微生物多糖的研究进展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微生物多糖的研究进展

生命科学技术学院08级2班杜长蔓

摘要: 就微生物多糖的种类,生物合成、提取与纯化、实现了工业化的微生物多糖及其应用进行了综述, 展望了微生物多糖开发利用的前景。微生物多糖主要指大部分细菌、少量的真菌和藻类产生的多糖。微生物多糖由于具有安全性高、副作用小、理化特性独特等优点而使其在食品和非食品工业备受关注,尤其在医药领域具有巨大的应用潜力。微生物多糖在细胞内主要有三种存在形式: ①黏附在细胞表面上,即胞壁多糖; ②分泌到培养基中,即胞外多糖; ③构成微生物细胞的成分,即胞内多糖。而其中的胞外多糖具有产生量大、易于与菌体分离、可通过深层发酵实现工业化生产。一般微生物多糖的生产主要是利用淀粉为碳源,经过微生物的发酵进行生产,也有通过利用微生物产生的酶作用制成的。能够产生微生物胞外多糖的微生物种类较多,但是真正有应用价值并已进行或接近工业化生产的仅十几种。近几年,随着对微生物多糖研究的深入,世界上微生物多糖的产量和年增长量在10 %以上,而一些新兴多糖年增长量在30 %以上。到目前为止,已大量投产的微生物胞外多糖有黄原胶(Xant han gum) 、结冷胶( Gellan gum) 、小核菌葡聚糖(Scleeroglucan) 、短梗霉多糖( Pullulan) 、热凝多糖(Curdlan) 等。微生物多糖和植物多糖相比较具有以下优势:①生产周期短,不受季节、地域、病虫害等条件的限制; ②具有较强的市场竞争力和广阔的发展前景; ③应用广泛,例如已作为胶凝剂、成膜剂、保鲜剂、乳化剂等广泛应用于食品、制药、石油、化工等多个领域。据估计,目前全世界微生物多糖年加工业产值可达80 亿左右。

关键词: 微生物多糖; 生物合成; 提取与纯化;开发应用

0引言

多糖是一种天然的大分子化合物,来源于动物、植物及微生物,在海藻、真菌及高等植物中尤为丰富。它是由醛糖和(或)酮糖通过糖苷键连接成的聚合物,作为有机体必不可少的成分,同维持生命体机能密切相关,具有多种多样的生物学功能。

根据多糖在微生物细胞内的位置,可分为胞内多糖、胞壁多糖和胞外多糖。人们对多糖的初始研究可追溯到1936 年Shear对多糖抗肿瘤活性的发现, 但微生物多糖倍受关注是从20 世纪50 年代开始的. 20 世纪50 年代, J eanes等人筛选、获得了许多黄原胶(Xan than gum ) 的产生菌. 1964 年, 原田等人从土壤中分离到产凝结多糖(Cu rdlan, 又称热凝多糖) 的细菌, 后发现农杆菌(A grobacterium sp. ) 也可以产生该多糖. 1978 年,美国人生产制造了产生于少动鞘脂类单胞菌(S p hing om onas p aucim obilis, 旧称伊乐藻假单胞菌) 的结冷胶(Gellan gum , 又称胶联多糖). 随后, 小核菌葡聚糖(Scleeroglucan)、短梗霉多糖(Pu llu lan, 又称普蓝)、透明质酸( Hyalu ron ic acid)、壳聚糖(Ch i2tasan) 等微生物多糖又相继被人们发现.近年来又兴起一些新型微生物多糖如海藻糖、透明质酸、壳聚糖等的研究。微生物多有广泛的应用价值, 已作为乳化剂、增稠剂、稳定剂、胶凝剂、悬浮剂、润滑剂、食品添药品等应用于石油、化工、食品、医疗、制药保健等多个领域[1 ]. 为了不断开发微生物多糖的潜能, 仍然需要筛选、分离新的多糖产生菌, 了解多糖的生物合成, 研究它们的结构、理化学特性,进一步拓展它们的应用领域.

1微生物多糖的生物合成

多糖有的合成于微生物的整个生长过程, 有的合成于对数生长后期, 而有的则合成于静止期. 它们种类繁多, 可分为同型多糖和异型多糖, 都是由相同或不同的单糖或者和其它基团在特

定的酶催化下聚合而成, 但异型多糖如黄原胶、结冷胶的合成比同型多糖如右旋糖苷、果聚糖的合成复杂得多. 异型多糖的合成体系包括五个基本要素: 糖基- 核苷酸、酶系

统、糖基载体脂(十一聚类异戊二烯醇磷酸脂)、糖基受体(引物) 和酰基供体, 其中的糖基- 核苷酸为微生物提供活性的单糖并通过差相异构、脱氢、脱羧等反应提供多种单糖.

1. 1微生物多糖生物合成模式

细菌胞外多糖的合成有两种模式: 依赖于糖基载体脂的合成模式和不依赖于糖基载体脂的合成模式. 依赖于糖基载体脂的合成模式: 单糖进入细胞后形成糖基2核苷酸, 糖基2核苷酸将糖基顺序转移到糖基载体脂或在其上形成寡糖重复单位. 然后糖基载体脂将糖基运往膜外释放, 再在酶的作用下和受体聚合成胞外多糖. 革兰氏阴性菌合成的多糖(如黄原胶、结冷胶等) 都属于这种模式[2 ].不依赖于糖基载体脂的合成模式: 单糖不进入

细胞, 它们在胞外酶的作用下直接聚合底物中的糖基为胞外多糖. 合成过程中不需要糖基- 核苷酸、糖基载体脂等物质. 肠膜状明串珠菌合成的右旋糖苷就属于此种模式.

1. 2微生物多糖生物合成途径

L igio 等[3 ]提出了由少动鞘脂类单胞菌(S p h in2g om onas p aucim obilis) 合成结冷胶的可能途经,提供糖基核苷酸的活性前体为UDP2葡萄糖、TDP2鼠李糖和UDP 2葡萄糖醛酸, 它们也是重复四在野油菜黄单胞菌(X an thom onas campestris)生物合成黄原胶的过程中, 需要8 种膜结合酶[4 ]: 5种特异转移酶, 1 种乙酰化酶, 1 种缩酮转移酶, 1 种聚合酶. 在酶的作用下两分子UDP2D2葡萄糖前体顺序添加到糖基载体脂上形成黄原胶主链上的一分子12磷酸2D 葡萄糖和一分子D2葡萄糖, 再由GDP2D2甘露糖和UDP2D2葡萄糖醛酸前体分别添加D2甘露糖和D2葡萄糖醛酸, 然后乙酰辅酶A 上的乙酰基转移到连接在两个葡萄糖基间的甘露糖基上, 磷酸烯酮式丙酮酸的丙酮酸则添加到另外一个甘露糖上,这样就形成了黄原胶的五糖重复单位, Ielp i, Cou so等人证明了这个过程[5 ]. 最后, 五糖重复单位在聚合酶的作用下聚合成黄原胶.

微生物多糖的发酵技术

出芽短梗霉( A ureobasi di um p ul l ul ans )产生短梗霉多糖,短梗霉多糖属于次级代谢产物,多糖的合成与细胞生长呈现部分相关,短梗霉多糖分批发酵过程中菌体生长、产物形成和底物消耗随时间的变化。

黄原胶发酵菌种一般采用甘蓝黑腐黄单胞菌(Aanthomonas Campestris),培养基碳源可以是淀粉、蔗糖、葡萄糖等碳水化合物,氮源最好是由有机氮源与无机氮源所构成的复合氮源,另外培养基中还有一些微量元素及促进剂,在发酵罐内适当条件下经过一定时间的发酵,得黄原胶发酵液,再经适当的后处理,即可得产品黄原胶。黄原胶后处理可以采用三种不同工艺,即酒精(或异丙醇)提取工艺、碱式沉淀工艺、超滤微滤工艺。

2微生物多糖的提取与纯化

根据多糖种类、性质的不同, 可以采用不同的提

取纯化方法.胞内和胞壁多糖的提取是先破碎细胞, 然后在802100℃下以水(或氢氧化钠、氢氧化钾水溶液) 为溶剂反复提取223 次. 将得到的多糖溶液进行离心除去不溶物质, 减压浓缩后合并上清溶液, 然后用乙醇或异丙醇沉淀多糖; 再次离心后用丙酮、乙醇等有机溶剂洗涤, 再冷冻干燥得到多糖粗制品. 胞外多糖的提取稍微简单些, 只要离心发酵液除去菌体得到上清, 然后用有机溶剂沉淀多糖, 静置、离心、干燥就可以得到多糖粗制品了.粗多糖中常

相关文档
最新文档