2018年山东省德州市中考数学试卷(含答案解析版)

合集下载

2018年山东省德州市中考数学试卷-答案

2018年山东省德州市中考数学试卷-答案

2018年山东省德州市初中学业水平考试数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】3的相反数是.3-【考点】相反数.2.【答案】B【解析】A 项,是中心对称图形.B 项,既是轴对称图形又是中心对称图形.C 项,是轴对称图形.D 项,既不是轴对称图形也不是中心对称图形.【考点】轴对称图形和中心对称图形的定义.3.【答案】D【解析】亿1.4968=149600000=1.49610.⨯【考点】科学记数法.4.【答案】C【解析】A 项,B 项,C 项,正确.D 项, 325.a a a = ()326.a a -=-23.mn mn mn --=-【考点】考查了整式的运算.5.【答案】A【解析】由平均数是6,得,解得.将这组数据按从小到大的顺序排列,为2,6,7,7,8,6+2+8++7=65x ⨯7x =所以中位数是7.【考点】平均数,中位数.6.【答案】A【解析】图①,,即与互余.图②,由同角的余角相等,得.图+=1809090αβ∠∠︒-︒=︒α∠β∠=αβ∠∠③,图④,由平角的定义,得.==18045135.αβ∠∠︒-︒=︒+=180αβ∠∠︒【考点】两角互余的性质及判定.7.【答案】B【解析】A 项,由抛物线开口向上,知;由直线经过第一、二、四象限,知,不符合题意.B 项,0a >0a <由抛物线开口向上,知,对称轴为,在轴的右侧;由直线经过第一、三、四象限,知0a >10x a=>y,符合题意.C 项,由抛物线开口向上,知,对称轴为,应在轴的右侧,不符合题意.D 0a >0a >10x a=>y 项,由抛物线开口向下,知;由直线经过第一、三、四象限,知,不符合题意.0a <0a >【考点】二次函数和一次函数的图象与性质.8.【答案】D【解析】方程两边同时乘最简公分母,得,解得检验:当()()12x x -+()()()2123x x x x +--+= 1.x =1x =时,,所以是原方程的增根,故原方程无解.()()12=0x x -+1x =【考点】了解分式方程.9.【答案】A【解析】如图,连接是的直径, .90,AC ABC AC ∠=︒∴ O 2m.,45,AC BA BC BAC ==∴∠=︒)sin 2sin 45m .BC AC BAC ∴=∠=⨯︒= ()2m 2ABC S π∴==扇形(第9题)【考点】圆周角的性质、解直角三角形、扇形的面积公式.10.【答案】B【解析】①当时,随的增大而减小.②当时,32,30,y x k =-+=-<∴ 1x >y x 3,30,y k x==>∴ 1x >y 随的增大而减小.③函数图象开口向上,对称轴为轴,当时,随的增大而x 22,20,y x a ==> y ∴1x >y x 增大.④当时,随的增大而增大.3,30,y x k ==>∴ 1x >y x 【考点】一次函数、反比例函数、二次函数的图象的增减性.11.【答案】B【解析】用“杨辉三角”的规律展开,从左起各项系数分别为1,8,28,56,70,56,28,8,1,的()8a b +()8a b ∴+展开式中从左起第四项的系数为56.【考点】找规律.12.【答案】C【解析】①如图1,连接点是等边三角形的中心,,.OB OC O ABC ,30,120,OB OC DBO OBC ECO BOC ∴=∠=∠=∠=︒∴∠=︒120.120,BOE EOC FOG ∴∠+∠=︒∠=︒ 故①正确.()120,.,.BOE DOB DOB EOC DOB EOC ASA OD OE ∴∠+∠=︒∴∠=∠∴≅∴=△△(第12题)②如图2,当绕点旋转到使时,是等边三角FOG ∠O ,OF AB OG BC ⊥⊥2,60,BD BE B BDE ==∠=︒∴△形.是等腰三角形.易得,OD OE ODE =∴ △22,.ODE BDE S S ==△△.故②错误. 22,CDE BDE S S <∴≠△△(第12题)③如图3,连接,过点做,垂足为点.,OB OC O OH BC ⊥H ,,DOB BOE EOC BOE DOB EOC S S S S H ≅∴+=+ △△△四边形△△1., 2.2BOC ODBE S S OH BC HC BC ∆∴=⊥∴== 四边形130,tan 22OCH ACB OH CH OCH ∠=∠=︒∴=∠==故③正确. 11422BOC S BC OH ∴==⨯= △(第12题)④如图1,的周长为,,DOB EOC BD CE BDE ≅∴=∴ △△△要使的周长最小,则的长最小.当绕4.BD BE DE CE BE DE BC DE DE ++=++=+=+BDE △DE FOG ∠点旋转到使时,垂足分别为点,如图2,则由垂线段最短可得的长最小,O ,OF AB OG BC ⊥⊥,D E ,OD OE 的长最小,这时周长的最小值为故④正确.DE ∴ 2.BD BE DE BDE ===∴∆4+42 6.DE =+=【考点】等边三角形的性质与判定、全等三角形的性质与判定、等边三角形中心的性质、解直角三角形、三角形的面积及求最小值.第Ⅱ卷二.填空题13.【答案】1 【解析】231 1.-+==【考点】整式的运算及绝对值.14.【答案】3-【解析】是一元二次方程的两个实数根,12,x x 220x x +-=12121,2,x x x x ∴+=-=-()121212 3.x x x x ∴++=-+-=-【考点】一元二次方程的根与系数的关系.15.【答案】3【解析】由勾股定理,得根据角平分线上的点到角两边的距离相等,,5,4,CM OB OC OM ⊥==∴ 3.CM =得点到射线的距离为3.C OA 【考点】勾股定理、角平分线的性质.16. 【解析】由勾股定理,得,,2223425AB =+=2222222420,125AC BC =+==+=是直角三角形,2225,,AB BC AC BC AB ∴==+=ABC∴∆90,sin BC ACB BAC AB ∠=︒∴∠==【考点】直角三角形的判定、解直角三角形.17.【答案】60 【解析】解方程组得 48,229,x y x y -=⎧⎨+=⎩5,12.x y =⎧⎨=⎩560.,12y x x y x y <∴==⨯= ◆【考点】了解二元一次方程组及对新定义的阅读理解.18.【答案】或()4,3--()2,3-【解析】解得如图1,当是平行四边形的3,2,y x y x ⎧=⎪⎨⎪=-⎩12121,3,3, 1.x x y y =-=⎧⎧⎨⎨=-=⎩⎩()1,3.A ∴--()3,0, 3.B OB -∴= OB 一边时,则点到轴的距离是或点的坐标为或3,,AP OB AP OB ==∴∥P y 1+3=4312,-=∴P ()4,3--.点在轴左侧,()2,3- P y ()4,3.P ∴--(第18题)如图2,当是平行四边形的对角线时,过点作,过点作,垂足分别为点,OB A AC OB ⊥P PD OB ⊥C .,四边形是平行四边形,D ()1,3A -- ()1, 3.3,0, 3.OC AC B OB ∴==-∴= OABP 由全等三角形对应高相等,得 ,.,.PB AO OP BA BO OB PBO AOB ∴===∴∆≅∆ 3.,PD AC PB AO === ,,1,312Rt PBD Rt AOC BD OC OD OB BD ∴≅∴==∴=-=-=△△()2,3.P ∴-。

最新-山东省德州市2018年中考数学真题试卷(解析版) 精品

最新-山东省德州市2018年中考数学真题试卷(解析版) 精品

2018年山东省德州市中考数学试卷—解析版一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1、(2018•德州)下列计算正确的是()A、(﹣8)﹣8=0B、(﹣错误!未找到引用源。

)×(﹣2)=1C、﹣(﹣1)0=1D、|﹣2|=﹣2考点:零指数幂;绝对值;有理数的减法;有理数的乘法。

专题:计算题。

分析:利用有理数的减法、有理数的乘法法则和a0=1(a≠0)、负数的绝对值等于它的相反数计算即可.解答:解:A、(﹣8)﹣8=﹣16,此选项错误;B、(﹣错误!未找到引用源。

)×(﹣2)=1,此选项正确;C、﹣(﹣1)0=﹣1,此选项错误;D、|﹣2|=2,此选项错误.故选B.点评:本题考查了有理数的减法、有理数的乘法法则、零指数幂、绝对值的计算.解题的关键是熟练掌握各种运算法则.2、(2018•德州)一个几何体的主视图、左视图、俯视图完全相同,它一定是()A、圆柱B、圆锥C、球体D、长方体考点:简单几何体的三视图。

专题:应用题。

分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、球体的主视图、左视图、俯视图都是圆形;故本选项正确;D、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;故选C.点评:本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.3、(2018•德州)温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是()A、3.6×118B、3.6×118C、36×118D、0.36×118考点:科学记数法—表示较大的数。

2018年山东省德州市中考数学试卷(含答案解析版)

2018年山东省德州市中考数学试卷(含答案解析版)

2018年山东德州中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。

1.(4分)(2018•德州)3的相反数是()A.3 B. C.﹣3 D.﹣2.(4分)(2018•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.3.(4分)(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108D.1.496×1084.(4分)(2018•德州)下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn ﹣mn=﹣mn5.(4分)(2018•德州)已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A.7 B.6 C.5 D.46.(4分)(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④7.(4分)(2018•德州)如图,函数y=ax2﹣2x+1和y=ax ﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.8.(4分)(2018•德州)分式方程﹣1=的解为()A.x=1 B.x=2 C.x=﹣1 D.无解9.(4分)(2018•德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2 D.2πm210.(4分)(2018•德州)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③11.(4分)(2018•德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A.84 B.56 C.35 D.2812.(4分)(2018•德州)如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S ;③四边形ODBE的面积始终等于;④△BDE △BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。

(完整)2018年山东省德州市中考数学试卷(含答案解析版),推荐文档

(完整)2018年山东省德州市中考数学试卷(含答案解析版),推荐文档

2018年山东德州中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。

1.(4分)(2018•德州)3的相反数是()A.3 B.13C.﹣3 D.﹣132.(4分)(2018•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108 D.1.496×1084.(4分)(2018•德州)下列运算正确的是()A.a3•a2=a6 B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn﹣mn=﹣mn5.(4分)(2018•德州)已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A.7 B.6 C.5 D.46.(4分)(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④7.(4分)(2018•德州)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.(4分)(2018•德州)分式方程x x−1﹣1=3(x−1)(x+2)的解为( ) A .x=1 B .x=2 C .x=﹣1 D .无解9.(4分)(2018•德州)如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( )A .π2m 2B .√32πm 2 C .πm 2 D .2πm 2 10.(4分)(2018•德州)给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( )A .①③B .③④C .②④D .②③ 11.(4分)(2018•德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a +b )8的展开式中从左起第四项的系数为( )A .84B .56C .35D .2812.(4分)(2018•德州)如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG=120°,绕点O 旋转∠FOG ,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD=OE ;②S △ODE =S △BDE ;③四边形ODBE 的面积始终等于43√3;④△BDE 周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。

山东省德州市2018年中考数学试题(含答案)(精品推荐)

山东省德州市2018年中考数学试题(含答案)(精品推荐)

德州市二○一八年初中学业水平考试数学学试题 第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.3的相反数是( ) A .3 B .13 C .-3 D .1-32.下列图形中,既是轴对称又是中心对称图形的是( )3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1,496亿km .用科学记数法表示1,496亿是A .71.49610⨯ B .714.9610⨯ C .80.149610⨯ D .81.49610⨯ 4.下列运算正确的是A .326a a a = B .()326a a -= C.752a a a ÷=D .-2mn mn mn -=-5.已知一组数据;6,2,8.x ,7,它们的平均数是6.则这组数据的中位数是( ) A .7 B .6 C.5 D .46.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A.图①B.图②C.图③D.图④7.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的象可能是8.分式方程()()31112x x x x -=--+的解为( ) A .1x = B .2x = C.1x =- D .无解9.如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为( )A .22m π B2m C.2m π D .22m π 10.给出下列函数:①32y x =-+;②22y x =;③22y x =;④3y x =.上述函数中符合条件“当1x >时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C.②④ D .②③11.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式 ()na b +的展开式的各项系数,此三角形称为“杨辉三角”。

2018年山东省德州市中考数学试卷-答案

2018年山东省德州市中考数学试卷-答案

2018年山东省德州市初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】3的相反数是3-. 【考点】相反数. 2.【答案】B【解析】A 项,是中心对称图形.B 项,既是轴对称图形又是中心对称图形.C 项,是轴对称图形.D 项,既不是轴对称图形也不是中心对称图形. 【考点】轴对称图形和中心对称图形的定义. 3.【答案】D【解析】1.496亿8=149600000=1.49610.⨯ 【考点】科学记数法. 4.【答案】C【解析】A 项,325.a a a =B 项,()326.a a -=-C 项,正确.D 项,23.mn mn mn --=-【考点】考查了整式的运算. 5.【答案】A【解析】由平均数是6,得6+2+8++7=65x ⨯,解得7x =.将这组数据按从小到大的顺序排列,为2,6,7,7,8,所以中位数是7.【考点】平均数,中位数. 6.【答案】A【解析】图①,+=1809090αβ∠∠︒-︒=︒,即α∠与β∠互余.图②,由同角的余角相等,得=αβ∠∠.图③,==18045135.αβ∠∠︒-︒=︒图④,由平角的定义,得+=180αβ∠∠︒.【考点】两角互余的性质及判定. 7.【答案】B【解析】A 项,由抛物线开口向上,知0a >;由直线经过第一、二、四象限,知0a <,不符合题意.B 项,由抛物线开口向上,知0a >,对称轴为10x a=>,在y 轴的右侧;由直线经过第一、三、四象限,知0a >,符合题意.C 项,由抛物线开口向上,知0a >,对称轴为10x a=>,应在y 轴的右侧,不符合题意.D 项,由抛物线开口向下,知0a <;由直线经过第一、三、四象限,知0a >,不符合题意. 【考点】二次函数和一次函数的图象与性质. 8.【答案】D【解析】方程两边同时乘最简公分母()()12x x -+,得()()()2123x x x x +--+=,解得 1.x =检验:当1x =时,()()12=0x x -+,所以1x =是原方程的增根,故原方程无解. 【考点】了解分式方程. 9.【答案】A【解析】如图,连接.90,AC ABC AC ∠=︒∴是O 的直径,2m.,45,AC BA BC BAC ==∴∠=︒)sin 2sin 45m .BC AC BAC ∴=∠=⨯︒=()2290m 3602ABC S ππ⨯⨯∴==扇形(第9题)【考点】圆周角的性质、解直角三角形、扇形的面积公式. 10.【答案】B【解析】①32,30,y x k =-+=-<∴当1x >时,y 随x 的增大而减小.②3,30,y k x==>∴当1x >时,y 随x 的增大而减小.③22,20,y x a ==>函数图象开口向上,对称轴为y 轴,∴当1x >时,y 随x 的增大而增大.④3,30,y x k ==>∴当1x >时,y 随x 的增大而增大. 【考点】一次函数、反比例函数、二次函数的图象的增减性. 11.【答案】B【解析】用“杨辉三角”的规律展开()8a b +,从左起各项系数分别为1,8,28,56,70,56,28,8,1,()8a b ∴+的展开式中从左起第四项的系数为56. 【考点】找规律. 12.【答案】C【解析】①如图1,连接,.OB OC 点O 是等边三角形ABC 的中心,,30,120,OB OC DBO OBC ECO BOC ∴=∠=∠=∠=︒∴∠=︒120.120,BOE EOC FOG ∴∠+∠=︒∠=︒()120,.,.BOE DOB DOB EOC DOB EOC ASA OD OE ∴∠+∠=︒∴∠=∠∴≅∴=△△故①正确.(第12题)②如图2,当FOG ∠绕点O 旋转到使,OF AB OG BC ⊥⊥时,2,60,BD BE B BDE ==∠=︒∴△是等边三角形.,OD OE ODE =∴△是等腰三角形.易得22,.ODE BDE S S ==△△223,CDE BDE OD S S <∴≠△△.故②错误.(第12题)③如图3,连接,OB OC ,过点O 做OH BC ⊥,垂足为点H .,DOB BOE EOC BOE DOB EOC S S S S H ≅∴+=+△△△四边形△△,1., 2.2BOC ODBE S S OH BC HC BC ∆∴=⊥∴==四边形132330,tan 22OCH ACB OH CH OCH ∠=∠=︒∴=∠=⨯=11422BOC S BC OH ∴==⨯=△故③正确.(第12题)④如图1,,,DOB EOC BD CE BDE ≅∴=∴△△△的周长为4.BD BE DE CE BE DE BC DE DE ++=++=+=+要使BDE △的周长最小,则DE 的长最小.当FOG ∠绕点O 旋转到使,OF AB OG BC ⊥⊥时,垂足分别为点,D E ,如图2,则由垂线段最短可得,OD OE 的长最小,DE ∴的长最小,这时 2.BD BE DE BDE ===∴∆周长的最小值为4+42 6.DE =+=故④正确.【考点】等边三角形的性质与判定、全等三角形的性质与判定、等边三角形中心的性质、解直角三角形、三角形的面积及求最小值.第Ⅱ卷二.填空题 13.【答案】1【解析】231 1.-+== 【考点】整式的运算及绝对值. 14.【答案】3- 【解析】12,x x 是一元二次方程220x x +-=的两个实数根,12121,2,x x x x ∴+=-=-()121212 3.x x x x ∴++=-+-=-【考点】一元二次方程的根与系数的关系. 15.【答案】3【解析】,5,4,CM OB OC OM ⊥==∴由勾股定理,得 3.CM =根据角平分线上的点到角两边的距离相等,得点C 到射线OA 的距离为3. 【考点】勾股定理、角平分线的性质.16. 【解析】由勾股定理,得2223425AB =+=,2222222420,125AC BC =+==+=,2225,,AB BC AC BC AB ∴==+=ABC ∴∆是直角三角形,90,sin BC ACB BAC AB ∠=︒∴∠== 【考点】直角三角形的判定、解直角三角形. 17.【答案】60【解析】解方程组48,229,x y x y -=⎧⎨+=⎩得5,12.x y =⎧⎨=⎩560.,12y x x y x y <∴==⨯=◆【考点】了解二元一次方程组及对新定义的阅读理解. 18.【答案】()4,3--或()2,3-【解析】解3,2,y x y x ⎧=⎪⎨⎪=-⎩得12121,3,3, 1.x x y y =-=⎧⎧⎨⎨=-=⎩⎩()1,3.A ∴--()3,0, 3.B OB -∴=如图1,当OB 是平行四边形的一边时,则3,,AP OB AP OB ==∴∥点P 到y 轴的距离是1+3=4或312,-=∴点P 的坐标为()4,3--或()2,3-.点P 在y 轴左侧,()4,3.P ∴--(第18题)如图2,当OB 是平行四边形的对角线时,过点A 作AC OB ⊥,过点P 作PD OB ⊥,垂足分别为点C ,D .()1,3A --,()1, 3.3,0, 3.OC AC B OB ∴==-∴=四边形O A B 是平行四边形,,.,.PB AO OP BA BO OB PBO AOB ∴===∴∆≅∆由全等三角形对应高相等,得 3.,PD AC PB AO ===,1,312Rt PBD Rt AOC BD OC OD OB BD ∴≅∴==∴=-=-=△△,()2,3.P ∴-(第18题)【考点】求图象交点的坐标,平行四边形的性质及全等三角形的判定与性质. 三、解答题19.【答案】解:原式()()()21311=113111=111.1x x x x x x x x x x x x x +--⎛⎫-+ ⎪-+---⎝⎭+---=- 解不等式组:()533113192.2x x x x ⎧->+⎪⎨-<-⎪⎩①,② 解不等式①,得3x >. 解不等式②,得5x <.∴不等式组的解集是35x <<. x 是整数,∴=4.x 原式11==4-13. 【解析】解:原式()()()21311=113111=111.1x x x x x x x x x x x x x +--⎛⎫-+ ⎪-+---⎝⎭+---=- 解不等式组:()533113192.2x x x x ⎧->+⎪⎨-<-⎪⎩①,② 解不等式①,得3x >. 解不等式②,得5x <.∴不等式组的解集是35x <<. x 是整数,∴=4.x原式11==4-13. 20.【答案】(1)从喜欢动画节目人数可得1530%=50÷(人). 答:这次被调查的学生共有50人. (2)5041518310----=(人) 补全条形统计图如图所示.(第20题)(3)181500=54050⨯(人). 答:估计全校学生中喜欢娱乐节目的有540人.(4)列表如下:(画树状图法略)由列表可知,共有12种结果,且每种结果出现的可能性相同,其中恰好选中甲、乙两名学生的结果有2种,P∴(恰好选中甲、乙两名学生)21 ==. 126【解析】(1)从喜欢动画节目人数可得1530%=50÷(人). 答:这次被调查的学生共有50人.(2)5041518310----=(人)补全条形统计图如图所示.(第20题)(3)181500=54050⨯(人).答:估计全校学生中喜欢娱乐节目的有540人. (4)列表如下:(画树状图法略)由列表可知,共有12种结果,且每种结果出现的可能性相同,其中恰好选中甲、乙两名学生的结果有2种,P ∴(恰好选中甲、乙两名学生)21==.12621.【答案】解:如图,过点D 作DE AB ⊥交AB 于点E ,则=60m.DE BC =4=53tan53,3α︒︒,在Rt ABC ∆中,tan ,AB BC α=4,3AB BC ∴=即4,603AB =解得80m.AB =又337,tan37,4ADE β∠==︒︒≈在Rt ADE ∆中,3tan ,,4AE AE ADE DE DE ∠=∴=即3,604AE =解得45m AE =,80453B EA B A E B E =-∴=-=(),C D B E =35mCD ∴= 答:建筑物AB 的高度为80m ,建筑物CD 的高度为35m . 【解析】如图,过点D 作DE AB ⊥交AB 于点E ,则=60m.DE BC =4=53tan53,3α︒︒,在Rt ABC ∆中,tan ,AB BC α=4,3AB BC ∴=即4,603AB =解得80m.AB =又337,tan37,4ADE β∠==︒︒≈在Rt ADE ∆中,3tan ,,4AE AE ADE DE DE ∠=∴=即3,604AE =解得45m AE =,80453B EA B A E B E =-∴=-=(),C D B E =35mCD ∴= 答:建筑物AB 的高度为80m ,建筑物CD 的高度为35m . 22.【答案】(1)证明:如图,连接.OC(第22题)∵直线CD 是O 的切线 ∴OC CD ⊥. ∴=90OCE ∠. ∵点C 是BF 的中点. ∴CAD CAB ∠=∠ ∵OA OC =, ∴CAB ACO ∠=∠ ∴CAD ACO ∠=∠ ∴AD CO ∥∴==90ADC OCE ∠∠, ∴AD CD ⊥(2)解:∵=30CAD ∠, ∴=30CAB ACO ∠-∠ ∴+60COE CAB ACO ∠=∠∠= ∵直线CD 是O 的切线 ∴OC CD ⊥ ∴=90OCE ∠∴180906030E ∠-︒︒=-=∵3OC =∴2=6OE OC -∴=3BE OE OB =-在Rt OCE △中,由勾股定理,得:CE .BC 的长603.180l ππ⨯⨯==∴蚁蚂爬过的路程为11.3.π≈【解析】(1)证明:如图,连接.OC(第22题)∵直线CD 是O 的切线∴OC CD ⊥.∴=90OCE ∠.∵点C 是BF 的中点.∴CAD CAB ∠=∠∵OA OC =,∴CAB ACO ∠=∠∴CAD ACO ∠=∠∴AD CO ∥∴==90ADC OCE ∠∠,∴AD CD ⊥(2)解:∵=30CAD ∠,∴=30CAB ACO ∠-∠∴+60COE CAB ACO ∠=∠∠=∵直线CD 是O 的切线∴OC CD ⊥∴=90OCE ∠∴180906030E ∠-︒︒=-=∵3OC =∴2=6OE OC -∴=3BE OE OB =-在Rt OCE △中,由勾股定理,得:CE .BC 的长603.180l ππ⨯⨯==∴蚁蚂爬过的路程为11.3.π≈23.【答案】(1)∵此设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系, ∴可设()0y kx b k =+≠.根据题意,得40600,45550,k b k b +-⎧⎨+=⎩解得:10,1000,k b =-⎧⎨=⎩ ∴年销售量y 与销售单价x 的函数关系式是101000.y x =-+(2)∵此设备的销售单价是x 万元,成本价是30方元,∴该设备的单件利润为()30x -万元.由题意,得()()3010100010000x x --+=解得:12=80,=50.x x∵销售单价不得高于70万元,即70x ≤,∴180x =不符合题意,舍去.∴50.x =答:该公可若想获得10 000万元的年利润,则该设备的销售单价应是50万元.【解析】(1)∵此设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系, ∴可设()0y kx b k =+≠.根据题意,得40600,45550,k b k b +-⎧⎨+=⎩解得:10,1000,k b =-⎧⎨=⎩∴年销售量y 与销售单价x 的函数关系式是101000.y x =-+(2)∵此设备的销售单价是x 万元,成本价是30方元,∴该设备的单件利润为()30x -万元.由题意,得()()3010100010000x x --+=解得:12=80,=50.x x∵销售单价不得高于70万元,即70x ≤,∴180x =不符合题意,舍去.∴50.x =答:该公可若想获得10 000万元的年利润,则该设备的销售单价应是50万元.24.【答案】(1(2)四边形BADQ 是菱形.理由如下:∵四边形ACBF 是矩形,∴BQ AD ∥∴=BQA QAD ∠∠由折叠的性质,得=,BAQ QAD AB AD ∠∠=,∴,BQA BAQ ∠=∠∴.BQ AB =∴,BQ AD = ∴,BQ AD ∥∴四边形BADQ 是平行四边形.又∵AB AD =,∴BADQ 是菱形.(3)图4中的黄金矩形有矩形BCDE 、矩形MNDE .以黄金矩形BCDE 为例,理由如下:∵1,AD AB AN AC ====∴1CD AD AC =-==,又∵2BC =.∴12CD BC -. ∴矩形BCDE 是黄金矩形.(4)如图,在矩形BCDE 上添加线段GH ,使四边形 G CDH 为正方形,此时四边形BGHE 为所要作的黄金矩形,长1GH =,宽3HE =(第24题))1,213DH GH CD HE DE DH ∴==∴=-=-=HE GH ∴==∴矩形BGHE是黄金矩形.【解析】(1)由题意,得12,1,90,2BM MN AF BF BM AFB AB =====∠=︒∴ (2)四边形BADQ 是菱形.理由如下:∵四边形ACBF 是矩形,∴BQ AD ∥∴=BQA QAD ∠∠由折叠的性质,得=,BAQ QAD AB AD ∠∠=,∴,BQA BAQ ∠=∠∴.BQ AB =∴,BQ AD = ∴,BQ AD ∥∴四边形BADQ 是平行四边形.又∵AB AD =,∴BADQ 是菱形.(3)图4中的黄金矩形有矩形BCDE 、矩形MNDE .以黄金矩形BCDE 为例,理由如下:∵1,AD AB AN AC ====∴1CD AD AC =-==,又∵2BC =.∴CD BC -∴矩形BCDE 是黄金矩形.(4)如图,在矩形BCDE 上添加线段GH ,使四边形 G CDH 为正方形,此时四边形BGHE 为所要作的黄金矩形,长1GH =,宽3HE =(第24题) 51CD =-,四边形GCDH 是正方形,DH G∴=)1,213DH GH CD HE DE DH ∴==∴=-=-=HE GH ∴==∴矩形BGHE 是黄金矩形.25.【答案】(1)把点,0A m ()、4,B n ()代入1y x =-得1, 3.m n == ∴()()1,0,4,3.A B ∵抛物线2y x bx c =-++过点A 、B ,∴10,1643,b c b c -++=⎧⎨-++=⎩解得:6,5,b c =⎧⎨=-⎩∴该抛物线的解释式为26 5.y x x =-+-(2)如图1,∵APM △和DPN △为等直角三角形,∴=45,APM DPN ∠∠=∴90,MPN ∠= ∴MPN △为直角三角形.令2650x x -+-=,解得:121, 5.x x ==∴()5,0, 4.D AD =设AP k =,则4,DP k =-,2PM =)4.2PN k =-∴)11422MPN S PM PN k ∆==⨯- =214k k -+ =()21214k --+ ∴当2k =,即2AP =时,MPN S ∆最大,此时3OP =,∴()3,0.P(3)存在,点Q 坐标为23(,-)或7833⎛⎫ ⎪⎝⎭,-. 【解析】(1)把点,0A m ()、4,B n ()代入1y x =-得1, 3.m n == ∴()()1,0,4,3.A B ∵抛物线2y x bx c =-++过点A 、B ,∴10,1643,b c b c -++=⎧⎨-++=⎩解得:6,5,b c =⎧⎨=-⎩∴该抛物线的解释式为26 5.y x x =-+-(2)如图1,∵APM △和DPN △为等直角三角形,∴=45,APM DPN ∠∠= ∴90,MPN ∠=∴MPN △为直角三角形. 令2650x x -+-=,解得:121, 5.x x == ∴()5,0, 4.D AD =设AP k =,则4,DP k =-,PM )4.PN k =-∴)11422MPN S PM PN k ∆==⨯- =214k k -+ =()21214k --+ ∴当2k =,即2AP =时,MPN S ∆最大,此时3OP =,∴()3,0.P(3)存在,点Q 坐标为23(,-)或7833⎛⎫ ⎪⎝⎭,-.。

2018年山东省德州市中考数学试卷及解析

2018年山东省德州市中考数学试卷及解析

2018年山东省德州市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分.1.(4分)3的相反数是()A.3 B.C.﹣3 D.﹣2.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108 D.1.496×1084.(4分)下列运算正确的是()A.a3•a2=a6 B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn﹣mn=﹣mn5.(4分)已知一组数据:5,2,8,x,7,它们的平均数是6,则这组数据的中位数是() A.7 B.6 C.5 D.46.(4分)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④7.(4分)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B. C.D.8.(4分)分式方程﹣1=的解为()A.x=1 B.x=2 C.x=﹣1 D.无解9.(4分)如图,从一块直径为2m的圆形铁皮上剪出一个同心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2 D.2πm210.(4分)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③11.(4分)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A.84 B.56 C.35 D.2812.(4分)如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.(4分)计算:|﹣2+3|=.14.(4分)若x1,x2是一元二次方程x2+x﹣2=0的两个实数根,则x1+x2+x1x2=.15.(4分)如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为.16.(4分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的正弦值是.17.(4分)对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.18.(4分)如图,反比例函数y=与一次函数y=x﹣2在第三象限交于点A,点B的坐标为(﹣3,0),点P是y轴左侧的一点,若以A,O,B,P为顶点的四边形为平行四边形,则点P的坐标为.三、解答题:本大题共7小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)先化简,再求值÷﹣(+1),其中x是不等式组的整数解.20.(10分)某学校为了解全校学生对电视节目的喜爱情况(新闻,体育,动画,娱乐,戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.请根据以上信息,解答下列问题:(1)这次被调查的学生共有多少人?(2)请将条形计图补充完整;(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).21.(10分)如图,两座建筑物的水平距离BC为60m,从C点测得A点的仰角α为53°,从A点测得D点的俯角β为37°,求两座建筑物的高度(参考数据:sin37°≈,cos37°≈,tan37°≈,sin53°≈,cos53°≈,tan53°≈).22.(12分)如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E,点C是的中点.(1)求证:AD⊥CD;(2)若∠CAD=30°,⊙O的半径为3,一只蚂蚁从点B出发,沿着BE﹣EC﹣爬回至点B,求蚂蚁爬过的路程(π≈3.14,≈1.73,结果保留一位小数).23.(12分)为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?24.(12分)再读教材:。

山东省德州市2018年7月中考数学试题及参考答案详细解析

山东省德州市2018年7月中考数学试题及参考答案详细解析

山东省中考数学试题及详细解析德州市一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3的相反数是()A. 3B.C. -3D.[参考答案]:C【试题参考答案解析】:分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.故选C.2. 下列图形中,既是轴对称又是中心对称图形的是()A. B. C. D.[参考答案]:B【试题参考答案解析】:分析:观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.详解:A是中心对称图形;B既是轴对称图形又是中心对称图形;C是轴对称图形;D既不是轴对称图形又不是中心对称图形.故选B.3. 一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿.用科学记数法表示1.496亿是( )A. B. C. D.[参考答案]:D【试题参考答案解析】:分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D.4. 下列运算正确的是( )A. B. C. D.[参考答案]:C【试题参考答案解析】:分析:根据同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则、合并同类项的法则分别进行计算即可.详解:A.a3•a2=a5,故原题计算错误;B.(﹣a2)3=﹣a6,故原题计算错误;C.a7÷a5=a2,故原题计算正确;D.﹣2mn﹣mn=﹣3mn,故原题计算错误.故选C.5. 已知一组数据:6,2,8,,7,它们的平均数是6.则这组数据的中位数是()A. 7B. 6C. 5D. 4[参考答案]:A【试题参考答案解析】:分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.详解:由题意得:5+2+8+x+7=6×5,解得:x=8,这组数据按照从小到大的顺序排列为:2,5,7,8,8,则中位数为7.故选A.6. 如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④[参考答案]:A【试题参考答案解析】:分析:根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.详解:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.故选A.7. 如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.[参考答案]:B【试题参考答案解析】:分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0.故选项正确;C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.故选B.8. 分式方程的解为()A. B. C. D. 无解[参考答案]:D【试题参考答案解析】:分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.9. 如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.[参考答案]:A【试题参考答案解析】:分析:连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.详解:连接AC.∵从一块直径为2m的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC.∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2).故选A.10. 给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是( )A. ①③B. ③④C. ②④D. ②③[参考答案]:B【试题参考答案解析】:分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.详解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确.故选B.11. 我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为( )A. 84B. 56C. 35D. 28[参考答案]:B【试题参考答案解析】:分析:根据图形中的规律即可求出(a+b)8的展开式中从左起第四项的系数.详解:找规律发现(a+b)4的第四项系数为4=3+1;(a+b)5的第四项系数为10=6+4;(a+b)6的第四项系数为20=10+10;(a+b)7的第四项系数为35=15+20;∴(a+b)8第四项系数为21+35=56.故选B.12. 如图,等边三角形的边长为4,点是△的中心,.绕点旋转,分别交线段于两点,连接,给出下列四个结论:①;②;③四边形的面积始终等于;④△周长的最小值为6,上述结论中正确的个数是( )A. 1B. 2C. 3D. 4[参考答案]:C【试题参考答案解析】:分析:连接BO,CO,可以证明△OBD≌△OCE,得到BD=CE,OD=OE,从而判断①正确;通过特殊位置,当D与B重合时,E与C重合,可判断△BDE的面积与△ODE的面积的大小,从而判断②错误;由△OBD≌△OCE,得到四边形ODBE的面积=△OBC的面积,从而判断③正确;过D作DI⊥BC于I.设BD=x,则BI=,DI=.由BD=EC,BC=4,得到BE=4-x,IE=.在Rt△DIE中,DE===,△BDE的周长=BD+BE+DE=4+DE,当DE最小时,△BDE的周长最小,从而判断出④正确.详解:连接BO,CO,过O作OH⊥BC于H.∵O为△ABC的中心,∴BO=CO,∠DBO=∠OBC=∠OCB=30°,∠BOC=120°.∵∠DOE=120°,∴∠DOB=∠COE.在△OBD和△OCE中,∵∠DOB=∠COE,OB=OC,∠DBO=∠ECO,∴△OBD≌△OCE,∴BD=CE,OD=OE,故①正确;当D与B重合时,E与C重合,此时△BDE的面积=0,△ODE的面积>0,两者不相等,故②错误;∵O为中心,OH⊥BC,∴BH=HC=2.∵∠OBH=30°,∴OH=BH=,∴△OBC的面积==.∵△OBD≌△OCE,∴四边形ODBE的面积=△OBC的面积=,故③正确;过D作DI⊥BC于I.设BD=x,则BI=,DI=.∵BD=EC,BC=4,∴BE=4-x,IE=BE-BI=.在Rt△DIE中,DE====,当x=2时,DE的值最小为2,△BDE的周长=BD+BE+DE=BE+EC +DE=BC+DE=4+DE,当DE最小时,△BDE的周长最小,∴△BDE的周长的最小值=4+2=6.故④正确.故选C.二、填空题(每题4分,满分24分,将答案填在答题纸上)13. 计算:=__________.[参考答案]:1【试题参考答案解析】:分析:根据有理数的加法解答即可.详解:|﹣2+3|=1.故答案为:1.14. 若是一元二次方程的两个实数根,则=__________.[参考答案]:-3【试题参考答案解析】:分析:根据根与系数的关系即可求出答案.详解:由根与系数的关系可知:x1+x2=﹣1,x1x2=﹣2,∴x1+x2+x1x2=﹣3故答案为:﹣3.15. 如图,为的平分线.,..则点到射线的距离为__________.[参考答案]:3【试题参考答案解析】:分析:过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等可得CF=CM,进而可得答案.详解:过C作CF⊥AO.∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF.∵OC=5,OM=4,∴CM=3,∴CF=3.故答案为:3.16. 如图。

2018年山东省德州市中考数学试题及解析

2018年山东省德州市中考数学试题及解析
A.
8
B.
9
C.
13
D.
15
6.(3分)(2018•德州)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )
A.
35°
B.
40°
C.
50°
D.
65°
7.(3分)(2018•德州)若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是( )
(1)根据图象求y与x的函数关系式;
(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?
23.(10分)(2018•德州)(1)问题
如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.
(2)探究
如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
A.
a<1
B.
a≤4
C.
a≤1
D.
a≥1
8.(3分)(2018•德州)下列命题中,真命题的个数是( )
①若﹣1<x<﹣ ,则﹣2 ;
②若﹣1≤x≤2,则1≤x2≤4
③凸多边形的外角和为360°;
④三角形中,若∠A+∠B=90°,则sinA=cosB.
A.
4
B.
3
C.
2
D.
1
9.(3分)(2018•德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为( )
A.
B.
C.
D.
二、填空题(每小题4分)

2018年山东省德州市中考数学试卷附详细答案(原版+解析版)

2018年山东省德州市中考数学试卷附详细答案(原版+解析版)

2018年山东省德州市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。

1.(2018年山东省德州市)3的相反数是()A.3 B.C.﹣3 D.﹣2.(2018年山东省德州市)下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.3.(2018年山东省德州市)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108D.1.496×1084.(2018年山东省德州市)下列运算正确的是()A.a3•a2=a6 B.(﹣a2)3=a6C.a7÷a5=a2 D.﹣2mn﹣mn=﹣mn5.(2018年山东省德州市)已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A.7 B.6 C.5 D.46.(2018年山东省德州市)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④7.(2018年山东省德州市)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.8.(2018年山东省德州市)分式方程﹣1=的解为()A.x=1 B.x=2 C.x=﹣1 D.无解9.(2018年山东省德州市)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2 D.2πm210.(2018年山东省德州市)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③11.(2018年山东省德州市)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A.84 B.56 C.35 D.2812.(2018年山东省德州市)如图,等边三角形ABC的边长为4,点O是△ABC 的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。

2018年山东省德州市中考数学试卷含答案

2018年山东省德州市中考数学试卷含答案
24.(本小题满分 12 分) 再读教材: 宽与长的比是 5 1 (约为 0.618)的矩形叫作黄金矩形,黄金矩形给我们以协调、 2 匀称的美感.世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形
的设计.下面,我们用宽为 2 的矩形纸片折叠黄金矩形.(提示: MN 2 )
第一步,在矩形纸片一端,利用图 1 的方法折出一个正方形,然后把纸片展平. 第二步,如图 2,把这个正方形折成两个相等的矩形,再把纸片展平.
以 4◆3=
42
+32
=5
.若
x
,
y
满足方程组
4 x
x 2
y y

8, 29,

x◆y=
.
18.如图,反比例函数 y 3 与一次函数 y x 2 在第三象限交于点 A ,点 B 的坐标为 x
3,0 ,点 P 是 y 轴左侧的一点,若以点 A , O , B , P 为顶点的四边形为平行四边形,
25.(本小题满分 14 分)
如图 1,在平面直角坐标系中,直线 y x 1与抛物线 y x2 bx c 交于 A , B 两
点,其中 Am,0 , B4, n ,该抛物线与 y 轴交于点 C ,与 x 轴交于另一点 D .
(1)求 m , n 的值及该抛物线的解析式. (2)如图 2,若点 P 为线段 AD 上的一动点(不与点 A , D 重合),分别以 AP ,DP
(第 24 题)
问题解决:
(1)图 3 中 AB
(保留根号).
(2)如图 3,判断四边形 BADQ 的形状,并说明理由.
(3)请写出图 4 中所有的黄金矩形,并选择其中一个说明理由.
实际操作:

精品解析:山东省德州市2018年中考数学试题(解析版)

精品解析:山东省德州市2018年中考数学试题(解析版)

德州市二○一八年初中学业水平考试数学学试题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3的相反数是()A. 3B.C. -3D.【答案】C【解析】分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.故选C.点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义.2. 下列图形中,既是轴对称又是中心对称图形的是()A. B. C. D.【答案】B【解析】分析:观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.详解:A是中心对称图形;B既是轴对称图形又是中心对称图形;C是轴对称图形;D既不是轴对称图形又不是中心对称图形.故选B.点睛:本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.3. 一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿.用科学记数法表示1.496亿是()A. B. C. D.【答案】D【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列运算正确的是()A. B. C. D.【答案】C【解析】分析:根据同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则、合并同类项的法则分别进行计算即可.详解:A.a3•a2=a5,故原题计算错误;B.(﹣a2)3=﹣a6,故原题计算错误;C.a7÷a5=a2,故原题计算正确;D.﹣2mn﹣mn=﹣3mn,故原题计算错误.故选C.点睛:本题主要考查了同底数幂的乘除法、合并同类项、积的乘方,关键是掌握各计算法则.5. 已知一组数据:6,2,8,,7,它们的平均数是6.则这组数据的中位数是()A. 7B. 6C. 5D. 4【答案】A【解析】分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.详解:由题意得:6+2+8+x+7=6×5,解得:x=7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7.故选A.点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.6. 如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④【答案】A【解析】分析:根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.详解:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.故选A.点睛:本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.7. 如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】B【解析】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0.故选项正确;C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.故选B.点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.8. 分式方程的解为()A. B. C. D. 无解【答案】D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.9. 如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为()A. B. C. D.【答案】A【解析】分析:连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.详解:连接AC.∵从一块直径为2m的圆形铁皮上剪出一个同心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC.∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2).故选A.点睛:本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解答此题的关键.10. 给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.详解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确.故选B.点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.11. 我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【答案】B【解析】分析:根据图形中的规律即可求出(a+b)8的展开式中从左起第四项的系数.详解:找规律发现(a+b)4的第四项系数为4=3+1;(a+b)5的第四项系数为10=6+4;(a+b)6的第四项系数为20=10+10;(a+b)7的第四项系数为35=15+20;∴(a+b)8第四项系数为21+35=56.故选B.学。

18年山东省德州市中考数学试卷及详细答案

18年山东省德州市中考数学试卷及详细答案

2018年山东省德州市中考数学试卷及详细答案2018年山东省德州市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。

1.3的相反数是A.3 B.C.﹣3 D.﹣2.下列图形中,既是轴对称图形又是中心对称图形的是A.B.C.D.3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即亿km,用科学记数法表示亿是A.×107 B.×108 C.×108 D.×108 4.下列运算正确的是A.a3?a2=a6 B.3=a6 C.a7÷a5=a2 D.﹣2mn﹣mn=﹣mn 5.已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是A.7 B.6 C.5 D.4 6.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是A.图①B.图②C.图③D.图④7.如图,函数y=ax2﹣2x+1和y=ax﹣a 在同一平面直角坐标系的图象可能是第1页A.B.C.D.8.分式方程﹣1=D.无解的解为A.x=1 B.x=2 C.x=﹣1 9.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为A.2 B.C.πm2 D.2πm2 10.给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是A.①③B.③④C.②④D.②③11.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式n 的展开式的各项系数,此三角形称为“杨辉三角” 根据”杨辉三角”请计算8的展开式中从左起第四项的系数为第2页A.84 B.56 C.35 D.28 12.如图,等边三角形ABC 的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于周长的最小值为6.上述结论中正确的个数是;④△BDE A.1 B.2 C.3 D.4 二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。

2018年德州市中考数学试卷(含答案解析版)

2018年德州市中考数学试卷(含答案解析版)

2018年山东德州中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。

1.(4分)(2018•德州)3的相反数是()A.3B.13C.﹣3D.﹣132.(4分)(2018•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108D.1.496×1084.(4分)(2018•德州)下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn﹣mn=﹣mn5.(4分)(2018•德州)已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A.7B.6C.5D.46.(4分)(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A .图①B .图②C .图③D .图④7.(4分)(2018•德州)如图,函数y=ax 2﹣2x +1和y=ax ﹣a (a 是常数,且a ≠0)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.(4分)(2018•德州)分式方程x x−1﹣1=3(x−1)(x+2)的解为( ) A .x=1 B .x=2 C .x=﹣1 D .无解 9.(4分)(2018•德州)如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( )A .π2m 2B .√32πm 2 C .πm 2 D .2πm 2 10.(4分)(2018•德州)给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( )A .①③B .③④C .②④D .②③11.(4分)(2018•德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a +b )8的展开式中从左起第四项的系数为( )A .84B .56C .35D .2812.(4分)(2018•德州)如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG=120°,绕点O 旋转∠FOG ,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD=OE ;②S △ODE =S △BDE ;③四边形ODBE 的面积始终等于43√3;④△BDE 周长的最小值为6.上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。

2018年山东省德州市中考数学试卷(含答案与解析)

2018年山东省德州市中考数学试卷(含答案与解析)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山东省德州市2018年初中学业水平考试数 学(考试时间120分钟,满分150分)第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3的相反数是( ) A .3B .13C .3-D .13-2.下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km.用科学记数法表示1.496亿是 ( ) A .71.49610⨯B .814.9610⨯C .80.149610⨯D .81.49610⨯4.下列运算正确的是( )A .326=a a aB .()326a a -=C .752=a a a ÷D .2mn mn mn --=- 5.已知一组数据:6,2,8,x ,7,它们的平均数是6,则这组数据的中位数是 ( ) A .7B .6C .5D .46.如图,将一副三角尺按不同的位置摆放,下列摆放方式中,α∠与β∠互余的是( )(第6题)A .图①B .图②C .图③D .图④7.函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系中的图象可能是( )ABC D8.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解9.如图,从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90︒的扇形,则此扇形的面积为( )A .2m 2πB2mC .2m πD .22m π(第9题)10.给出下列函数:①32y x =-+;②3y x=;③22y x =;④3y x =.上述函数中符合条件“当1x >时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③11.我国南宋数学家杨辉所著的《详解九章算法》一书中,用如图的三角形解释二项式()na b +的展开式的各项系数,此三角形称为“杨辉三角”.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)()()()()()()012345111121 133114641 15101051a b a b a b a b a b a b +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅⋅⋅(第11题)请根据“杨辉三角”计算()8a b +的展开式中从左起第四项的系数为 ( )A .84B .56C .35D .2812.如图,等边三角形ABC 的边长为4,点O 是ABC △的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB ,BC 于D ,E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S =△△;③四边形ODBEBDE △周长的最小值为6.其中正确结论的个数是( )A .1B .2C .3D .4(第12题)第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题4分,共24分)13.计算:23-+= .14.若1x ,2x 是一元二次方程220x x +-=的两个实数根,则1212x x x x ++= .15.如图,OC 为AOB ∠的平分线,CM OB ⊥,5OC =,4OM =,则点C 到射线OA 的距离为 .(第15题)16.如图,在44⨯的正方形方格图形中,小正方形的顶点称为格点,ABC △的顶点都在格点上,则BAC ∠的正弦值是 .(第16题)17.对于实数a ,b ,定义运算“◆”:,,.a b a b ab a b ≥=<⎪⎩◆例如4◆3,因为43>,所以4◆.若x ,y 满足方程组48,229,x y x y -=⎧⎨+=⎩则=x ◆y .18.如图,反比例函数3y x=与一次函数2y x =-在第三象限交于点A ,点B 的坐标为()3,0-,点P 是y 轴左侧的一点,若以点A ,O ,B ,P 为顶点的四边形为平行四边形,则点P 的坐标为 .(第18题)数学试卷 第5页(共28页) 数学试卷 第6页(共28页)三、解答题(本大题共7小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤.)19.(本小题满分8分) 先化简,再求值:2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭,其中x 是不等式组()5331,131922x x x x ⎧->+⎪⎨-<-⎪⎩的整数解.20.(本小题满分10分)某学校为了解全校学生对电视节目的喜爱情况(新闻、体育、动画、娱乐、戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.(第20题)请根据以上信息,解答下列问题: (1)这次被调查的学生共有多少人? (2)请将条形统计图补充完整.(3)若该校约有1 500名学生,请估计全校学生中喜欢娱乐节目的有多少人. (4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁4名学生中选取2名,求恰好选中甲、乙两名学生的概率(用画树状图或列表的方法解答).21.(本小题满分10分)如图,两座建筑物的水平距离BC 为60 m ,从C 点测得A 点的仰角α为53︒,从A 点测得D 点的俯角β为37︒,求两座建筑物的高度.(参考数据:343434s i n 37,c o s 37,t a n 37,s i n 53,c o s 53,t a n 53554553︒≈︒≈︒≈︒≈︒≈︒≈)(第21题)22.(本小题满分12分)如图,AB 是O 的直径,直线CD 与O 相切于点C ,且与AB 的延长线交于点E ,点C 是BF 的中点.(1)求证:AD CD ⊥.(2)若30CAD ∠=︒,O 的半径为3,一只蚂蚁从点B 出发,沿着BE —EC —CB爬回至点B ,求蚂蚁爬过的路程.(结果保留一位小数.参考数据: 1.73π≈≈)(第22题)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________23.(本小题满分12分)为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式.(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10 000万元的年利润,则该设备的销售单价应是多少万元?24.(本小题满分12分)再读教材:宽与长的比是0.618)的矩形叫作黄金矩形,黄金矩形给我们以协调、匀称的美感.世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示:2MN=)第一步,在矩形纸片一端,利用图1的方法折出一个正方形,然后把纸片展平.第二步,如图2,把这个正方形折成两个相等的矩形,再把纸片展平.(第24题)第三步,折出内侧矩形的对角线AB,并把AB折到图3中所示的AD处.第四步,展平纸片,按照所得的点D折出DE,使DE ND⊥,则图4中就会出现黄金矩形.(第24题)问题解决:(1)图3中AB=(保留根号).(2)如图3,判断四边形BADQ的形状,并说明理由.(3)请写出图4中所有的黄金矩形,并选择其中一个说明理由.实际操作:(4)结合图4.请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.25.(本小题满分14分)如图1,在平面直角坐标系中,直线1y x=-与抛物线2y x bx c=-++交于A,B两点,其中(),0A m,()4,B n,该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m,n的值及该抛物线的解析式.(2)如图2,若点P为线段AD上的一动点(不与点A,D重合),分别以AP,DP 为斜边,在直线AD的同侧作等腰直角三角形APM和等腰直角三角形DPN,连接MN,试确定MPN∆面积最大时点P的坐标.(3)如图3,连接BD,CD,在线段CD上是否存在点Q,使得以A,D,Q为顶点的三角形与ABD∆相似?若存在,请直接写出点Q的坐标;若不存在,请说明理由.(第25题)数学试卷第7页(共28页)数学试卷第8页(共28页)数学试卷第9页(共28页)数学试卷第10页(共28页)数学试卷 第11页(共28页) 数学试卷 第12页(共28页)2018年山东省德州市初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】3的相反数是3-. 【考点】相反数. 2.【答案】B【解析】A 项,是中心对称图形.B 项,既是轴对称图形又是中心对称图形.C 项,是轴对称图形.D 项,既不是轴对称图形也不是中心对称图形. 【考点】轴对称图形和中心对称图形的定义. 3.【答案】D【解析】1.496亿8=149600000=1.49610.⨯ 【考点】科学记数法. 4.【答案】C【解析】A 项,325.a a a =B 项,()326.a a -=-C 项,正确.D 项,23.mn mn mn --=-【考点】考查了整式的运算. 5.【答案】A【解析】由平均数是6,得6+2+8++7=65x ⨯,解得7x =.将这组数据按从小到大的顺序排列,为2,6,7,7,8,所以中位数是7. 【考点】平均数,中位数. 6.【答案】A【解析】图①,+=1809090αβ∠∠︒-︒=︒,即α∠与β∠互余.图②,由同角的余角相等,得=αβ∠∠.图③,==18045135.αβ∠∠︒-︒=︒图④,由平角的定义,得+=180αβ∠∠︒.【考点】两角互余的性质及判定. 7.【答案】B【解析】A 项,由抛物线开口向上,知0a >;由直线经过第一、二、四象限,知0a <,不符合题意.B 项,由抛物线开口向上,知0a >,对称轴为10x a=>,在y 轴的右侧;由直线经过第一、三、四象限,知0a >,符合题意.C 项,由抛物线开口向上,知0a >,对称轴为10x a=>,应在y 轴的右侧,不符合题意.D 项,由抛物线开口向下,知0a <;由直线经过第一、三、四象限,知0a >,不符合题意. 【考点】二次函数和一次函数的图象与性质. 8.【答案】D【解析】方程两边同时乘最简公分母()()12x x -+,得()()()2123x x xx +--+=,解得 1.x =检验:当1x =时,()()12=0x x -+,所以1x =是原方程的增根,故原方程无解.【考点】了解分式方程. 9.【答案】A【解析】如图,连接.90,A C A B C A C ∠=︒∴是O 的直径,2m.,45,AC BA BC BAC ==∴∠=︒)sin 2sin 45m .BC AC BAC ∴=∠=⨯︒=()2290m 3602ABC S ππ⨯⨯∴==扇形(第9题)【考点】圆周角的性质、解直角三角形、扇形的面积公式. 10.【答案】B【解析】①32,30,y x k =-+=-<∴当1x >时,y 随x 的增大而减小.②数学试卷 第13页(共28页) 数学试卷 第14页(共28页)3,30,y k x==>∴当1x >时,y 随x 的增大而减小.③22,20,y x a ==>函数图象开口向上,对称轴为y 轴,∴当1x >时,y 随x 的增大而增大.④3,30,y x k ==>∴当1x >时,y 随x 的增大而增大.【考点】一次函数、反比例函数、二次函数的图象的增减性. 11.【答案】B【解析】用“杨辉三角”的规律展开()8a b +,从左起各项系数分别为1,8,28,56,70,56,28,8,1,()8a b ∴+的展开式中从左起第四项的系数为56.【考点】找规律. 12.【答案】C【解析】①如图1,连接,.OB OC 点O 是等边三角形ABC 的中心,,30,120,OB OC DBO OBC ECO BOC ∴=∠=∠=∠=︒∴∠=︒120.120,BOE EOC FOG ∴∠+∠=︒∠=︒()120,.,.BOE DOB DOB EOC DOB EOC ASA OD OE ∴∠+∠=︒∴∠=∠∴≅∴=△△故①正确.(第12题)②如图2,当FOG ∠绕点O 旋转到使,OF AB OG BC ⊥⊥时,2,60,BD BE B BDE ==∠=︒∴△是等边三角形.,OD OE ODE =∴△是等腰三角形.易得22,.ODE BDE S S =△△223,CDE BDE OD DE S S <∴≠△△.故②错误.(第12题)③如图3,连接,OB OC ,过点O 做OH BC ⊥,垂足为点H .,DOB BOE EOC BOE DOB EOC S S S S H ≅∴+=+△△△四边形△△,1., 2.2BOC ODBE S S OH BC HC BC ∆∴=⊥∴==四边形132330,tan 22OCH ACB OHCH OCH ∠=∠=︒∴=∠=⨯=1142233BOC S BC OH ∴==⨯⨯=△故③正确.(第12题)④如图1,,,DOB EOC BD CE BDE ≅∴=∴△△△的周长为4.BD BE DE CE BE DE BC DE DE ++=++=+=+要使BDE △的周长最小,则DE 的长最小.当FOG ∠绕点O 旋转到使,OF AB OG BC ⊥⊥时,垂足分别为点,D E ,如图2,则由垂线段最短可得,OD OE 的长最小,DE ∴的长最小,这时2.BD BE DE BDE ===∴∆周长的最小值为4+42 6.DE =+=故④正确.数学试卷 第15页(共28页) 数学试卷 第16页(共28页)【考点】等边三角形的性质与判定、全等三角形的性质与判定、等边三角形中心的性质、解直角三角形、三角形的面积及求最小值.第Ⅱ卷二.填空题 13.【答案】1【解析】231 1.-+== 【考点】整式的运算及绝对值. 14.【答案】3- 【解析】12,x x 是一元二次方程220x x +-=的两个实数根,12121,2,x x x x ∴+=-=-()121212 3.x x x x ∴++=-+-=-【考点】一元二次方程的根与系数的关系. 15.【答案】3【解析】,5,4,CM OB OC OM ⊥==∴由勾股定理,得 3.CM =根据角平分线上的点到角两边的距离相等,得点C 到射线OA 的距离为3. 【考点】勾股定理、角平分线的性质. 16.【解析】由勾股定理,得2223425AB =+=,2222222420,125AC BC =+==+=,2225,,AB BC AC BC AB ∴==+=ABC∴∆是直角三角形,90,sin BC ACB BAC AB ∠=︒∴∠=【考点】直角三角形的判定、解直角三角形. 17.【答案】60【解析】解方程组48,229,x y x y -=⎧⎨+=⎩得5,12.x y =⎧⎨=⎩560.,12y x x y x y <∴==⨯=◆【考点】了解二元一次方程组及对新定义的阅读理解.18.【答案】()4,3--或()2,3-【解析】解3,2,y x y x ⎧=⎪⎨⎪=-⎩得12121,3,3, 1.x x y y =-=⎧⎧⎨⎨=-=⎩⎩()1,3.A ∴--()3,0, 3.B OB -∴=如图1,当OB 是平行四边形的一边时,则3,,AP OB AP OB ==∴∥点P 到y 轴的距离是1+3=4或312,-=∴点P 的坐标为()4,3--或()2,3-.点P 在y 轴左侧,()4,3.P ∴--(第18题)如图2,当OB 是平行四边形的对角线时,过点A 作AC OB ⊥,过点P 作PD OB ⊥,垂足分别为点C ,D .()1,3A --,()1, 3.3,0, 3.OC AC B OB ∴==-∴=四边形OABP 是平行四边形,,.,.PB AO OP BA BO OB PBO AOB ∴===∴∆≅∆由全等三角形对应高相等,得 3.,PD AC PB AO ===,1,312Rt PBD Rt AOC BD OC OD OB BD ∴≅∴==∴=-=-=△△,()2,3.P ∴-(第18题)【考点】求图象交点的坐标,平行四边形的性质及全等三角形的判定与性质. 三、解答题数学试卷 第17页(共28页) 数学试卷 第18页(共28页)19.【答案】解:原式()()()21311=113111=111.1x x x x x x x x x x x x x +--⎛⎫-+ ⎪-+---⎝⎭+---=- 解不等式组:()533113192.2x x x x ⎧->+⎪⎨-<-⎪⎩①,② 解不等式①,得3x >.解不等式②,得5x <.∴不等式组的解集是35x <<.x 是整数,∴=4.x 原式11==4-13. 【解析】解:原式()()()21311=113111=111.1x x x x x x x x x x x x x +--⎛⎫-+ ⎪-+---⎝⎭+---=- 解不等式组:()533113192.2x x x x ⎧->+⎪⎨-<-⎪⎩①,② 解不等式①,得3x >.解不等式②,得5x <.∴不等式组的解集是35x <<.x 是整数,∴=4.x 原式11==4-13. 20.【答案】(1)从喜欢动画节目人数可得1530%=50÷(人). 答:这次被调查的学生共有50人. (2)5041518310----=(人) 补全条形统计图如图所示.(第20题)(3)181500=54050⨯(人). 答:估计全校学生中喜欢娱乐节目的有540人.(4)列表如下:(画树状图法略)由列表可知,共有12种结果,且每种结果出现的可能性相同,其中恰好选中甲、乙两名学生的结果有2种,P ∴(恰好选中甲、乙两名学生)21==.126【解析】(1)从喜欢动画节目人数可得1530%=50÷(人). 答:这次被调查的学生共有50人.(2)5041518310----=(人)数学试卷 第19页(共28页) 数学试卷 第20页(共28页)补全条形统计图如图所示.(第20题)(3)181500=54050⨯(人). 答:估计全校学生中喜欢娱乐节目的有540人. (4)列表如下:(画树状图法略)由列表可知,共有12种结果,且每种结果出现的可能性相同,其中恰好选中甲、乙两名学生的结果有2种,P ∴(恰好选中甲、乙两名学生)21==.12621.【答案】解:如图,过点D 作DE AB ⊥交AB 于点E ,则=60m.DE BC =4=53tan53,3α︒︒,在Rt ABC ∆中,tan ,AB BC α=4,3AB BC ∴=即4,603AB =解得80m.AB =又337,tan37,4ADE β∠==︒︒≈在Rt ADE ∆中,3tan ,,4AE AE ADE DE DE ∠=∴=即3,604AE =解得45AE =,80B EA B A E B E =-∴=-=(),C D B E =35CD ∴= 答:建筑物AB 的高度为80m ,建筑物CD 的高度为35m .【解析】如图,过点D 作DE AB ⊥交AB 于点E ,则=60m.DE BC =4=53tan53,3α︒︒,在Rt ABC ∆中,tan ,AB BC α=4,3AB BC ∴=即4,603AB =解得80m.AB =又337,tan37,4ADE β∠==︒︒≈在Rt ADE ∆中,3tan ,,4AE AE ADE DE DE ∠=∴=即3,604AE =解得45AE =,80B EA B A E B E =-∴=-=(),C D B E=35CD ∴= 答:建筑物AB 的高度为80m ,建筑物CD 的高度为35m . 22.【答案】(1)证明:如图,连接.OC(第22题)∵直线CD 是O 的切线 ∴OC CD ⊥. ∴=90OCE ∠.∵点C 是BF 的中点. ∴CAD CAB ∠=∠ ∵OA OC =, ∴CAB ACO ∠=∠ ∴CAD ACO ∠=∠ ∴AD CO ∥∴==90ADC OCE ∠∠, ∴AD CD ⊥(2)解:∵=30CAD ∠, ∴=30CAB ACO ∠-∠ ∴+60COE CAB ACO ∠=∠∠= ∵直线CD 是O 的切线 ∴OC CD ⊥ ∴=90OCE ∠∴180906030E ∠-︒︒=-= ∵3OC = ∴2=6OE OC - ∴=3BE OE OB =-在Rt OCE △中,由勾股定理,得:CE ===.BC 的长603.180l ππ⨯⨯==∴蚁蚂爬过的路程为11.3.π≈ 【解析】(1)证明:如图,连接.OC(第22题)∵直线CD 是O 的切线 ∴OC CD ⊥. ∴=90OCE ∠. ∵点C 是BF 的中点.∴CAD CAB ∠=∠ ∵OA OC =, ∴CAB ACO ∠=∠ ∴CAD ACO ∠=∠ ∴AD CO ∥∴==90ADC OCE ∠∠, ∴AD CD ⊥(2)解:∵=30CAD ∠, ∴=30CAB ACO ∠-∠ ∴+60COE CAB ACO ∠=∠∠= ∵直线CD 是O 的切线 ∴OC CD ⊥ ∴=90OCE ∠∴180906030E ∠-︒︒=-= ∵3OC = ∴2=6OE OC - ∴=3BE OE OB =-在Rt OCE △中,由勾股定理,得:CE .BC 的长603.180l ππ⨯⨯==∴蚁蚂爬过的路程为11.3.π≈23.【答案】(1)∵此设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系,∴可设()0y kx b k =+≠.根据题意,得40600,45550,k b k b +-⎧⎨+=⎩解得:10,1000,k b =-⎧⎨=⎩∴年销售量y 与销售单价x 的函数关系式是101000.y x =-+ (2)∵此设备的销售单价是x 万元,成本价是30方元, ∴该设备的单件利润为()30x -万元. 由题意,得()()3010100010000x x --+= 解得:12=80,=50.x x∵销售单价不得高于70万元,即70x ≤, ∴180x =不符合题意,舍去.∴50.x =答:该公可若想获得10 000万元的年利润,则该设备的销售单价应是50万元. 【解析】(1)∵此设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系,∴可设()0y kx b k =+≠.根据题意,得40600,45550,k b k b +-⎧⎨+=⎩解得:10,1000,k b =-⎧⎨=⎩∴年销售量y 与销售单价x 的函数关系式是101000.y x =-+ (2)∵此设备的销售单价是x 万元,成本价是30方元, ∴该设备的单件利润为()30x -万元. 由题意,得()()3010100010000x x --+= 解得:12=80,=50.x x∵销售单价不得高于70万元,即70x ≤, ∴180x =不符合题意,舍去.∴50.x =答:该公可若想获得10 000万元的年利润,则该设备的销售单价应是50万元. 24.【答案】(1(2)四边形BADQ 是菱形. 理由如下:∵四边形ACBF 是矩形, ∴BQ AD ∥ ∴=BQA QAD ∠∠由折叠的性质,得=,BAQ QAD AB AD ∠∠=,∴,BQA BAQ ∠=∠ ∴.BQ AB = ∴,BQ AD = ∴,BQ AD ∥∴四边形BADQ 是平行四边形. 又∵AB AD =, ∴BADQ 是菱形.(3)图4中的黄金矩形有矩形BCDE 、矩形MNDE . 以黄金矩形BCDE 为例,理由如下:∵1,AD AB AN AC ===∴1CD AD AC =-,又∵2BC =.∴CD BC -∴矩形BCDE 是黄金矩形.(4)如图,在矩形BCDE 上添加线段GH ,使四边形 G CDH 为正方形,此时四边形BGHE 为所要作的黄金矩形,长1GH ,宽3HE =(第24题))1,213DH GH CD HE DE DH ∴==∴=-=-=HE GH ∴==∴矩形BGHE 是黄金矩形. 【解析】(1)由题意,得12,1,90,2BM MN AF BF BM AFB AB =====∠=︒∴===(2)四边形BADQ 是菱形. 理由如下:∵四边形ACBF 是矩形,∴BQ AD ∥ ∴=BQA QAD ∠∠由折叠的性质,得=,BAQ QAD AB AD ∠∠=, ∴,BQA BAQ ∠=∠ ∴.BQ AB = ∴,BQ AD = ∴,BQ AD ∥∴四边形BADQ 是平行四边形. 又∵AB AD =, ∴BADQ 是菱形.(3)图4中的黄金矩形有矩形BCDE 、矩形MNDE . 以黄金矩形BCDE 为例,理由如下:∵1,AD AB AN AC ===∴1CD AD AC =-=,又∵2BC =.∴12CD BC -. ∴矩形BCDE 是黄金矩形.(4)如图,在矩形BCDE 上添加线段GH ,使四边形 G CDH 为正方形,此时四边形BGHE 为所要作的黄金矩形,长1GH ,宽3HE =(第24题)51CD =,四边形GCDH 是正方形,DH G∴=)1,213DH GH CD HE DE DH ∴==∴=-=-=1.2HE GH ∴=∴矩形BGHE 是黄金矩形. 25.【答案】(1)把点,0A m ()、4,B n ()代入1y x =-得1, 3.m n ==∴()()1,0,4,3.A B∵抛物线2y x bx c =-++过点A 、B ,∴10,1643,b c b c -++=⎧⎨-++=⎩解得:6,5,b c =⎧⎨=-⎩∴该抛物线的解释式为26 5.y x x =-+-(2)如图1,∵APM △和DPN △为等直角三角形,∴=45,APM DPN ∠∠= ∴90,MPN ∠= ∴MPN △为直角三角形.令2650x x -+-=,解得:121, 5.x x == ∴()5,0, 4.D AD = 设AP k =,则4,DP k =-,PM)4.PN k =-∴)11422MPN S PM PN k ∆==⨯- =214k k -+=()21214k --+ ∴当2k =,即2AP =时,MPN S ∆最大,此时3OP =,∴()3,0.P(3)存在,点Q 坐标为23(,-)或7833⎛⎫ ⎪⎝⎭,-. 【解析】(1)把点,0A m ()、4,B n ()代入1y x =-得1, 3.m n == ∴()()1,0,4,3.A B∵抛物线2y x bx c =-++过点A 、B ,∴10,1643,b c b c -++=⎧⎨-++=⎩解得:6,5,b c =⎧⎨=-⎩∴该抛物线的解释式为26 5.y x x =-+-(2)如图1,∵APM △和DPN △为等直角三角形,∴=45,APM DPN ∠∠= ∴90,MPN ∠= ∴MPN △为直角三角形.令2650x x -+-=,解得:121, 5.x x == ∴()5,0, 4.D AD = 设AP k =,则4,DP k =-,PM)4.PN k =-∴)11422MPN S PM PN k ∆==⨯- =214k k -+=()21214k --+ ∴当2k =,即2AP =时,MPN S ∆最大,此时3OP =,∴()3,0.P (3)存在,点Q 坐标为23(,-)或7833⎛⎫ ⎪⎝⎭,-.。

2018山东省德州市中考数学试题(卷)(含答案版)

2018山东省德州市中考数学试题(卷)(含答案版)

2018年中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。

1.(4分)(2018•)3的相反数是()A.3 B.13C.﹣3 D.﹣132.(4分)(2018•)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(4分)(2018•)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108 D.1.496×1084.(4分)(2018•)下列运算正确的是()A.a3•a2=a6 B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn﹣mn=﹣mn5.(4分)(2018•)已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A.7 B.6 C.5 D.46.(4分)(2018•)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④7.(4分)(2018•)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.(4分)(2018•)分式方程x x−1﹣1=3(x−1)(x+2)的解为( ) A .x=1 B .x=2 C .x=﹣1 D .无解9.(4分)(2018•)如图,从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( )A .π2m 2B .√32πm 2 C .πm 2 D .2πm 2 10.(4分)(2018•)给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( )A .①③B .③④C .②④D .②③ 11.(4分)(2018•)我国南宋数学家辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a +b )n 的展开式的各项系数,此三角形称为“辉三角”根据”辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A.84 B.56 C.35 D.2812.(4分)(2018•)如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE =S△BDE;③四边形ODBE的面积始终等于43√3;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年山东德州中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。

1. (4分)(2018?德州)3的相反数是()1 1A. 3B.C. - 3D.-2. (4分)(2018?德州)下列图形中,既是轴对称图形又是中心对称图形的是()B.3. (4分)(2018?德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即 1.496亿km,用科学记数法表示1.496 亿是()A. 1.496X 107B. 14.96 X 108C. 0.1496X 108 D . 1.496X 1084 . (4分)(2018?德州)下列运算正确的是()A . a3?a2=a6B . (- a2)3=aC . a7*a5=a2D. - 2mn—mn=—mn5. (4分)(2018?德州)已知一组数据:6, 2,8, x,7,它们的平均数是6,则这组数据的中位数是()A . 7B . 6 C. 5 D . 46 . (4分)(2018?德州)如图,将一副三角尺按不同的位置摆放,下列方式中/ a与/B互余的是()7. (4分)(2018?德州)如图,函数y=aX^- 2x+1和y=ax- a(a是常数,且a^ 0)在同一平面直角坐标系的图象可能是()A. x=1B. x=2C. x=- 1D.无解9. (4分)(2018?德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()x8. (4分)(2018?德州)分式方程': 1=、_ 「- ■:的解为(BC. nmD. 2 nm310. (4分)(2018?德州)给出下列函数:①y=-3x+2;②y=;③y=2x?;④y=3x,上述函数中符合条作当x> 1时,函数值y随自变量x增大而增大的是()A.①③B.③④ C•②④ D.②③11. (4分)(2018?德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为杨辉三角” (1).....i j(fl+A1) *■*■**■ *•**■*]2 11...... * 131 1(tf+A)*…… 1 4 6 4 15册尸… 1 s1010 5根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 2812. (4分)(2018?德州)如图,等边三角形ABC的边长为4,点O是厶ABC的中心,/ FOG=120,绕点O旋转/ FOG 分别交线段AB BC于D、E两点,连接DE,给出下列四个结论:①OD=OE②S A ODE=S X BDE;③四边形ODBE的面积始终等于::④厶BDE周长的最小值为6 .上述结论中正确的个数是()A. 1B. 2C. 3D. 4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。

13. (4 分)(2018?德州)计算:| - 2+3|= _____ .14. (4分)(2018?德州)若x i, X2是一元二次方程x2+x-2=0的两个实数根,则X1+X2+X1X2 = ____ .15. (4 分)(2018?德州)如图,OC为/AOB的平分线,CM丄OB, OC=5,OM=4,则点C到射线OA的距离为_______ .16. (4分)(2018?德州)如图,在4X4的正方形方格图形中,小正方形的顶点称为格点,△ ABC的顶点都在格点上,则/ BAC的正弦值是_______ .+ a>b 17. (4分)(2018?德州)对于实数a, b,定义运算♦”:a・b= 叭a<b1—— -- | 4尤—y = 8例如4・3,因为4> 3.所以4・3d" + ^=5.若x, y满足方程组"十刘=29贝U x・y= ____ .318. (4分)(2018?德州)如图,反比例函数y与一次函数y=x-2在第三象限交于点A,点B的坐标为(-3, 0),点P是y轴左侧的一点,若以A, O, B, P为顶点的四边形为平行四边形,则点P的坐标为 ________ .三、解答题:本大题共7小题,共78分。

解答要写出必要的文字说明、证明过程或演算步骤x — 3 x — 3 ]~2 - ~2 ----------------------------------------19. (8分)(2018?德州)先化简,再求值尤—1十x + l —(兀—1+1),其rSx —3A3Q C+ 1)1 3-X- K9--X中x是不等式组…的整数解.20. (10 分)(2018?德州)某学校为了解全校学生对电视节目的喜爱情况(新闻, 体育,动画,娱乐,戏曲),从全校学生中随机抽取部分学生进行问卷调查,并请根据以上信息,解答下列问题:(1)这次被调查的学生共有多少人?(2)请将条形统计图补充完整;(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)21. (10分)(2018?德州)如图,两座建筑物的水平距离BC为60m,从C点测得A点的仰角a为53°从A点测得D点的俯角B为37°,求两座建筑物的高度3 4 3 4 3(参考数据:sin37 ° ',cos37 事,tan37 °~,sin53,',cos53 °~ ',tan5322. (12分)(2018?德州)如图,AB是。

O的直径,直线CD与。

O相切于点C,(1)求证:AD丄CD;(2)若/ CAD=30,O O的半径为3, 一只蚂蚁从点B出发,沿着BE- EC-;回至点B,求蚂蚁爬过的路程(n~3.14, 1.73,结果保留一位小数)且与AB的延长线交于点E,点C是引' 的中点.B C23. (12分)(2018?德州)为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时, 年销售量为550台•假定该设备的年销售量y (单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?24. (12分)(2018?德州)再读教材:75-1宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计,下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示:MN=2)第一步,在矩形纸片一端,利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB,并把AB折到图①中所示的AD处.第四步,展平纸片,按照所得的点D折出DE,使DE丄ND,贝昭④中就会出现黄金矩形.图④问题解决:(1)图③中AB= _____ (保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.实际操作(4)结合图④,请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.25. (14分)(2018?德州)如图1,在平面直角坐标系中,直线y=x- 1与抛物线y=-x2+bx+c交于A、B两点,其中A (m,0)、B (4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP 为斜边,在直线AD的同侧作等腰直角△ APM和等腰直角△ DPN,连接MN,试确定△ MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.2018年山东省德州市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分1. (4分)(2018?德州)3的相反数是()1 1A. 3B.C. - 3D.-【考点】14:相反数.【分析】根据相反数的定义,即可解答.【解答】解:3的相反数是-3,故选:C.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.(4分)(2018?德州)下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【考点】R5:中心对称图形;P3:轴对称图形.【专题】558:平移、旋转与对称.【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解:A是中心对称图形;B既是轴对称图形又是中心对称图形;C是轴对称图形;D既不是轴对称图形又不是中心对称图形.故选: B.【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.3.(4 分)(2018?德州)一年之中地球与太阳之间的距离随时间而变化,1 个天文单位是地球与太阳之间的平均距离,即 1.496亿km,用科学记数法表示1.496 亿是()A. 1.496X 107B. 14.96 X 108C. 0.1496X 108 D . 1.496X 108【考点】11:科学记数法一表示较大的数.【专题】 1 :常规题型.【分析】科学记数法的表示形式为a x 10n的形式,其中K |a| v 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n 是负数.【解答】解:数据 1.496亿用科学记数法表示为 1.496X108,故选: D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a X10n的形式,其中K | a| v 10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4 分)(2018?德州)下列运算正确的是(A、a3?a2=a6 B. (- a2)3=『C. a a5=a2 D.- 2mn-mn=-mn【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【专题】1 :常规题型.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减;合并同类项的法则: 把同类项的系数相加,所得结果作为系数,字母和字母的指数不变分别进行计算即可.【解答】解:A、a3?a2=a5,故原题计算错误;B、(-a2)3=- a6,故原题计算错误;C、a7* a5=2?,故原题计算正确;D、 - 2mn-mn= - 3mn,故原题计算错误;故选:C.【点评】此题主要考查了同底数幂的乘除法、合并同类项、积的乘方,关键是掌握各计算法则.5. (4 分)(2018?德州)已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A. 7B. 6C. 5D. 4【考点】W4:中位数;W1:算术平均数.【专题】54:统计与概率.【分析】首先根据平均数为6求出x的值,然后根据中位数的概念求解.【解答】解:由题意得6+2+8+x+7=6X 5,11 / 39解得:x=7,这组数据按照从小到大的顺序排列为:2, 6, 7, 7, 8, 则中位数为7.故选:A.【点评】本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.6. (4分)(2018?德州)如图,将一副三角尺按不同的位置摆放,下列方式中/ a 与/B互余的是()图/ 閨②图③图④A.图①B.图②C.图③D.图④【考点】IL:余角和补角.【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【解答】解:图①,/ a+Z B =180- 90°互余; 图②,根据同角的余角相等,/ a= B;图③,根据等角的补角相等Z a= B;图④,Z a+Z B =180;互补.故选:A.【点评】本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.7. (4分)(2018?德州)如图,函数y=aX^- 2x+1和y=ax- a(a是常数,且a^ 0)在同一平面直角坐标系的图象可能是()C【考点】H2:二次函数的图象;F3: —次函数的图象.【专题】1 :常规题型.【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.【解答】解:A、由一次函数y=ax- a的图象可得:a v0,此时二次函数y=aX2 -2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax- a的图象可得:a>0,此时二次函数y=ax^-2x+1的图象应-2该开口向上,对称轴x=- •: >0,故选项正确;C、由一次函数y=ax- a的图象可得:a>0,此时二次函数y=a«-2x+1的图象应-2该开口向上,对称轴x=-人>0,和x轴的正半轴相交,故选项错误;D、由一次函数y=ax-a的图象可得:a>0,此时二次函数y=ax^-2x+1的图象应该开口向上,故选项错误.故选:B.【点评】本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax- a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.8. (4分)(2018?德州)分式方程:- 1=:门的解为()A. x=1B. x=2C. x=- 1D.无解【考点】B2:分式方程的解.【专题】11 :计算题;522:分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:«+2x- x2-x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选:D.【点评】此题考查了分式方程的解,始终注意分母不为0这个条件.9. (4分)(2018?德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()C. nmD. 2 nm【考点】MO:扇形面积的计算.【专题】1 :常规题型.【分析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB, 根据扇形面积公式求出即可.【解答】解:连接AC,•••从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,即/ ABC=90 , ••• AC为直径,即AC=2m, AB=BC••• AB2+BC?=22,••• AB=BC=】m,90TT x (JZ)2 1•••阴影部分的面积是!一」(m2),故选:A.【点评】本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解此题的关键.310. (4分)(2018?德州)给出下列函数:①y=-3x+2;②y=;③y=2«;④y=3x,上述函数中符合条作当x> 1时,函数值y随自变量x增大而增大的是()A.①③ B.③④ C•②④ D.②③【考点】G4:反比例函数的性质;F5: —次函数的性质;F6:正比例函数的性质;H3:二次函数的性质.【专题】1 :常规题型.【分析】分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.【解答】解:①y=-3x+2,当x> 1时,函数值y随自变量x增大而减小,故此选项错误;3②y=,当x> 1时,函数值y随自变量x增大而减小,故此选项错误;③y=?x,当x> 1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x> 1时,函数值y随自变量x增大而减小,故此选项正确;故选:B.【点评】此题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题关键.11. (4分)(2018?德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为杨辉三角” (1)(£1^5)* (i1)2ICtf+A)*** 1331(□+*)*.................. 1 4 6 4 )a祐)j i s1010 5根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【考点】4C:完全平方公式;10:数学常识.【专题】2A :规律型.【分析】根据图形中的规律即可求出(a+b)8的展开式中从左起第四项的系数. 【解答】解:找规律发现(a+b)4的第四项系数为4=3+1;(a+b)5的第四项系数为10=6+4;(a+b)6的第四项系数为20=10+10;(a+b)7的第四项系数为35=15+20;•••(a+b)8第四项系数为21+35=56.故选:B.【点评】此题考查了数字变化规律,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.12. (4分)(2018?德州)如图,等边三角形ABC的边长为4,点O是厶ABC的中心,/ FOG=120,绕点O旋转/ FOG 分别交线段AB BC于D、E两点,连接DE,给出下列四个结论:①OD=OE②S A OD E=S X BDE;③四边形ODBE的面积始4 L终等于’:④厶BDE周长的最小值为6 .上述结论中正确的个数是()A. 1B. 2C. 3D. 4【考点】R2:旋转的性质;J4:垂线段最短;KD:全等三角形的判定与性质;KK等边三角形的性质.【专题】11 :计算题.【分析】连接OBOC,如图,利用等边三角形的性质得/ ABO=Z OBC=/ OCB=30, 再证明/ BOD=Z COE于是可判断△ BOD^A COE所以BD=CE OD=OE则可1 4厂- -73对①进行判断;利用S\BOC F S X COE得到四边形ODBE的面积=S\ABC=:,则可对I③进行判断;作OH丄DE,如图,贝U DH=EH计算出S A ODE F: OE2,利用S A ODE随OE 的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△ BDE的周长=BGDE=牛DE=牛「OE根据垂线段最短,当OE丄BC时,OE最小,△ BDE的周长最小,计算出此时OE的长则可对④进行判断.【解答】解:连接OB、OC,如图,•••△ ABC为等边三角形,•••/ ABC=/ ACB=60,•••点O是厶ABC的中心,•••OB=OC OB OC分别平分/ ABC和/ACB•••/ ABO=/ OBC=/ OCB=30•••/BOC=120,即/ BOE F/COE=120,而/ DOE=120,即/ BOE F/BOD=120 ,•••/ BOD F Z COE在厶BOD和厶COE中[LBOD = LCOEBO = CO/L OBD=J LOCE••• BD=CE OD=OE所以①正确;二S BOC F S^COE,--加•••四边形ODBE的面积=S OBC=S^ABC= X X 42=:,所以③正确; 作OH丄DE,如图,贝U DH=EHvZ DOE=120,•/ ODE=/ OEH=30,1 @•OH=OE, HE= :OH=:OE,•DE= :OE,£ 1 J3•S ODE= ? OE? ‘OE= OE2,即&ODE随OE的变化而变化,而四边形ODBE的面积为定值,•S ODE M S BDE;所以②错误;v BD=CE•△ BDE的周长=BD+BE+DE=CEBE+DE=BGDE=¥DE=4H ' OE, 当OE丄BC时,OE最小,△ BDE的周长最小,此时OE=', •△ BDE周长的最小值=4+2=6,所以④正确.故选:C.0 I-' iiF B ----------- ----- CG【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。

相关文档
最新文档