人口模型预测 数学建模作业

合集下载

全国大学生数学建模比赛论文人口预测模型

全国大学生数学建模比赛论文人口预测模型

全国大学生数学建模比赛论文人口预测模型 The manuscript was revised on the evening of 2021中国人口预测模型摘要:人口数量的变化,关系到一个国家的未来。

认识人口数量的变化规律,建立人口模型,能够较准确的预报,是有效控制人口增长的前提。

本文对人口预测的数学模型进行了研究。

首先,建立人口指数模型、Logistic模型及灰度预测模型。

对我国2005年以后45年的人口增长进行了预测,根据1982年人口基本数据运用模型对1982年~2005年进行了预测,并用实际数据对预测结果进行了检验。

我们将预测区间分为2006~2030年、2030~2050年两个区间,以量化未来我国短中期与长期的人口变化。

关键词:人口数量的变化人口指数模型 Logistic模型灰度预测模型MATLAB Excel目录第一部分问题重述 (3)第二部分问题分析 (3)第三部分模型的假设 (3)第四部分定义与符号说明 (3)第五部分模型的建立与求解 (3)模型一 (3)模型二 (8)模型三 (12)第六部分对模型的评价 (14)第七部分参考文献 (15)第八部分附表 (15)一、问题重述人口问题始终是制约我国发展的关键因素之一。

本题要求根据已知数据,运用数学建模的思想对我国人口做出分析和预测。

具体问题如下:从中国的实际情况和人口增长的特点,例如我国老龄化进程加快、出生人口性别比持续升高、乡村人口城镇化等,利用参考附录中所提供的数据,建立中国人口增长的数学模型,由此对中国人口增长的中短期和长期趋势做出预测,并指出模型的优缺点。

二、 模型假设1、假设题目所给的数据真实可靠;2、假设不考虑我国人口大规模的朝国外迁移,也不考虑外国人大量涌入我国;3、假设不考虑战争、自然灾害、疾病对人口数目和性别比的影响;4、假设在本世纪中叶前,我国计划生育政策稳定。

5、假设中短期内生育率和死亡率保持相对稳定6、假设相同年龄段人口性别比基本稳定。

数学建模实例人口预报问题

数学建模实例人口预报问题

数学建模实例:人口预报问题1.问题人口问题是当前世界上人们最关心的问题之一.认识人口数量的变化规律,作出较准确的预报,是有效控制人口增长的前提.下面介绍两个最基本的人口模型,并利用表1给出的近两百年的美国人口统计数据,对模型做出检验,最后用它预报2000年、2010年美国人口.表1 美国人口统计数据2.指数增长模型(马尔萨斯人口模型)此模型由英国人口学家马尔萨斯(Malthus1766~1834)于1798年提出. [1] 假设:人口增长率r 是常数(或单位时间内人口的增长量与当时的人口成正比).[2] 建立模型: 记时刻t=0时人口数为x 0, 时刻t 的人口为()t x ,由于量大,()t x 可视为连续、可微函数.t 到t t ∆+时间内人口的增量为:()()()t rx tt x t t x =∆-∆+于是()t x 满足微分方程:()⎪⎩⎪⎨⎧==00x x rx d t d x(1)[3] 模型求解: 解微分方程(1)得()rt e x t x 0= (2)表明:∞→t 时,()∞→t x (r>0).[4] 模型的参数估计:要用模型的结果(2)来预报人口,必须对其中的参数r 进行估计,这可以用表1的数据通过拟合得到.拟合的具体方法见本书第16章或第18章.通过表中1790-1980的数据拟合得:r=0.307. [5] 模型检验:将x 0=3.9,r=0.307 代入公式(2),求出用指数增长模型预测的1810-1920的人口数,见表2.表2 美国实际人口与按指数增长模型计算的人口比较从表2可看出,1810-1870间的预测人口数与实际人口数吻合较好,但1880年以后的误差越来越大.分析原因,该模型的结果说明人口将以指数规律无限增长.而事实上,随着人口的增加,自然资源、环境条件等因素对人口增长的限制作用越来越显著.如果当人口较少时人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随着人口增加而减少.于是应该对指数增长模型关于人口净增长率是常数的假设进行修改.下面的模型是在修改的模型中著名的一个.3. 阻滞增长模型(Logistic 模型)[1]假设:(a )人口增长率r 为人口()t x 的函数()x r (减函数),最简单假定()0, ,>-=s r sx r x r (线性函数),r 叫做固有增长率.(b )自然资源和环境条件年容纳的最大人口容量m x . [2]建立模型: 当mx x =时,增长率应为0,即()m x r =0,于是mx rs =,代入()sx r x r -=得:()⎪⎪⎭⎫⎝⎛-=m x x r x r 1 (3) 将(3)式代入(1)得:模型为: ()⎪⎩⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-=001xx x x x r dt dx m (4)[3] 模型的求解: 解方程组(4)得()rt m me x x x t x -⎪⎪⎭⎫ ⎝⎛-+=110 (5)根据方程(4)作出x dtdx~ 曲线图,见图1-1,由该图可看出人口增长率随人口数的变化规律.根据结果(5)作出x~t 曲线,见图1-2,由该图可看出人口数随时间的变化规律.[4] 模型的参数估计:利用表1中1790-1980的数据对r 和x m 拟合得:r=0.2072, x m =464. [5] 模型检验:将r=0.2072, x m =464代入公式(5),求出用指数增长模型预测的1800-1990的人口数,见表3第3、4列.也可将方程(4)离散化,得)())(1()()()1(t x x t x r t x x t x t x m-+=∆+=+ t=0,1,2,… (6) 用公式(6)预测1800-1990的人口数,结果见表3第5、6列.表3 美国实际人口与按阻滞增长模型计算的人口比较图1-2 x~t 曲线现应用该模型预测人口.用表1中1790-1990年的全部数据重新估计参数,可得r=0.2083, x m=457.6. 用公式(6)作预测得:x(2000)=275; x(2010)=297.9.也可用公式(5)进行预测.。

数学建模习题中国人口增长预测

数学建模习题中国人口增长预测

中国人口增长预测本题是一个人口发展预测的问题。

人口发展与一般种群增长一样,是由自然增长率决定的。

然而,人类个体是一种社会的个体,所以人口发展有自己的特点。

想到人口的迁移,性别比例,城镇化等。

同时,人口发展受政策的影响,例如计划生育;也要受到人们意识的影响,像生育意识等。

但是从社会层面上看,生育意识在整个社会上体现为妇女的生育模式,进而可以特别地去考虑。

思考方法:首先,数据的处理。

在经过EXCEL分析和验证后,适当修正题中的个别有误数据后,利用有效数据进行建模求解,在此过程中,我们提取出死亡率、生育率等感念,且把人的一生按年龄分为青年期、衰老期等阶段。

这是求解人口增长模型的必要过程和方法。

其次,模型建立。

和一般的预测模型一样,本模型也是个预测模型,所以考虑到用题目所给的五年的信息,来推测今后几十年的人口的总数和结构情况。

对此,我们选用差分方程模型和数据参数拟合等方法。

同时,将死亡率与出生率分开分别计算和拟合,通过五年的实际数据拟合出相应函数的参数,再利用此函数进行评估和预测。

最后,利用已有信息以及上述所求出的对应函数和方程,对中短期与长期进行估计和预测,进而得出人口结构、人口比例、人口数量等一系列的相关数据。

以下是解答过程:1.数据说明:x:表示最大的年龄;mi=1,2,3,4,5,6 其中1表示市男性,2表示市女性,3表示镇男性,4表示镇女性,5表示乡男性,6表示乡女性;A :表示婴儿性别比例矩阵;* :表示点乘;P(x,t):表示t时刻年龄为x的人口数量;ibir(x,t):表示t时刻年龄为x的出生率;i)(,i dea x t:表示t时刻年龄为x的死亡率;)(i t k:表示t时刻婴儿的死亡率;tra(x,t):表示t时刻年龄为x的人口迁出率;i2.假设条件1. 假设国内社会环境稳定,无异常大量死亡或出生情况发生,人口比例,人口总数不会出现突变状况; 2. 假设只存在乡向城镇迁出,不存在其他迁移方式,且不同年龄段迁移率相同; 3. 假设不考虑国家之间的迁入与迁出,把中国内部看为一个封闭的模型; 4. 对于90岁以上的人都按照90岁处理; 5. 假设只存在乡向城镇迁出,不存在其他迁移方式,且不同年龄段迁出率相同,按照0.6%均匀增长。

6.2 人口增长模型 数学建模

6.2 人口增长模型 数学建模

一、粮食生产 19501950-1984 世界粮食产量的增幅超过人口增 长速度。但84年以后粮食产量增幅一直落后 长速度。但84年以后粮食产量增幅一直落后 于人口增长速度。 原因:缺少新垦土、灌溉量减少、土地生 产率的提高越来越难。
二、水资源的匮乏 国际水资源管理研究预测,到2050年, 国际水资源管理研究预测,到2050年, 约有10亿人口将面临缺水的状况。 约有10亿人口将面临缺水的状况。 三、海洋捕捞
2005年11月 世界人口状况报告》 2005年11月《世界人口状况报告》显示目 前世界总人口为64.647亿,我国占了约20% 前世界总人口为64.647亿,我国占了约20% 2050年世界人口将达77-112亿,若采取94 2050年世界人口将达77-112亿,若采取94 亿的预测值。会带来什么影响?
例题2齐次微分方程3一阶线性非线性微分方程其他模型malthusmalthus11模型假设模型假设33美国的实际人口数据美国的实际人口数据22模型建立模型建立33模型检验分析模型检验分析1人口预测人口预测22景区游客人数增长景区游客人数增长3城市人口增长城市人口增长
第六章鱼类减少
饲料
渔业养殖
四、森林覆盖率、生物多样性、能源危机等等
2、复习
1、微分方程:含有导数 或微分的方程 2、微分方程的类型:
(1)可分离变量的微分方程,形如 dy = f ( x) ⋅ g ( y ) dx
(2)齐次微分方程 (3)一阶线性、非线性微分方程 其他
例题 模型
2、模型建立
3、模型分析检验
美国的实际人口数据
二、阻滞增长模型
1、 模型假设 设人口增长率r是人口数N的线性递减函数, 记为r ( N ), K 是自然资源和环境条件的最大人 口容量,r 表示人口很少时的增长率(固有增 长率)

(完整word版)数学建模-人口预测实验报告

(完整word版)数学建模-人口预测实验报告

数学与计算科学学院实验报告实验项目名称人口预报所属课程名称数学模型实验类型综合型实验日期班级信计1001班学号201053100127姓名徐超成绩129207 129735 130137)得人口预测方程:0.022552ˆ()176060.7575988.75t Xt e -=- 将各个年份分别代入上面的方程即得各个年份的人口数据预测值,然后将其分别与实际值比较,并计算出其误差.实际值与预测值的比较图[1]该模型对于中短期的人口预测,所得结果较为准确,大部分预测数据与实际数据的误差率都在2%以内,较好地估计出了最近几十年的人口数量。

根据我们的模型所预测出的结果,到本世纪中叶我国的人口数量将超过15亿,但是根据国内的本课题专家研究,随着我国经济社会发展和计划生育工作加强,可以预测我国的总人口将于2010年、2020年分别达到13.6亿人和14。

5亿人,2033年前后达到峰值15亿人左右,即我国人口的上限不会超过15亿人。

这一结论与我们的模型所得到的数据有所出入。

于是我们将模型进行改进,选择在长期预测方面比较精准的模型(2)Logistic 人口模型来求解. B 、模型(2)这个问题是典型的伯努利方程初值问题,其解为:()-(-)01(-1)0w mw t t t w m ew μ=+分析上式可知:(1)当t →∞时,()m w t w →,即无论人口初值如何随着时间推移而变化,人口总数总是趋向于一个确定的值m w ;(2)222(1)md w wdt w μ=-,所以当人口达到极限值的一半2m w 时,属于加速增长,超过一半属于减速增长,但是增长率仍为正的,并且其增长率随时间的增加而减少。

根据1981年~2005年的全国人口统计数据,利用计算机Matlab 编程得,0.0422μ=,150000Wm =从而得到全国总人口数的Logistic 模型方程为:0.0422(1981)150000()1500001(1)100072t w t e --=+-利用该模型对1981年~2005年的人口数据进行检验并对2006年~2050年的人口数据进行预测。

数学建模-人口增长模型

数学建模-人口增长模型

人口增长模型摘要本文根据某地区的人口统计数据,建立模型估计该地区2010年的人口数量。

首先,通过直观观察人口的变化规律后,我们假设该地区的人口数量是时间的二次函数,建立了一个二次函数模型,并用最小二乘法对已有数据进行拟合得到模型的具体参数,从而可以预测2010年的人口数为333.8668百万。

然后,我们发现从1980年开始该地区的人口增长明显变慢,于是我们假设人口增长率是人口数的线性减函数,即随着人口数的增加,人口的增长速度会慢慢下降,从而我们建立了阻滞增长模型,利用此模型我们最后求出2010年的人口预报数为296.3865。

关键字:人口预报,二次函数模型,阻滞增长模型问题重述:根据某地区人口从1800年到2000年的人口数据(如下表),建立模型估计出该地区2010年的人口 ,同时画出拟合效果的图形。

符号说明)(t x t 时刻的人口数量 0x 初始时刻的人口数量 r 人口增长率m x 环境所能容纳的最大人口数量,即0)( m x r问题分析首先,我们运用Matlab软件[1]编程(见附件1),绘制出1800年到2000年的人口数据图,如图1。

18001820184018601880190019201940196019802000图1 1800年到2000年的人口数据图从图1我们可以看出1800年到2000年的人口数是呈现增长的趋势的,而且类似二次函数增长。

所以我们可以建立了一个二次函数模型,并用最小二乘法对已有数据进行拟合得到模型的具体参数。

于是我们假设人口增长率是人口数的线性减函数,即随着人口数的增加,人口的增长速度会慢慢下降,从而我们可以建立一个阻滞增长模型。

模型建立模型一:二次函数模型我们假设该地区t时刻的人口数量的人口数量)(tx是时间t的二次函数,即:2()=++x t at bt c我们可以根据最小二乘法,利用已有数据拟合得到具体参数。

即,要求a、b和c,使得以下函数达到最小值:221(,,)()ni i i i E a b c at bt c x ==++-∑其中i x 是i t 时刻该地区的人口数,即有:2222)3.28020002000...)2.718001800(),,(-+⋅+⋅++-+⋅+⋅=c b a c b a c b a E令0,0,0E E E a b c∂∂∂===∂∂∂,可以得到三个关于a 、b 和c 的一次方程,从而可解得a 、b 和c 。

数学建模论文-人口预测模型

数学建模论文-人口预测模型

中国人口预测模型摘要本文对人口预测的数学模型进行了研究。

首先,建立一次线性回归模型, 灰色序列预测模型和逻辑斯蒂模型。

考虑到三种模型均具有各自的局限性,又用加权法建立了熵权组合模型,并给出了使预测误差最小的三个预测模型的加权系数,用该模型对人口数量进行预测,得到的结果如下:单位:(万人)其中加权系数为:,其次,建立Leslie人口模型,充分反映了生育率、死亡率、年龄结构、男女比例等影响人口增长的因素,并利用以1年为分组长度方式和以5年为分组长度方式预测短期和长期人口增长,然后对人口模型进行了改进,构建了反映生育率和死亡率变化率负指数函数,并给出了反映城乡人口迁移的人口转移向量最后我们BP神经网络模型检验以上模型的正确性关键字:一次线性回归灰色序列预测逻辑斯蒂模型Leslie人口模型BP神经网络一、问题重述1. 背景人口增长预测是随着社会经济发展而提出来的。

在过去的几千年里,由于人类社会生产力水平低,生产发展缓慢,人口变动和增长也不明显,生产自给自足或进行简单的以货易货,因而对未来人口发展变化的研究并不重要,根本不用进行人口增长预测。

而当今社会,经济发展迅速,生产力达到空前水平,这时的生产不仅为了满足个人需求,还要面向社会的需求,所以必须了解供求关系的未来趋势。

而人口增长预测是对未来进行预测的各环节中的一个重要方面。

准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和实用意义。

2. 问题人口增长预测有短期、中期、长期预测之分,而各个国家和地区要根据实际情况进行短期、中期、长期的人口预测。

例如,中国人口预期寿命约为70 岁左右,因此,长期人口预测最好预测到70年以后,中期40—50 年,短期可以是5 年、10年或20 年。

根据2007 年初发布的《国家人口发展战略研究报告》(附录一)及《中国人口年鉴》收集的数据(附录二),再结合中国的国情特点,如老龄化进程加速,人口性别比升高,乡村人口城镇化等因素,建立合理的关于中国人口增长的数学模型,并利用此模型对中国人口增长的中短期和长期趋势做出预测,同时指出此模型的合理性和局限性。

数学建模--包头人口预测

数学建模--包头人口预测
5、计算模型:
指数增长模型:
Logistic模型:
指数增长模型。Malthus 模型的基本假设下,人口的增长率为常数,记为r,记时刻t的人口为 ,(即 为模型的状态变量)且初始时刻的人口为 ,因为 由假设可知 经拟合得到:
根据包头人口从1980年到2009年间的人口数据(如下表),确定人口指数增长模型和Logistic模型中的待定参数,估计出包头2009年以后的的人口。
包头市人口数学建模
1、问题摘要:人口指数增长模型,用logistic模型预测包头人口。
2、问题描述:假设已知t=t0时,人口数是P0,预测出t=t1时的人口数目P。要找出一个人口函数P(t)解释这个模型。
3、模型假设:
a.包头人口看作一封闭系统,没有迁入与迁出。
b.同一年龄组内是无区别的。
c.考虑出生率和死亡率。
包头市人口统计数据(单位:万人)
年份
总人口
年份
总人口
年份
总人口
1980
162.10
1990
185.57
2000
204.31
1981
162.91
1991
186.27
2001
206.16
1982
165.33
1992
187.75
2002
208.02
1983
166.47
1993
189.75
2003
209.33
1989
182.61
1999
203.01
2009
219.59
在matlab中运行以下语句计算:
t=1980:1:2009;
x(t)=[162.10 162.91 165.33 166.47 168.40 172.43 175.05 176.99 180.03 182.61 185.57 186.27 187.75 189.75192.49194.01 196.23 198.92 201.12203.01 204.31 206.16 208.02 209.33 210.24 209.32 212.41 214.60 217.76 219.59];

数学建模习题-人口问题

数学建模习题-人口问题

数学建模报告——浙江省人口增长预测模型的建立与分析问题综述:为了加快中国的经济建设进程,全面落实科学的发展观,按照构建社会主义和谐社会的要求,实现人口与经济社会资源环境的协调和可持续发展。

我们确定人口发展战略,必须既着眼于人口本身的问题,又处理好人口与经济社会资源环境之间的相互关系,构建社会主义和谐社会,统筹解决人口数量、素质、结构、分布等问题。

人口增长预测的研究是国家(地区)制定未来人口发展目标和生育政策等有关人口政策的基础,对于经济计划的制定和社会战略目标的决策具有重要参考价值。

一般的人口预测统计学模型,其预测精度难以保证。

所以选择一个好的人口预测模型,首先应符合人口基本理论和数学建模的要求,这是选择模型的关键,其次要保证模型数据可得一致性与可比性,在数据预测检验阶段应充分拟合原始数据。

浙江省是人口大省、地域小省(资源小省),虽然从“资源小省、经济小省(国家投入小省)、工业小省”迅速发展成为“经济大省”,但人口问题始终是制约浙江省发展的关键因素之一。

根据已有数据,运用数学建模的方法,对浙江省做出分析和预测是一个重要问题。

近年来浙江省的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着浙江省人口的增长。

从浙江省的实际情况和人口增长的特点出发, 建立浙江省人口增长的数学模型,并由此对浙江省人口增长的中短期和长期趋势做出预测。

解:假设:不考虑特别年份的特殊性,例如特大自然灾害等对人口增长的影响;在研究 Logistic生物模型,假设其研究对象p(t) {p(t)表示在t时刻种群的大小}是连续的;不考虑男女出生比例对人口增长的影响。

模型建立:1.短期人口预测影响人口增长的因素有很多,有经济、政策、科学技术、自然环境等,这些众多的因素之间的关系难以准确描述出来, 它们对人口增长的作用不是用几个指标就能精确计算出来的。

人口系统具有明显的灰色性, 是一个部分信息已知而部分信息未知的系统。

数学建模人口模型人口预测

数学建模人口模型人口预测

关于计划生育政策调整对人口数量、结构及其影响的研究【摘要】本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。

2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。

对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。

首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测, 得出在 2040 年时,中国人口有 14.32 亿。

在此模型中,由于并没有考虑人口的年龄、 出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理 论上很好,实用性不强,有一定的局限性。

然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1) 灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的 人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测, 得出 2040 年时,中国人口有 14.22 亿。

与阻滞增长模型相同,本模型也没有考虑年龄 一类的因素,只是做出了人口总数的预测,没有进一步深入。

对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。

同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。

并做出了拟合函数0.0419775(1)17255.816531.2t X t e ⨯+=⨯-。

以人口预测为例初试数学建模

以人口预测为例初试数学建模

答疑解惑239以人口预测为例初试数学建模★纪秀浩本文研究“二孩”政策对我国人口发展的影响问题,对于预测未来30年人口数的问题,分别对“单独二孩”和“全部二孩”政策首先建立灰色预测模型,将近5年的人口数据做累加合成,得到近似指数规律的数据,然后建立leslie 模型,将用灰色预测模型算出来的数据代入leslie 模型中,得到leslie 矩阵,进而预测出未来30年我国的人口数;通过搜集中国统计局各个年龄段的结构比例以及老年人口占全部人口的比重,预测未来30年老龄化程度。

本课题是研究单独二胎和全面二胎对未来人口的影响,所以我们要用到最新的数据并对未来30年做一个预测,由于需要的数据很少,所以我们必须用已有的数据做一些预测,本次预测方法采用灰色模型矩阵来进行预测,灰色模型它的优点就在于根据已有的少量数据,对事物的发展规律做一个模糊性的描述,来预测后边未知的数据,当然在此之前我们还要把之前的数据进行一些累加,以弱化原始数据的影响,而且大大的减少了原始数据的随机性,从而呈现出比较明显的变化规律。

得到了一个初步的数据后,我们可以用Leslie 模型在MATLAB 的基础上编程求解,在图中呈现不开放二胎和单独二胎政策和全面二胎政策的一些发展趋势,并定量的分析两种政策下对未来国家总人口及老龄化的影响。

一、灰色GM(1,1)模型为了研究“二孩”政策对我国人口发展的影响问题,对于预测未来30年人口数的问题,通过搜集统计局近5年的数据人口[1],分别对“单独二孩”和“全部二孩”政策首先建立灰色预测模型,将近5年的人口数据做累加合成,得到近似指数规律的数据,将已知的2006年至2010年出生人口性别比数据作为已知数据向量0x ,(0)125{(0),(0),,(0)}x x x x = ,先对五年的数据进行一次累加。

以减少对后边数据的影响,并得到新的向量表达式:1(1)(0) (1,2,,30),kk jj x xk ===∑ 令x为生成的新向量,(1)1230{(1),(1),,(1)}x x x x = ,在新向量x 的基础上建立灰色方程为(t)(1)dx cx v d t+= (1)式(1)为灰色一阶微分方程,一般记做(1,1)G M,其中,c v为未知参数。

数学建模_人口模型与预测

数学建模_人口模型与预测

人口模型与预测摘要人口的增长是当前世界上引起普遍关注的问题,作为世界上人口最多的国家,我国的人口问题是十分突出的,由于人口基数大,尽管我国已经实行了20多年的计划生育政策,人口的增长依然很快,巨大的人口压力给我国的社会、政治、经济、医疗、就业等带来了一系列的问题。

因此,研究和解决人口问题在我国显得尤为重要。

我们经常在报刊上看见关于人口增长的预报,说到本世纪末,或到下世纪中叶,全世界(或某地区)的人口将达到多少亿。

你可能注意到不同报刊对同一时间人口的预报在数字上长有较大的区别,这显然是由于用了不同的人口模型计算的结果。

人类社会进入20世纪以来,在科学技术和生产力飞速发展的同时,世界人口也以空前的规模增长。

人口每增加十亿的时间,由一百年缩短为十二三年.我们赖以生存的地球,已经携带着它的60亿子民踏入21世纪.长期以来,人类的繁殖一直在自发地进行着,只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律,以及如何进行人口控制等问题本文建立两个模型(1)中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。

(2)中国人口的Logistic模型,并用该模型进行预测,与实际人口数据进行比较。

而且利用MATLAB图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线和两种预测模型的误差比较图,并分别标出其误差。

关键词指数增长模型Logistic模型MATLAB软件人口增长预测1 问题的提出下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。

要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。

(2)建立中国人口的Logistic 模型,并用该模型进行预测,与实际人口数据进行比较。

(3)利用MATLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。

中学数学建模案例分析——以人口模型为例

中学数学建模案例分析——以人口模型为例

借助正方体模型,可以把研究对象置于更大的背景之中,从而在整体上更好地看清各部分之间的关系.掌握正方体的结构特征,以正方体为模型可以“生成”许多优美的空间问题,许多空间问题如果将它置于正方体模型之中,其结果甚至可以一望而解.正如上述全国Ⅰ卷高考题,如果善用正方体模型,很容易根据其完美的对称性发现截面面积取最值时的特殊位置.(2)深入学科的软件支持工欲善其事,必先利其器.教师在教学过程要善于合理地利用“利器”——深入学科的数学教学软件,如几何画板、GeoGebra以及Z Z+智能教育平台系列中的超级画板等,利用信息技术独特的优势来优化空间立体几何的教学呈现方式,帮助学生突破认知障碍,发展直观想象的素养.学立体几何的目的绝对不是学会用以不变应万变的“向量法”解出高考题,而应当让学生体验到“做数学”的乐趣.在立体几何软件和平台的支持下,基于信息技术的立体几何教学可以更好地落实三维教学目标,帮助学生认识反映现实的几何空间,学会几何思维方法,培养学生的空间想象能力及逻辑推理能力,让学生在数学抽象和直观想象两大核心素养中自如切换.参考文献[1]邵光华.论空间想象能力与几何教学[J].课程·教材·教法,1996(7):32-36[2]周顺钿.正方体模型的开发和利用[J].数学通报,2017(8):35-41[3]徐章韬,刘郑,刘观海等.信息技术支持下的学科教学知识之课例研究[J].中国电化教育,2013(1):94-99中学数学建模案例分析——以人口模型为例李虎广东省中山市第一中学(528403)2017年,《普通高中数学课程标准》正式颁布,数学建模素养为六大数学核心素养之一.布鲁姆的认知目标分类体系中,把认知学习领域目标分为识记、理解、运用、分析、综合及评价,其中运用、分析、综合及评价属于高阶思维活动,对人的发展起到更重要的作用.数学建模是很好地培养学生高阶思维的素材.人口数量和人口结构与一个国家的经济紧密相关.合理预测人口数量对一系列政策的制定有导向性作用.人口预测的研究吸引了大批的科研人员,经典的人口模型也非常多,本文针对高中生可以接受的情况,介绍了两个经典模型,一个是马尔萨斯模型,一个是Logistic人口模型,并应用模型对未来几年的人口进行了预测.通过两个模型,以期培养学生的批判性思维和用发展的眼光看问题的能力,旨在提升学生的数学建模素养.1 问题提出问题:在知道当前或过去某个时刻的人口数量的情况下,如何预测未来某个时刻的人口数量?2 经典人口模型2.1 马尔萨斯人口模型用()p t表示t时刻的人口数,r表示年平均增长率,则()()()p t t p t rp t t+∆−=∆,起始时刻为0t,记00()p t p=.令0t∆→,得00()()()p t rp tp t p′==,,则0()()e r t tp t p−=.人民教育出版社A版必修1第124页例4有这个模型的介绍,题目中选取了1950-1959年数据,利用年平均增长率的平均值来估计r的值,求得解析式为0.022155196e ty=,是一个指数型函数模型,教材利用这一模型预测了中国1989年人口数量将超过13亿,笔者查阅中华人民共和国国家统计局数据,显示1989年人口数据是112704万人,可见预测出现了很大的偏差.从教材上看,1950-1959年数据拟合效果非常好,问题出在哪里?笔者认为,马尔萨斯模型作为经典的人口模型,有必要给学生介绍其来历,而不是简单地告诉学生一个结论,虽然学生当时学生不懂,但是埋下了常微分方程的种子,在学生的知识储备达到一定程度,它就会生根发芽.这个模型有自身的缺陷,把问题抛出来,让学生利用课余时间去查阅资料,了解误差产生的来源,培养学生查阅资料,搜集文献,综合思考问题的能力,找出模型的缺陷,锻炼学生综合和评价等高阶思维.2.2 Logistic 人口模型马尔萨斯模型中假定了r 是常数,而r 是随着时间变化而变化的.考虑r 是变化的,将r 看成t 的函数.下面以我国人口模型为例,介绍Logistic 模型.假设我国最多能够支撑的人口数量为K ,()P t 表示t 时刻的人口数量,()()(1)p t r t r K=−,则人口满足下面的模型:00()()(1)()()P t P t r P t KP t P′=− = ,,求解得()P t = 0()1e r t t KC −−+,00K P C P −=.本模型中有两个参数r K ,.需要通过往年的数据来拟合这两个参数.首先查阅《中国人口统计年鉴》和中国人口统计报告筛选符合要求的数据,1980年始,我国确定计划生育为我国的一项基本国策,由于国家的政策对人口数量的变化有很大影响,因此必须避免国家政策的影响;同时,在1981年我国的人口突破10亿大关.考虑上述条件,将1981年以前的人口数据剔除,得到下面数据表格,如表1.表1 中国历年人口总数年份 (年) 人口 (万人) 年份 (年) 人口 (万人) 年份 (年) 人口 (万人) 1981 100072 1982 101654 1983 103008 1984 104357 1985 105851 1986 107507 1987 109300 1988 111026 1989 112704 1990 114333 1991 115823 1992 117171 1993 118517 1994 119850 1995 121121 1996 122389 1997 123626 1998 124761 1999 125786 2000 126743 2001 127627 2002 128453 2003 129227 2004 129988 2005 130756 2006 131448 2007 132129 2008 132802 2009 133450 2010 134091 2011 134735 2012 135404 2013 137054 2014 136782 2015 137462 2016 138271 2017 139008 2018 139538r K ,确定方法1:选择012t t t ,,三年的人口数据012P P P ,,, 其中1021t t t t β−=−=, 由101(1)e r K P KP β−=+−,211(1)e r K P KP β−=+−,111P K =+011()e r P K β−−,211111()e r P K P K β−=+−, 12011111()e r P P P P β−−=−, 故0112111ln 11P P r P P β−=−,101e 11e r r K P P ββ−−−=−.计算得0.0593r =,144930K =万人.0.0593144930()1449301(1)e 100072tP t −=+−,0t >.利用此模型预测最近二十年人口,并计算误差值,如表2.表2 中国各年份实际人口数、预测值及预测误差年份 实际人口 /万人 预测人口 /万人 误差 /万人 百分比 1999 125786 125572 214 0.001701 2000 126743 126545 198 0.001562 2001 127627 127476 151 0.001183 2002 128453 128367 86 0.00067 2003 129227 129217 10 7.74E-05 2004 129988 130028 -40 -0.00031 2005 130756 130803 -47 -0.00036 2006 131448 131541 -93 -0.00071 2007 132129 132244 -115 -0.00087 2008 132802 132914 -112 -0.00084 2009 133450 133552 -102 -0.00076 2010 134091 134158 -67 -0.0005 2011 134735 134735 0 0 2012 135404 135283 121 0.000894 2013 137054 135803 1251 0.009128 2014 136782 136297 485 0.003546 2015 137462 136766 696 0.005063 2016 138271 137211 1060 0.007666 2017 139008 137633 1375 0.009892 201813953813803415040.010778由表2可以看出预测值和真实值很接近,误差都保持在很小的范围.说明本模型很好的反映了这一阶段我国人口的变化情况.r K ,确定方法2:将这个连续的模型离散化,用回归分析来求解此模型.(1)()()()P t P t rr P t P t K+−=−,即年增长率可以看成年份的线性函数,用线性回归即可(如图1).利用MATLAB 进行回归求解(代码见附录),得到0.0509r =,150590K =,所以()P t =0.05091505901505901(1)e 100072t−+−,0t >.图1 1981年至2018年预测值与人口实际值的拟合图Logistic 人口模型是对马尔萨斯模型的进一步完善,更符合实际情形,误差也在合理的范围内.笔者认为从发展的角度看,应该把此模型和马尔萨斯模型放在一起让学生了解,让学生去比较判断.从模型的建立可以看到,要建立此模型需要确定参数,如何估计参数,需要搜集数据,用到数据拟合.让学生去思考,去搜集,可以培养学生搜集、整理数据等数据处理能力,同时又要用到信息技术,需要去学习软件对应的拟合函数,对学生的综合能力提升有较高的教育价值.模型的拟合效果好不好,涉及评价环节,有哪些评价指标?此模型的缺陷是什么?适用范围又是什么呢?还有哪些较好的人口预测模型,缺陷是什么?有没有一个完美的人口预测模型呢?让学生把此建模问题扩展开,作为一个项目来研究,扩充自己的知识面,同时提升自己的批判性思维.这样的学习方式,更符合脑科学的规律.3 人口预测若采用0.0593144930()1449301(1)e 100072tP t −=+−,0t >来预测未来8年国内的人口数,得到如下结果(表3).表3 未来8年人口数预测表(1)年份 人口 /万人 2019 138413 2020 138772 2021 139112 2022 139435 2023 139740 2024 140028 2025 140302 2026140560若采用0.0509150590()1505901(1)e 100072tP t −=+−,0t >来预测未来8年国内的人口数,得到如下结果(表4).表4 未来8年人口数预测表(2)年份 人口 /万人 2019 140349 2020 140825 2021 141279 2022 141714 2023 142130 2024 142527 2025 142907 20261432702018年国内人口数为139538(万),可见后面这个模型更精确一些,因为建模中充分考虑了数据的整体性.4 模型价值本文介绍了经典的马尔萨斯人口模型,该模型是一个指数型函数模型,在教材的指数函数应用章节中有体现,但是该模型是在资源极大丰富,没有政策和疾病影响等情况下进行的.显然不符合目前的人口增长情况.但是作为一个经典的人口模型,学生需要去了解.为了克服上述模型带来的预测误差较大问题,本文介绍了第二种人口模型,即Logistic 人口模型,对上述模型的缺点进行了弥补.从预测效果来看很好的反应了1980-2018年间国内人口的变化情况.因为这一阶段各项政策基本稳定,医疗,公共服务,男女比例等问题相对均衡.目前国内全面开放二孩政策,对人口数增长有一定促进作用,长期来看人口的增速会有所加强,但国内人口老龄化也在加剧,死亡率可能在一定时期加大.可以鼓励学生去搜集数据,研究二孩政策对未来几年人口的影响,以及人口老龄化对未来社会,经济生活带来的影响.可以成立小组,让学生彼此之间合作,虽然开始做起来会比较困难,相信随着学生不断地去尝试,慢慢会体会到其中的乐趣.参考文献[1]王勇.Logistic 人口模型的求解问题[J].哈尔滨商业大学学报(自然科学版),2006(5):58-59 [2]任运平,杨建雅.Logistic 人口模型的改进[J].运城高等专科学校学报,1999(6):23-24附录 MATLAB 程序代码参数r K,估计代码:t=0:1:37; %令1981年为0,2018年为37,间隔为1年P=[100072,101654,103008,104357,105851,107507,109300,111026,112704,114333,115823,117171,118517,119850,121121,122389,123626,124761,125786,126743,127627,128453,129227,129988,130756,131448,132129,132802,133450,134091,134735,135404,137054,136782,137462,138271,139008,139538]; %1981年到2018年的人口数据P1=[100072,101654,103008,104357,105851,107507,109300,111026,112704,114333,115823,117171,118517,119850,121121,122389,123626,124761,125786,126743,127627,128453,129227,129988,130756,131448,132129,132802,133450,134091,134735,135404,137054,136782,137462,138271,139008]; %1981年到2017年的人口数据P2=[101654,103008,104357,105851,107507,109300,111026,112704,114333,115823,117171,118517,119850,121121,122389,123626,124761,125786,126743,127627,128453,129227,129988,130756,131448,132129,132802,133450,134091,134735,135404,137054,136782,137462,138271,139008,139538]; %1982年到2018年的人口数据rn=(P2-P1)./P2;%每一年的人口增长率cs=polyfit(P2,rn,1);%最小二乘法的拟合公式r=cs(2),K=-r/cs(1)%r K,的值预测函数拟合图代码:t=1981:1:2018;P=[100072,101654,103008,104357,105851,107507,109300,111026,112704,114333,115823,117171,118517,119850,121121,122389,123626,124761,125786,126743,127627,128453,129227,129988,130756,131448,132129,132802,133450,134091,134735,135404,137054,136782,137462,138271,139008,139538]; %1981年到2018年的人口数据t1=0:1:37;YP=150590./(1+(150590/100072-1)*exp(-0.0509*t1));%1981年到2018年人口预测值plot(t,P,'*',t,YP,'-r') %实际值与预测值得拟合图title('1981年到2018年预测值与人口实际值的拟合图')%画拟合图(本文系中山市2018年重点项目课题《高中数学学科核心素养之数学建模的教学实践研究》(课题编号:A2018021)的阶段性研究成果)例谈信息技术与高中数学教学的深度融合许如意福建省晋江市紫峰中学(362200)在2018年泉州市教育系统高中教师教育教学信息化应用技能岗位练兵竞赛中,笔者有幸以《阿波罗尼斯圆》通过了淘汰率高达80%的初赛环节,进入复赛,并在后续比赛中获奖.下面以《阿波罗尼斯圆》这一节课中信息技术的使用情况为例,谈谈自己对信息技术与高中数学课程深度融合的思考,以期抛砖引玉.1 信息技术与高中数学教学深度融合的案例在《阿波罗尼斯圆》这节课中,基于人教A版必修2习题4.1的B组题3(已知点M与两个定点(00)O,,(30)A,的距离之比为12,求点M的轨迹方程),我们设置了一个类比椭圆、双曲线的轨迹,猜想平面内到两个定点的距离之比等于常数的点的轨迹,并利用信息技术验证猜想,然后给出一般结论的教学环节.在这个环节需要一个合适的专业数学软件来支持教学设想的顺利展开.根据所在学校的硬件条件以及学生的情况(有开设《几何画板》校本选修课),我们选择了《几何画板》,并设计了如下方案.方案1①根据定点(00)O,,(30)A,与定比12,计算出阿波罗尼斯圆的方程并画出圆,作出两定点;②在圆上任意取一个点M,连接MO MA,,度量MOMA;③隐藏圆,追踪点M的轨迹,这样就形成了一个阿波罗尼斯圆的动画.《普通高中数学课程标准(2017)》提出:重视信息技术运用,实现信息技术与数学课程的深度融合.教师应重视信息技术的运用,优化课堂教学,转变教学与学习方式.例如,为学生理解概念创设背景,为学生探索规律启发思路,为学生解决问题提供直观,引导学生自主获取资源.上述方案能达到课程标准所提出的“为学生探索规律启发思路”吗?能体现信息技术与数学课程的深度融合吗?在方案设置好之后,笔者进行了反思.方案一只能体现在定点(00)O,,(30)A,与定比12条件下的阿波罗尼斯圆,而学生在验证环节,需要改变定点或定比来探索一般情况下动点M的轨迹.因此,笔者将方案1进行了修改.方案2①设置参数1t,用参数1t表示MOMA;②在x轴上任意取一点F,度量其横坐标值为。

数学建模人口预测模型

数学建模人口预测模型

• 生育率, [i1 , i2 ] 为育龄区间, ki (t ) 为第t 年 i 岁人口 的女性比, 则第t 年的出生人数为
f (t ) bi (t )ki (t ) xi (t )
i i1
i2
(2)
• 记 d00 (t ) 为第t 年婴儿死亡率,即第t 年出生但未活到 人口统计时刻的婴儿比例 (婴儿死亡率通常较高, 在人 口统计和建模中一般都不能忽略),
• 于是
f (t ) x0 (t ) d 00 (t ) f (t )
x0 (t ) (1 d00 (t )) f (t )
(3)
对于i=0将(2),(3)代入(1)得:
x1 (t 1) (1 d00 (t ))( 1 d0 (t )) bi (t )ki (t ) xi (t )
• 人口发展方程 时间以年为单位,年龄按周岁计算,设最 大年龄为 m岁,记 xi (t ) 为第t 年i岁(满 i 周岁而不到i+1 周岁)的人数, t 0,1,2,, i 0,1,2,, m .只考虑由 于生育, 老化和死亡引起的人口演变,而不计迁移等社会 因素的影响. 记 d i (t ) 为第 t年 i 岁人口的死亡率,即
• 的增长率, 不涉及年龄结构. 但在实际上, 在人口预测 这人口按年龄分布状况是十分重要的,因为不同年龄人 的生育率和死亡率有着很大的差别. 两个国家或地区目 前人口总数一样,如果一个国家或地区年青人的比例高 于另一个国家或地区,那么两者人口的发展状况将大不 一样. 因此考虑人口按年龄的分布, 除了时间是一个变 量, 年龄也是一个变量. • 如果用连续性模型来描述它, 就要用偏微分方程来 描述. 但在实际应用中连续模型很不方便, 需要建立 相应的离散模型. 因为作为已知的输入数据是离散的, 要得到的输出数据也是离散的, 再者对连续模型求解也 是非常困难的.因此我们选择建立一个离散性模型来描 述, 用差分方程来实现它. •

数学建模第二章微积分方法建模24城市人口统计模型

数学建模第二章微积分方法建模24城市人口统计模型

把[0,T ]时间区分为 n 等分,每个小区间长度为 t
t
t0 0 t1
t2 … t j1
tj

tn T
初始时刻的人口数为 P(0) ,到时刻 T 将只剩下 h(T )P(0) 。当 t 很小时,从时刻 t j1 到 t j ,净增人口的 比率近似为常数 r(t j ) 。这段时期净增的人口数近似为 r(t j )t ,t j 时刻的人口到时刻T 时只剩下 h(T t j )r(t j )t 。 所以在T 时刻的总人口数近似为
设 P(t) 表示 t 时刻城市人口数,人口变化受下面两
条规则的影响:
1、 t 时刻净增人口以每年 r(t) 的比率增加;
2、在一段时期内,比如说从T1 到T2 ,由于死亡或迁移, T1 时刻的人口数 P(T1) 的一部分在T2 时刻仍然存在,用 h(T2 T1)P(T1) 来表示,这里 0 h(T2 T1) 1 , T2 T1 是这段 时间的长度。
rj 2
rj
2 1
rj 2
(rj
r)2
2 rj r (r)2 2 rj r ,( r 很小)
第 j 个圆环上的人口数近似为 P(rj ) 2 rj r ,因此
n
N P(rj ) 2 rj r j 1
令 n ,得
ห้องสมุดไป่ตู้
C
N 0 P(r)2 rdr
二、模型 2 (预测城市未来人口)
n
P(T ) h(T )P(0) h(T t j )r(t j )t j 1
令 n ,得
T
P(T ) h(T )P(0) 0 h(T t)r(t)dt

数学模型作业:人口模型

数学模型作业:人口模型

数学模型报告2邓曌 100244105作业1 用1900年至2000年的数据拟合指数增长模型,计算并作图,观察结果。

年份19001910192019301940195019601970198019902000实际人口7692106.5123.2131.7150.7179.3204226.5251.4281.4 表1模型建立:记时刻t 的人口为x(t),当考察一个国家或一个较大地区的人口时, x(t)是一个很大的整数。

为了讨论方便,我们将x(t)视为连续、可微函数。

记初始时刻的人口为x0.基本假设 :人口(相对)增长率 r 是常数x(t):时刻t 的人口t r t x t x t t x ∆=-∆+)()()( (1) 0)0(,x x rx dtdx == (2) rt e x t x 0)(= ,t t r r x e x t x )1()()(00+≈= (3)rt e x t x 0)(=的参数r 和x 0可以用表1的数据估计。

为了利用简单的线性最小二乘法,将(3)式取对数,可得:0ln ,ln ,x a x y a rt y ==+= (4)模型求解:以1900年至2000年的数据拟合(4)MATLAB 编程代码:>> t=1900:10:2000;x=[76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 251.4 281.4];y=log(x);p=polyfit(t,y,1);x0=exp(p(2));r=p(1);plot(t,x,'r:o');hold on;x1=x0*exp(r*t);plot(t,x1);disp(['x0=',num2str(x0),',r=',num2str(r)]);结果得:x0=1.9618e-09,r=0.0128611900191019201930194019501960197019801990200050100150200250300图1由图1可以看出,蓝色拟合曲线表示曲线拟合的很好,用这个模型基本上能够描述十九世纪以前美国人口的增长。

MATLAB之数学建模人口预测

MATLAB之数学建模人口预测

628.3
670.6
2030年人口N27(BW)
641.1
679.1
具体如下图所示:
对于上述程序相应修改,求解得:
初始值 541.8 1800年的人口(BW) 628.3 2021年的人口(BW) 609.7 拟合结果 505.5
641.1
2030年的人口(BW)
623.8
具体如下:
思路由来
移民和战争等很多因素,出生率b和死亡率d并不是常数。
所以用其中任何两点都不安全,要哦兼顾这些数据。于是这里
使用最小二乘拟合。由于指数函数exp(t)当t很大时可能会溢出,
为了减小这些数据的误差,首先将时间域变换至[0,20],所以变 换为
t=1949+(t—1949)/3
这样的话这样的话0代表1949,1代表1952,2代表1955,...,
tt=[24 27]; NN0=li4_17fun(c,tt) c=lsqcurvefit(@li4_17fun,c,t,N) e=sum((N-li4_17fun(c,t)).^2) NN=li4_17fun(c,tt) plot(tt,NN,'r*'); tt=0:0.1:27; NN=li4_17fun(c,tt) plot(tt,NN,'r'); hold on;
先前我国人口基数大,国家推行了计划生育政策,提倡少生优生晚生。近年来,
于人口老龄化问题严重,国家现以开放二胎政策,鼓励人们生育。相信大家只要
关注新闻都有些了解。 我们小组成员平常时候也是极喜爱阅读,通过腾讯新闻,微博等对开放二胎政策 略有些了解,正巧遇上MATLBA作业,于是我们的数学建模原型由此而来。

2003

数学建模作业 求解常微分方程和人口模型问题

数学建模作业 求解常微分方程和人口模型问题

实验报告课程名称:数学建模课题名称:求解常微分方程与人口模型专业:信息与计算科学姓名:胡家炜班级:123132完成日期: 2016年 6 月10 日一.求解微分方程的通解(1). dsolve('2*x^2*y*Dy=y^2+1','x')ans =(exp(C3 - 1/x) - 1)^(1/2)-(exp(C3 - 1/x) - 1)^(1/2)i-i(2). dsolve('Dy=(y+x)/(y-x)','x')ans =x + 2^(1/2)*(x^2 + C12)^(1/2)x - 2^(1/2)*(x^2 + C12)^(1/2)(3). dsolve('Dy=cos(y/x)+y/x','x')ans =(pi*x)/2-x*log(-(exp(C25 + log(x)) - i)/(exp(C25 + log(x))*i - 1))*i (4). dsolve('(x*cos(y)+sin(2*y))*Dy=1','x')ans =-asin(x/2 + lambertw(0, -(C30*exp(- x/2 - 1))/2) + 1)(5). dsolve('D2y+3*Dy-y=exp(x)*cos(2*x)','x')ans =C32*exp(x*(13^(1/2)/2 - 3/2)) + C33*exp(-x*(13^(1/2)/2 + 3/2)) + (13^(1/2)*exp(x*(13^(1/2)/2-3/2))*exp((5*x)/2(13^(1/2)*x)/2)*(2*sin(2*x) - cos(2*x)*(13^(1/2)/2 - 5/2)))/(13*((13^(1/2)/2 - 5/2)^2 +4))-(13^(1/2)*exp(x*(13^(1/2)/2+3/2))*exp((5*x)/2+(13^(1/2)*x)/2)*(2 *sin(2*x)+cos(2*x)*(13^(1/2)/2+5/2)))/(13*((13^(1/2)/2 + 5/2)^2 + 4))(6)dsolve('D2y+4*y=x+1+sin(x)','x')ans =cos(2*x)*(cos(2*x)/4 - sin(2*x)/8 + sin(3*x)/12 - sin(x)/4 + (x*cos(2*x))/4 - 1/4) + sin(2*x)*(cos(2*x)/8 - cos(3*x)/12 + sin(2*x)/4 + cos(x)/4 + (x*sin(2*x))/4 + 1/8) + C35*cos(2*x) +C36*sin(2*x)二.求初值问题的解(1). dsolve('x^2+2*x*y-y^2+(y^2+2*x*y-x^2)*Dy=0','y(1)=1','x') ans =(x*((- 4*x^2 + 4*x + 1)/x^2)^(1/2))/2 + 1/2(2). dsolve('D2x+2*n*Dx+a^2*x=0','x(0)=x0','Dx(0)=V0')ans =(exp(-t*(n - (-(a + n)*(a - n))^(1/2)))*(V0 + n*x0 + x0*(-(a + n)*(a - n))^(1/2)))/(2*(-(a + n)*(a - n))^(1/2)) - (exp(-t*(n + (-(a + n)*(a - n))^(1/2)))*(V0 + n*x0 - x0*(-(a + n)*(a - n))^(1/2)))/(2*(-(a + n)*(a - n))^(1/2))三.给出函数f(x)=sinx+cosx在x=0点的7阶taylor展开式以及在x=1处的5阶taylor展开式。

数学建模人口预测

数学建模人口预测

摘 要中国是一个人口大国,人口问题与我国的经济发展等方面息息相关。

随着我国人口数量的不断变化,人口的老龄化问题也日益突显,政策的调整不可或缺。

从当初实行计划生育政策到逐步放开生育政策再到全面实行二孩政策,我国人口发展呈现了一些新特点。

本文旨在通过多种预测方法对“全面二孩政策”下的人口数量及其结构进行预测,筛选出了经济发展的指标,并分人口结构对经济发展的影响,结论如下:针对问题一,本文参考中国国家统计局等官方资料的数据统计出各年人口总数、自然增长率等数据,建立了logistic 模型,得出人口总数的变化公式,然后建立GM(1,1)预测模型,预测2016年的人口总数,再利用SPSS 进行回归、曲线估计,得出最为符合的方程式,再利用MATLAB 函数拟合工具箱对所得数据进行拟合。

预测出2017-2030年间人口先增后减,在2021年达到峰值。

针对问题二,通过建立BP 神经网络模型,利用GM(1,1)灰色预测处理人口结构数据得到训练及测试数据集,将数据BP 神经网络算法进行多次训练,最终得到具有相当精度的稳定预测结果。

提取相当数量的经济指标并对其进行主成分分析降维处理,之后对主要经济指标及人口结构指标进行多元回归分析得到2020-2030年人口结构对经济发展的影响。

针对问题三,关键词:灰色预测 BP 神经网络 Leslie 人口结构预测模型问题假设1.将我国看做一个封闭系统,没有人口的迁入和迁出2.人口增长只与人口基数、生育率、死亡率等有关3.没有大规模战争及瘟疫等传染性疾病4.假设短期内没有外来物种对人类生存造成影响5.假设所有数据均为准确数据6.假设2050年前医疗水平和科学技术不会对人类的死亡率、出生率造成影响模型符号说明: r : 人口自然增长率 x :总人口数0x :初始年份的人口数量t :时间)()0(k x :灰色预测的原始序列 )(ˆ)0(k x:灰色预测的原始数列预测值 ij x :第i 个指标的第j 个数据i d :第i 岁的死亡率i b :第i 岁的生育率问题一 模型建立首先,我们建立了logistics 模型,具体如下)0(x x rxdtdx == 其次,建立GM(1,1)预测模型GM(1,1)是一阶微分方程模型,其形式为:u ax dtdx=+ 离散形式:u k x a k x =+++∆))1(())1(()1()1(预测公式:a u e a u x k xka ˆˆˆˆ)1()1(ˆˆ)1()1(+⎥⎦⎤⎢⎣⎡-=+- 由导数可知:tt x t t x dt dx t ∆-∆+=→∆)()(lim0 当t ∆很小并且取很小的1单位时,则近似的有:txt x t x ∆∆=-+)()1( 写成离散形式:))1(()()1()1(+∆=-+=∆∆k x k x k x tx由于tx ∆∆)1(涉及到累加列)1(x 的两个时刻的数值,因此,)()1(i x 取前后两个时刻的平均代替更为合理,即将)()(i x i 替换为)]()1([21)1().,...,3,2()],1()([21).,...,3,2()],1()([21)1()1()1()()()()()(k x k x k x n i i x i x x n i i x i x i i i i i ++=+=-+==-+))1(()()1()1(+∆=-+=∆∆k x k x k x txu k x a k x =+++∆))1(())1(()1()1()]()1([21)1()1()1()1(k x k x k x ++=+整理可得 u k x k x a k x+++-=+))]1()((21[)1()1()1()0(表示为矩阵形式:⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋯-+-⋯+-+-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋯u a n x n x x x x x n x x x 111)]1()([21)]2()3([21)]1()2([21)()3()2()1()1()1()1()1()1()0()0()0( 不妨令T n x x xy ))(),3(),2(()0()0()0(,⋯=令⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋯-+-⋯+-+-=u a U n x n x x x x x B ,111)]1()([21)]2()3([21)]1()2([21)1()1()1()1()1()1( 则y B B B ua U BU Y T T 1)(ˆˆˆ-=⎥⎦⎤⎢⎣⎡==,模型求解1.对logistics 模型进行求解 得到总人口变化公式:rte x x 0= (0x 为初始年份人口数,21≥t )2.利用GM (1,1)模型,根据1996-2015年中国总人口数据,对2016年总人口数进行预测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上传是为了分析数学的乐趣,请粘贴复制的时候也多思考哈。

为了更多的学子们。

2014年数学建模论文第二套题目:人口增长模型的确定专业、姓名:土木135提交日期: 2015/7/2晚上题目:人口增长模型的确定摘要对美国人口数据的变化进行拟合,并进行未来人口预测,在第一个模型中,考虑到人口连续变化的规律,用微分方程的方法解出其数量随时间变化的方程,用matlab里的cftool工具箱求出参数,即人口净增长率r=0.02222,对该模型与实际数据进行对比,并计算了从1980年后每隔10年的人口数据,与实际对比,有很大出入。

因此又改进出更为符合实际的阻滞增长模型,应用微分方程里的分离变量法和积分法解出其数量随时间变化的方程,求出参数人口增长率r=0.02858和人口所能容纳最大值m x=258.9,与实际数据对比,拟合得很好,并预测出1980年后每隔10年的人口数据,与实际对比,比较符合。

为了便于比较两个模型与实际数据的描述情况作对比,又做出了两个模型与实际数据的对比图,以及两个模型的误差图。

关键词:人口预测微分方程马尔萨斯人口增长模型阻滞增长模型一、问题重述1790-1980年间美国每隔10年的人口记录如下表所示。

表1 人口记录表试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。

如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测。

二、问题分析由于题目已经说明首先用马尔萨斯人口增长模型来刻划,列出人口增长指数增长方程并求解,并进行未来50年内人口数据预测,但发现与实际数据有较大出入。

考虑到实际的人口增长率是受实际情况制约的,因此,使人口增长率为一变化的线性递减函数,列出人口增长微分方程,求出其方程解,并预测未来五十年内人口实际数据。

三、问题假设1.假设所给的数据真实可靠;2.各个年龄段的性别比例大致保持不变;3.人口变化不受外界大的因素的影响;4.马尔萨斯人口模型(1)单位时间的人口增长率r 为常数;(2)将()x t 视为t 的连续可微函数。

5.改进后的模型(阻滞增长模型)(1)人口净增长率r 为变化量。

四、变量说明()x t t 时刻的人口数量1790x 初始时刻的人口数量r 人口净增长率m x 环境所能容纳的最大人口数量,即()0m r x =五、模型建立1.马尔萨斯人口增长模型t=1790时的人口数为1790x ,在t 到t+Δt 这一时间间隔内,人口的增长为 由于0()()'()lim t x t t x t x t t→+-= 则得到可建立含初始条件的微分方程'()x t =()rx t , 1790(1790)x x ==3.9(省略10^6)其解为(1790)1790()r t x t x e -=2.阻滞增长模型假设人口增长生长率为人口()x t 的线性递减函数,即m x 。

假设自然资源和环境条件所能承受的最大人口容量为m x ,显然,当m x x =时,0()m m r x r xr ==-。

所以/m s r r =。

因此有()/m r x r rx r =-。

于是建立下列微分方程()'()(1)()mx t x t r x t x =-,(1790) 3.9x =。

把上式化为11()(1790)mdx rd t x x x -=--。

分离常数并积分得到:(1790)17901(1)m m r t x x x e x --=+-。

六、模型求解1.马尔萨斯模型求解参数估计:r 可以用实际数据的线性最小二乘法求解,对于(1790)1790()r t x t x e -=,直接求解是比较麻烦的,因此在两边取对数,即1790ln ()ln (1790)x t x r t =+-,记ln ()x t y =,1790ln ln3.9 1.36x ===a 。

则原方程化为(x) = 3.9*exp(r*(t-1790))。

利用1790—1900年的数据进行拟合, 得到r=0.02142.所以也能求出方程程序见附录1。

但本题还可以应用matlab 里的cftool 工具箱求参数,在命令行中输入得到更精确的解: General model:f(x) = 3.9*exp(r*(t-1790))Coefficients (with 95% confidence bounds):r=0.02222(0.02163,0.02281)得到如图所示结果,其中蓝线表示马尔萨斯人口模型预测人口数据,正方形黑点表示实际人口数据。

图1.马尔萨斯人口模型与实际人口数据则每隔10年预测人口为:1990332.1x =,2000412.8x =, 2010517.7x =,2020646.5x =,2030799.3x =,然而查阅相关年份美国实际人口数据,1990年为248.7百万,2000年为281.4百万,2010年为307.0百万。

对于2020年和2030年实际还没有统计,因为没有发生,但通过前三个数据就可以看出马尔萨斯模型预测人口与实际有很大出入,所以必须对该模型做出改进,得到更符合实际的预测模型。

2.阻滞增长模型求解通过对'()x t 求导得拐点在/2m x x =时,人口增长速度最大。

在问题分析已经得到该模型的表达式,运用matlab 里的cftool 工具箱拟合求出参数:General model:f(x) = a*3.9/(3.9+(a-3.9)*exp(-r*(t-1790)))Coefficients (with 95% confidence bounds):a = 285.9 (257.4, 314.4)r = 0.02858 (0.02763, 0.02953) 因此0.02858(1790)285.9285.91(1)3.9t x e --=+- 。

并得到如下图,蓝线表示组织增长模型预测数据,黑点表示实际人口数据。

图2.组织增长模型预测数据与实际人口数据根据该方程预测得到1990x =230.92,2000x =242.51,2010x =252.02,2020x =259.67,2030x =265.71.其中1990,2000,2010年这三年的预测人口数斗鱼实际人口数据很接近。

但还是有一定的误差,模型也存在一定的改进程度才能更符合实际情况。

但从图形看,与实际拟合的很好。

3.为了便于比较两种模型与实际数据的直观对比,编出程序附录2把他们放在一个坐标系里。

图3.两个模型与实际人口数据的对比图形虽然直观,但不具体,因此应算出两种模型与实际的误差值比较,程序见附录 3.得到下图。

图4.马尔萨斯模型与阻滞增长模型误差的比较从图中可以看出阻滞增长模型的误差更小。

七、结果分析1.马尔萨斯模型结果分析则每隔10年预测人口为:1990332.1x =,2000412.8x =, 2010517.7x =,2020646.5x =,2030799.3x =,然而查阅相关年份美国实际人口数据,1990年为248.7百万,2000年为281.4百万,2010年为307.0百万。

对于2020年和2030年实际还没有统计,因为没有发生,但通过前三个数据就可以看出马尔萨斯模型预测人口与实际有很大出入,所以必须对该模型做出改进,得到更符合实际的预测模型。

2.阻滞增长模型结果分析根据该方程预测得到1990x =230.92,2000x =242.51,2010x =252.02,2020x =259.67,2030x =265.71.其中1990年实际人口为248.7百万,2000年为281.4百万,2010年为307.0百万,这三年的预测人口数与实际人口数据很接近。

但还是有一定的误差,模型也存在一定的改进程度才能更符合实际情况。

但从图形看,与实际拟合的比较好。

八,模型的评价与推广 Malthus 数学模型在短期内具有较好的准确度,简易易行,但是不能准确的预测处人口长期的发展趋势,不具有预测人口长期增长数量的能力。

为此,结合资料,考虑到一些实际因素,建立了能很好滴预测人口数量增长的logstic 模型。

在人口增长的整个过程中logistic 模型预测的数据与题中所给数据能很好地在误差范围内,几乎一致。

但由于也存在误差,因此也可以通过相关多项式拟合出其方程,也是可以的,比如二次多项式,但次数不一定越高越好,应使模型所预的数据与实际数据更接近,才是比较好的模型。

logistic 模型在人口预测中,在医疗卫生中可以预测寻找某一疾病的危险因素(以及疾病的发展趋势),预测自然界中种群数量的增长等都发挥着巨大的作用。

九、参考文献[1]王玉英 王建国史加荣 鲁萍. 数学建模及其软件实现 北京:清华大学出版社,2015.[2]赵凤群 戴芳 王小侠 肖艳婷 数学实验基础 西安理工大学理学院2013十、附录程序1 马尔萨斯模型的线性解法t0=[1790:10:1980];X0=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5];plot(t,x,'o');n=1;a=polyfit(t0,x0,n);y=log(x);p=poly2sym(a)程序2 人口数量实际值与两种模型预测数据对比图clear;t=[1790:10:1980];x=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5];nx1=3.9*exp(0.02222.*(t-1790));nx2=285.9./(1+72.31*exp(-0.02858.*(t-1790)));plot(t,x,'r',t,nx1,'b',t,nx2,'g');legend('实际值','马尔萨斯模型','¸阻滞增长模型')程序3 两种模型误差散点图clear;t=[1790:10:1980];x=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5];nx1=3.9*exp(0.02222.*(t-1790));nx2=285.9./(1+72.31*exp(-0.02858.*(t-1790)));W1=(x-nx1)./x;W2=(x-nx2)./x;plot(t,W1,'*',t,W2,'x');legend('马尔萨斯模型误差','阻滞增长模型误差')。

相关文档
最新文档