气化炉,反应生成氯化钾和氯化氢。

氯化钾经过粉碎和浸泡蒸馏,得到氯化钾溶液。

2. 氨法反应:将氯化钾溶液和氨气通过混合器混合,在反应器中进行反应,生成氯化铵。

氯化铵经过离心和干燥,得到氯化铵固体。

3. 氨法反应:将氯化铵固体与石灰石通过反应器进行反应,生成氢氧化钙和氯化铵。

反应过程中产生的氨气通过冷凝器进行回收。

4. 氨法反应:将氯化铵溶液通过蒸发器进行浓缩,得到浓缩的氯化铵溶液。

浓缩的氯化铵溶液经过结晶、离心和干燥,得到氯化铵固体。

5. 碱法反应:将氯化铵固体与石灰石通过反应器进行反应,生成氢氧化钠。

反应过程中产生的氨气通过冷凝器进行回收。

6. 碱法反应:将氢氧化钠溶液通过蒸发器进行浓缩,得到浓缩的氢氧化钠溶液。

浓缩的氢氧化钠溶液经过结晶、离心和干燥,得到纯碱固体。

氨碱法生产纯碱的主要设备包括气化炉、混合器、反应器、蒸发器、结晶器、离心机和干燥机等。

这些设备需要具备耐腐蚀性能和高效传热传质能力,以确保反应过程的稳定性和产品的质量。

同时,氨碱法生产纯碱的过程中还需要控制反应温度、压力和反应物的投料速度等参数,以确保反应过程的安全性和经济性。

总之,氨碱法生产纯碱是一种成熟的工艺,通过多道反应步骤,可高效、稳定地制取纯碱产品。

但在实际应用中,还需根据具体情况进行工艺优化和设备改进,以提高生产效益和产品质量。

氨碱法生产纯碱的工艺过程

氨碱法生产纯碱的工艺过程

整理课件
(一)碳酸化工艺流程的组织
大规模生产系统中,常采用“塔组”进行多 塔生产与操作。每组中有一塔作为清洗塔,并将 预碳化液分配给几个制碱塔碳化制碱。塔的编组 有多种形式:二塔组合,三塔组合,四塔组合, 最多的有八塔组合。塔组合数的多少和方法原则 上应注意:清洗他能清垢干净,换塔次数少,碳 化制碱时间长。
因此,吸氨过程中的工艺和设备主要是以冷却方式 和效果为出发点。其冷却效果越好,则氨的吸收越完全, 设备的利用率也越高。
整理课件
(四)氨盐水制备的工艺条件优化
整理课件
吸氨不足,导致NaCl分解不完全, 造成NaCl损失
吸氨太多,多余的NH4HCO3随 NaHCO3一同形成结晶而降低氨 的利用率
理论上NH3/NaCl之比应为1:1 (摩尔比)
小,产量下降。反之,则反应区上移,塔顶NH3及 CO2的损失增大。 (4)碳化塔低出碱温度要适当。 (5)倒塔和运行时间要整适理课宜件 。
整理课件
真空分离 离心分离
优点:能连续操作, 生产能力大,适合 连续大规模自动化
生产
优点:流程简单, 动力消耗低,滤出 的固体重碱含水量

缺点:滤出的重碱 含水量较高
整理课件
缺点:对重碱的粒 度要求高,生产能 力低,氨耗高,国 内厂家较少采用
转鼓式真 空过滤机
整理课件
重碱是一种不稳定的化合物,在常温常压下即能自行 分解,随着温度的升高而分解速度加快,化学反应为:
2NaHCO3(s) ↔Na2CO3(s)+CO2(g)+H2O(g) △H=128.5kJ/mol
整理课件
(二)碳化塔的操作控制条件 1.碳化塔的结构 如右图所示
整理课件
2.碳化塔的操作控制要点 (1)碳化塔液面高度应控制在距塔顶0.8~1.5m处。 液面过高,尾气带液严重并导致出气管堵塞;液面过 低,则尾气带出的NH3和CO2量增大,降低了塔的生 产能力。

氨碱法生产纯碱的工艺过程

氨碱法生产纯碱的工艺过程
(一)氨盐水制备的化学反应
NH3(g)+H2O↔NH4OH(aq)
△H=-35.2kJ/mol
2NH3(g)+CO2(g)+H2O ↔(NH4)2CO3(aq)
△H=-95.2kJ/mol副反应主要是气体与残余钙镁离子反应生成碳 酸盐和复盐沉淀的反应。
(二)盐和氨在同一水溶液体系中的相互影响
两者相互影响,即氨溶解在水中的浓度越大,则盐的
真空分离
优点:能连续操作, 生产能力大,适合 连续大规模自动化 生产
离心分离
优点:流程简单, 动力消耗低,滤出 的固体重碱含水量 少 缺点:对重碱的粒 度要求高,生产能 力低,氨耗高,国 内厂家较少采用
缺点:滤出的重碱 含水量较高
转鼓式真 空过滤机
重碱是一种不稳定的化合物,在常温常压下即能自 行分解,随着温度的升高而分解速度加快,化学反应为:
淡液蒸馏过程是直接用蒸汽“汽提”的过程,热量和质量同时 作用蒸出氨和CO2,并回收到生产系统中。
2NaHCO3(s) ↔Na2CO3(s)+CO2(g)+H2O(g) △H=128.5kJ/mol
部分杂质会发生如下反应:
(NH4)2CO3(s) ↔2NH3(g)+CO2(g)+H2O(g) NH4HCO3(s) ↔NH3(g)+CO2(g)+H2O(g) NH4Cl+NaHCO3 ↔NH3+CO2+NaCl(s)+H2O(g)
溶解于母液中的NaHCO3和Na2CO3发生如下反应:
NaHCO3+NH4Cl ↔NH3+CO2+H2O+NaCl Na2CO3+2NH4Cl ↔2NH3+CO2+H2O+2NaCl

氨碱法生产纯碱的工艺过程 共31页

氨碱法生产纯碱的工艺过程 共31页

(二)碳化塔的操作控制条件
1.碳化塔的结构 如右图所示
2.碳化塔的操作控制要点 (1)碳化塔液面高度应控制在距塔顶0.8~1.5m处。 液面过高,尾气带液严重并导致出气管堵塞;液面过 低,则尾气带出的NH3和CO2量增大,降低了塔的 生产能力。 (2)氨盐水进塔温度约为30~50℃,塔中部温度升 到60℃左右,中部不冷却,但下部要冷却,控制塔 底温度在30℃一下,保证结晶析出。 (3)碳化塔进气量与出碱速度要匹配,否则如果出 碱过快而进气量不足时,反应区下移,导致结晶细 小,产量下降。反之,则反应区上移,塔顶NH3及 CO2的损失增大。 (4)碳化塔低出碱温度要适当。 (5)倒塔和运行时间要适宜。
氨碱法生产纯碱的工艺过程
单元三 氨盐水的制备与碳酸化
一、氨盐水制备的原理及工艺 条件的优化
(一)氨盐水制备的化学反应
NH3(g)+H2O↔NH4OH(aq) 2NH3(g)+CO2(g)+H2O ↔(NH4)2CO3(aq)
△H=-35.2kJ/mol △H=-95.2kJ/mol
副反应主要是气体与残余钙镁离子反应生成碳 酸盐和复盐沉淀的反应。
NaCl+NH3+CO2+H2O↔NaHCO3↓+NH4Cl
碳酸化目的在于获得产率高、质量好的碳酸氢 钠结晶。同时要求结晶颗粒大而均匀,便于分离, 以减少洗涤用水量,从而降低蒸氨负荷和生产成 本。
1.氨盐水碳酸化的反应机理
复杂反应体系,分三步进行
(1)氨盐水与CO2反应生成氨基甲酸铵 2NH3+CO2=NH2COOˉ+NH4+
(三)影响NaHCO3结晶的因素
在碳化塔内进行的碳化反应是放 热反应,使进塔液温度有30℃沿 塔下降的过程逐步升高至 60~65℃。一般液体在塔内的停 留时间为1.5~2h,出塔温度约 为20~28℃。碳化过程的温度控 制:塔内的温度分布应为上、中、 下依次为低、高、低为宜。

氨碱法制纯碱工艺流程

氨碱法制纯碱工艺流程

氨碱法制纯碱工艺流程
《氨碱法制纯碱工艺流程》
氨碱法制纯碱是一种常用的制碱工艺,其流程主要包括原料准备、氨碱制备、碳酸钠结晶和碳化等几个步骤。

首先是原料准备。

制备氨碱法纯碱的原料主要包括晶格石、氨水和盐酸。

晶格石是碳酸钠的主要原料,氨水和盐酸是用来制备氨碱的原料。

接下来是氨碱制备。

先将氨水加入反应釜中,再慢慢加入盐酸,经过化学反应生成氨。

氨水的生成很重要,因为氨是制备碳酸钠的关键原料。

然后通过蒸馏过程将氨水精馏,得到质量较高的氨水。

然后是碳酸钠结晶。

将制得的氨水与晶格石一起加入反应釜中反应,生成碳酸钠溶液。

通过蒸发结晶方法,得到碳酸钠晶体。

最后是碳化。

碳酸钠晶体经过碳化炉加热,将其转化为碳酸钠的终产物——纯碱。

整个氨碱法制纯碱的工艺流程,既考虑了原材料的利用率,又注重了生产环境的保护。

这套工艺流程被广泛应用于工业生产中,为产业发展提供了重要保障。

氨碱法制纯碱工艺流程

氨碱法制纯碱工艺流程

氨碱法制纯碱工艺流程
氨碱法制纯碱是一种利用氨溶液与氯化钠反应制取氢氧化钠(纯碱)的工艺方法。

下面介绍一下氨碱法制纯碱的工艺流程。

首先,准备原料。

将氯化钠和氨气分别准备好。

氯化钠是通过食盐经过电解法制取的,氯化钠的纯度需要达到一定的标准要求。

氨气则是通过氨气槽制取,纯度也需要达到一定的标准。

然后,将氯化钠溶解。

将氯化钠溶解在适量的水中,形成氯化钠溶液。

溶解过程需要加热,以提高溶解度,并使用搅拌装置使溶液均匀。

接着,将溶液过滤。

为了去除氯化钙等杂质,需要将溶液进行过滤。

通过过滤,可以得到纯净的氯化钠溶液。

然后,进行氯化钠溶液的反应。

将氯化钠溶液加热至一定温度,然后将氨气通入溶液中进行反应。

反应发生时,氯化钠溶液中的氯化钠与氨气发生化学反应,生成氨氯化钠。

接下来,进行氨氯化钠的分解。

将氨氯化钠加热至一定温度,使之分解生成氢氧化钠和氨气。

反应过程中,氨气是可回收利用的。

最后,进行纯碱的结晶和干燥。

将分解后的氢氧化钠溶液进行结晶和干燥处理,得到纯碱固体。

以上就是氨碱法制纯碱的工艺流程。

这种工艺方法具有操作简
单、设备投资少、产品纯度高等优点,因此被广泛应用于纯碱的生产中。

但同时需要注意控制反应温度、氨气的浓度等参数,以确保产品的质量和工艺的安全性。

氨碱法和联碱法

氨碱法和联碱法

氨碱法和联碱法
氨碱法和联碱法是两种常见的工业生产方法,用于制备氨水和纯碱。

下面将详细介绍这两种方法的原理、流程和应用。

一、氨碱法
1. 原理
氨碱法是利用氨与二氧化碳反应生成碳酸铵,再通过加热分解得到氨水的方法。

具体反应式为:
NH3 + CO2 → NH4HCO3
NH4HCO3 → NH3 + H2O + CO2
2. 流程
(1)制备饱和氨水:将液态氨通入水中,直至水溶液中气体饱和,即可得到饱和氨水。

(2)吸收二氧化碳:将饱和氨水通过吸收器,在其中通入二氧化碳,
使其与氨反应生成碳酸铵。

(3)分解碳酸铵:将得到的碳酸铵加热分解,释放出纯净的氨水。

3. 应用
(1)制备肥料:由于产生的废弃物可以作为肥料使用,因此该方法被广泛用于制备农业肥料。

(2)制备药品:由于该方法可以获得高纯度的氨水,因此被用于制备制药中的原料。

二、联碱法
1. 原理
联碱法是利用氢氧化钠和氢氧化铵反应生成纯碱的方法。

具体反应式为:
NaOH + NH4OH → NaNH4COO + H2O
NaNH4COO → Na2CO3 + NH3 + H2O
2. 流程
(1)混合溶液:将氢氧化钠和氢氧化铵加入同一容器中,混合均匀。

(2)沉淀分离:将得到的沉淀分离出来,得到NaNH4COO。

(3)加热分解:将NaNH4COO加热分解,释放出纯净的纯碱。

3. 应用
(1)制备玻璃:由于纯碱是制备玻璃的重要原料之一,因此该方法被广泛用于玻璃行业。

(2)制备肥料:产生的废弃物可以用作肥料使用,因此该方法也被广泛用于制备农业肥料。

氨碱法制纯碱的工艺流程

氨碱法制纯碱的工艺流程

氨碱法制纯碱的工艺流程
氨碱法制纯碱的工艺流程是利用氨气和二氧化碳进行反应生成碳酸氢钠,再经过煅烧和还原反应得到纯碱。

下面是氨碱法制纯碱的一般工艺流程。

首先,将氨气和水混合,生成氨水。

氨气可由氮气和氢气在高温高压下催化生成。

生成的氨气通入水中,与水反应,生成氨水。

其次,将氨水与二氧化碳进行反应,生成碳酸氢钠。

氨水与二氧化碳经过吸收塔反应,产生碳酸氢钠溶液。

这一步反应需要控制好操作条件,如温度、气体流速等参数,以确保反应能够顺利进行。

然后,通过使用滤网或离心机等装置,将碳酸氢钠溶液中的杂质和固体颗粒分离出来,得到纯净的碳酸氢钠溶液。

接下来,将碳酸氢钠溶液通过加热煅烧的方式,脱除其中的水分和二氧化碳,得到碳酸钠。

碳酸氢钠溶液被加热至高温,其中的水分和二氧化碳逐渐蒸发,碳酸钠逐渐形成。

最后,将产生的碳酸钠经过还原反应,得到纯碱。

碳酸钠将与一定比例的石灰石在高温下进行还原反应,产生氧化钠和二氧化碳。

通过再次煅烧,获得高纯度的纯碱。

整个工艺流程中,需要注意控制每个步骤的操作参数,确保反应的顺利进行。

同时,在产生和处理废弃物时要注意环境保护,
确保生产过程的安全和可持续性。

此外,工艺流程也可能根据不同的工厂和设备有所差异,但基本的原理和步骤是相似的。

氨碱法制纯碱是一种常用的工艺方法,通过合理的反应和处理步骤,可以高效地生产出优质的纯碱产品。

简述氨碱法生产纯碱的工艺流程

简述氨碱法生产纯碱的工艺流程

简述氨碱法生产纯碱的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!氨碱法生产纯碱的工艺流程主要包括以下几个步骤:1. 盐水精制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

母液 TI:90~103℃
过滤机 TI:100℃
PIC:30Kpa 转速:6000r/min
碳酸化液 TI:90~103℃
碳酸化塔(治碱) TI:60~30℃
PI:0.80Mpa
钠碳 酸 氢
废液
自动化控制点一览表
• 控制点
• 项目
• 石灰窑煅烧温度
• 温度控制点 • 碳酸化塔制碱温度
• 蒸氨塔温度
二氧化碳流向

FI:5m3/m2
灰乳流向
洗涤塔
PI:0.3~0.4Kpa TI:80~140℃
TI:30~35℃ FIC:240m3/min
压缩机 PIC:980Kpa
氨流向
二氧化碳
二氧化碳
TI:30~35℃ FIC:200m3/min
冷却塔 TIC:20℃
水 灰乳
TI:94~96℃
预灰桶 TI:94~96℃
• 5m3/m2
• 自动化控制仪表 • 热电偶温度计 • 热电偶温度计 • 热电偶温度计
• 压力表 • 压力表 • 压力表 • LZD电远转型转子流量计 • LZD电远转型转子流量计
• LZD电远转型转子流量计
设备一览表
序号 位号
设备名称
个数
技术参数
实际尺寸
作用
总个过程在负压的条件下
进行,底圈静止液封高度
NH3+NaCl+H2O+CO2N H4Cl+NaHCO3
自动化控制点
石灰石 焦炭
PI: 5Kpa FI:570dm 3
石灰窑 TIC: 940~1200℃ PI:2.5kpa
TI:
55~6 5℃
氧化钙
化灰桶 TI:122.4℃
TI:60 ℃
PI: 0.15~0.3Kpa TI: 80~140℃
二氧化碳 灰尘
总结
你们 是否了 解我们的生产
纯碱的介绍
外观:白色 粉末状,是固 体 口味:涩
碳说酸明钠,俗名苏打、 纯碱,化学式: Na2CO3,
普通情况下为白色 粉末,为强电解质。 密度2.532g/cm3, 熔点为851℃,
易溶于水,具有盐 的通性。
纯碱产能分布图
纯碱的用途
碳酸钠是化学工业的重要产品之一,它广泛应用在玻璃、造纸、 纺织、洗涤剂等工业
化工工程师之家
Production of soda ash ammonia soda process
,
我们的团队是……
总 工 程 师: 唐 柯 工艺工程师:沈 婷 设备工程师:殷春燕 仪表工程师:方后琴 节能工程师:高娟娟 指 导 老 师:胡科研
目录
产品介绍 制图 工艺 设备
节能减排 自动化 工艺流程图
500~600mm,
1
6
吸氨塔
Hr=1300~1500,Hbs=240~2
1
60,Hw=410~450 液体进口


220~250mm/s , 吸 氨 塔 用
壁 厚 16mm , 内 径 2.5~3.05m左右,塔高约为
吸收氨和 二氧化碳
35m
铁铸材料,外壁刷漆防腐,
可用15年以上。生产能力
240~600t/d
通NH3
沉淀 NH4Cl NaCl
NH3
Ca(OH)2
发生的化学反应O2=NaHCO3↓+NH4Cl
2NaHCO3=Na2CO3+H2O+CO2↑
CaO+H2O=Ca(OH)2
2NH4Cl+Ca(OH)2=CaCl2+2NH3↑+2H2O
NH4Cl+Ca(OH)2 =NH3+CaCl2
节能减排计算
节能减排及物料核算
本工艺的优点
• 原料(食盐和石灰石)便宜 • 产品纯碱的纯度高 • 副产品氨和二氧化碳都可以回收循
环使用
优点
制造步骤简单
适合大规模生产
氨碱法生产纯碱二维图
氨碱法生产纯碱三维图
厂土管区建设道俯框备布视架图置
3D漫游图
模型实物图
氨碱法生产纯碱视觉效果
谢谢您的关注!
盐水澄清
左右。
3
8
碳酸化塔
2
铸铁制造,中段气二氧化 碳含量28%,日产纯碱600 吨,尾气二氧化碳含量
高 为 34.1m, 直 径 ( 冷 却 段 ) 2.8m,(吸收段)3.0m, 六塔一组。
传质、结 晶、传热 同时进行
3%~5%
主要设备介绍
• 蒸氨塔
• 采用一般的载热体水 蒸汽作为加热剂,使 循环水液面上氨气的 平衡蒸汽压大于热载 体中氨气的分压,汽 液两相逆流接触 ,进 行传质传热,从而使 氨气逐渐从循环水中 释放出来 。
• 碳酸化塔制碱压力
• 压力控制点 • 石灰窑窑顶出气压力
• 蒸氨塔压力
• 石灰窑出气流量
• 流量控制点 • 石灰窑通风流量
• 洗涤塔进水流量
• 工艺要求 • 940~1200℃
• 60~30℃ • 72℃
• 0.77Mpa • 0.15~0.3Kpa
• 10Kpa • 1.40~1.70m/s
• 570m3/t
桶底可制成锥度呈6~8度的
2
7
氨盐水澄清桶
1
搅拌机粑间线速度 75~100mm/s, 澄 清 速 度 62 度 2.5m/h,67 度 2.7m/s , 清 夜浊度20ppm左右
锥底,中心套筒长度为桶 身的2/3左右,直径为桶径 15% 中 心 套 筒 的 出 口 至 桶 底的距离2~2.5m,过虑层 高度0.2m,直通总高度5m
盐水
吸氨塔 TI:60~68℃
灰乳
TI: 94~96℃
氨气
TI 60~64℃ FI 1.40~1.70m/s
TI<45℃ PI:-33.3~-26.6Kpa
氨盐水
二氧化碳
TI:20℃
碳酸化塔(清洗) TI:60~30℃
PI:0.77Mpa
二氧化碳
碳酸化液
TI:60~30℃
蒸氨塔
PIC:10Kpa TIC:72℃
市场
客户 项目 合同
分包
and more…
工艺介绍
石灰石
CO2
CO2
•先使氨气通入饱和食盐水中而成氨盐水,再通入二氧化碳生成溶解度
较小的碳酸氢钠沉淀和氯化铵溶液。
饱饱•和和将食食经盐盐过水水滤、氯氯洗放盐盐涤出水水得的到二的氧NNN化aaa沉 沉碳HHHC淀 淀、CCOOO3氨微33气小气晶NN体aa体22可CC,O O回再33收加循热环煅使烧产产用制品品。得纯碱产销销品售售。
相关文档
最新文档