(完整版)二次根式复习.doc

合集下载

最新九年级数学必考要点分类汇编完整版《二次根式》复习

最新九年级数学必考要点分类汇编完整版《二次根式》复习

二次根式复习【知识回顾】1.二次根式:式子a(a≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)(a)2=a(a≥0);5.二次根式的运算:⑴二次根式的加减运算:先把二次根式化成最简二次根式,然后合并同类二次根式即可。

⑵二次根式的乘除运算:①ab=ba∙(a≥0,b≥0);②()0,0>≥=bababa【基础训练】1.化简:(1__ _;(2=_ __;(3__ _;(40,0)x y≥≥=___ _;(5)_______420=-。

2. 化简:(1) (宁夏)825-= ;(2)(黄冈)=_____ _;(3)(大庆);(4)(荆门)=________;(5)(厦门).(6).的倒数是。

3. (聊城)下列计算正确的是()A.B.39=-C.D.4.(中山)已知等边三角形ABC的边长为33+,则ΔABC的周长是____________;5.6. (黑龙江)函数中,自变量的取值范围是.7.下列二次根式中,x的取值范围是x≥2的是()A、2-xB、x+2C、x-2D、1x-28.(荆州)下列根式中属最简二次根式的是()9.下列各组二次根式中是同类二次根式的是()A.2112与B.2718与C.313与D.5445与10.(08,乐山)已知二次根式与是同类二次根式,则的α值可以是()A、5B、6C、7D、811.(大连)若baybax+=-=,,则xy的值为()A.a2B.b2C.ba+D.ba-12.(遵义)若20a-=,则2a b-=.13.的点可能是()A.点P B.点Q C.点M D.点N14.计算:(1)(长春)(2)==aa2a(a>0)a-(a<0)0 (a=0);(3)(上海). (4)(庆阳).15.先将2x -x 值,代入化简后的式子求值。

(完整版)复合二次根式

(完整版)复合二次根式

知识要点1•重二次根式:如果二次根式的被开方数(式)中含有二次根式,这样的式子叫做重二次根式。

如J3 返,J8 卩2 .化简重二次根式对于重二次根式70—2&,设法找到两个正数x、y( x > y)使x y a , xy b , 则J a 27b J仮Q 斥迥典型例题例1化简J3 2运J3 272b JJ1992 ,a b JJ1992 V l991,那么ab 的值是例2 已知a多少?13例3化简(35 8丁7 伍化简M $8 J40 8^5 〈8J40 8^5。

化简J ii 21 75 1 77 。

求满足J—3/3 x J y的有序有理数对(X, y)V 4练习题1. J6 735 J6 735 的值为(A .万75 B.714 c. 14722 .代数式J8寸63 48 463的值是(A. 3^2 B . 2屈C. 542D. 2丿53. J3 2 血的值等于A. 43 42B. 43 1 c. 73 血D. 42 i4.如果x y J A/S—5迈,x y J772—5/3,那xy 的值是()。

A. 3j3 3恵B. 3屈3丘C. 7j3 5^2D. 7^2 5^35.化简J8 ^/15得A . 3 —75B .5—75C .75 -73D .73 —757 .计算J2 罷^2 73 J3 2/2 ^3 2^2 。

6 .化简J4 415415 2』3757 .计算J2 罷^2 73 J3 2/2 ^3 2^2 。

9. J4 2^3 J4 273 8.』27 10运。

10.』6 21 J5 1 2丟11. J7 J T5J I6 2715。

12. J8 J28 与』6 J20。

13. J3 J5 73 75 与。

14.415J6 435与J5 721 。

15.化简2 J75 2 JV5 116.化简: J4 21 血1 73。

17.化简:Q I5 2J5 12J3 2血18 .若有理数a、b满足J a 750 b ,试求a、b的值。

二次根式知识点总复习含答案

二次根式知识点总复习含答案

二次根式知识点总复习含答案一、选择题1.a 的取值范围为() A .0a >B .0a <C .0a =D .不存在 【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0. 所以a=0.故选C .2.已知n n 的最小值是( )A .3B .5C .15D .45【答案】B【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n 的最小值为5.故选:B .【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.3. )A .±3B .-3C .3D .9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.4.若x 、y 4y =,则xy 的值为( )A .0B .12C .2D .不能确定 【答案】C 【解析】 由题意得,2x −1⩾0且1−2x ⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.5.若m 与18是同类二次根式,则m 的值不可以是( )A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】【分析】 将m 与18化简,根据同类二次根式的定义进行判断. 【详解】解:18=32A. 18m =时,12==84m ,是同类二次根式,故此选项不符合题意; B. 4m =时,=2m ,此选项符合题意C. 32m =时,=32=42m ,是同类二次根式,故此选项不符合题意;D. 627m =时,62==273m ,是同类二次根式,故此选项不符合题意 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.6.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】.7.的结果是 A .-2B .2C .-4D .4【答案】B【解析】22=-=故选:B8.有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.9.已知n 是一个正整数,135n 是整数,则n 的最小值是( ). A .3 B .5 C .15 D .25 【答案】C 【解析】【分析】 【详解】解:135315n n =,若135n 是整数,则15n 也是整数,∴n 的最小正整数值是15,故选C .10.50·a 的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到52a ,再根据条件确定正整数a 的最小值即可.【详解】∵50·a =50a =52a 是一个整数,∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.11.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 12.有意义时,a的取值范围是()A.a≥2B.a>2 C.a≠2D.a≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a﹣2≥0,解得:a≥2,根据分式有意义的条件:a﹣2≠0,解得:a≠2,∴a>2.故选B.13.a的取值范围是()A.a>1 B.a≥1C.a=1 D.a≤1【答案】B【解析】【分析】根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.下列二次根式中,属于最简二次根式的是()A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.15.在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.16.下列二次根式是最简二次根式的是( )A B C D【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含分母,故A 不符合题意;B 、被开方数含开的尽的因数,故B 不符合题意;C 、被开方数是小数,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意. 故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17.实数,a b ||a b + )A .2a -B .2b -C .2a b +D .2a b - 【答案】A【解析】【分析】 2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】 解:0,,a b a b <<>0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.18.下列运算正确的是( )A 532=B 822=C 114293=D ()22525-=-【答案】B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】 A .532≠A 错误; B .8222-2=2=,故B 正确;C .137374=993=,故C 错误; D .()225255-2-=,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.19.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3 【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.20.下列计算正确的是( )A 6=B =C .2=D 5=- 【答案】B【解析】【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A ====C.=,此选项计算错误;5=,此选项计算错误;故选:B .【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.。

《二次根式》知识点总结-题型分类-复习专用.doc

《二次根式》知识点总结-题型分类-复习专用.doc

《二次根式》题型分类知识点一:二次根式的概念 【知识要点】二次根式的定义:形如五的戎子叫二次根式,其中么叫被开 方数,只有当么是一个非负数时,石才有意义.【典型例题】题型一:二次根式的判定【例1】下列各式1)卫,2)底,3)-存714)扬,5)』(-A 6)举一反三:1、 使代数式有意义的X 的取值范围是x-4( )A 、x>3 B. x > 3C 、 x>4D 、 x 》3且XH 42、 若式子丁鼻有意义,则x 的取值范围\l x — 3是 _____________ .题型去二次根式定义的运用【例 31 若 y= Qx-5 +』5-x ,则 x+y= _______________7)J/著换三:若x 、y 都是实数,且yr 求xy 的值1、下列各式中,一定是二次根式的是( )A 、乔B 、V^IOC 、yfa + lD 、题型二:二次根式有意义【例2】J 兀-2有意义的x 的取值范围是 ---------已知a 是亦整数部分,b 是 亦的小数部分, 求a-b 的值。

V5V 3,其中是二次根式的是 ------------ (填序号). 举一反三: 2、在丽、Vl + x 2 、的中是二次根式的个数有 ------- 个3、当。

取什么值时,代数式血 + 1+1取值最小, 并求出这个最小值。

知识点二:二次根式的性质【知识要点】1.非负性:V^(a>0)是一个非负数.2. (V^)2 =a(a>0).注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全 平方的形式:a = (7a)2(a>0)4.公式=\a\=l a^~^ 与(Va)2 =a(a>0)的区别与联系-a(a < 0)(1) 品表示求一个数的平方的算术根,a 的范围是一切实数. (2) (需尸表示一个数的算术平方根的平方,a 的范围是非负数. (3) Q 和(石尸的运算结果都是非负的.【典型例题】題型二:二次根式的牲廣2(公式(石)2二a(a > 0)的运用)注意:此性质可作公式记住,后面根式运算中经常用到.f 例5】化简:卜一1| + (丁^二5)2的结果为()A 、4-2aB 、0C 、2a —4D 、4举一反三:在实数范围内分解因式:才-3二 _________________ ; 題型去二次根式餉濒3(公式7^? = |a| = J a(a ~0)的应用)注意:(1)字母不一定是正数.-a(a < 0)(2) 能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3) 可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.f 例6】已知x<2,则化简J(x —2)2的结果是A % x — 2B 、兀+ 2C. —X — 2D. 2 — x3.=|a|= <a(a > 0)-a(a < 0)举一反三:1、根式J(-3)2的值是()A. -3B. 3 或-3C. 3D. 9那么|疑-2a |可化简为()2、已知a<0,A. - aB. aC. 一3aD. 3a【例71如果表示a, b两个实数的点在数轴上的位置如图所示,那么化简| a-b | + J(a + b)2的结果等于() ---- ----- -- --- Ab a oA. -2bB. 2bC. -2aD. 2a举一反三:实数a在数轴上的位置如图所示:化简:0-1| +J(Q-2)2= ______________ . 寸—()j-*-I:例811、把二次根式agl化简,正确的结果是( )A. J—aB. — J-aC. — -VaD.2、__________________________________________________________ 把根号外的因式移到根号内:当b>0时,-V7 = ; (。

(完整版)二次根式复习

(完整版)二次根式复习

二次根式小结与复习【主要内容】本单元是在学习了平方根和算术平方根的意义的基础上,引入一个符号“〞.主要内容有:〔 1〕二次根式的有关看法,如:二次根式定义、最简二次根式、?同类二次根式等;〔 2〕二次根式的性质;〔3〕二次根式的运算,如:二次根式的乘除法、二次根式的加减法等.【要点归纳】1. 二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.2.二次根式的性质:①②③④3.二次根式的运算二次根式的运算主若是研究二次根式的乘除和加减.〔 1〕二次根式的加减:需要先把二次根式化简,尔后把被开方数相同的二次根式〔即同类二次根式〕的系数相加减,被开方数不变。

注意:对于二次根式的加减,要点是合并同类二次根式,平时是先化成最简二次根式,再把同类二次根式合并.但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数.(2〕二次根式的乘法:(3〕二次根式的除法:注意:乘、除法的运算法那么要灵便运用,在实质运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.〔4〕二次根式的混杂运算:先乘方〔或开方〕,再乘除,最后加减,有括号的先算括号里面的;能利用运算律或乘法公式进行运算的,可合适改变运算序次进行简略运算.注意:进行根式运算时,要正确运用运算法那么和乘法公式,解析题目特点,掌握方法与技巧,以便使运算过程简略.二次根式运算结果应尽可能化简.别的,根式的分数必定写成假分数或真分数,不能够写成带分数.比方不能够写成.【难点指导】1、若是是二次根式,那么必然有;当时,必有;2、当时,表示的算术平方根,因此有;反过来,也能够将一个非负数写成的形式;3、表示的算术平方根,因此有,能够是任意实数;4、差异和的不相同:中的能够取任意实数,中的只能是一个非负数,否那么没心义.5、简化二次根式的被开方数,主要有两个路子:〔 1〕因式的内移:因式内移时,假设,那么将负号留在根号外.即:.〔 2〕因式外移时,假设被开数中字母取值范围未指明时,那么要进行谈论.即:6、二次根式的比较:〔 1〕假设,那么有;〔2〕假设,那么有.说明:一般情况下,可将根号外的因式都移到根号里面去今后再比较大小.二次根式增强训练与复习坚固自测试题1.化简:______;_________.2.当______时,.3.等式成立的条件是 ______.4.当,化简_______.5.比较与的大小: _______.6.分母有理化:〔 1〕__________;〔 2〕__________;〔 3〕__________.7.,,,那么________.8.计算_________.9.若是,那么的值为___________.10.假设有意义,那么的取值范围是___________.1.下式中不是二次根式的为〔〕A.;B.;C.;D.2.计算得〔〕3.假设,那么化简等于〔〕4.化简的结果是〔〕5.计算的结果是〔〕6.化简的结果是〔〕7.把式子中根号外的移到根号内,得〔〕A.B.C.D.8.等式成立的条件是〔〕9.的值为〔〕10.假设代数式有意义,那么的取值范围是〔〕〔1〕〔2〕〔3〕〔4〕〔5〕〔6〕〔7〕〔8〕〔9〕〔10〕求值题:1.:,求的值.2.,求的值。

(完整word版)二次根式知识点复习,文档

(完整word版)二次根式知识点复习,文档

二次根式复习【知识回忆】1. 二次根式: 式子 a 〔 a ≥ 0〕叫做二次根式。

2. 最简二次根式: 必定同时满足以下条件:⑴被开方数中 不含开方开的尽的因数或因式 ; ⑵被开方数中 不含分母 ; ⑶分母中 不含根式 。

3. 同类二次根式:二次根式化成最简二次根式后,假设被开方数相同,那么这几个二次根式就是同类二次根式。

4. 二次根式的性质:〔1〕〔2〔 a ≥ 0〕;〔2〕a 〕 = a 2aa 5. 二次根式的运算: ⑴二次根式的加减运算:先把二次根式化成最简二次根式,尔后合并同类二次根式即可。

⑵二次根式的乘除运算:a 〔 a >0〕0 〔 a =0〕;a 〔 a < 0〕① ab =a ?b 〔 a ≥ 0,b ≥ 0〕;②aaba 0,b 0b【例题讲解】例 1 计算:〔1〕 (3)2 ;〔2〕 (2 ) 2 ; 〔3〕 ( a b )2〔a+b ≥ 0〕3解析:依照二次根式的性质可直接获取结论。

例 2 计算:⑴6·15⑵ 1 ·24⑶ a 3 · ab 〔 a ≥ 0,b ≥ 0〕2解析:本例先利用二次根式的乘法法那么计算, 再利用积的算术平方根的意义进行化简得出计算结果。

例 3计算:〔1〕32+23-22+3〔 2〕12 +18 - 8 -32〔 3〕40 -1 +10510【基础训练】1.化简:〔 1〕72____ ;〔2〕252242___ __;〔3〕612 18 ____;〔4〕75x3 y2 (x0, y0) ____;〔5〕204_______ 。

2.(08 ,安徽 ) 化简42=_________。

3. 〔 08,武汉〕计算 4 的结果是A .2B.± 2C. -2D. 44. 化简:〔1〕〔 08,泰安〕9 的结果是;〔 2〕〔 08,南京〕12 3 的结果是;〔3〕(08 ,宁夏 ) 528 =;〔 4〕〔 08,黄冈〕 5 x -2x =_____ _;5.〔 08,重庆〕计算82的结果是A、 6B、 6C、 2D、 26.〔 08,广州〕 3 的倒数是。

二次根式章节分类总复习 八年级数学下学期重难点及章节分类精品讲义

二次根式章节分类总复习 八年级数学下学期重难点及章节分类精品讲义

第02讲 《二次根式》章节分类总复习考点一 二次根式有意义的条件 知识点睛:1. 二次根式的定义:非负数a 的算术平方根a 叫做二次根式 ☆:二次根式的判断不需要化简,直接根据定义判断即可, 易错类型:因为24=,误认为4不是二次根式2. 二次根式有意义的条件a 中a 叫做被开方数,其中二次根式有意义的条件就是a ≥0;☆1:当二次根式和分式结合时,要注意分式的分母≠0 ☆2:a 的双重非负性⎩⎨⎧≥≥0.0.本身②被开方数①a a ;故有:a 前无“-”,a 本身值不可能是负的 类题训练1.下列式子,哪些是二次根式,哪些不是二次根式:,,,(x >0),,,﹣,,(x ≥0,y ≥0).【分析】一般地,我们把形如 (a ≥0)的式子叫做二次根式.结合所给式子即可作出判断. 【解答】解:符合二次根式的定义;是三次根式;是分式,不是二次根式; (x >0)符合二次根式的定义; 是二次根式; 是四次根式; ﹣符合二次根式的定义; 是分式,不是二次根式;(x ≥0,y ≥0)符合二次根式的定义.2.(2021春•下城区期末)已知二次根式,当x =1时,此二次根式的值为( ) A .2 B .±2 C .4D .±4【分析】将x的值代入二次根式,然后利用二次根式的性质化简求解.【解答】解:当x=1时,原式=,故选:A.3.(2021春•阳谷县期末)已知是整数,则正整数n的最小值是【分析】因为是整数,且=2,则6n是完全平方数,满足条件的最小正整数n为6.【解答】解:∵=2,且是整数,∴2是整数,即6n是完全平方数;∴n的最小正整数值为6.故答案为:6.4.(2021秋•普陀区期中)若是二次根式,那么x的取值范围是.【分析】二次根式要求被开方数是非负数,即10﹣5x≥0,从而解得x的取值范围.【解答】解:∵是二次根式,∴10﹣5x≥0,∴x≤2.故答案为:x≤2.5.(2021春•余杭区期中)当x=时,的值最小.【分析】根据二次根式的性质即可求出答案.【解答】解:当x=3时,此时2x﹣6=0,的最小值为0,故答案为:36.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.【分析】(1)根据二次根式的定义得出3﹣x≥0,解之可得答案;(2)将x=﹣2代入计算可得;(3)当被开方数为0时,二次根式的值即为0,据此列出关于x的方程求解可得.【解答】解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.7.已知x、y为实数,且满足,求5x+|2y﹣1|﹣的值.【分析】先根据二次根式的性质列出不等式组,求出x的取值,再把x的值代入所求代数式即可解答.【解答】解:则;==2.考点二二次根式相关概念知识点睛:1.最简二次根式:满足以下2个条件的二次根式成为最简二次根式①被开方数的因数是整数,因式是整式;②不含开的尽方的因数或因式☆:判断最简二次根式,被开方数的字母部分次数最高为1次,且不含分母二次根式的运算,最后结果都要求必须化为最简二次根式2.同类二次根式:所含被开方数相同的最简二次根式叫做同类二次根式类题训练1.(2021秋•桐柏县期中)下列二次根式中的最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:A、原式=3,故A不符合题意.B、原式=3,故B不符合题意.C、是最简二次根式,故C符合题意.D、原式=2,故D不符合题意.故选:C.2.把下列根式化成最简二次根式.(1)5(2)6(3)(a>0)(4)(n<0)【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用二次根式的性质化简得出答案;(4)直接利用二次根式的性质化简得出答案.【解答】解:(1)5=5×2=10;(2)6=6×=6×=;(3)(a>0)=5a;(4)(n<0)=×=﹣.3.(2021春•岳麓区校级期末)下列式子能与合并的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、==4,能与合并,符合题意;B 、=2,不能与合并,不符合题意;C 、=,不能与合并,不符合题意;D 、=,不能与合并,不符合题意;故选:A . 4.如果最简二次根式与2是同类二次根式,则a = .【分析】根据同类二次根式的定义列出方程,解方程得到答案. 【解答】解:∵最简二次根式与2是同类二次根式,∴3a ﹣8=17﹣2a , 解得,a =5, 故答案为:5.考点三 二次根式的运算知识点睛:二次根式乘法公式:())(③②)(①0b ,0··)0()0(022≥≥=⎩⎨⎧≤-≥==≥=a b a b a a a a a a a a a a 二次根式除法公式:()()()()ba b a c b a b a b a c ba ca aa ab b ab b a b a b a ba ba --=-+-=+=≥==≥=)0(1)0,0()0,0(>>变形公式:>④类题训练1.(2021秋•拱墅区期中)下列计算正确的是( ) A .B .C .D .【分析】根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案. 【解答】解:A 、原式=0.3,故A 不符合题意.公式①、②、③常用于以下两种题型:(1)化简求值(2)无理数比较大小常见比较大小的三种方式:(1)利用近似值比较大小(2)把系数移到根号内比较(3)分别平方,然后比较大小以上方法注意两数的正负号公式④及其变形常用于分母有理化的化简,即分式的分子分母同乘分母的无理化因式,使分母变为整数。

第1课时:《二次根式》知识点总结复习(学生版)

第1课时:《二次根式》知识点总结复习(学生版)

《二次根式》题型分类知识点一:二次根式的概念【知识要点】二次根式的定义: 形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【例1】下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 1、下列各式中,一定是二次根式的是( ) A 、a B 、10- C 、1a + D 、21a+2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个【例2】若式子13x -有意义,则x 的取值范围是 . 1、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42、使代数式221x x-+-有意义的x 的取值范围是3、如果代数式m nm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限【例3】若y=5-x +x -5+2009,则x+y=1、若11x x ---2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .32、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值3、当a 取什么值时,代数式211a ++取值最小,并求出这个最小值。

1.已知a 是5整数部分,b 是 5的小数部分,求12a b ++的值。

2.若7-3的整数部分是a ,小数部分是b ,则=-b a 3 。

3.若172+的整数部分为x ,小数部分为y ,求y x 12+的值.知识点二:二次根式的性质【知识要点】1. 非负性:a a ()≥0是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到.2. ()()a aa 20=≥. 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()203. a a a a a a 200==≥-<⎧⎨⎩||()() 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系 (1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的.【例4】若()22340a b c -+-+-=,则=+-c b a .1、若0)1(32=++-n m ,则m n +的值为 。

二次根式全章复习知识点

二次根式全章复习知识点

《二次根式》全章复习与巩固--知识讲解(基础)【学习目标】1、理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.2、熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.3、了解代数式的概念,进一步体会代数式在表示数量关系方面的作用. 【知识网络】【要点梳理】要点一、二次根式的相关概念和性质 1. 二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式. 要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义. 2.二次根式的性质 (1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2()a =(0a ≥),如2221122););()33x x ===(0x ≥). (2)2a a 的取值范围可以是任意实数,即不论a 2a .(3a ,再根据绝对值的意义来进行化简.(42的异同a 可以取任何实数,而2中的a 必须取非负数;a ,2=a (0a ≥).相同点:被开方数都是非负数,当a 2.3. 最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.等都是最简二次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2. 4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.=显然是同类二次根式. 要点二、二次根式的运算 1. 乘除法(1)乘除法法则:类型 法则逆用法则二次根式的乘法0,0)a b =≥≥积的算术平方根化简公式:0,0)a b =≥≥二次根式的除法0,0)a b≥>商的算术平方根化简公式:0,0)a b=≥>要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如= (2)被开方数a 、b 一定是非负数(在分母上时只能为正数).如≠.2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式. 要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,=+-=最后合并同类二次根式.(13。

二次根式全章复习

二次根式全章复习

二次根式全章复习一. 教学衔接二. 教学内容知识点一:二次根式的概念及意义考点1:二次根式的概念:一般地,形如a (a≥0)的式子叫做二次根式,其中“”叫做二次根号,a叫做被开方数。

考点2.二次根式的非负性:当a>0时,a 表示a的算术平方根,因此a >0;当a=0时,a 表示0的算术平方根,因此a =0,所以a (a≥0)总是非负数,即a ≥0。

例1.下列各式中,是二次根式的是( ) A.34 B.35)(- C.a D.21 例2.下列各式中,是二次根式的有( )① x ;②2;③12+x ;④兀;⑤4;⑥39;⑦35-;⑧72;⑨100-. A.3个 B.4个 C.5个 D.6个规律小结:判断一个式子是不是二次根式,要看它是否同时具备两个特征: (1)带有二次根号“”; (2)被开方数为非负数。

例3.根式3-x 中x的取值范围是( ) A.x≥3 B.x≤3 C.x<3 D.x>3例4.若2-a +3-b =0,则a2-2b=.例5.已知y=52-x +x 25-+3,则2xy的值为( )A.-15 B.15 C.-215 D.215 规律小结:二次根式中涉及两类非负数问题: (1)二次根式a 中被开方数a必须是一个非负数,即a≥0; (2)二次根式a (a≥0)本身的值也是一个非负数,即a ≥0(a≥0).随堂练习:1.当x为何值时,下列二次根式在实数范围内有意义?(1)24-x ; (2)x 3-; (3)x 58-;(4)1222+x ; (5)52--x ; (6)x x 2+.2.使式子2x -有意义的未知数x有( )A.0个 B.1个 C.2个 D.无数个3.下列式子122++x x ,22+x ,x ,33,5-,9,32中,哪些是二次根式?4.1+x +(y-2013)2=0,则xy =.5.若x,y为实数,且y=x x 4312-++3412-+x x +1,求x+xy+x2y的值。

二次根式-中考数学一轮复习考点专题复习大全(全国通用)

二次根式-中考数学一轮复习考点专题复习大全(全国通用)

考向08 二次根式【考点梳理】1、二次根式:一般地,形如a (a ≥0)的代数式叫做二次根式。

当a >0时,a 表示a 的算术平方根,其中0=02、 理解并掌握下列结论:(1))0(≥a a 是非负数(双重非负性); (2))0()2≥=a a a (; (3)⎩⎨⎧≤->=⎩⎨⎧<-≥=⎪⎩⎪⎨⎧<-=>==)0()0()0()0()0()0(0)0(2a a a a a a a a a a a a a a a ;口诀:平方再开方,出来带“框框” 3、二次根式的乘法:)0,0(≥≥=•b a ab b a ,反之亦成立4、二次根式的除法:)0,0(>≥=b a b a ba ,反之亦成立5、满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数不含分母,(2)被开方数不含开得尽方的因数或因式。

6、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式。

【题型探究】题型一:二次根式的概念和性质1.(2022·湖北黄石·统考中考真题)函数11y x =+-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠2.(2022·广东广州·广东番禺中学校考三模)若3y =,则2022()x y +等于( ) A .1B .5C .5-D .1-3.(2022·湖北黄石·校联考模拟预测)函数y 中,自变量x 的取值范围是( ) A .5x >B .35x ≤<C .5x <D .35x ≤≤题型二:二次函数的化简4.(2022·河北·统考中考真题)下列正确的是( )A 23+B 23=⨯C D 0.75.(2023·河北·b a 的值是( ) A .6B .9C .12D .276.(2022·四川绵阳·统考三模)已知y =,则xy =( )A .3B .-6C .±6D .±3题型三:二次根式的乘除7.(2022·广东广州· )A B C D .8.(2022·天津南开·二模)计算3)的结果等于______.9.(2022·河北唐山·=a =______;b =__.题型四:二次根式的加减10.(2022·黑龙江哈尔滨·=_____. 11.(2022·黑龙江绥化·统考中考真题)设1x 与2x 为一元二次方程213202x x ++=的两根,则()212x x -的值为________.12.(2022·黑龙江哈尔滨·______.题型五:分母的有理化13.(2022·河北保定·统考一模)已知x =2y = (1)22x y +=________; (2)2()x y xy --=________.14.(2022·广东中山·统考二模)小明喜欢构建几何图形,利用“数形结合”的思想解决代数问题.在计算tan 22.5︒时,如图,在Rt ACB 中,9045C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,得22.5D ∠=︒,所以tan 22.51AC CD ︒===,类比小明的方法,计算tan15︒的值为________.15.(2020·四川成都·四川省成都列五中学校考三模)3的整数部分是m ,小数部分是n ,则mn+3=_____.题型六:二次根式的比较大小16.(2021·四川成都·766517.(2020·陕西西安·西安市铁一中学校考二模)比较大小:1013-(填“>”、“=”、“<”)18.(2021·陕西宝鸡·17﹣5(填“>”或“<”)题型七:二次根式的化简求值问题19.(2023·江西·九年级专题练习)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中53x =. 20.(2022·四川广元·统考一模)先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中32a =+32b = 21.(2022·辽宁抚顺·模拟预测)先化简,再求值:22124()(1)442x x x x x x x-+-÷--+-,其中x =2+tan30°.【必刷基础】一、单选题22.(2023·广西玉林·一模)下列运算正确的是( ) A 257B .22525=+C 532=D .233323.(2022·福建泉州·校考三模)在函数32y x =+中,自变量x 的取值范围是( ) A .23x ≠-B .23x >-C .23x -D .23x -24.(2022·上海松江·校考三模)下列式子属于同类二次根式的是( ) A .2与22B .3与24C .5与25D .6与1225.(2022春·河北保定·九年级保定市第十七中学校考期中)如图,把一张矩形纸片ABCD 按如图所示方法进行两次折叠后,BEF △恰好是等腰直角三角形,若2BE =,则CD 的长度为( )A .22B .22+C .222+D .224+26.(2021·广西百色·统考二模)将一组数2,2,6,22,10,…,210,按下列方式进行排列: 2,2,6,22,10; 23,14,4,32,25;…若2的位置记为()1,2,23的位置记为()2,1,则36这个数的位置记为( )A .()54,B .()44,C .()43,D .()35,27.(2022·山东青岛·统考中考真题)计算1(2712)3-⨯的结果是( ) A .33B .1C .5D .328.(2022·河北廊坊·统考二模)一次函数()32y k x k =++-的图象如图所示,则使式子()011k k ++-有意义的k 的值可能为( )A .-3B .-1C .-2D .229.(2021·北京·统考中考真题)若7x -在实数范围内有意义,则实数x 的取值范围是_______________. 30.(2018·江苏苏州·校联考中考模拟)若x 满足|2017-x|+-2018x =x , 则x-20172=________31.(2021·辽宁鞍山·统考中考真题)先化简,再求值:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭,其中62a =+. 32.(2022春·福建泉州·九年级福建省安溪第一中学校考阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简:222||()()a a c c a b -++--.【必刷培优】一、单选题33.(2021·广东·统考中考真题)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是( ) A .6B .210C .12D .91034.(2021·湖南娄底·统考中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m -B .102m -C .10D .435.(2021·内蒙古·统考中考真题)若21x =+,则代数式222x x -+的值为( ) A .7 B .4C .3D .322-36.(2020·河北·统考中考真题)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4二、填空题37.(2019·广西柳州·中考模拟)如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.38.(2021·四川眉山·统考中考真题)观察下列等式:12211311112212x =++==+⨯; 22211711123623x =++==+⨯; 3221113111341234x =++==+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______.39.(2022·湖北荆州·统考中考真题)若32-的整数部分为a ,小数部分为b ,则代数式()22a b +⋅的值是______. 40.(2021·河南信阳·河南省淮滨县第一中学校考三模)已知625x =-为一元二次方程20x ax b ++=的一个根,且a ,b 为有理数,则=a ______,b =______.41.(2019·江苏·校考中考模拟)若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为_____. 42.(2022·四川遂宁·统考中考真题)实数a ,b 在数轴上的位置如图所示,化简()()2211a b a b +--+-=______.三、解答题43.(2021·四川成都·统考中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中33=a .44.(2022·安徽·统考二模)阅读下列解题过程: 21+21(21)(21)-+-2-1; 32+32(32)(32)-+-32; 43+434343-+-()()433 …解答下列各题: (1109+= ;(2= .(3)利用这一规律计算:)×).45.(2019·福建泉州·统考中考模拟)先化简,再求值:2443(1)11m m m m m -+÷----,其中2m .46.(2013·贵州黔西·中考真题)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+(,善于思考的小明进行了以下探索:设(2a m ++(其中a 、b 、m 、n 均为整数),则有2222a m n +++∴2222a m n b mn =+=,.这样小明就找到了一种把部分a + 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b ,得a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n ,填空: + =( +2;(3)若(2a m ++,且a 、b 、m 、n 均为正整数,求a 的值.参考答案:1.B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【详解】解:依题意,3010 xx+>⎧⎨-≠⎩∴3x>-且1x≠故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.2.A【分析】直接利用二次根式中被开方数是非负数,得出x的值,进而得出y的值,再利用有理数的乘方运算法则计算即可.【详解】解:由题意可得:20 420xx-≥⎧⎨-≥⎩,解得:x=2,故y=-3,∴20222022()(213)=x y+=-.故选:A.【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.3.C【分析】根据二次根式、立方根、分式的性质分析,即可得到答案.【详解】根据题意,得50x->∴5x<故选:C.【点睛】本题考查了二次根式、立方根、分式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解.4.B【分析】根据二次根式的性质判断即可.【详解】解:23+,故错误;23=⨯,故正确;=≠0.7,故错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.5.D【分析】由二次根式的性质、二次根式的减法运算法则进行计算,即可得到答案.∴3a =,3b =, ∴3327=, 故选:D【点睛】本题考查了二次根式的性质、二次根式的减法运算,解题的关键是掌握运算法则,正确的进行解题. 6.B【分析】利用二次根式的被开方数具有非负性求出x 的值后,再求出y 的值,即可求解. 【详解】解:∵229090x x -+≥-≥,, ∴29x =, 又∵30x +≠, ∴3x =, ∴0012233y --==-+,∴()326xy =⨯-=-, 故选:B .【点睛】本题考查了二次根式有意义的条件以及性质,解题关键是求出x 的值与y 的值. 7.A【分析】根据二次根式的乘除运算法则进行计算,最后根据二次根式的性质化简即可.=== 故选:A .【点睛】)0,0a b ≥≥)0,0a b ≥>,熟练掌握相关运算法则是解题的关键. 8.4【分析】根据平方差公式计算即可.【详解】解:3)=223-=13-9 =4,故答案为:4.【点睛】本题考查二次式的混合运算,熟练掌握平方差公式是解题的关键. 9. 2 6化为最简二次根式,再利用二次根式的乘法法则解题.=2,6a b ∴==故答案为:2,6.【点睛】本题考查利用二次根式的性质化简计算,涉及最简二次根式、二次根式的乘法等知识,是基础考点,掌握相关知识是解题关键.10.-【分析】先把各二次根式化为最简二次根式,然后合并即可.【详解】解:原式==-故答案为:-【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 11.20【分析】利用公式法求得一元二次方程的根,再代入求值即可; 【详解】解:∵213202x x ++=△=9-4=5>0,∴13x =-23x =-,∴()212x x -=((223320-==,故答案为:20;【点睛】本题考查了一元二次方程的解,掌握公式法解一元二次方程是解题关键. 12【分析】根据二次根式的性质和二次根式的减法法则,即可求解.3==【点睛】本题主要考查二次根式的化简,掌握二次根式的性质和运算法则,是解题的关键. 13. 14 11【分析】根据分母有理化得到2x =x 和y 分别代入(1)(2)中根据二次根式的混合运算法则计算求解.【详解】解:∵123x =+, ∴()()12323232323x ===+-+--, ∴(1)22x y +()()222323=-++ 44334433=-++++14=,故答案为:14;(2)()2x y xy -- ()()()223232323⎡⎤=--+--+⎣⎦()()22343=---121=-11=,故答案为:11.【点睛】本题主要考查了分母有理化、二次根式的混合运算法则,理解相关知识是解答关键.14.23-【分析】仿照题意构造含15度角的直角三角形进行求解即可.【详解】解:如图,在Rt ACB 中,9030C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,∴∠BAD =∠D ,2AB BD AC ==,∴cos =3BC AC ABC AC =⋅∠,∴()23CD BC BD AC =+=+,∵∠ABC =∠BAD +∠D ,∴=15D ︒∠,∴1tan =tan15===2323AC D CD ︒-+∠, 故答案为:23-.【点睛】本题主要考查了解直角三角形,三角形外角的性质,等腰三角形的性质,正确理解题意构造出含15度角的直角三角形是解题的关键.15.2m 的值,小数部分n m ,把m 、n 代入分式m n+3中,应用分母有理化的方法进行化简,即可得到答案.【详解】解:∵12,∴m =1,n 1, ∴=n+3m=2.故答案为:2.【点睛】本题主要考查二次根式的分母有理化,熟练掌握分母有理化的方法是解题的关键.16.<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.==<故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.17.> 【分析】先将这两个数分别平方,通过比较两个数的平方的大小即可得解.【详解】解:∵21(10=,211()39-=且11109<,1<,∴13>- 故答案为:>【点睛】此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.18.>【分析】首先利用二次根式的性质可得【详解】解:∵∴>﹣故答案为:>.【点睛】本题主要考查了二次根式的大小比较,准确计算是解题的关键.19.13x x -+【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭ ()()()23221111x x x x x x ++-+=÷++- ()()()211313x x x x x +-+=⨯++13x x -=+.当3x =时,原式=. 【点睛】此题主要考查了分式的化简以及二次根式混合运算,正确化简分式是解题关键.20.ab ;7【分析】根据分式的混合运算法则化简,再代入3a =3b = 【详解】解:原式222a ab b a b a b ab-+-=÷- ()2a b ab ab a b a b-=⋅=--.当3a =3b =原式(33927==-=.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式、二次根式及乘法公式的运用.21.()212x -;3【分析】先根据异分母分式的加减化简括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后根据特殊角的三角函数值求得x 的值,代入化简结果进行计算即可. 【详解】解:22124()(1)442x x x x x x x -+-÷--+- ()()()()()22122422x x x x x x x x x x ⎡⎤-+-=-⨯⎢⎥---⎢⎥⎣⎦()2224=42x x x x x x x --+⨯-- ()241=42x x x -⋅-- ()212x =-2tan 302x =+︒=∴原式21322==⎛⎫ ⎪⎝⎭【点睛】本题考查了分式的化简求值,特殊角的三角函数值,实数的混合运算,二次根式的混合运算,正确的计算是解题的关键.22.D【分析】利用二次根式的加减运算法则进行计算,然后作出判断.【详解】解:AB、= CD、=故选:D .【点睛】本题考查二次根式的加减运算,掌握运算法则是解题关键.23.C【分析】根据被开方数大于等于0,列式求解即可.【详解】解:根据题意得:320x +,解得23x -.【点睛】本题主要考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.24.A【分析】根据同类二次根式的概念判断即可.【详解】解:A 、2与22是同类二次根式,符合题意;B 、3与26不是同类二次根式,不符合题意;C 、5与5不是同类二次根式,不符合题意;D 、6与23不是同类二次根式,不符合题意;故选A .【点睛】本题考查了同类二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.25.D【分析】根据翻折过程补全图形,然后根据矩形的性质和勾股定理即可解决问题.【详解】解:由折叠补全图形如图所示,四边形ABCD 是矩形,'90ADA B C A ∴∠=∠=∠=∠=︒,AD BC =,CD AB =,由第一次折叠得:'90DA E A ∠=∠=︒,1452ADE ADC ∠=∠=︒, 45AED ADE ∴∠=∠=︒,AE AD ∴=,在Rt ADE △中,根据勾股定理得,2DE AD =,由第二次折叠知,CD DE AB ==,222DE AE ∴=,2222()2(2)CD AB BE CD ∴=-=-,422CD ∴=+【点睛】本题考查了翻折变换,矩形的性质,等腰直角三角形,解决本题的关键是掌握翻折的性质.26.C∵36218÷=,18533÷=4行,第3个数字.故选:C .【点睛】此题考查的是数字的变化规律以及二次根式的化简,找出其中的规律是解题的关键.27.B再合并即可.【详解】解:94321 故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.28.B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<.()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠ ∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底29.7x ≥【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:70x -≥,解得:7x ≥;故答案:为7x ≥.【点睛】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件.30.2018【分析】根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题.【详解】解:由条件知,x-2018≥0, 所以x≥2018,|2017-x|=x-2017.所以x-2017+ =x ,即 =2017,所以x-2018=20172 ,所以x-20172=2018,故答案为:2018.【点睛】本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.31.2a a -,1+【分析】根据分式的混合运算的运算法则把原式化简为2a a -,再代入求值. 【详解】解:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭ ()()()2132221a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦()()()21221a a a a a a +-=⨯+-- 2a a =-.当2a 时,原式1==== 【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 32.a b -【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.33.Aa 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯==-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6a 与小数部分b 的值是解题关键.34.D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+, 解得:37x ,374m m -+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.35.C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.36.B【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大正方形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,222A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512 C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.37.2【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】解:由数轴可得:0<a <2,则a=a =a +(2﹣a )=2.故答案为:2.【点睛】本题主要考查了二次根式的性质与化简,解题的关键是正确得出a 的取值范围.38.12021-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120202021⨯化为12015﹣12016,再进行分数的加减运算即可.11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++-=112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12020﹣12021﹣2021 =2020+1﹣12021﹣2021=12021-. 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算. 39.2【分析】先由12<得到132<<,进而得出a 和b ,代入()2b ⋅求解即可.【详解】解:∵ 12<,∴132<<,∵ 3的整数部分为a ,小数部分为b ,∴1a =,312b ==∴()((222242b ⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.40. 2; 4-;【分析】将x =1x =,则20x ax b ++=)()260a b a -+-+=,根据a ,b 为有理数,可得2a -,6b a -+)()260a b a -+-+=时候,只有20a -=,60b a -+=,据此求解即可.【详解】解:∵x ====1∴20x ax b ++=∴))2110a b ++= ∴60a b --+=60a b -++=)()260a b a -+-+=∵a ,b 为有理数,∴2a -,6b a -+也为有理数,∴2a =,4b =-,故答案是:2,4-;【点睛】本题考查了二次根式的化简,利用完全平方公式因式分解,一元二次方程的解,有理数,无理数的概念的理解,熟悉相关性质是解题的关键.41.4【分析】直接利用二次根式有意义的条件得出a 的值,进而利用负指数幂的性质得出答案.【详解】解:∵b 2,∴120210a a -≥⎧⎨-≥⎩∴1-2a=0,解得:a=12,则b=-2, 故ab=(12)-2=4. 故答案为4.【点睛】此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a 的值是解题关键. 42.2【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案.【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∴1a +=|1||1|||a b a b +--+-=1(1)()a b a b +----=11a b a b +-+-+=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.43.13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++ 13a =+,当3=a 时,原式= 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.44.(13;(2(3)2020【分析】(1,然后利用平方差公式和二次根式的性质计算,即可得到答案;(2(3)根据(1)和(2)的结论,先分母有理化,经加减运算后,再利用平方差公式计算,即可得到答案.【详解】(133;(2==(3)×)1+)×)1)×) =20211-=2020.【点睛】本题考查了二次根式和数字规律的知识:解题的关键是熟练掌握二次根式混合运算、数字规律、平方差公式的性质,从而完成求解.45.22m m-+ 1. 【详解】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m -- =221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m 2时,原式===﹣=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 46.(1)223m n +,2mn ;(2)13,4,2,1(答案不唯一);(3)7或13.【分析】根据题意进行探索即可.【详解】(1)∵2(a m +=+,∴2232a m n +=++∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.【点睛】本题考查二次根式的运算.根据题意找出规律是解决本题的关键.。

最新九年级数学必考要点分类汇编完整版 二次根式)

最新九年级数学必考要点分类汇编完整版  二次根式)

最新九年级数学必考要点分类汇编完整版二次根式∙知识网络图表∙∙习题练习∙1.2)x > 2.0=,求x 、y 的值。

3..已知0b >4.a b ==a 、b 表示为多少?5.-6.=x 的取值范围是多少? 7.当x=_____时3的值最小,最小值是:_______. 8.在实数范围内分解因式:425x -(0,(0,ab a a b ≥≥>a b ab =(a a a =9.计算2 1)(2).22--10.等式:x y-=:________11.下列二次根式中,最简二次根式是( )12.下列各式中,( )13.3x=-成立,则x的取值范围为( ) A.2x≥ B.3x≤ C.23x≤≤ D.23x<<14.计算结果是:( )A.15.数5x, 小数部分是y, 则x-2y的值是( )A.1B.1-1 D.1--16.已知a b==()A.5 B.6 C.3 D.417.若2x-有意义,则x的取值范围是:_________18.实数a在数轴上的位置如图,化简:1a-+19.0=最新九年级数学必考要点分类汇编完整版一元二次方程∙∙1.下列关于x 的方程中:①20ax bx c ++=,②2560k k ++=,3102x x -=,④22(3)20m x +-=.是关于x 的一元二次方程的是:______(只填序号) 2.关于x 的方程1(3)50a a xx --++=是一元二次方程,则a =_______.3.如果210x x +-=,那么代数式3227x x +-的值为:____________. 4.已知m 是方程210x x --=的一个根,则代数式2m m -的值为多少?根;△0<实根.12c x a =5.用配方法解方程2410x x ++=,经过配方得:_____________6.对于二次三项式21036,x x -+小明同学得出如下的结论:无论x 取何值什么实数时,它的值都不可能等于11。

二次根式全章总复习

二次根式全章总复习

二次根式全章总复习三个概念概念1 二次根式1.下列各式一定是二次根式的是( ) 2.下列式子中为二次根式的是( ) a B .x +1 C .1-x D .x +1 A .8 B .-1 C . 2 D .x(x <0)3.在代数式:①;②;③;④;⑤;⑥中,一定是二次根式的有( )A.5个 B.4个 C.3个 D.2个 4.二次根式13)3(2++m m 的值是( )A .23B .32C .22D .0 5.已知a 为实数,下列式子一定有意义的是( )A. B. C. D.6.已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2 016-y 2 017的值是多少?概念2 代数式1.下列式子中属于代数式的有( )①0;②a ;③x +y =2;④x -5;⑤2a ;⑥a 2+1;⑦a ≠1;⑧x ≤3. A .7个 B .6个 C .5个 D .4个2.农民张大伯因病住院,手术费为a 元,其他费用为b 元,由于参加农村合作医疗,手术费报销85%,其他费用报销60%,则张大伯此次住院共报销_________________元(用代数式表示). 概念3 最简二次根式1.二次根式45a ,2a 3,8a ,b ,13(其中a ,b 均大于或等于0)中,是最简二次根式的有_________个。

2.把下列各式化成最简二次根式.(1) 1.25; (2)4a 3b +8a 2b(a ≥0,b ≥0); (3)-n m 2(mn >0); (4)x -y x +y(x ≠y).3.下列二次根式中,哪些是最简二次根式?哪些不是?不是最简二次根式的请说明理由.412-402,8-x 2,22,x 2-4x +4(x>2),-x 12x ,0.75ab ,ab 2(b>0,a>0),9x 2+16y 2,(a +b )2(a -b )(a>b>0),x 3,x 3.二次根式的性质性质1 (a)2=a(a ≥0)1,下列计算正确的是( )A .-(7)2=-7 B .(5)2=25 C .(9)2=±9 D .-⎝⎛⎭⎪⎫-9162=916 2.在实数范围内分解因式:x 4-9=________.3.要使等式(8-x)2=x -8成立,则x =________. 性质2 a 2=a(a ≥0)1.实数a 在数轴上对应点的位置如图所示,则(a -4)2+(a -11)2化简后为( ) A .7 B .-7C .2a -15 D .无法确定 2.若成立,则m 的取值范围是__________3.已知三角形的两边长分别为3和5,第三边长为c ,化简:c 2-4c +4-14c 2-4c +16.4.先化简再求值:当a =5时,求a +1-2a +a 2的值,甲、乙两人的解答如下:甲的解答为:原式=a +(1-a )2=a +(1-a)=1;乙的解答为:原式=a +(1-a )2=a +(a -1)=2a -1=9. 请问谁的解答正确?请说明理由.性质3 积的算术平方根1.化简24的结果是( )A .4 6 B .2 6 C .6 2 D .8 32.能使得(3-a )(a +1)=3-a ·a +1成立的所有整数a 的和是________. 3.若3)3(-⋅=-m m m m ,则m 的取值范围是4.将根号外的移到根号内; .性质4 商的算术平方根1.化简下列二次根式:(1)449; (2)121b516a2(a <0,b >0).性质5。

2023年春季学期 二次根式专题复习

2023年春季学期  二次根式专题复习

专题01二次根式专题复习【8个考点知识梳理+题型解题方法+专题训练】考点一:二次根式的定义二次根式的定义:一般地,我们把形如a (a ≥0)的式子叫做二次根式.其中:①“”称为二次根号;②a 是被开方数,a ≥0,是一个非负数;【考试题型1】根据二次根式的形式准确判断二次根式【解题方法】判断形式,确定被开方数大于等于0。

例题讲解:1.下列式子一定是二次根式的是()A .2--x B .xC .22+x D .22-x 【考试题型2】根据被开方数大于等于0求未知数的值或范围。

【解题方法】利用被开方数大于等于0建立不等式,解不等式。

例题讲解:2.若x 31-是二次根式,则x 的值不可能是()A .﹣2B .﹣1C .0D .1考点二:二次根式有意义的条件二次根式有意义的条件:被开方数大于等于0。

即a 中,a ≥0。

【考试题型1】根据二次根式有意义的条件求取值范围【解题方法】利用式子中所有二次根式的被开方数都大于等于0建立不等式(组)求解集,同时若式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零。

例题讲解:3.若二次根式2-x 在实数范围内有意义,则x 的取值范围是()A .x >2B .x ≥2C .x ≤2D .x <2【考试题型2】利用二次根式有意义求式子【解题方法】利用二次根式有意义的条件求出相应字母的值,再带入需要求的式子。

例题讲解:4.已知y =322+-+-x x ,则x y 的值是()A .5B .6C .8D .﹣8考点三:二次根式的性质二次根式的基本性质:①二次根式的双重非负性。

即a ≥0;a ≥0.②(a )2=a (a ≥0)(一个数的算术平方根的平方等于它本身).③()()⎩⎨⎧≤-≥==002a a a a a a (一个数的平方的算术平方根等于这个数的绝对值)。

【考试题型1】二次根式的非负性:几个非负数的和等于0,这个几个非负数分别等于0。

【解题方法】结合绝对值,偶次方,让被开方数,绝对值符号内的式子以及底数分别为0建立方程解方程即可。

二次根式全章复习

二次根式全章复习

①都是形如 a 的式子,
②a都是非负数.
一般地,形如 a(a≥0)的式子叫做二次根式.
其中a为整式或分式,a叫做被开方式.
1.判断下列各式是否是二次根式.
5 ( × ) a (a 0)( × ) 3 8 ( × ) a (a 0)( √ )
2. 下列各式一定是二次根式的是( C ).
A. x +1 B. x2 1
(2)如图所示,AD⊥DC于D,
A
BC⊥CD于C,
若点P为线段CD上动点。
B
①则AD=__2__ BC=__1__
DP C
拓展2
已知△ABP的一边AB= 10,
(1)在如图所示的4×4的方格中画出格点△ABP,使
三角形的三边为 5, 5, 10,
(2)如图所示,AD⊥DC于D,
A
BC⊥CD于C,
若点P为线段CD上动点。
1
a +1
2 1
1 2a
3 a 32
解:(1)由题意得:
a +1 0 a 1
即当 a 1 时, a +1 有意义.
(2)a 1 2
a (3) 为任意实数
求二次根式中字母的取值范围的基本依据:
①被开方数不小于零;
②分母中有字母时,要保证分母不为零。
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0
B
② 设DP=a,请用含a的代数式表
示AP,BP。则AP=___a_2_+_4____,
D
PC
B③P=当__a_(=_31__a时)_2_+,_1_则。PA+PB=__2__5__,当a=3,则PA+PB=_1_+__1_3_

二次根式复习专题讲义(补课用)详解

二次根式复习专题讲义(补课用)详解

二次根式复习专题讲义一、二次根式的概念:1.二次根式:a ≥0)的式子叫做二次根式,“”称为二次根号。

①.式子中,被开方数(式)必须大于等于零。

②.a ≥0)是一个非负数。

③.2=a (a ≥0)(a ≥0)2.二次根式的乘:①.②. 3.二次根式的除:①. 一般地,对二次根式的除法规定:②. 4. 二次根式的加减法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

典型例题分析:例1. 下列式子,哪些是二次根式,哪些不是二次根式:、1xx>0)1x y+x ≥0,y•≥0).例2.当x+11x+在实数范围内有意义?变式题1:当x在实数范围内有意义?变式题2:①.当x2在实数范围内有意义?例3.①.已知,求xy的值.②.=0,求a2004+b2004的值.③.,求x y的值.例4.计算1.22.()23.24.(2)2例5. 计算1.2(x≥0)2.23.24.2变式题:计算1.(-)22.例6.在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3例7.化简(2(3(4(1例8.填空:当a≥0时,=_____;当a<0时,=_______,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?例9.当x>2.例10.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.=a,求a-19952的值.变式题1.若│1995-a│变式题2.若-3≤x≤2时,试化简│x-2│。

(2(3(4)(1a≥0,b≥0)计算即可.分析:(2(3(4例12 .化简(2(3(1(5(4例13 .判断下列各式是否正确,不正确的请予以改正:(1=4(2变式题1:和,•那么此直角三角形斜边长是().变式题2:化简a)..√169×6变式题3变式题5:探究过程:观察下列各式及其验证过程.(1)验证:(2)验证:同理可得:,……通过上述探究你能猜测出:a=_______(a>0),并验证你的结论.例14.计算:(1(2÷(3÷(4)例15.化简:(1(2(3(4例16.,且x为偶数,求(1+x的值.变式题1.的结果是().变式题2.阅读下列运算过程:,化”).变式题3.已知x=3,y=4,z=5,是_______.变式题4.有一种房梁的截面积是一个矩形,且矩形的长:1,•现用直径为的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?变式题5.计算(1·(m>0,n>0)(2)(a>0)例17.把它们化成最简二次根式:(1)3; (2)总结:二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.例18.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.B A C例19.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:-1,=,,……从计算结果中找出规律,并利用这一规律计算++(+1)的值.练习:一、选择题1(y>0)是二次根式,那么,化为最简二次根式是().y>0) B y>0) C y>0)AD.以上都不对2.把(a-1中根号外的(a-1)移入根号内得().C. D.ABA=a2DC4的结果是()B.C.D.A.二、填空题1.(x≥0)2.化简二次根式号后的结果是_________.三、综合提高题1.已知a 过程,请判断是否正确?若不正确,•请写出正确的解答过程:2.若x 、y 为实数,且y=y x y -的值.例20.计算 (1(2总结:二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.例21.计算(1)(2))+例22.已知4x 2+y 2-4x-6y+10=0,求(23+y-(x -5x)的值.练习: 一、选择题1中,与是同类二次根式的是( ).A .①和②B .②和③C .①和④D .③和④ 2.下列各式:①3+3=6;②17=1;③=;④,其中错误的有( ).A .3个B .2个C .1个D .0个 二、填空题1、、与是同类二次根式的有________.2.计算二次根式5-3-7+9的最后结果是________.三、综合提高题1.已知≈2.236,求(-)-+)的值.(结果精确到0.01) 2.先化简,再求值.()-(,其中x=32,y=27.例23.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)BAC QP例23.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m )?例24.若最简根式3是同类二次根式,求a 、b 的值.(•同类二次根式就是被开方数相同的最简二次根式)练习: 一、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).(•结果用最简二次根式) A .BC .D .以上都不对2.小明想自己钉一个长与宽分别为30cm 和20cm 的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.. D.二、填空题1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2.,•那么这简二次根式)三、综合提高题1.若最简二次根式与n是同类二次根式,求m、n的值.2.同学们,我们以前学过完全平方公式a2±2ab+b2=(a ±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=)2,5=(2,你知道是谁的二次根式呢?下面我们观察:-1)2=)2-2·1+12+1=3-2反之,∴-1求:(1(2;(3吗?(√3-1)(4,则m 、n 与a 、b 的关系是什么?并说明理由.例25.计算: (1)+(2)(4)÷例26.计算 (1))(3-) (2)))例27.已知xba-=2-xa b-,其中a 、b 是实数,且a+b ≠0,练习: 一、选择题1.).AC2( ).A.2 B.3 C.4 D.1二、填空题+)2的计算结果(用最简根式表示)是 1.(-12________.)()-()2的计算结果(用最简2.(二次根式表示)是_______.-1,则x2+2x+1=________.3.若4.已知a=3+2,,则a2b-ab2=_________.三、综合提高题12.当+的值.(结果用最简二次根式表示)课外知识1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.练习:下列各组二次根式中,是同类二次根式的是().AC2.互为有理化因式:•互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式:如x+1-与x+1+与也是互为有理化因式.+的有理化因式是________;的有理化因式是_________._______.3.分母有理化是指把分母中的根号化去,通常在分子、•分母上同乘以一个二次根式,达到化去分母中的根号的目的.练习:把下列各式的分母有理化(1(2;(3(44.其它材料:如果n是任意正整数,=_____=_______.例28.-1的大小。

二次根式复习要点

二次根式复习要点

二次根式复习知识点一、二次根式的概念a ≥0)的式子叫做二次根式。

a 叫做“被开方数”,为二次根号.判断二次根式的方法:①看它是否有根号;②看根指数是否是2;③看被开方数是否是非负数。

同时满足这三个条件的式子才是二次根式。

二、二次根式有意义的条件:被开方数大于等于0。

▲(若二次根式在分母中,要保证分母不能0)★解题技巧:二次根式有意义的条件是被开方数为非负数,如果两个二次根式都有意义,则被开方数都大于等于零。

通常情况下,通过解不等式组求字母的取值范围。

例:⑴当时,有意义。

⑵函数1y x=+的自变量x 的取值范围是 。

⑶已知,求得xy的值( ). 三、二次根式的性质≥0) ★二次根式具有双重非负性2.=2)(a (a ≥0) 3. ⎪⎩⎪⎨⎧<=>==)0___()0___()0___(____2a a a a例:⑴当5<a等于 。

⑵已知x<y,化简的结果是________。

2x =-,则x 的取值范围是________________________。

四、二次根式的乘除乘法运算法则a ≥0,b ≥0)(a ≥0,b ≥0)★积的算术平方根等于各因式算术平方根的积。

利用这个性质可以进行二次根式的化简。

(a≥0,b>0)(a≥0,b>0)★商的算术平方根等于算术平方根的商。

利用这个性质可以进行二次根式的化简五、最简二次根式:必须同时满足下列条件:★⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

六、二次根式的加减:㈠同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

▲判断同类二次根式方法:先化简二次根式,再看被开方数是否相同。

㈡合并同类二次根式:将同类二次根式的系数相加减,根指数和被开方数不变。

▲注意:合并同类二次根式时,要先将二次根式化简。

㈢二次根式的加减:①实质:合并同类二次根式。

②运算步骤:先化简每个二次根式,再识别同类二次根式,最后合并同类二次根式(不是同类二次根式的不能合并)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式小结与复习
【主要内容】本单元是在学习了平方根和算术平方根的意义的基础上,引入一个符号“”.主要内容有:( 1)二次根式的有关概念,如:二次根式定义、最简二次根式、?同类二次根式等;( 2)二次根式的性质;(3)二次根式的运算,如:二次根式的乘除法、二次根式的加减法等.
【要点归纳】
1. 二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,
才有意义.
2.二次根式的性质:




3.二次根式的运算
二次根式的运算主要是研究二次根式的乘除和加
减.( 1)二次根式的加减:
需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方
数不变。

注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次
根式合并.但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数.
(2)二次根式的乘法:
(3)二次根式的除法:
注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还
要考虑字母的取值范围,最后把运算结果化成最简二次根式.
(4)二次根式的混合运算:
先乘方(或开方),再乘除,最后加减,有括号的先算括号里面的;能利用运算律或乘法公式进行运
算的,可适当改变运算顺序进行简便运算.
注意:进行根式运算时,要正确运用运算法则和乘法公式,分析题目特点,掌握方法与技巧,以便使运
算过程简便.二次根式运算结果应尽可能化简.另外,根式的分数必须写成假分数或真分数,不能写成
带分数.例如不能写成.
【难点指导】
1、如果是二次根式,则一定有;当时,必有;
2、当时,表示的算术平方根,因此有;反过来,也可以将一个非负数写成的形式;
3、表示的算术平方根,因此有,可以是任意实数;
4、区别和的不同:
中的可以取任意实数,中的只能是一个非负数,否则无意义.
5、简化二次根式的被开方数,主要有两个途径:
( 1)因式的内移:因式内移时,若,则将负号留在根号外.即:.
( 2)因式外移时,若被开数中字母取值范围未指明时,则要进行讨论.即:
6、二次根式的比较:
( 1)若,则有;(2)若,则有.
说明:一般情况下,可将根号外的因式都移到根号里面去以后再比较大小.
二次根式强化训练与复习巩固自测试题
1.化简:______;_________.
2 .当______时,.
3 .等式成立的条件是 ______.
4 .当,化简_______.
5.比较与的大小: _______.
6.分母有理化:
( 1)__________;( 2)__________;( 3)__________.
7.已知,,,那么________.
8.计算_________.
9.如果,那么的值为___________.
10.若有意义,则的取值范围是___________.
1.下式中不是二次根式的为()
A .;
B .;C.; D .
2.计算得()
3.若,则化简等于()4.化简的结果是()
5.计算的结果是()
6.化简的结果是()
7.把式子中根号外的移到根号内,得()
A .B.C. D .
8.等式成立的条件是()
9.的值为()
10.若代数式有意义,则的取值范围是()
(1)(2)(3)(4)
(5)(6)(7)(8)
(9)(10)
求值题:
1.已知:,求的值.
2.已知,求的值。

3.已知:,求的值.
4.求的值.
5.已知、是实数,且,求的值.
五、解答题:(每小题 4分,共16分)
1.解方程:
2.在△ ABC 中,三边分别为,且满足,,试探求△ ABC 的形状.
3.有一种房梁的截面积是一个矩形,?且矩形的长与宽之比为:1,现用直径为3cm 的一种圆木做原料加工这种房梁,那么加工后的房梁的最大截面积是多少?。

相关文档
最新文档