2.3变量之间的相关关系
2.3.1(2.3.2)变量之间的相关关系和线性关系
2.3 变量间的相关关系2.3.1 变量之间的相关关系2.3.2 两个变量的线性相关整体设计教学分析变量之间的关系是人们感兴趣的问题.教科书通过思考栏目“物理成绩与数学成绩之间的关系”,引导学生考察变量之间的关系.在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.随后,通过探究人体脂肪百分比和年龄之间的关系,引入描述两个变量之间关系的线性回归方程(模型).教科书在探索用多种方法确定线性回归直线的过程中,向学生展示创造性思维的过程,帮助学生理解最小二乘法的思想.通过气温与饮料销售量的例子及随后的思考,使学生了解利用线性回归方程解决实际问题的全过程,体会线性回归方程作出的预测结果的随机性,并且可能犯的错误.进一步,教师可以利用计算机模拟和多媒体技术,直观形象地展示预测结果的随机性和规律性.三维目标1.通过收集现实问题中两个有关联变量的数据认识变量间的相关关系.2.明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.3.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程.重点难点教学重点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;利用散点图直观认识两个变量之间的线性关系;根据给出的线性回归方程的系数公式建立线性回归方程.教学难点:变量之间相关关系的理解;作散点图和理解两个变量的正相关和负相关;理解最小二乘法的思想.课时安排2课时教学过程第1课时导入新课思路1在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢?的,物理也好;数学差的,物理也差,但又不全对.)物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法.数学成绩的高低对物理成绩的高低是有一定影响的.但决非唯一因素,还有其他因素,如是否喜欢物理,用在物理学习上的时间等等.(总结:不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少.但这两个变量是有一定关系的,它们之间是一种不确定性的关系.如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义.)为很好地说明上述问题,我们开始学习变量之间的相关关系和两个变量的线性相关.(教师板书课题)思路2某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿的出生率低,于是,他就得出一个结论:天鹅能够带来孩子.你认为这样得到的结论可靠吗?如何证明这个结论的可靠性?推进新课新知探究提出问题(1)粮食产量与施肥量有关系吗?“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.教师的水平与学生的水平有什么关系?你能举出更多的描述生活中两个变量的相关关系的成语吗?(2)两个变量间的相关关系是什么?有几种?(3)两个变量间的相关关系的判断.讨论结果:(1)粮食产量与施肥量有关系,一般是在标准范围内,施肥越多,粮食产量越高;教师的水平与学生的水平是相关的,如水滴石穿,三人行必有我师等.我们还可以举出现实生活中存在的许多相关关系的问题.例如:商品销售收入与广告支出经费之间的关系.商品销售收入与广告支出经费有着密切的联系,但商品销售收入不仅与广告支出多少有关,还与商品质量、居民收入等因素有关.粮食产量与施肥量之间的关系.在一定范围内,施肥量越大,粮食产量就越高.但是,施肥量并不是决定粮食产量的唯一因素.因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素的影响.人体内的脂肪含量与年龄之间的关系.在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等有关,可能还与个人的先天体质有关.应当说,对于上述各种问题中的两个变量之间的相关关系,我们都可以根据自己的生活、学习经验作出相应的判断,因为“经验当中有规律”.但是,不管你的经验多么丰富,如果只凭经验办事,还是很容易出错的.因此,在分析两个变量之间的相关关系时,我们需要一些有说服力的方法.在寻找变量之间相关关系的过程中,统计同样发挥着非常重要的作用.因为上面提到的这种关系,并不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.这就需要通过收集大量的数据(有时通过调查,有时通过实验),在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系作出判断.(2)相关关系的概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;②带有随机性的变量间的相关关系,例如“身高者,体重也重”,我们就说身高与体重这两个变量具有相关关系.相关关系是一种非确定性关系.如商品销售收入与广告支出经费之间的关系.(还与商品质量、居民收入、生活环境等有关)(3)两个变量间的相关关系的判断:①散点图.②根据散点图中变量的对应点的离散程度,可以准确地判断两个变量是否具有相关关系.③正相关、负相关的概念.①教学散点图出示例题:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:图来进一步分析.②散点图的概念:将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,如下图.从散点图我们可以看出,年龄越大,体内脂肪含量越高.图中点的趋势表明两个变量之间确实存在一定的关系,这个图支持了我们从数据表中得出的结论.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)③正相关与负相关的概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)应用示例思路1例1 下列关系中,带有随机性相关关系的是_____________.①正方形的边长与面积之间的关系②水稻产量与施肥量之间的关系③人的身高与年龄之间的关系④降雪量与交通事故的发生率之间的关系解析:两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系.④降雪量与交通事故的发生率之间具有相关关系,因此填②④.答案:②④例2 有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?分析:学生思考,然后讨论交流,教师及时评价.解:从已经掌握的知识来看,吸烟会损害身体的健康,但是除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果.我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题.但吸烟引起健康问题的可能性大.因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.点评:在探究研究的过程中,如果能够从两个变量的观察数据之间发现相关关系是极为有意义的,由此可以进一步研究二者之间是否蕴涵因果关系,从而发现引起这种相关关系的本质原因是什么.本题的意义在于引导学生重视对统计结果的解释,从中发现进一步研究的问题.思路2例1 有时候,一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同类型的某种食品的数据.第二列表示此种食品所含热量的百分比,第三列数据表示由一些美食家以百分制给出的对此种食品口味的评价:(2)关于两个变量之间的关系,你能得出什么结论?解:(1)散点图如下:(2)基本成正相关关系,即食品所含热量越高,口味越好.例2 案例分析:一般说来,一个人的身高越高,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系.为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手一拃长的数据如下表.(1)根据上表中的数据,制成散点图.你能从散点图中发现身高与右手一拃长之间的近似关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系.(3)如果一个学生的身高是188 cm,你能估计他的一拃大概有多长吗?解:根据上表中的数据,制成的散点图如下.从散点图上可以发现,身高与右手一拃长之间的总体趋势是成一直线,也就是说,它们之间是线性相关的.那么,怎样确定这条直线呢?同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)两点确定一条直线.同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.同学3:多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.同学4:从左端点开始,取两条直线,如下图.再取这两条直线的“中间位置”作一条直线.同学5:先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使得在直线两侧的点数尽可能一样多.同学6:先将所有的点分成两部分,一部分是身高在170 cm以下的,一部分是身高在170 cm 以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线.同学7:先将所有的点按从小到大的顺序进行排列,尽可能地平均分成三等份;每部分的点按照同学3的方法求一个“平均点”,最小的点为(161.3,18.2),中间的点为(170.5,20.1),最大的点为(179.2,21.3).求出这三个点的“平均点”为(170.3,19.9).我再用直尺连接最大点与最小点,然后平行地推,画出过点(170.3,19.9)的直线.同学8:取一条直线,使得在它附近的点比较多.在这里需要强调的是,身高和右手一拃长之间没有函数关系.我们得到的直线方程,只是对其变化趋势的一个近似描述.对一个给定身高的人,人们可以用这个方程来估计这个人的右手一拃长,这是十分有意义的.知能训练一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:关于加工零件的个数与加工时间,你能得出什么结论?答案:(1)散点图如下:(2)加工零件的个数与所花费的时间呈正线性相关关系.拓展提升以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:(2)指出是正相关还是负相关;(3)关于销售价格y和房屋的面积x,你能得出什么结论?解:(1)数据对应的散点图如下图所示:(2)散点图中的点散分布在从左下角到右上角的区域内,所以是正相关.(3)关于销售价格y和房屋的面积x,房屋的面积越大,价格越高,它们呈正线性相关的关系. 课堂小结通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.作业习题2.3A组3、4(1).设计感想本节课学习了变量之间的相关关系和两个变量的线性相关的部分内容,通过身边的具体实例说明了两个变量的相关关系,并学会了利用散点图及其分布来说明两个变量的相关关系的种类,为下一节课作了铺垫,思路1和思路2的例题对知识进行了巩固和加强,另外,本节课通过选取一些学生特别关心的身边事例,对学生进行思想情操教育、意志教育和增强学生的自信心,养成良好的学习态度和学习方法,树立时间观,培养勤奋、刻苦耐劳的精神.备课资料数学家关肇直关肇直(1919.2.13—1982.11.12),中国科学院院士,是中国数学家,生于北京.原籍广东省南海县.父亲关葆麟早年留学德国,回国后任铁道工程师多年,于1932年故世;母亲陆绍馨,是北平女子师范大学的毕业生,曾从教于北京师范大学.关葆麟去世后,母亲以微薄的收入艰难地抚育关肇直及其弟妹多人.全国解放后,关肇直尽心亲侍慈母,直至1967年去世.关肇直于1959年1月与刘翠娥结婚,他们有两个女儿.刘翠娥系中国科学院工程物理研究所研究人员.关肇直于1927年进入北京培华中学附属小学学习.1931年入英国人办的崇德中学学习.学校对英文要求十分严格,加上关肇直自小就由父母习以英文、德文,为日后掌握英文、德文、法文、西班牙文和俄文奠定了良好基础.1936年高中毕业后考入清华大学土木工程系,后于1938年转入燕京大学数学系学习.毕业后在燕京大学(后迁成都)任教.参加成都教授联谊会,担任学生进步组织的导师,积极支持抗日救国学生运动.1946年春从成都返回北平(北京),不久从燕京大学转到北京大学数学系任教.1947年通过考试成为国民政府派遣的中法交换生赴法国留学.名义上去瑞士学哲学,实际上去了巴黎大学庞加莱研究所研究数学,导师是著名数学家、一般拓朴与泛函分析的创始人弗雷歇(M.R.F rechetl),1948年参加革命团体“中国科学工作者协会”,是该会旅法分会的创办人之一.1949年10月,新中国诞生,他毅然决定放弃获得博士学位的机会.于12月回到祖国,满腔热情地参加了新中国的建设.他立即参加了组建中国科学院的工作.他和其他同志一起,协助郭沫若院长筹划建院事宜,确定科学院的方向、任务、体制等,组建科学院图书馆,担任图书管理处处长,编译局处长.1952年参加筹建中国科学院数学研究所的工作,并在数学研究所从事数学研究,历任副研究员、研究员、研究室主任、副所长、学术委员会副主任.他还是中国科学院声学研究所学术委员会委员及原子能研究所学术委员会委员.从1952年起,兼任北京师范大学、北京大学、中国人民大学和中国科技大学等校教授以及华南工学院名誉教授;并兼任过中国科学院成都分院学术顾问、该院数理科学研究室主任、中国科学院武汉数学物理研究所顾问、研究员.他还是国家科委数学学科组副组长、自动化学科组成员;曾担任北京数学会理事长,中国数学会秘书长,国际自动控制联合会理论委员会成员及《中国科学》《科学通报》《数学学报》和《系统科学与数学》等杂志的编委或主编等职.1980年,他与其他科学家一起创建中国科学院系统科学研究所,担任研究所所长.他还担任中国自动化学会副理事长、中国系统工程学会理事长.1980年当选为中国科学院数理学部委员.关肇直长期从事泛函分析、数学物理、现代控制理论等领域的研究,成绩卓著,为我国的社会主义现代化建设作出了重大贡献,1978年获全国科学大会奖,1980年获国防科委、国工办科研奖十几项,1982年获国家自然科学二等奖;关肇直参与主持的项目《尖兵一号返回型卫星和东方红一号》获1985年国家科技进步特等奖,他本人获“科技进步”奖章.关肇直从事泛函分析、数学物理和现代控制理论研究方面,取得水平很高的成果.主要成果有以下几个方面.(一)最速下降法与单调算子思想关肇直于《数学学报》第6卷第4期(1956)发表了学术论文“解非线性函数方程的最速下降法”,第一次把梯度法(又称最速下降法)由有限维空间推广到无限维空间,而且和线性问题相仿,其收敛速度是依照等比级数的.这种方法可以用来解某些非线性积分方程以及某些非线性微分方程边值问题.并在文中首先提出了单调算子的思想,比外国学者早四五年.国外关于单调算子的概念,最早见于1960年扎朗顿尼罗和闵梯(E.H.Z afantonello,G.J.M inty)的工作.单调算子是非线性泛函分析中很基本的概念之一,单调算子理论已成为泛函分析中的一个重要分支,在处理力学、物理学中的许多非线性问题中被广泛地应用.(二)激光问题的数学理论在数学物理方面,关肇直也进行了深入的研究.他在《中国科学》第14卷第7期(1956)上用法文发表了学术论文“关于…激光理论‟中积分方程的非零本征值的存在性”在论文中他利用泛函分析工具,在很弱的假设下,用极为简短的方式证明了激光理论中一般形式的具有非对称核的线性积分方程非零本征值的存在.这一结果受到国际上的重视.被国外书刊广泛引用,如M agraw H ill图书公司1972年出版的柯克朗(J.A.C ochran)著的《线性积分方程分析》一书就曾详细地引用过.(三)中子迁移理论关肇直在数学物理方面的另一个创造,就是关于中子迁移理论的研究.1963年他用希尔伯特空间与不定规度空间的算子谱理论解决了平板几何情形的中子迁移的本征函数问题,著有“关于一类本征值问题”(当时未发表).这比国外罕日布鲁克(H angelbrook)1973年的同类工作早10年.卡帕(H.G.K aper)和兹维贝尔(P.F.Z weibel)在1975年举行的国际迁移理论第四次会议上的报告(载于期刊《T ranspost T heory and S tatistical P hysiss》V ol.4,N o.3,第105—123页,1975)中,在“迁移理论中有什么创新”标题下,把罕日布鲁克的方法称为求解方程的新方法;但是,罕氏著作中所解决的问题,在关肇直的文章中是早已解决了的.关肇直于1963年完成的这篇论文直到他去世后于1984年发表在《数学物理学报》上,国外同行当得知他在60年代就作出了如此高水平的工作时都深表惊异.(四)飞行器弹性控制理论关肇直在《中国科学》1974年第4期上发表了“弹性振动的镇定问题”,首先提出了用线性算子紧扰动理论解决飞行器弹性振动的镇定问题.在这之前,美国的著名控制论专家鲁塞尔(D.L.R ussell)曾用别的方法讨论过此类问题,但他自己认为他所得的结果“当然并非完全满意”,“增益系数的增大应能改进系统的稳定性,但这样整体性结果没有得到……”他甚至认为:显然他所用的方法“带来必须小的缺陷,……,但很怀疑这里定理所表述的结果的确切化用任何别的技术来实现.”可是,与鲁塞尔的怀疑相反,关肇直用了算子紧扰动方法技巧,此方法与鲁塞方法有本质的区别,它确实摆脱了放大系数很小的限制,得出了工程意义更合理的结果.这项成果已经应用到我国的国防尖端技术设计上,成为导弹运载火箭所必不可少的一个设计理论.(五)几本主要著作1.《泛函分析讲义》1958年高等教育出版社出版了关肇直的《泛函分析讲义》.该书吸取了当时国际上几部有名的介绍泛函分析概要的书的长处,内容适中,很具特色,便于自学.这是国内第一部包括当时泛函分析各分支的较全面的专著,国内当时这类书很少;国内除此之外,迄今也仍只有一些教科书性质的出版物,还没有别的书代替它.关肇直曾使用这部著作在1956年和1957年分别为中国科学院数学研究所一批青年同志和北京大学第一届泛函分析专门化学生讲授过《泛函分析》课程,培养了一批从事泛函分析等方面的中青年骨干教师和科研人员.此书至今仍有重大参考价值.2.《拓扑空间榻论》科学出版社于1958年出版了关肇直教授的这本书.本书是为了数学分析方面的青年数学工作者的需要而写的.目的是使读者获得关于拓扑空间理论的基础知识.本书在当时是这方面较系统的也是较早的一部专著.作者是按照自己的观点来写的,书中许多定理的证明都是作者给出的,他尽可能地遵循一般实变函数论中的叙述问题的方式,因而有自己的特色.这是为了使读者感到新知识与原有知识有联系,对新的抽象概念不至感到突然,同时又帮助读者直达科学研究的前沿.根据研究概率论方面的读者反映,对他们研究极限定理一类工作颇有帮助.3.《高等数学教程》人民教育出版社于1959年出版.本书是关肇直在中国科技大学开办应用数学专业讲授高等数学课程而编写的教材,特点是:材料比较丰富,注意理论联系实际.4.《线性泛函分析入门》上海科技出版社于1979年出版.关肇直同他的学生张恭庆、冯德兴合著.著书的目的是为了满足多方面科学研究工作者的需要,因为当时线性泛函分析已成为许多从事科学技术研究的人所渴望了解和应用的一门数学学科.此书的特点是:尽可能从一些问题提炼出泛函分析中的基本概念,让读者透过叙述方法了解到研究的过程.5.《现代控制系统理论小丛书》这是由关肇直主编的,包括线性系统理论、非线性系统理论、极值控制理论、系统辨识、最优控制与随机控制理论、分布参数系统理论及其他有关内容,共分十几分册,由科学出版社从1975年开始陆续出版.这套丛书介绍了现代控制系统理论的各个部分,并着重说明这种理论怎样由工程实践的需要而产生,又怎样用来解决工程设计中的实际问题.此丛书主要是为从事控制理论研究的科学工作者和工程技术人员而撰写的.此丛书的出版,对于促进我国的控制理论和控制技术的发展起到了很好的作用.。
2.3 变量间的相关关系
则������ =
^
66.5-4×4.5×3.5
^
������ = ������ − ������ ������ =3.5-0.7×4.5=0.35, 故线性回归方程为������ =0.7x+0.35. (3)根据线性回归方程的预测,现在生产 100 吨产品消耗的标准 煤的数量为 0.7×100+0.35=70.35, 故消耗能源减少了 90-70.35=19.65(吨).
2.3
变量间的相关关系
知识能力目标引航 1.了解相关关系、线性相关、回归直线、最小二乘法的定义. 2.会作散点图,能判断两个变量之间是否具有相关关系. 3.会求回归直线方程,并能用回归直线方程解决有关问题.
1.相关关系 (1)定义:如果两个变量中一个变量的取值一定时,另一个变量的 取值带有一定的随机性,那么这两个变量之间的关系,叫做相关关系. (2)两类特殊的相关关系:如果散点图中点的分布是从左下角到 右上角的区域,那么这两个变量的相关关系称为正相关,如果散点图 中点的分布是从左上角到右下角的区域,那么这两个变量的相关关 系称为负相关.
③代入公式计算������ , ������ 的值. ④写出回归直线方程. (2)求回归直线方程时应注意的问题:
^^
①用公式计算������ , ������ 的值时,要先算出������ ,然后才能算出������ . ②使用计算器能大大简化手工的计算,迅速得出正确的结果,但输入数 据时要细心,不能出任何差错;不同计算器的按键方式可能不同,可参考 计算器的使用说明书进行相关的计算.
^
86-4×4.5
2
=
66.5-63 =0.7, 86-81
^
利用回归方程,可以对总体进行估计,如回归方程为������ = ������ x+������ . 当 x=x0 时估计值为������0 = ������ x0+������ .
高中数学必修3第二章:统计2.3变量间的相关关系
Y 研考点·知规律
探究悟道 点拨技法
题型一 相关关系的判断 【例 1】 河北国欣农研会的科研人员在 7 块并排、形状大小 相同的试验田上对某棉花新品种进行施化肥量 x 对产量 y 影响的 试验,得到如下表所示的一组数据(单位:kg): 施化肥量 x 15 20 25 30 35 40 45 棉花产量 y 330 345 365 405 445 450 455
D 读教材·抓基础
回扣教材 扫除盲点
课本导读
1.两个变量的线性相关 (1)在散点图中,点散布在从 左下角 到 右上角的区域,对于 两个变量的这种相关关系,我们将它称为正相关. (2)在散点图中,点散布在从 左上角 到 右下角的区域,两个 变量的这种相关关系称为负相关. (3)如果散点图中点的分布在整体上看大致在一条直线附近 , 就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.
() (A)她儿子10岁时的身高一定是145.83 cm (B)她儿子10岁时的身高在145.83 cm以上 (C)她儿子10岁时的身高在145.83 cm左右 (D)她儿子10岁时的身高在145.83 cm以下
2.经调查知,某品牌汽车的销售量y(辆)与广告费用x(万元)之 间的回归直线方程为 yˆ =250+4x,当广告费用为50万元时,预计 汽车销售量约为 ______辆.
2.回归方程 (1)最小二乘法:使得样本数据的点到回归直线的 距离的平方
和最小的方法叫最小二乘法.
(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,
^^ ^
y1)、(x2,y2),…,(xn,yn).其回归方程为y=bx+a,则
n
n
xi- x yi- y xiyi-n x y
2017学年数学必修三:2.3.1-变量之间的相关关系~2.3.2 两个变量的线性相关2
(2)问题2中,从表里数据能得出小麦的产量y与施肥量x之间的 函数关系式吗? 提示:从表格里我们很容易发现施肥量越大 ,小麦的产量就越高. 但是,施肥量并不是影响小麦产量的唯一因素 ,小麦的产量还受 土壤的质量、降雨量、田间管理等诸多因素影响 ,这时两个变
量之间就不是确定性的函数关系,因此不能得到y和x的函数关
1.两个变量的线性相关 左下角 到_______. 右上角 (1)正相关:点散布的方向:从_______ 左上角 到_______. 右下角 (2)负相关:点散布的方向:从_______ (3)回归直线:如果散点图中点的分布从整体上看在一条直线附
线性相关 关系,这条直线叫做 近,就称这两个变量之间具有_________
【解析】(1)作出散点图如图所示,
(2)由散点图可知,各点并不在一条直线附近,所以两个变量是
非线性相关关系.
类型二
求回归方程
1.(2013·锦州高一检测)已知一组观测值具有线性相关关系,
bx a ,求得 b =0.51, x =61.75, y =38.14, 则回归方 若对于 y
【探究总结】
1.散点图的作用
(1)判断两个变量之间有无相关关系,一种常用的简便可行的方
法是绘制散点图.
(2)根据散点图很容易看出两个变量之间是否具有相关关系,是
不是线性相关关系,是正相关还是负相关,相关关系强还是弱.
2.利用散点图判断变量间的关系的方法 (1)如果所有的样本点都落在某一函数的曲线上,就用该函数来 描述变量间的关系,即变量具有函数关系. (2)如果所有的样本点都落在某一函数曲线附近,变量之间就有 相关关系. (3)如果所有的样本点都落在某一条直线附近,变量之间就有线 性相关关系.
2014年人教A版必修三课件 2.3 变量间的相关关系
两个变量相互间有一定影响, 我们就说这两个变 量之间存在着一定的相关关系. 两个变量之间, 除了像函数这样有确定的关系外, 在现实生活中, 存在着许多不确定的相关关系的问题. 如: (1) 商品销售收入与广告支出经费之间的关系.
(2) 粮食产量与施肥量的关系.
(3) 开发一项产品的投入与产出的关系. (4) 个人的教育投资与收入的关系.
练习: (课本85页) 1. 有关法律规定, 香烟盒上必须印上 “吸烟有 害健康” 的警示语. 吸烟是否一定会引起健康问题? 你认为 “健康问题不一定是由吸烟引起的, 所以可以 吸烟” 的说法对吗? 答: 经医学研究, 吸烟对身体有害. 但吸烟不一定会引起健康问题. 因为人的身体健康有很多不确定因素, 所以有些 人吸烟不一定会引起健康问题. 如注射青霉素药物前 要做皮试, 以防药物过敏, 但不是都会产生过敏. 虽然健康问题不一定是由吸烟引起的, 但吸烟与 健康存在相关关系, 虽然有不确定因素, 但有可能引 起健康问题, 所以 “可以吸烟” 的说法是不对的.
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
年龄 脂肪
23 9.5
27 39 41 45 49 50 17.8 21.2 25.9 27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
【本章内容】
2.1 随机抽样 2.2 用样本估计总体 2.3 变量间的相关关系
第二章 小结
2.3 变量间的相关关系
2.3.1 变量之间的相关关系 (2.3.2)两个变量的线性相关
2.3.2 两个变量的线性相关
2014高中数学 2.3 变量间的相关关系课件(2)新人教A版必修3
诱思探究1
一组样本数据的平均数是样本数据的中心,那 么散点图中样本点的中心如何确定?它一定是散点 图中的点吗?
脂肪含量
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
样本点的中心的 坐标为样本数据 的平均数; 它不一定是散点 图中的点。
n
i
nx y nx
2
ˆx ˆ y b a
( x x)
x
i 1
2
i
2 ˆ Q ( y y ) i i 为最小,这样就得到了 时,总体偏差 i 1
回归方程,这种求回归方程的方法叫做最小二乘 ˆx a 法.回归方程 y ˆ b ˆ ˆ 分别表示回归方程的斜率,截距。 中,a ˆ, b
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
在直角坐标系中,任何一条直线都有相应的方程, 回归直线的方程称为回归方程.对一组具有线性相关 关系的样本数据,如果能够求出它的回归方程,那么 我们就可以比较具体、清楚地了解两个相关变量的内 在联系,并根据回归方程对总体进行估计.
1 1 (5 0 36) 169 15.367 11 11
xi (5)2 02 362 4335
2 i 1
11
11
x y
i 1 i
11
i
5 156 0 150 36 54 14828
i i
ˆ b
x y 11x y
温故知新
一.变量之间的相关关系: 1.变量间相关关系的定义:自变量取值一定时,因变 量的取值带有一定随机性的两个变量之间的关系,叫 做相关关系. 2.相关关系与函数关系的异同点: (1)相同点:两者均是指两个变量间的关系。 (2)不同点:①函数关系是一种确定的关系;相关关系 是一种非确定的关系. 函数关系是两个非随机变量的 关系,而相关关系是非随机变量与随机变量间的关系. ②函数关系是一种因果关系,而相关关系不一定是因果 关系,也可能是伴随关系.
2.3 变量间的相关关系
配人教版 数学 必修3
【示例】PM2.5是指空气中直径小于或等于2.5微米的颗粒 物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否 相关,现采集到某城市周一至周五某一时间段车流量与PM2.5 的数据如表:
时间
周一 周二 周三 周四 周五
车流量x/万辆
50 51 54 57 58
PM2.5的浓度y/ (微克·立方米-1) 69 70 74 78 79
配人教版 数学 必修3
2.3 变量间的相关关系
配人教版 数学 必修3
目标定位
重点难点
1.理解两个变量的相 重点:通过收集现实问题中两个有关联 关关系的概念. 变 量 的 数 据 直 观 认 识 变 量 间 的 相 关 关
2.会作散点图,并 系;利用散点图直观认识两个变量之间 利用散点图判断两 的线性关系;根据给出的线性回归方程
配人教版 数学 必修3
【分析】(1)利用描点法可得数据的散点图; (2)根据公式求出b^,a^,可写出线性回归方程; (3)根据(2)的线性回归方程,将 x=25 代入,求出 PM2.5 的浓度.
配人教版 数学 必修3 【解析】(1)散点图如图所示.
配人教版 数学 必修3
(2) x =50+51+554+57+58=54, -y =69+70+754+78+79=74,
A.①②
B.②③
C.③④
D.①④
配人教版 数学 必修3
【答案】D 【解析】y^=b^x+a^表示y^与 x 之间的函数关系,而不是 y 与 x 之间的函数关系.但它所反映的关系最接近 y 与 x 之间的真 实关系.故选 D.
配人教版 数学 必修3
4.如果在一次试验中,测得(x,y)的四组数值分别是 x 16 17 18 19 y 50 34 41 31
高一数学(人教版)必修3导学案:2.3变量间的相关关系(无答案)
高一数学导学案课题:变量间的相关关系编写人:审核人:时间:【学习目标: 】【知识与技能目标】(1)通过收集现实问题中两个有关联变量的数据认识变量间的相关关系。
(2)知道最小二乘法和回归分析的思想;(3)能根据线性回归方程系数公式建立线性回归方程或根据给出的数据,应用图形计算器建立线性回归方程.【过程与方法目标】通过对变量之间的关系的学习了解从总的变化趋势来看变量之间存在某种关系,但这种关系又不能用确定的函数关系精确表达出来,也让学生了解变量之间的不确定性关系是很普遍的,帮助学生树立科学的辨证唯物主义观点,感受自然的辩证法。
(1)通过对本课的学习,学会关注社会,关注生活,进一步学会观察、比较、归纳、分析等一般方法的运用。
【情感、态度与价值观】(1)通过观察生活中的例子,能直接找出变量之间的函数关系引出到无法直接找出变量之间的函数关系,即变量之间的相关关系,激发求知欲。
(2)通过感受生活中实际问题转化为数学问题,学会查找资料,收取信息,学会用统计知识对实际问题进行数学分析【重点和难点】:重点:利用散点图直观认识两个变量之间的线性关系,根据给出的线性回归方程的系数公式建立线性回归方程。
难点:回归思想的建立,变量之间相关关系的理解。
【课前预习导读】自学课本P84~P91内容【预习提示】:1.什么是相关关系?相关关系和函数关系有什么联系与区别?2.两个变量成正相关或者负相关的时候,散点图有什么特点?3..下列图中两变量是否具有相关关系?【课堂自主导学】探究任务:回归直线及其方程观察上面两个散点图,图中点的分布具有什么共同特征?新知:回归直线概念_____________________________________________________________________ 结合“人体脂肪与年龄的相关关系”这一实例可以推断出,如果可以求出这条直线的方程(回归方程),那么我们就可以比较清楚的了解年龄与体内脂肪含量的相关性。
2.3.相关关系
§2.3变量间的相关关系(一)(1)通过具体示例引导学生考察变量之间的关系, 在讨论的过程中认识现实世界中存在着不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.(2) 通过收集现实问题中两个有关联变量的数据作出散点图, 并利用散点图直观认识变量间的相关关系.会作散点图,并对变量间的正相关或负相关关系作出直观判断.(3) 在解决统计问题的过程中, 进一步体会用样本估计总体的思想, 理解统计重点:利用散点图直观认识变量间的相关关系. 难点:理解变量间的相关关系.在解决统计问题的过程中, 进一步体会用样本估计总体的思想, 理解数形结 一、复习回顾: 函数的定义 二、情景设置:客观事物是相互联系的,过去研究的大多数是因果关系, 但实际上更多存在的是一种非因果关系.在中学校园里, 有这样一种说法:“如果你的数学成绩好, 那么你的物理学习就不会有什么大问题.”按照这种说法, 似乎学生的物理成绩与数学成绩之间存在着某种关系, 我们把数学成绩和物理成绩看成是两个变量, 那么这两个变量之间的关系是函数关系吗?二、探究新知: 知识探究(一):变量之间的相关关系 思考1:考察下列问题中两个变量之间的关系: (1)商品销售收入与广告支出经费; (2)粮食产量与施肥量; (3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗? 思考2:“名师出高徒”可以解释为教师的水平越高, 学生的水平就越高, 那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?思考3:上述两个变量之间的关系是一种非确定性关系, 称之为相关关系, 那么相关关系的含义如何?思考4:相关关系与函数关系的异同点:总结:对相关关系的理解应当注意以下几点:其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系, 而相关关系是一种非确定性关系, 即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此, 不能把相关关系等同于函数关系.其二是函数关系是一种因果关系, 而相关关系不一定是因果关系, 也可能是伴随关系.例如, 有人发现, 对于在校儿童, 鞋的大小与阅读能力有很强的相关关系.然而, 学会新词并不能使脚变大, 而是涉及到第三个因素——年龄.当儿童长大一些, 他们的阅读能力会提高而且由于长大脚也变大.其三是在现实生活中存在着大量的相关关系, 如何判断和描述相关关系, 统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性, 这需要通过收集大量的数据, 对数据进行统计分析, 发现规律, 才能作出科学的判断.(对具有相关关系的两个变量进行统计分析的方法叫回归分析.)知识探究(二):散点图【问题】在一次对人体脂肪含量和年龄关系的研究中, 研究人员获得了一组样本数据:……课本85页的探究。
2.3 变量间的相关关系
2.3 变量间的相关关系2.3.1 变量之间的相关关系2.3.2 两个变量的线性相关●学习目标1、了解变量之间的相关关系,理解两变量的线性相关关系,了解正、负相关的概念;2、学会作散点图,了解回归直线的概念,掌握计算回归直线的斜率与截距的一般公式;3、了解最小二乘法的思想.●学习重点利用散点图直观认识两个变量之间的关系.●学习难点从实例中抽象出事物之间的相关关系.●学习过程一.创设情境在学校里,老师经常对学生说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢?二.走进课堂1、两个变量间的关系:(1)确定性的函数关系;(2)带有随机性的相关关系.变量间相关关系:变量间确实_______,但又不具备____所要求的确定性,我们就说这两【夯实基础】(1)下列两个变量之间的关系哪个不是函数关系()A.圆的半径和它的面积B.正方形边长和它的面积C.正n边形的边数和顶点角度之和D.人的年龄和身高(2)下列两个变量是线性相关关系的是()A.出租车费与行驶的里程B.房屋面积与房屋价格C.身高与体重D.实心铁球的大小与质量(3)下列关系中是相关关系的有_________.①光照时间与果树亩产量的关系;②圆柱体积与其底面直径的关系;③自由下落的物体的质量与落地时间的关系;④球的表面积与球半径之间的关系.2、散点图(1)如果所有的样本点都落在某一函数曲线上,就用____来描述变量之间的关系,即变量之间具有_____关系;(2)如果所有的样本点都落在某一函数曲线附近,变量之间就有______关系;(3)如果所有的样本点都落在某一直线附近,变量之间就有__________关系;线性相关分为________和________.____的变化趋势,即从整体上来看一个变量会随另一个变量变大而变大,这在散点图上的反映就是散点的分布在斜率_____0的直线附近.____的变化趋势,即从整体上来看一个变量会随另一个变量变大而变小,这在散点图上的反映就是散点的分布在斜率_____0的直线附近.(4)如果散点图中的点的分布几乎没什么规则,则这两个变量之间不具备相关关系,即两个变量之间是相互独立的.3找相关关系中非确定性关系的某种确定性.4、回归直线:如果所有的样本点大致在_____________(1)从整体上看,各点与此直线的距离______,即回归直线是样本点的最大程度的吻合. (2)对于单变量样本数据而言,_____是样本的中心;对双变量样本点而言,________是样本点的中心,回归直线一定过样本点的中心.5、回归直线方程: (1)把相关关系转化为函数关系;(2)当两个具有相关关系的变量近似满足一次函数关系时,所求的函数关系就是回归直线方程;(3)公式: y b x a =+,1221n i i i ni i xy n x y b x n x ==-=-∑∑,a y b x =-. 6、最小二乘法:求_________,使得样本数据点到它的距离_______________最小的方法.【夯实基础】(1)对于给定的两个变量的统计数据,下列说法正确的是( )A.都可以分析出两个变量的关系 B.都可以用一条直线近似地表示两者的关系 C.都可以作出散点图 D.都可以用确定的表达式表示两者的关系(2)对有线性相关关系的两个变量建立的回归直线方程 y a bx =+中,回归系数b ( ) A.可以小于0 B.只能大于0 C.能等于0 D.只能小于0(3)线性回归方程表示的直线 y a bx =+必定过( ) A.()0,0点 B.(),0x 点 C.()0,y 点 D.(),x y 点(4)已知回归方程 4.4838.19y x =+,则可估计x 与y 的增长速度之比为__________.7、典例精析【例】某5名学生的总成绩和数学成绩(单位:分)如下表所示:(2)求数学成绩对总成绩的回归直线方程;(3)如果一个学生的总成绩为450分,试预测这个同学的数学成绩.8、课堂小结: 作业.。
广东省佛山市第一中学高中数学必修三课件:52 2.3变量间的相关关系
20 25 30 35 40 45 50 55 60 65 年龄
整体上最接近
第十六页,编辑于星期日:九点 四十分。
三、如何具体的求出这个回归方程呢?
方案二: 在图中选取两点画直线,使得直线两 侧的点的个数基本相同。
脂肪
40 30 20 10
0 0
脂肪
20
40
60
80
第十七页,编辑于星期日:九点 四十分。
y 0.577x 0.448,由此我们可以根据
一个人个年龄预测其体内脂肪含量的百分 比的回归值.若某人65岁,则其体内脂肪含 量的百分比约为多少?37.1%
(0.577×65-0.448= 37.1%)
40 35 30 25 20 15 10
5 0
20 25 30 35 40 45 50 55 60 65 年龄
回归方程 yˆ bˆx a,ˆ 其中:
n
n
(xi x)(yi y) xi yi nxy
bˆ i1 n
(xi x)2
i1 n
xi2
n
2
x
,
i1
i1
aˆ y bˆx.
第二十五页,编辑于星期日:九点 四十分。
思考7:利用计算器或计算机可求得年龄和 人体脂肪含量的样本数据的回归方程为
根据上述数据,人体的脂肪含量与年龄 之间有怎样的关系?
第六页,编辑于星期日:九点 25 20 15 10 5 0
20 25 30 35 40 45 50 55 60 65 年龄
思考:上图叫做散点图,你能描述一下散点图的含
义吗?
在平面直角坐标系中,表示具有相关关系的两个变 量的一组数据图形,称为散点图.
十不祝寿” 。 2003年11月,国际自然医学会
高中数学 第二章 统计 2.3.1-2.3.2 变量之间的相关关系 两个变量的线性相关课件 新人教
A .1 B .1 C .1 D .1 1 6 8 4 2
35
【思路导引】利用回归直线方程必过样本点的中心求解.
【解析】选B.依题意可知样本点的中心为 ( 3 , ,3 )
48
则3
8
= 1×
3
+3
4
,a 解得
=a .
1 8Βιβλιοθήκη 36【拓展延伸】相关关系的强弱
(1)若相应于变量x的取值xi,变量y的观测值为yi(1≤i≤n),称r=
6
(2)你能举例说明你对正相关与负相关的理解吗? 提示:随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性 的相关关系,我们称为正相关.例如,人年龄由小变大时,体内脂肪含量也由少 变多. 随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关 关系,我们称为负相关.例如,汽车越重,每消耗1 L汽油所行驶的平均路程就 越短.
n
n
x i2,
xi y,i
i1
i1
30
(5)代入公式计算
b ,a,公式为
n
x iyi n x y
b
i1
n
x
2 i
n
x
2
i1
,
a y b x .
(6)写出回归直线方程 = x+ .
yb a
31
【跟踪训练】 已知变量x,y有如下对应数据:
x1234 y1345
(1)作出散点图. (2)用最小二乘法求关于x,y的回归直线方程.
42
【思路导引】(1)以产量为横坐标,以生产能耗对应的测量值为纵坐标, 在平面直角坐标系内画散点图. (2)应用计算公式求得线性相关系数 bˆ , aˆ 的值. (3)实际上就是求当x=100时,对应的 yˆ 的值.
2.3 变量间的相关关系
2.求回归直线方程时应注意的问题 (1)知道x与y呈线性相关关系,无需进行相关性检
验,否则应首先进行相关性检验,如果两个变量之间
本身不具有相关关系,或者说,它们之间的相关关系 不显著,即使求出回归方程也是毫无意义的,而且用 其估计和预测的量也是不可信的.
^ ^ ^ ^ (2)用公式计算a 、b 的值时,要先算出b ,然后才能算出a . 3.利用回归方程,我们可以进行估计和预测.若回归直线 ^ ^ ^ ^ ^ ^ 方程为y =b x+a ,则 x=x0 处的估计值为y 0=b x0+a . 由于回归直线将部分观测值所反映的规律进行了延伸,所 以它在情况预报、资料补充等方面有着广泛的应用.
0 (3) 3 ˆ ˆ ˆ y a =176-173×1=3,得回归方程为y =x+3,所以当x=182时, =185.
答案:185
ቤተ መጻሕፍቲ ባይዱ
课堂小结
1.判断变量之间有无相关关系,一种简便可行 的方法就是绘制散点图.根据散点图,可以很容易看 出两个变量是否具有相关关系,是不是线性相关,是 正相关还是负相关.
系,随机抽取5对父子身高数据如下:
父亲身高x(cm) 儿子身高y(cm) 174 175 176 175 176 176 176 177 178 177
则y对x的线性回归方程为( C ) (A)y=x-1 (B)y=x+1 ˆ ˆ (C)y=88+ ˆ
1x 2
(D)y=176 ˆ
4、(2011·广东高考)某数学老师身高176 cm,他爷爷、父亲
和儿子的身高分别是173 cm、170 cm和182 cm.因儿子的身高与 父亲的身高有关,该老师用线性回归分析的方法预测他孙子的 身高为 cm.
【规范解答】(1)由题设知:设解释变量为x,预报变量为y, 它们对应的取值如下表所示 x y 173 170 170 176 176 182
2.3变量的相关性 (马清芹2014.2.27)
整体上最“贴近”一条直线,这条直线称之为 ^ 回归直线,其方程记为 y = bx + a ,叫做回 归直线方程; (b叫做回归系数)
思考3:根据有关数学原理分n
i
x )( yi y )
2 ( x x ) i i 1
n
x y
i 1 n i i 1
,则下列判断正确的是(
)
A.劳动生产率为1000元时,工资为130元。
B.劳动生产率提高1000元时,工资平均提高80元。 C.劳动生产率提高1000元时,工资提高130元。 D.当月工资为120元时,劳动生产率为2000元。
几点说明: (1)回归直线中b叫做回归系数,它的实际意义 是:变量x每增加一个单位,函数值y平均增加b个 单位。 (2)对于任意一组样本数据,利用上述公式都可 以求得“回归方程”,但只有这两个变量之间存 在的是线性相关关系时,才能求其回归直线方程, 才能用其估计和预测,否则,如果两个变量之间 不存在线性相关关系,即使求出其回归直线方程, 也是毫无意义的,用其估计和预测的量也是不可 信的。因此,对一组样本数据,应先作散点图, 在具有线性相关关系的前提下再求回归方程. (3)以平均数为坐标的点一定在回归直线上。
小结:求线性回归直线方程的步骤: 第一步:列表 x , y , x y ;
i i i i
第二步:计算
x, y, xi , xi y
2 i 1 i 1
n
n
i
;
第三步:代入公式计算b,a的值;
第四步:写出直线方程。
跟踪练习:
(1)工人月工资y(元)以劳动生产率x(千元)的回归 方程为
ˆ 50 80 x y
y y
.
o x x
2.3变量间的相关关系
思考1:回归直线与散点图中各点的位置 应具有怎样的关系?
脂肪含量
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
整体上最接近
三、如何具体的求出这个回归方程呢? 方案一:采用测量的方法:先画一条直线,测 量出各点到它的距离,然后移动直线,到达一 个使距离之和最小的位置,测量出此时直线的 斜率和截距,就得到回归方程。
自变量取值一定时,因变量的取值带有一定 随机性的两个变量之间的关系,叫做相关关 系.
变量之间的相关关系
相关关系与函数关系的异同点:
相同点:均是指两个变量的关系.
不同点:函数关系是一种确定的关系; 而相关关系是一种非确定关系.
现实生活中存在许多相关关系,在下列两个变量 的关系中,哪些是相关关系? ①正方形边长与面积之间的关系; × ②作文水平与课外阅读量之间的关系;
设已经得到具有线性xn,yn)
当变量x取x1,x2,„,xn时,可以得到:
y i bx i a i 1 , 2 , , n
它与实际收集得到的 y i 之间偏差是:
y i y y i ( bx i a ) i 1, 2 , , n i
3.我们不能通过一个人的数学成绩是 多少就准确地断定其物理成绩能达到 多少,学习兴趣、学习时间、教学水 平等,也是影响物理成绩的一些因素, 但这两个变量是有一定关系的,它们 之间是一种不确定性的关系.类似于 这样的两个变量之间的关系有很多, 比如:粮食产量与施肥量,商品销售 收入与广告经费支出等。
年龄 23 脂肪 9.5
年龄 53
27
54
39
56
41
57
2017-2018学年高中数学人教A版必修3教学案:第二章 2.3 变量间的相关关系
变量间的相关关系(1)函数关系与相关关系的区别与联系是什么?(2)如何判断两个变量之间是否具备相关关系?(3)什么是正相关、负相关?与散点图有什么关系?[新知初探]1.相关关系如果两个变量中一个变量的取值一定时,另一个变量的取值带有一定的随机性,那么这两个变量之间的关系叫做相关关系.2.散点图将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,利用散点图,可以判断两个变量是否相关,相关时是正相关还是负相关.3.正相关和负相关(1)正相关:散点图中的点散布在从左下角到右上角的区域.(2)负相关:散点图中的点散布在从左上角到右下角的区域.[点睛]对正相关和负相关的理解(1)正相关随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性的相关关系,我们称为正相关.例如,人年龄由小变大时,体内脂肪含量也由少变多.(2)负相关随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关关系,我们称为负相关.例如,汽车越重,每消耗1 L 汽油所行驶的平均路程就越短.4.回归直线方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程:回归直线的方程,简称回归方程. (3)回归方程的推导过程:①假设已经得到两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ).②设所求回归方程为y ^=b ^x +a ^,其中a ^,b ^是待定参数. ③由最小二乘法得⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n (x i-x )2=∑i =1nx i y i-n x y ∑i =1n x 2i-n x 2a ^=y -b ^x其中:b ^是回归方程的斜率,a ^是截距.[小试身手]1.下列命题正确的是( ) ①任何两个变量都具有相关关系; ②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系; ④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.A .①③④B .②③④C .③④⑤D .②④⑤解析:选C ①显然不对,②是函数关系,③④⑤正确.2.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析:选C 由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关. 3.若施肥量x (kg)与水稻产量y (kg)的线性回归方程为y ^=5x +250,当施肥量为80 kg 时,预计水稻产量约为________kg.解析:把x =80代入回归方程可得其预测值y ^=5×80+250=650(kg). 答案:6504.对具有线性相关关系的变量x 和y ,测得一组数据如下表所示.x 2 4 5 6 8 y3040605070若已求得它们回归直线的方程为______________________.解析:由题意可知x =2+4+5+6+85=5,y =30+40+60+50+705=50.即样本中心为(5,50).设回归直线方程为y ^=6.5x +a ^, ∵回归直线过样本中心(x ,y ), ∴50=6.5×5+a ^,即a ^=17.5, ∴回归直线方程为y ^=6.5x +17.5 答案:y ^=6.5x +17.5相关关系的判断①正方形的边长与面积之间的关系;②农作物的产量与施肥量之间的关系;③出租车费与行驶的里程;④降雪量与交通事故的发生率之间的关系.(2)某个男孩的年龄与身高的统计数据如下表所示.年龄x(岁)12345 6身高y(cm)788798108115120①画出散点图;②判断y与x是否具有线性相关关系.[解析](1)在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;③为确定的函数关系;在④中,降雪量与交通事故的发生率之间具有相关关系.答案:②④(2)解:①散点图如图所示.②由图知,所有数据点接近一条直线排列,因此,认为y与x具有线性相关关系.两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断.(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断.[活学活用]如图所示的两个变量不具有相关关系的是________(填序号).解析:①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.答案:①④[典例] (1)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5D.y ^=-0.3x +4.4(2)一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:转速x (转/秒)16 14 12 8 每小时生产有缺点的零件数y (件)11985②如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系; ③在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内?[解析] (1)依题意知,相应的回归直线的斜率应为正,排除C 、D.且直线必过点(3,3.5),代入A 、B 得A 正确.答案:A(2)解:①散点图如图所示:②近似直线如图所示:③由y ≤10得5170x -67≤10,解得x ≤14.9,所以机器的运转速度应控制在14转/秒内.求回归直线方程的步骤(1)收集样本数据,设为(x i ,y i )(i =1,2,…,n )(数据一般由题目给出). (2)作出散点图,确定x ,y 具有线性相关关系. (3)把数据制成表格x i ,y i ,x 2i ,x i y i . (4)计算x ,y,∑i =1nx 2i ,∑i =1nx i y i . (5)代入公式计算b ^,a ^,公式为⎩⎪⎨⎪⎧b ^=∑i =1n x i y i -n x y∑i =1n x 2i-n x2,a ^=y -b ^x .(6)写出回归直线方程y ^=b ^x +a ^. [活学活用]已知变量x ,y 有如下对应数据:x 1 2 3 4 y1345(1)作出散点图;(2)用最小二乘法求关于x ,y 的回归直线方程. 解:(1)散点图如图所示.(2)x =1+2+3+44=52,y =1+3+4+54=134, ∑i =14x i y i =1+6+12+20=39.∑i =14x 2i =1+4+9+16=30,b ^=39-4×52×13430-4×⎝⎛⎭⎫522=1310,a ^=134-1310×52=0,所以y ^=1310x 为所求的回归直线方程.利用线性回归方程对总体进行估计[典例] 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?[解] (1)散点图如图:(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,∑i =14x 2i =32+42+52+62=86, 所以b ^=∑i =14x i y i -4x y ∑i =14x 2i -4x2=66.5-4×4.5×3.586-4×4.52=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35. 所以所求的线性回归方程为y ^=0.7x +0.35.(3)当x =100时,y ^=0.7×100+0.35=70.35(吨标准煤),90-70.35=19.65(吨标准煤).即生产100吨甲产品的生产能耗比技改前降低了19.65吨标准煤.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测.否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的.[活学活用](重庆高考)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2010 2011 2012 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(1)求y 关于t 的回归方程y ^=b ^t +a ^;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 解:(1)列表计算如下:i t i y i t 2i t i y i 1 2 3 4 51 2 3 4 55 6 7 8 101 4 9 16 255 12 21 32 50这里n =5,t -=1n ∑i =1n t i =155=3,y -=1n ∑i =1ny i =365=7.2.∑i =1nt 2i -n t -2=55-5×32=10,∑i =1nt i y i -n t -y -=120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y --b ^t -=7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).[层级一 学业水平达标]1.下列变量具有相关关系的是( ) A .人的体重与视力B .圆心角的大小与所对的圆弧长C .收入水平与购买能力D .人的年龄与体重解析:选C B 为确定性关系;A ,D 不具有相关关系,故选C. 2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为A.y ^=1.5x +2 B.y ^=-1.5x +2 C.y ^=1.5x -2 D.y ^=-1.5x -2解析:选B 设回归方程为y ^=b ^x +a ^,由散点图可知变量x ,y 之间负相关,回归直线在y 轴上的截距为正数,所以b ^<0,a ^>0,因此方程可能为y ^=-1.5x +2.3.设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线如图所示,则以下结论正确的是( )A .直线l 过点(x ,y )B .回归直线必通过散点图中的多个点C .直线l 的斜率必在(0,1)D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同解析:选A A 是正确的;回归直线可以不经过散点图中的任何点,故B 错误;回归直线的斜率不确定,故C 错误;分布在l 两侧的样本点的个数不一定相同,故D 错误.4.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b ^( ) A .不能小于0 B .不能大于0 C .不能等于0D .只能小于0解析:选C 当b ^=0时,r =0,这时不具有线性相关关系,但b ^能大于0,也能小于0. 5.2016年元旦前夕,某市统计局统计了该市2015年10户家庭的年收入和年饮食支出的统计资料如下表:(2)若某家庭年收入为9万元,预测其年饮食支出. (参考数据:∑i =110x i y i =117.7,∑i =110x 2i =406)解:依题意可计算得:x =6,y =1.83,x 2=36,x y =10.98, 又∵∑i =110x i y i =117.7,∑i =110x 2i =406,∴b ^=∑i =110x i y i -10x y∑i =110x 2i -10x2≈0.17,a ^=y -b ^x =0.81,∴y ^=0.17x +0.81. ∴所求的回归方程为y ^=0.17x +0.81.(2)当x =9时,y ^=0.17×9+0.81=2.34(万元).可估计年收入为9万元的家庭每年饮食支出约为2.34万元.[层级二 应试能力达标]1.一个口袋中有大小不等的红、黄、蓝三种颜色的小球若干个(大于5个),从中取5次,那么取出红球的次数和口袋中红球的数量是( )A .确定性关系B .相关关系C .函数关系D .无任何关系解析:选B 每次从袋中取球取出的球是不是红球,除了和红球的个数有关外,还与球的大小等有关系,所以取出红球的次数和口袋中红球的数量是一种相关关系.2.农民工月工资y (元)依劳动生产率x (千元)变化的回归直线方程为y ^=50+80x ,下列判断正确的是( )A .劳动生产率为1 000元时,工资为130元B .劳动生产率提高1 000元时,工资水平提高80元C .劳动生产率提高1 000元时,工资水平提高130元D .当月工资为210元时,劳动生产率为2 000元解析:选B 由回归直线方程y ^=50+80x 知,x 每增加1,y 增加80,但要注意x 的单位是千元,y 的单位是元.3.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下:父亲身高x (cm) 174 176 176 176 178 儿子身高y (cm)175175176177177则y 对x 的线性回归方程为( ) A .y =x -1 B .y =x +1 C .y =88+12xD .y =176解析:选C 计算得,x =174+176+176+176+1785=176,y =175+175+176+177+1775=176,根据回归直线经过样本中心(x ,y )检验知,C 符合.4.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y ^=b ^x +a ^,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′B.y ^>b ′,a ^<a ′C.b ^<b ′,a ^>a ′D.y ^<b ′,a ^<a ′解析:选C 由(1,0),(2,2)求b ′,a ′. b ′=2-02-1=2,a ′=0-2×1=-2.求b ^,a ^时,∑i =16x i y i =0+4+3+12+15+24=58,x =3.5,y =136, ∑i =16x 2i =1+4+9+16+25+36=91,∴b ^=58-6×3.5×13691-6×3.52=57, a ^=136-57×3.5=136-52=-13,∴b ^<b ′,a ^>a ′.5.正常情况下,年龄在18岁到38岁的人,体重y (kg)对身高x (cm)的回归方程为y ^=0.72x -58.2,张红同学(20岁)身高为178 cm ,她的体重应该在________ kg 左右.解析:用回归方程对身高为178 cm 的人的体重进行预测,当x =178时,y ^=0.72×178-58.2=69.96(kg).答案:69.966.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为y =-4x +a ,则a =________. 解析:x =4+5+6+7+8+96=132,y =92+82+80+80+78+686=80,由回归方程过样本中心点(x ,y ) 得80=-4×132+a ^.即a ^=80+4×132=106.答案:1067.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润y 的统计分析知x ,y 具备线性相关关系,回归方程为y ^=10.47-1.3x ,估计该台机器最为划算的使用年限为________年.解析:当年利润小于或等于零时应该报废该机器,当y =0时,令10.47-1.3x =0,解得x ≈8,故估计该台机器最为划算的使用年限为8年.答案:88.一项关于16艘轮船的研究中,船的吨位区间为[192,3 246](单位:吨),船员的人数5~32人,船员人数y 关于吨位x 的回归方程为y ^=9.5+0.006 2x ,(1)若两艘船的吨位相差1 000,求船员平均相差的人数; (2)估计吨位最大的船和最小的船的船员人数. 解:(1)设两艘船的吨位分别为x 1,x 2,则 y ^1-y ^2=9.5+0.006 2x 1-(9.5+0.006 2x 2) =0.006 2×1 000≈6, 即船员平均相差6人.(2)当x =192时,y ^=9.5+0.006 2×192≈11, 当x =3 246时,y ^=9.5+0.006 2×3 246≈30.即估计吨位最大和最小的船的船员数分别为30人和11人.9.某个体服装店经营某种服装在某周内所获纯利y (元)与该周每天销售这种服装的件数x (件)之间有一组数据如下表:(1)求x ,y ;(2)若纯利y 与每天销售这种服装的件数x 之间是线性相关的,求回归直线方程; (3)若该店每周至少要获纯利200元,请你预测该店每天至少要销售这种服装多少件? (提示:∑i =17x 2i =280,∑i =17y 2i =45 309,∑i =17x i y i =3 487)解:(1)x =3+4+5+6+7+8+97=6,y =66+69+73+81+89+90+917≈79.86.(2)∵b ^=3 487-7×6×79.86280-7×62≈4.75,a ^=79.86-4.75×6=51.36,∴纯利与每天销售件数x 之间的回归直线方程为y ^=51.36+4.75x . (3)当y ^=200时,200=4.75x +51.36,所以x ≈31.29.因此若该店每周至少要获纯利200元,则该店每天至少要销售这种服装32件.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C 中销售量全小于0,不符合题意,故选A.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝⎛⎭⎫1+1+…+1n =2x -3y +1.6.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( ) A.211 B.13 C.12D.23解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7+3=22,故总体中大于或等于31.5的数据约占2266=13.7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人, ∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据月份x 1 2 3 4 用水量y4.5432.5用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y ^=-0.7x +a ,则a 的值为( )A .5.25B .5C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4解析:选C 去掉一个最高分95,去掉一个最低分77,平均数为80+15(5+3+6+5+6)=85,方差为15[(85-85)2+(85-83)2+(85-86)2+(85-85)2+(85-86)2]=1.2,因此选C.11.如果数据x 1,x 2,x 3,…,x n 的平均数是x ,方差是s 2,则3x 1+2,3x 2+2,…,3x n +2的平均数和方差分别是( )A.x 和s 2 B .3x 和9s 2 C .3x +2和9s 2D .3x +2和12s 2+4解析:选C 3x 1+2,3x 2+2,…,3x n +2的平均数是3x +2,由于数据x 1,x 2,…x n的方差为s2,所以3x1+2,3x2+2,…,3x n+2的方差为9s2.12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是()A.x=9B.y=8C.乙的成绩的中位数为26D.乙的成绩的方差小于甲的成绩的方差解析:选B因为甲的成绩的极差为31,所以其最高成绩为39,所以x=9;因为乙的成绩的平均值为24,所以y=24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小.二、填空题(本大题共4小题,每小题5分,共20分)13.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为________.解析:由平均数为10,得(x+y+10+11+9)×15=10,则x+y=20;又方差为2,∴[(x-10)2+(y-10)2+(10-10)2+(11-10)2+(9-10)2]×15=2,得x2+y2=208,2xy=192,∴|x-y|=(x-y)2=x2+y2-2xy=4.答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.解析:抽取的男运动员的人数为2148+36×48=12.答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44716.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人, 则x100=0.030×10,解得x =30.同理,y =20,z =10. 故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)为调查某班学生的平均身高,从50名学生中抽取110,应如何抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样?解:从50名学生中抽取110,即抽取5人,采用简单随机抽样法(抽签法或随机数法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?解:(1)样本均值为17+19+20+21+25+306=1326=22.(2)由(1)知样本中优秀工人所占比例为26=13,故推断该车间12名工人中有12×13=4名优秀工人.19.(本小题满分12分)2016年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人); 四川籍的有15+10+5+5+5=40(人).设四川籍的驾驶人员应抽取x 人,依题意得5100=x 40,解得x =2,即四川籍的应抽取2人.20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样. (2)x 甲=17(102+101+99+98+103+98+99)=100,x 乙=17(110+115+90+85+75+115+110)=100,s 2甲=17(4+1+1+4+9+4+1)≈3.43,s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定.21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:(1)由分组[10,15)的频数是10, 频率是0.25知, 10M =0.25,所以M =40. 因为频数之和为40,所以10+25+m +2=40,解得m =3. 故p =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.解:(1)由题意知n =10,x =1n ∑i =1n x i =8010=8, y =1n ∑i =1n y i =2010=2, 又∑i =110x 2i -10x 2=720-10×82=80,∑i =110x i y i -10x y =184-10×8×2=24,由此得b ^=∑i =110x i y i -10x y∑i =110x 2i -10x 2=2480=0.3, a ^=y -b ^x =2-0.3×8=-0.4,故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7千元.。
人教课标版高中数学必修3《变量间的相关关系》参考课件
2.回归直线方程问题
(1)回归直线方程^y =^b x+^a 的理解
这里在 y 的上方加记号“^ ”是为了区别实际值 y,表示当 x 取值
xi(i=1,2,…,n)时,y 相应的观察值为 yi,而直线上对应于 xi 的纵坐标是y^i=a+bxi. (2)求回归直线方程的原理——最小二乘法.
设 x、y 的一组观察值为(xi,yi)(i=1,2,…,n),且回归直线方 程为y^=^a+^bx.
方法,即使得样本数据的点到回归直线的距离的
_平__方__和__最__小__的方法叫做最小二乘法.
回归直线通过样本点的中心,对照平均数与样本数据 之间的关系,你能说说回归直线与散点图中各点之间的关 系吗? 提示 假设样本点为(x1,y1)(x2,y2),…,(xn,yn),记 x =
n1i=n1xi, y =n1i=n1yi,则( x , y )为样本点的中心,回归直线一
规律方法 (1)函数关系是一种确定性关系,如匀速直线 运动中路程s与时间t的关系;相关关系是一种非确定性关 系,如一块农田的水稻产量与施肥量之间的关系. (2)判断两个变量是否是相关关系的关键是看这两个变量 之间是否具有不确定性.
【变式1】下列关系中,带有随机性相关关系的是________. ①正方形的边长与面积之间的关系;②水稻产量与施肥量 之间的关系;③人一生的身高与年龄之间的关系;④某餐 点热饮销售的数量与气温的关系. 解析 ①正方形的边长与面积之间的关系是函数关系;② 水稻产量与施肥量之间的关系不是严格的函数关系,但是 具有相关性,因而是相关关系;③人的身高与年龄之间的 关系既不是函数关系,也不是相关关系,因为人的年龄达 到一定时期身高就不发生明显变化了,因而他们不具备相 关关系;④一般来说,气温越高,售出的热饮越少.因此 填②④. 答案 ②④
人教B版高中数学必修3-2.3变量间相关关系题型举例
变量间相关关系题型举例变量间相关关系是非随机变量与随机变量之间的关系,而函数关系可以看成是两个非随机变量之间的关系.函数关系是一种因果关系,而相关关系不一定是因果关系,它可能是伴随关系.因此,不能把相关关系等同于函数关系.变量间相关关系有哪些常考题型呢?本文为同学们举例说明.题型一相关关系的判断例1为了研究质量对弹簧长度的影响,对6根相同的弹簧进行测量,所得数据如下:判断它们是否有相关关系,若有画出回归直线.解:散点图如下:由散点图可以看出变量对应的点大致分布在一条直线附近,因此可以得出结论,质量与弹簧长度这两个变量具有相关关系.解后反思:判断有无相关关系,一种常用的简便方法就是绘制散点图.题型二求线性回归方程例2假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:若由资料知y对x呈线性相关关系.试求:(1)线性回归方程y bx a =+的回归系数a b ,; (2)估计使用年限为10年时,维修费用是多少? 分析:直接利用公式求线性回归方程的系数a b ,. 解:(1)制表如下:于是有2112.354512.31.23905410b -⨯⨯===-⨯;5 1.2340.08a y bx =-=-⨯=.(2)回归直线方程为 1.230.08y x =+.当10x =年时, 1.23100.0812.30.0812.38y =⨯+=+=(万元). 即估计使用10年时,维修费用是12.38万元.解后反思:因为y 对x 呈线性相关关系,所以可以用一元线性相关的方法解决问题.(1)利用公式:1221ni ii nii x ynx y b xnx==-=-∑∑,a y bx =-来计算回归系数,有时为了方便,制表时常对应求出2i i i x y x ,,以利于求和. (2)获得线性回归方程后,取10x =即得所求.(3)本题应借用计算器计算,并列出表格,再按分析时的步骤进行求解. 题型三 利用回归直线方程对总体进行估计例3 在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 之间相。
2.3《变量间的相互关系》教案(新人教必修3)
2.3.1变量之间的相关关系教学目标:通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。
教学重点:通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。
教学过程:案例分析:一般说来,一个人的身高越高,他的人就越大,相应地,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系。
为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手一拃长的数据如下表。
关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系。
(3)如果一个学生的身高是188cm ,你能估计他的一拃大概有多长吗? 解:根据上表中的数据,制成的散点图如下。
它们之间是线性相关的。
那么,怎样确定这条直线呢?同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)二点确定一条直线。
同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同。
同学3:多取几组点对,确定几条直线方程。
再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距。
同学4:我从左端点开始,取两条直线,如下图。
再取这两条直线的“中间位置”作一条直线。
同学5:我先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使得在直线两侧的点数尽可能一样多。
1015202530150155160165170175180185190195同学6:我先将所有的点分成两部分,一部分是身高在170 cm 以下的,一部分是身高在170 cm 以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线。
同学7:我先将所有的点按从小到大的顺序进行排列,尽可能地平均分成三等份;每部分的点按照同学3的方法求一个“平均点”,最小的点为(161.3,18.2),中间的点为(170.5,20.1),最大的点为(179.2,21.3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前面我们学习了怎样对收集来的数据进行分析: 前面我们学习了怎样对收集来的数据进行分析 集中趋势 频率分布图 离散程度 下面我们来介绍一中更为常见的分析方法: 下面我们来介绍一中更为常见的分析方法
小明,你数学成绩不太好 小明 你数学成绩不太好, 你数学成绩不太好 学不好数学,物理 学不好数学 物理 物理怎么样? 物理怎么样 也是学不好的
注:相关关系和函数关系的异同点 相同点: 相同点:两者均是指两个变量间的关系 不同点:函数关系是一种确定关系, 不同点:函数关系是一种确定关系, 相关关系是一种非确定的关系。 相关关系是一种非确定的关系。
练习: 练习: 1:下列两变量中具有相关关系的是( D ) :下列两变量中具有相关关系的是( A角度和它的余弦值 角度和它的余弦值 C成人的身高和视力 成人的身高和视力 B正方形的边长和面积 正方形的边长和面积 D 身高和体重
四、如何具体的求出这个回归方程呢? 如何具体的求出这个回归方程呢? 方案一:采用测量的方法:先画一条直线, 方案一:采用测量的方法:先画一条直线,测 量出各点到它的距离,然后移动直线, 量出各点到它的距离,然后移动直线,到达一 个使距离之和最小的位置, 个使距离之和最小的位置,测量出此时直线的 斜率和截距,就得到回归方程。 斜率和截距,就得到回归方程。
脂肪含量
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
思考3 上图叫做散点图, 思考3:上图叫做散点图,你能描述一下散 散点图 点图的含义吗? 点图的含义吗? 在平面直角坐标系中, 在平面直角坐标系中,表示具有相关关系 的两个变量的一组数据图形,称为散点图. 的两个变量的一组数据图形,称为散点图.
散点图 说明
1).如果所有的样本点都落在某一函数曲线上, 1).如果所有的样本点都落在某一函数曲线上, 如果所有的样本点都落在某一函数曲线上 就用该函数来描述变量之间的关系, 就用该函数来描述变量之间的关系,即变量之 函数关系. 间具有函数关系 间具有函数关系. 2).如果所有的样本点都落在某一函数曲线附近, 如果所有的样本点都落在某一函数曲线附近 2).如果所有的样本点都落在某一函数曲线附近, 变量之间就有相关关系 相关关系。 变量之间就有相关关系。 3).如果所有的样本点都落在某一直线附近, 3).如果所有的样本点都落在某一直线附近, 如果所有的样本点都落在某一直线附近 变量之间就有线性相关关系 变量之间就有线性相关关系 . 散点图: 散点图:用来判断两个变量是否具有相关关系.
思考4 如果两个变量成负相关, 思考4:如果两个变量成负相关,从整体上看这两 负相关 个变量的变化趋势如何?其散点图有什么特点? 个变量的变化趋势如何?其散点图有什么特点? 散点图中的点散布在从左上角到右下角的区域. 散点图中的点散布在从左上角到右下角的区域.
运鱼车的单位时间与存活比例 存活比例 1.5 1 0.5 0 0 0.2 单位时间 0.4 0.6
花费 时间
其他 因素
如果单纯从数学对物理的影响来考虑,就是考虑这两者之 如果单纯从数学对物理的影响来考虑 就是考虑这两者之 间的相关关系 间的相关关系 我们在生活中,碰到很多相关关系的问题 我们在生活中 碰到很多相关关系的问题: 碰到很多相关关系的问题
商品销售收入
? ?
K×广告支出经费 ×
粮食产量
脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
思考1:对某一个人来说,他的体内脂肪含 思考1 对某一个人来说, 量不一定随年龄增长而增加或减少, 量不一定随年龄增长而增加或减少,但是如 果把很多个体放在一起, 果把很多个体放在一起,就可能表现出一定 的规律性.观察上表中的数据,大体上看, 的规律性.观察上表中的数据,大体上看, 随着年龄的增加,人体脂肪含量怎样变化? 随着年龄的增加,人体脂肪含量怎样变化?
脂肪含量
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
观察散点图的大致趋势, 两个变量的散点图 散点图中 观察散点图的大致趋势, 两个变量的散点图中 点的分布的位置是从左下角到右上角的区域, 点的分布的位置是从左下角到右上角的区域, 我们称这种相关关系为正相关 正相关。 我们称这种相关关系为正相关。
1.如果所有的样本点都落在某一函数曲线上,变 如果所有的样本点都落在某一函数曲线上, 如果所有的样本点都落在某一函数曲线上 量之间具有函数关系 2.如果所有的样本点都落在某一函数曲线附近, 如果所有的样本点都落在某一函数曲线附近, 如果所有的样本点都落在某一函数曲线附近 变量之间就有相关关系 3.如果所有的样本点都落在某一直线附近,变量 如果所有的样本点都落在某一直线附近, 如果所有的样本点都落在某一直线附近 之间就有线性相关关系 只有散点图中的点呈条状集中在某一直线 周围的时候, 周围的时候,才可以说两个变量之间具有线性 关系, 关系,才有两个变量的正线性相关和负线性相 关的概念, 关的概念,才可以用回归直线来描述两个变量 之间的关系
1、两个变量之间的相关关系
两个变量间存在着某种关系, 两个变量间存在着某种关系,带 有不确定性(随机性)达出来, 关系精确地表达出来,我们说这两个 变量具有相关关系 相关关系. 变量具有相关关系.
对相关关系的理解 相关关系—当自变量取值一定 因变量的 相关关系 当自变量取值一定,因变量的 当自变量取值一定 取值带有一定的随机性( 非确定性关系) 取值带有一定的随机性( 非确定性关系 函数关系---函数关系指的是自变量和因 函数关系 函数关系指的是自变量和因 变量之间的关系是相互唯一确定的. 变量之间的关系是相互唯一确定的
【问题】在一次对人体脂肪含量和年龄关系 问题】 的研究中,研究人员获得了一组样本数据: 的研究中,研究人员获得了一组样本数据:
年龄 23 脂肪 9.5 27 39 41 45 49 50 17.8 21.2 25.9 27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
其中各年龄对应的脂肪数据是这个年龄人群 脂肪含量的样本平均数. 脂肪含量的样本平均数.
根据上述数据, 根据上述数据,人体的脂肪含量与年龄之间 有怎样的关系? 有怎样的关系?
年龄 23 脂肪 9.5 年龄 53
27 39 41 45 49 50 17.8 21.2 25.9 27.5 26.3 28.2 54 56 57 58 60 61
O
练习: 练习: 2.下列关系属于负相关关系的是( C ) 下列关系属于负相关关系的是( 下列关系属于负相关关系的是 A.父母的身高与子女的身高 父母的身高与子女的身高 B.农作物产量与施肥的关系 农作物产量与施肥的关系 C.吸烟与健康的关系 吸烟与健康的关系 D.数学成绩与物理成绩的关系 数学成绩与物理成绩的关系
脂肪 40 30 20 10 0 0 20 40 60 80
脂肪
三、如何具体的求出这个回归方程呢? 如何具体的求出这个回归方程呢? 方案三: 在散点图中多取几组点, 方案三: 在散点图中多取几组点,确定几条直线的 方程,分别求出各条直线的斜率和截距的平均数, 方程,分别求出各条直线的斜率和截距的平均数, 将这两个平均数作为回归方程的斜率和截距。 将这两个平均数作为回归方程的斜率和截距。
在寻找变量间的相关关系时,统计同样发挥了非常重 在寻找变量间的相关关系时 统计同样发挥了非常重 要的作用,我们是通过收集大量的数据 我们是通过收集大量的数据,对数据进行统 要的作用 我们是通过收集大量的数据 对数据进行统 计分析的基础上,发现其中的规律 发现其中的规律,才能对它们之间的 计分析的基础上 发现其中的规律 才能对它们之间的 关系作出判断.下面我们通过具体的例子来分析 关系作出判断 下面我们通过具体的例子来分析
脂肪含量
三、回归直线
40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
如果散点图中点的分布从整体上看大致在一条直 如果散点图中点的分布从整体上看大致在一条直 上看 线附近,我们就称这两个变量之间具有线性相关 线附近,我们就称这两个变量之间具有线性相关 关系,这条直线就叫做回归直线 回归直线。 关系,这条直线就叫做回归直线。 这条回归直线的方程,简称为回归方程。 这条回归直线的方程,简称为回归方程。
K×施肥量 ×
付出
? ?
K×收入 ×
人体脂肪含量
K×年龄 ×
以上种种问题中的两个变量之间的相关关系,我 以上种种问题中的两个变量之间的相关关系 我 们都可以根据自己的生活,学习经验作出相应的 们都可以根据自己的生活 学习经验作出相应的 判断,“规律是经验的总结”,不管你多有经验 只 判断 规律是经验的总结” 不管你多有经验,只 规律是经验的总结 不管你多有经验 凭经验办事,还是很容易出错的 还是很容易出错的,一次在寻找变 凭经验办事 还是很容易出错的 一次在寻找变 量讲的相关关系时,我们需要一些更为科学的方 量讲的相关关系时 我们需要一些更为科学的方 法来说明问题. 法来说明问题
脂肪含量 40 35 30 25 20 15 10 5 0 20 25 30 35 40 45 50 55 60 65 年龄
整体上最接近
三、如何具体的求出这个回归方程呢? 如何具体的求出这个回归方程呢? 方案二: 在图中选取两点画直线, 方案二: 在图中选取两点画直线,使得直线 两侧的点的个数基本相同。 两侧的点的个数基本相同。
年龄 23 脂肪 9.5 年龄 53
27 39 41 45 49 50 17.8 21.2 25.9 27.5 26.3 28.2 54 56 57 58 60 61
脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
思考2:为了确定年龄和人体脂肪含量之间的 思考2 更明确的关系,我们需要对数据进行分析, 更明确的关系,我们需要对数据进行分析, 通过作图可以对两个变量之间的关系有一个 轴表示年龄, 直观的印象. 直观的印象.以x轴表示年龄,y轴表示脂肪含 量,你能在直角坐标系中描出样本数据对应 的图形吗? 的图形吗?